
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-22-2020

Accelerating the Information-Theoretic Approach of Community Accelerating the Information-Theoretic Approach of Community

Detection Using Distributed and Hybrid Memory Parallel Schemes Detection Using Distributed and Hybrid Memory Parallel Schemes

Md Abdul Motaleb Faysal
mfaysal@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Faysal, Md Abdul Motaleb, "Accelerating the Information-Theoretic Approach of Community Detection
Using Distributed and Hybrid Memory Parallel Schemes" (2020). University of New Orleans Theses and
Dissertations. 2739.
https://scholarworks.uno.edu/td/2739

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/345463197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2739?utm_source=scholarworks.uno.edu%2Ftd%2F2739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Accelerating the Information-Theoretic Approach of Community Detection Using
Distributed and Hybrid Memory Parallel Schemes

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Md Abdul Motaleb Faysal

B.S. Bangladesh University of Engineering and Technology, 2014

May, 2020

This work is dedicated to the memory of my beloved nephew Ataullah Imad who

left this world unexpectedly on 6th May 2019, from an unknown illness.

ii

ACKNOWLEDGMENTS

I want to acknowledge the support and guidance I received from various sources

and individuals in finishing this work with immense gratitude and thankfulness. I

cannot imagine myself coming up to this point without those essential catalysts of an

efficacious endeavor.

First, with the utmost respect, I like to acknowledge the guidance I received from

my supervisor Dr. Shaikh Arifuzzaman, assistant professor of Computer Science at

the University of New Orleans (UNO) who is my supervisor on my ongoing effort in

pursuing Ph.D. as well. I can acknowledge without any reservation that this thesis

work would not reach the finish line without his guidance and moral support.

Second, I am grateful to my parents and siblings who believe in me and have been

supporting me in my pursuit of higher education. I am thankful to have wonderful

nephews and nieces who inspire me constantly and amaze me as they grow up. I am

truly thankful to have a family of such beautiful people.

Third, I would like to acknowledge the spontaneous supports from my friends both

at home and abroad who not only play the roles of teammates or opponents in the

playground but also boost me morally with their words of inspiration and wisdom.

Specifically, I want to mention Md Khairul Habib Pulok and Md Kauser Ahmmed

here at UNO who were by my side during my struggling time.

Finally, I want to acknowledge the grants (BoR RCS grant LEQSF(2017-20)-RD-

A-25) and (ORSP SCORE grant 2019) for the continuation of this thesis project.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

LIST OF TABLES . viii

SYMBOLS . ix

ABBREVIATIONS . x

GLOSSARY . xi

ABSTRACT . xii

1 Introduction . 1
1.1 Descriptions of the Static Community Detection Approaches 4
1.2 Motivation for Parallel Algorithm in Discovering Community 6

2 Literature Review . 10

3 Problem Specification . 14
3.1 How Infomap Works . 14

3.1.1 The Map Equation . 19
3.2 Sequential Infomap Algorithm . 20

4 Solution Strategy: Distributed Infomap, Research Challenges 22
4.1 Research Challenges . 24
4.2 Applied Heuristics . 27

5 Experimental Analysis . 31
5.1 Experimental Setup . 31
5.2 Implementation . 31
5.3 Performance Comparison . 32
5.4 Dataset . 32
5.5 Evaluation . 33

5.5.1 Quality analysis of the Detected Modules 33
5.5.2 Distributed Performance Analysis 38

6 Comparison with State-of-the-Art Techniques 44
6.1 Experimental Setup . 45
6.2 Comparison with GossipMap . 45

iv

Page

7 Hybrid (Distributed + Shared) Memory Parallelism 49
7.1 Experimental Setup . 49
7.2 Algorithmic Analysis and Performance Measure 49
7.3 Quality Measure . 56

8 Conclusion . 61

LIST OF REFERENCES . 62

VITA . 68

v

LIST OF FIGURES

Figure Page

1.1 Illustrating types of community detection based on the community mem-
bership . 2

3.1 Explaining relationship between regularity of information and compression
of the corresponding information by Shanon’s Entropy 17

4.1 Assignment of modules to vertices in two distributed processes 24

4.2 Resultant communities in two different processes 26

4.3 Vertices bouncing between communities 27

4.4 Uniform communities across processes for priority ordering 28

5.1 Comparison of MDL after convergence between sequential and distributed
Infomap . 35

5.2 Illustration of the quality of discovered communities being preserved for
distributed environment using Modularity score 37

5.3 Illustration of the quality of discovered communities being preserved for
distributed environment using Conductance 39

5.4 Workload imbalance resulting from naive vertex distribution across pro-
cesses . 40

5.5 Balanced workload across processes resulting from workload distribution
by Metis partitioner . 40

5.6 Execution time reduction resulting from distributed Infomap 41

5.7 Degree of parallelism obtained against different processor count 42

6.1 Runtime comparison between Gossipmap and our distributed Infomap for
the network LiveJournal for up to 32 MPI processes 45

6.2 Runtime comparison between Gossipmap and our distributed Infomap for
the network soc-Pokec for up to 32 MPI processes 46

6.3 Runtime comparison between Gossipmap and our distributed Infomap for
the network Wiki-topcats for up to 32 MPI processes 47

vi

Figure Page

6.4 Minimum description length (MDL) comparison after convergence for the
LiveJournal network between Gossipmap and distributed Infomap. . . 47

7.1 Execution time comparison (drawn in log scale) 51

7.2 Speedup factor achieved for different networks 52

7.3 Time taken on average in millisecond for processing per million of edges
for sample networks . 53

7.4 Average edge distribution per vertex determines the speedup gain and
processing time. 53

7.5 Parallel efficiency (%) corresponding to the number of processes 55

7.6 Parallel efficiency (%) corresponding to the number of threads 55

7.7 Conductance measured for minimum (1) and maximum (256) number of
processes for different networks . 57

7.8 Modularity measured for minimum (1) and maximum (256) number of
processes for different networks . 58

7.9 Convergence Minimum Description Length (MDL) for minimum (1) and
maximum (256) number of processes 58

vii

LIST OF TABLES

Table Page

1.1 Classification of the community detection approaches based on methodol-
ogy . 3

5.1 Network dataset for our experiments. We used several social and informa-
tion networks . 33

5.2 Modularity and Conductance of the networks for the sequential Infomap 34

5.3 Speedup factors on various social and information networks. 42

6.1 Comparison of our work with state-of-the-art techniques 44

viii

SYMBOLS

G A graph data structure

V Set of vertices/entities in a graph

E Set of edges in a graph

H Minimum Entropy

P pXq Probability of some event X

Qn Number of questions

LpMq Minimum Description Length or Codelength for M modules

N Total number of vertices in graph G

Number of

Q Modularity Score

ε Parallel Efficiency

ix

ABBREVIATIONS

BFS Breadth First Search

CS Computer Science

MCMC Markov Chain Monte Carlo

MDL Minimum Description Length

SBM Stochastic Block Model

LFR Lancichinetti–Fortunato–Radicchi

DBLP Database systems and Logic Programming

LONI Louisiana Optical Network Infrastructure

FDR Fourteen Data Rate

x

GLOSSARY

MPI Message Passing Interface is a framework for communication

among processes in distributed-memory parallel computing.

OpenMP Is a shared memory based parallel computing framework for man-

aging threads and thread-based computation.

Network A term used to represent graph data structure with entities rep-

resented as vertices and the relationship between entities repre-

sented as edges.

NP-hard A class of problems in computational theory that are not solvable

in polynomial time.

Conductance A metric with the concept similar to electric conductivity to mea-

sure the quality of the discovered community.

Modularity A metric to capture the natural clustering behavior of the groups

of vertices within a graph.

Metis A graph partitioning framework.

mpi4py A python-based MPI framework.

DBLP Is a computer science bibliography website.

Infomap A well known information-theoretic algorithm for community de-

tection.

Map equation A mathematical optimization function of the Infomap algorithm

to compress the regularity of the information in a network.

xi

ABSTRACT

There are several approaches for discovering communities in a network (graph).

Despite being approximating in nature, discovering communities based on the laws

of Information Theory has a proven standard of accuracy. The information-theoretic

algorithm known as Infomap developed a decade ago for detecting communities, did

not foresee the tremendous growth of social networking, multimedia, and massive

information boom. To discover communities in massive networks, we have designed

a distributed-memory-parallel Infomap in the MPI framework. Our design reaches

scalability of over 500 processes capable of processing networks with millions of edges

while maintaining quality comparable to the sequential Infomap. We have further

developed a novel parallel hybrid approach for Infomap consists of both distributed

and shared memory parallelism using MPI and OpenMP frameworks. This achieves

a speedup of more than 11ˆ in processing a network of over 100 million edges which

is significantly greater than the state-of-the-art techniques.

Keywords- Information-Theory, Distributed-memory, Shared-memory, Hybrid, Big

Data, Graph Mining, Parallel Computing, Community Detection

xii

1 INTRODUCTION

Finding community structures within a network (graph) has become a fundamental

technique in analyzing entities in the social network based on mutual interests and

similar background, classifying cells or biological units that perform similar kind of

activities in biological networks (e.g. grouping brain cells based on their intercon-

nection and activity to perform a specific operation of the body), detecting internet

anomaly (e.g., detecting fraudulent websites), building efficient product recommen-

dation system by clustering customers based on their purchase habits, connecting

research community based on collaboration network and so on.

The data structure in computer science and mathematics used to express inter-

actions/relationships among entities is called a graph. A graph G can be expressed

as G : pV,Eq where V represents the set of entities known as vertices or nodes and

E represents interactions among entities known as link or edge. The word network

is often used as a synonym for a graph. Networks are a standard representation for

expressing complex interactions among multiple objects. Although identifying com-

munity has become a prominent way of network analysis, there is no bold definition

of the term community in the context of network analysis.

As described by Porter et al. [1], Fortunato et al. [2] and Newman et al. [3] com-

munity detection, sometimes called network clustering, is the division of the vertices

of an observed network into groups such that connections are dense within groups

but sparser between different groups. Based on the type of community membership a

vertex of a network can have, there are generally two categories. One is overlapping

community membership and another is disjoint community membership. In disjoint

1

membership, a vertex belongs to only one community at a time. In overlapping com-

munity membership, a vertex may belong to one or more communities at a particular

time. Figure 1.1 illustrates the two types of community membership.

Figure 1.1.: The illustration on the left presents disjoint community (oval shapes

represent individual community) where a vertex belongs to one community at a time.

The illustration on the right presents overlapping communities where the vertices

marked as red belong to multiple communities

Our work focuses on discovering disjoint community membership for the vertices

within a network. There exist several algorithms for discovering communities. The

community detection algorithms computationally feasible for real-world applications

are mainly approximation algorithms as discovering the exact number of communities

based on optimization techniques is an NP-hard problem [2, 4]. The approximation

algorithms can be categorized based on the methodology being used.

The classification of the community detection methodologies described in the table

1.1 is based on static networks. Arzum et al. [5] provided a brief description of the

categories of community detection methodologies. Our approach deals with static

2

Table 1.1: Classification of the community detection approaches based on methodol-

ogy

Category Methodology Drawbacks

Spectral Methods Based on spectral properties -Computationally inefficient

-Eigenvalue & eigenvector -Unreliable for sparse network

Optimization Optimizing quality metrics -Suffers from resolution limit

Methods -Modularity, Conductance

Statistical Network generative models -Accuracy suffers

Inference -Stochastic Block Model -Computationally expensive

Information Uses dynamic process -Complex logic

Theoretic Approach -Random walk, MDL -Computationally expensive

networks where the attributes of the networks (e.g., vertices, links) do not change

over time. Table 1.1 listed the categories that deal with static networks. This does

not mean those methods cannot be used for dynamic networks. There are existing

works that incorporate the ability to deal with dynamic networks in optimization

methods such as the work by Halappanavar et al. [6], the work of Tiago et al. [7]

based on stochastic block modeling (SBM). It is also important to point out, the

categories mentioned in table 1.1 have a common challenge of making compromise

between speed and accuracy. To maintain high accuracy most of those categories

need to compromise speed. For processing big dynamic networks divided into snap-

shots of different time frames, those categories need a massive amount of time to run

3

iteratively the same algorithm multiple times on those snapshots.

In section 1.1 we discuss in brief the methodologies of the community detection

strategies mentioned in table 1.1.

1.1 Descriptions of the Static Community Detection Approaches

In the comparative study of community detection conducted by Fortunato et

al. [8], 12 algorithms are described which can be categorized into 4 major groups.

• Spectral methods based on spectral properties of the network. The idea is, if

communities are well-identified, the eigenvector components corresponding to

vertices in the same community should have similar values. The eigenvalue

spectrum of the Laplacian matrix, the adjacency matrix is used to detect com-

munities. A projection of vertices into a metric space by using eigenvectors as

coordinates is generated. A limited number of eigenvectors, say n is considered.

Each vertex in the network is considered as a geometric point in a Euclidean

n-dimensional space where coordinates are the eigenvector components corre-

sponding to that vertex. The points are then grouped using traditional cluster-

ing techniques such as K-means clustering. The works by Newman et al. [9,10],

Donetti et al. [11] provide community detection based on spectral methods.

• Optimization methods rely on optimizing a quality function in the process of

discovering communities within a network. Modularity is a popular optimiza-

tion function where the idea is to maximize the difference of structural pattern

within an actual network and another network with a random structural pattern.

Being an NP-hard problem, approximation algorithms are used with heuristics

to optimize this quality function. Based on how the optimization function is

posed, the optimization approaches can work as either divisive or agglomerative

nature also known as the top-down approach or the bottom-up approach respec-

4

tively. Among the 12 different approaches for community detection studied in

the work by Fortunato et al. [8], 5 of those use the modularity maximization

approach in one form or another to detect community. The very first approach

in this domain is modularity maximization based on edge betweenness described

in the work of Girvan and Newman [12, 13]. Another very popular algorithm

that works on modularity maximization is the work from Blondel et al. [14]

also known as the Louvain method. Modularity optimization-based techniques

suffer from a problem known as resolution limit as mentioned by Fortunato et

al. [15] where the main idea is if there is a very small community beside a large

community then the small community is often overlooked by the algorithm and

considered as a part of the large community.

• Community detection based on statistical inference is another category of com-

munity detection. Stochastic block modeling is one such approach as described

in the works of Tiago et al. [7, 16, 17] and Newman et al. [18]. This strategy

comes from the idea that a network can be represented by a generative model

where the model parameters determine the properties of the network. In a real-

world network, it is not possible to find the exact parameters that generated

that particular network. However, statistical inference can be made to deter-

mine the parameters. Some statistical processes such as Markov Chain Monte

Carlo (MCMC) or Bayesian Inference can be made to determine the partitioning

of the network.

• Detecting community based on the information-theoretic approach considers

the dynamics of a random walk to reveal the community structure within the

network. The core of this kind of strategy lies in Information-Theory and statis-

tics. The concept like minimum entropy theorem is used to compress the data

generated by the dynamic process on the basis that high regularity of the in-

formation also means a more compressible form of data. Also, the concept of

5

statistics such as Minimum Description Length (MDL) is utilized to represent

the overall quality of the compressed information within the whole network. The

higher the structural pattern (community) is in a network, the more chance to

compress that information and in the process of compressing the information,

communities are revealed. The work by Rosvall et al. [19] provides a method of

discovering communities by information-theoretic approach.

Among all the four categories mentioned above, the modularity optimization

method or to be more specific the Louvain method is more popular than others be-

cause of its’ easily comprehensible nature. However, as mentioned earlier, modularity

maximization strategy is not only NP-hard, it has also the resolution limit problem

that may affect the accuracy of the detected communities in a network. The study

conducted by Fortunato et al. [8] reveals the information-theoretic algorithm of com-

munity detection by Rosvall et al. [19] to be the highest accuracy in the LFR [20,21]

benchmark. There is an MDL based quality function which is named as the Map

equation by the authors in the study [19]. Fortunato et al. [8] named that algorithm

as Infomap.

1.2 Motivation for Parallel Algorithm in Discovering Community

The different community detection approaches described in section 1.1 have one

thing in common. They are all sequential in nature. The algorithms were devised

at the timeline when the size of the networks would hardly reach a million vertices.

Because of the tremendous growth of social networks and multimedia capturing de-

vices, inexpensive storage, networks are now reaching the size of billions of vertices

and billions of edges. The sample networks used by Fortunato et al. [8] for the LFR

benchmark had thousands of vertices. Execution time performance was not con-

sidered when those algorithms were compared. In today’s world when comparing

algorithms that deal with a massive dataset, the efficiency of the algorithm is also a

6

key point to consider beside the accuracy. The sequential nature of those methods

(section 1.1) heavily affects the computational efficiency. Modern computers come

with multiple processing cores with inherent support for parallel computing. Recent

state-of-the-art techniques are now trending to devise algorithms that can exploit the

benefits of shared-memory parallelism or distributed-memory parallelism. The se-

quential algorithms are being redesigned to process network data in parallel by using

many threads or processing cores.

In this thesis work, we develop a parallel algorithm for the approach called Infomap

devised by Rosvall [19]. Several reasons motivated us to devise a parallel algorithm

of Infomap. One reason is being approximate in nature, this algorithm is highly ac-

curate. Another reason is although having higher accuracy than the Louvain method

as demonstrated here [8] and being free from the resolution limit problem present

in modularity optimization techniques such as the Louvain method, there is a very

little amount of work in devising parallel algorithm of Infomap. There are also state-

of-the-art techniques emerging for designing parallel algorithms based on statistical

inference such as Stochastic Block Modeling (SBM). We will discuss more of those

parallel algorithms in the literature review section. If an efficient and scalable parallel

algorithm can be developed for Infomap, it will deliver fast processing of massive net-

works with a highly accurate result making it an ideal choice for community discovery.

In this work, we devised first a distributed memory parallel Infomap algorithm and

showed that it can achieve very high scalability reaching 512 processes. To reach that

high scalability we used a few network partitioning and load balancing strategies. One

of the strategies was using a simplistic partitioning method where an equal number of

vertices were distributed among processes to compute the communities in each itera-

tion. The uneven degree distribution of the vertices in the real-world network guided

us to use novel graph partitioning strategy Metis [22] to ensure proper load balancing

7

across the working processes. To design a distributed memory parallel algorithm, we

have come up with a few heuristics to handle the issues of graph processing across the

distributed environment. To maintain the accuracy of the detected communities sim-

ilar to the sequential Infomap we designed a few other problem-specific heuristics. In

the process of devising a distributed parallel algorithm, we observed some parts of the

algorithm to be more efficient if the communication cost of the distributed algorithm

can be evaded while engaging shared memory based parallelism entity such as thread.

Based on that observation, we designed a hybrid algorithm that incorporates both

distributed and shared memory based parallelism. We were able to process massive

networks that take hours to process in less than 15 minutes while maintaining similar

accuracy and quality of the detected communities.

To summarize, we made the following contribution

• We designed a Message Passing Interface (MPI) based distributed-memory

parallel algorithm for community detection using an information-theoretic ap-

proach.

• We used a vertex-based graph partitioning strategy to manage workload across

processes. It helped us to attain scalability of up to 256 processes. We then

refined our load balancing strategy by adopting Metis [22] graph partitioner that

let us use edge-cut based partitioning across the MPI processes. This increased

the scalability to 512 processes while ensuring higher execution speedup.

• We come up with a few heuristics to ensure the fast processing of massive

networks across distributed platform while maintaining high accuracy similar

to sequential Infomap. Those heuristics can be applied for similar kind of graph

computation problems in the distributed platform. In a later section, we will

discuss more of those heuristics.

8

• We designed a hybrid algorithm in a combination of distributed memory paral-

lelism (MPI) and shared memory parallelism (OpenMP) to exploit the benefit

of both types of parallelism in the appropriate parts of our algorithm. It gave us

speedup factors for massive networks higher than any state-of-the-art parallel

Infomap techniques to the best of our knowledge.

9

2 LITERATURE REVIEW

Research in designing parallel algorithms to minimize the computation time for dif-

ferent computational problems are getting much attention in recent years. The emer-

gence of supercomputers with millions of processing cores and the tremendous growth

of big data due to the advancement of information technology both are playing com-

plementary roles for the development of research in this direction. Research in parallel

algorithms [23–30] for graph data analysis is an essential outcome of that. Paralleliz-

ing different community detection approaches mentioned in table 1.1 in chapter 1 is

no exception.

There exist several sequential algorithms based on modularity optimization [12,

31–35]. The work [31] is a fast implementation of the work by Newman et al. [12]. The

work by Guimerá [32] claimed that finding the modularity of a network is analogous

to finding the ground-state energy of a spin system and demonstrated that random

graphs and scale-free networks can exhibit modularity. The work of Claire et al. [33]

used modularity optimization with the combination of Monte Carlo methods with

simulated annealing. The work of Andres et al. [34] is also based on the combination

of modularity optimization with simulated annealing. The work by Radicchi et al. [35]

is in the spirit of the work by Girvan and Newman [12]. This is a divisive hierarchical

method based on the edge clustering coefficient unlike edge betweenness in [12]. The

work by Blondel et al. [14] is a well-known community detection approach based on

modularity maximization using a greedy agglomerative heuristic.

Several parallel implementations exist for the modularity based approach of the

Louvain method. An OpenMP implementation is given by Bhowmick et al. [36].

10

Hiroaki et al. [37] demonstrated a fast modularity based community detection by

avoiding searching all the vertices in each iteration. Zhang et al. [38] demonstrated a

distributed framework that speeds up the convergence rate by considering the most

suitable candidate vertices to be processed in each iteration. GPU based parallel

Louvain is presented in the study of Cheong et al. [39] and Naim et al. [40]. A combi-

nation of the Louvain algorithm and the breadth-first search (BFS) is used by Staudt

et al. [41, 42] for distributed-memory parallelization. Zeng et al. [43, 44] designed

parallel Louvain that can achieve high scalability over thousands of CPU cores. More

recent work is emerging on parallel implementation of the Louvain algorithm such as

Sattar et al. [45]. Sayan et al. [46] demonstrated a distributed`shared memory (MPI

` OpenMP) based work on the Louvain algorithm.

The study by Guimera et al. [32] showed that a random network with irregular

community structure can still display high modularity value. As a result, during the

process of detecting communities relying on modularity may not deliver high-quality

clusters and the detected communities may not reflect the actual communities. An-

other caveat of modularity based approach is it may suffer from the resolution limit

problem and therefore may struggle at detecting small communities as described by

Fortunato et al. [15].

The use of statistical inference and generative models to infer communities in a

network is gaining attention in recent years [47–49]. Among those models, the most

popular one is the stochastic block model (SBM) [50–52] where the idea itself is not

very recent. The idea is to divide the vertices in the network into B blocks and a

B ˆ B matrix specifies the probabilities of edges existing between vertices of each

block. The model generalizes the community structure [8] by accommodating assor-

tative connections. In this context, the task of detecting communities is transformed

into a process of statistical inference of the parameters of the generative model given

11

the observed data. The problem of network partitioning using a statistical inference

model is discussed in the studies of Tiago et al. [7, 16, 17]. His work on the stochas-

tic block model for partitioning (the term community detection is more often called

as partitioning in the context of SBM) incorporates the degree corrected model by

Karrer et al. [53] for large scale dynamic network. The algorithm is of sub-quadratic

complexity OpNln2Nq for a sparse graph where N is the number of vertices with

N « E. The model provided by Peixoto [7] can either function as a greedy heuristic

when partitioning in the block-level or Markov Chain Monte Carlo (MCMC) method

when sampling individual vertex. Peixoto provided an OpenMP based implementa-

tion [54]. Another OpenMP based work with the modified heuristic for fast network

processing has emerged [55]. Distributed parallelization techniques [56, 57] on SBM

in python and mpi4py have emerged. The raw performance speedup of parallelization

in native code is difficult to achieve while using a scripting language such as python.

The major limitation of python is being computationally slower than C or C++. This

has been pointed out by comparing 3 different versions of the baseline algorithm in

the study of streaming graph challenge [58].

As demonstrated by Lancichinetti et al. [59] empirically, Infomap is one of the

finest algorithms in discovering high-quality communities. Later this fact is corrobo-

rated by a more detailed comparative analysis from Aldecoa et al. [60]. The original

Infomap algorithm which is sequential in nature is developed by Rosvall et al. [19]

in 2008. Compared to parallelizing the modularity based community detection algo-

rithm, there are very few works in parallelizing Infomap. There is a shared memory

based parallel execution model of Infomap proposed by Bae et al. [61]. While achiev-

ing high-quality communities similar to the sequential Infomap, there are limitations

in shared memory based implementation. The scalability of shared memory based

implementation is limited by the number of physical cores and memory in a sin-

gle machine. An asynchronous distributed memory-based implementation using the

12

GraphLab framework [62] was introduced by Bae et al. [63]. This distributed im-

plementation demonstrated the scalability of up to 128 processing cores. In recent

years, the work of Zeng et al. [64] has shown scalability for thousands number of

processors. However, the obtained speedup given the huge number of processors they

used is relatively very low. In their work, they did not provide the quality analysis

of their implementation compared to the sequential Infomap except for some small

networks (e.g. DBLP, Amazon). It is equally important to achieve high scalability

of distributed community detection as well as maintaining high quality. The high

quality of the detected communities is the reason that makes Infomap standing out

over other approaches for discovering communities [59, 60].

To discover high-quality community and to process massive networks fast, we have

implemented an MPI based distributed information-theoretic community detection

algorithm [65] based on the work of Rosvall et al. [19]. Later we extend our previous

work [65] by combining together the MPI based distributed-memory parallelism and

the OpenMP based shared-memory parallelism and achieved a speedup higher than

the state-of-the-art techniques available. To the best of our knowledge, this is the

only work available of this kind that utilizes the benefits of both shared-memory and

distributed-memory based parallelism.

13

3 PROBLEM SPECIFICATION

3.1 How Infomap Works

Infomap uses a standard data compression technique on a dynamic process (ran-

dom walk). Infomap exploits the duality between compressing a data set and extract-

ing significant patterns or structures in that data set. This duality is discussed in a

branch of statistics named MDL or Minimum Description Length statistics [66, 67].

The data we are interested in this context is the trace of the flow on the network. The

trace of the flow can be represented as some binary codeword. If an optimal code can

be found for describing places traced by a path on a network, it also solves the duality

problem of finding the structural features of that network. Therefore, Infomap looks

for a way to assign codewords to vertices that is efficient considering the dynamics

on the network. This takes us to the heart of information theory, and we can employ

Shanon’s source coding theorems or Shanon’s minimum entropy theorem [68] to find

the limits on how far we can compress the information.

Shanon’s minimum entropy theorem can be mathematically expressed in the fol-

lowing ways

H “

n
ÿ

i“1

pi ˆ log2pXq (3.1)

or,

H “

n
ÿ

i“1

pi ˆ log2p1{piq (3.2)

or,

H “ ´

n
ÿ

i“1

pi ˆ log2ppiq (3.3)

14

To understand how Shanon’s minimum entropy works and therefore can be used

to get the optimal compression of the information, we are going to use an example.

Let’s say, we have 2 machines generating information in the form of events. Machine

1 generates 4 events A, B, C, D with the following probabilities

P pAq “ 0.25

P pBq “ 0.25

P pCq “ 0.25

P pDq “ 0.25

Machine 2 on the other hand, generates the above 4 different events with the

following probabilities

P pAq “ 0.50

P pBq “ 0.125

P pCq “ 0.125

P pDq “ 0.25

To explain, between the 2 machines which one is producing more information, we

can pose the problem in the form of a decision-tree as illustrated in figure 3.1. From

this illustration, we can determine which machine is producing more information and

which machine is producing less. Let’s say both of the machines generated 100 events

each. We want to know how many questions we need to ask to guess all the 100 events

correctly. In equation 3.1 we have a term X. If we express it in terms of probability,

the number of possible outcomes of an event is equal to the inverse of the probability

of that event, i.e., X “ 1{p. This is how we get to the equation 3.2 from equation

3.1. From equation 3.2, for machine 1, the average number of questions Qn we need

to ask to determine a particular event is

15

Qn “ pA ˆ log2p1{pAq ` pB ˆ log2p1{pBq ` pC ˆ log2p1{pCq ` pD ˆ log2p1{pDq

or,

Qn “ 0.25ˆ 2` 0.25ˆ 2` 0.25ˆ 2` 0.25ˆ 2

or,

Qn “ 2

For machine 2, the average number of questions we need to ask to determine what

is the exact event that occurs

Qn “ pA ˆ log2p1{pAq ` pB ˆ log2p1{pBq ` pC ˆ log2p1{pCq ` pD ˆ log2p1{pDq

or,

Qn “ 0.5ˆ 1` 0.125ˆ 3` 0.125ˆ 3` 0.25ˆ 2

or,

Qn “ 1.75

Since both of the machines generate 100 events each, for machine 1 we need to

ask 200 questions to determine the outcomes of the 100 events and for machine 2 we

need to ask 175 questions to determine the outcomes of the 100 events. From this

example, it is clear that machine 1 is producing more information than machine 2.

The reason for machine 2 producing less information is based on the regularity of the

information machine 2 produces. Based on the probability of event A for machine 2,

it is more likely for the machine 2 to be generating event A more than other events.

To put it in another way, event A is more regular than other events in machine 2.

As a result, the information produced by machine 2 is compressed on average to 1.75

questions than 2 questions in machine 1. That is the beauty in Shanon’s minimum

entropy theorem. From this explanation of the minimum entropy theorem, it can be

understood that the regularity of the information can be exploited to compress that

information. We can get a theoretical limit on how much the information can be

compressed without physically encoding the information and then compressing that

code.

16

Figure 3.1.: The information generated by machine 1 (left) and machine 2 (right).

The information itself is how many questions on average we need to ask to correctly

guess the exact event generated by each machine.

As we were discussing Infomap looks for an efficient codewords, a straightforward

way to assign codewords to vertices is to use Huffman coding which gives shorter

codewords to common events and long codewords to rare ones. The codewords for all

the vertices form a codebook. In this codebook, each Huffman codeword specifies a

particular vertex, and the codeword lengths are derived from the ergodic node visit

frequencies of a random walk. The average node visit frequencies of an infinite-length

random walk can be calculated by Google’s PageRank algorithm [69].

Let’s say there is a significant structural pattern in a network and our goal is

to discover the structural patterns (communities). Also, let’s name the structural

pattern in the network as modules. A random walker moving in the network can be

expressed by two different types of moves. One, a random walker moving inside a

17

structural pattern traversing from one vertex to another. Second, the random walker

moving across different modules. An intuitive way of understanding how Infomap

works based on the random walk is similar to the traffic within a city and between

cities. Traffic within a city stays longer in the city and travels rarely across cities.

The target of finding a city (structure/community within a network) is to determine

the region within which traffic (random walk) delivers maximal flow. Maximizing the

flow within a cluster and minimizing flow among clusters ensures correctness and the

quality of detected communities. Based on this concept, the codebook of the vertices

can be divided into two parts. The codewords that represent the moves across the

modules can be named as the index codebook. The codewords that represent the suc-

cessive moves inside a module can be named as the module codebook. The codeword

lengths in the index codebook are derived from the relative rates at which a random

walker enters each module, while the codeword lengths for each module codebook are

derived from the relative rates at which a random walker visits each node in the mod-

ule or exists the module. Using multiple codebooks, the problem of minimizing the

description length of places traced by a path is transformed into the problem of how

we should best partition the network concerning the flow dynamics. The Huffman

coding process is described to make it clear how the coding structure works. But of

course, the aim of community detection is not to encode a particular path through the

network. In community detection, the goal is to simply find the modular structure

of the network concerning flow and to exploit the inference-compression duality to

do so. It is not needed to devise an optimal code for a given partition to estimate

how efficient that optimal code would be. The detection of the optimal community

structure of a network becomes the problem of computing the theoretical limit for

different partitions and greedily choosing the one that gives the shortest code length.

The optimization function that lets us compute that theoretical limit is called the

Map Equation.

18

3.1.1 The Map Equation

The optimization function that represents the code length is called the Map equa-

tion. The target of the optimization is to minimize the code length over all possible

assignments of vertices into communities. The Map equation is standing on the con-

cept of MDL (Minimum Description Length) which states [67] that any regularity of

information can be used for compressing that information. Eq. 3.4 is the given form

of the Map equation by Rosvall et al. [19].

LpMq “ qñHpQq `
ÿ

mPM

pmœHpρ
m
q (3.4)

In this equation, there are two parts on the right side. The first part is qñHpQq

which can be further divided into two terms where the first term qñ represents the

sum of exit probability of the random walk for each module in the network. The

term HpQq represents the average codelength of the movements between the modules

where Q stands for the probability distribution of the module entering rate. The

average codelength of the movements between the module is called index codelength.

The second part of the right side of the Map equation is
ř

mPM pmœHpρ
mq where the

term pmœ stands for the stay probability of the random walk within module m. The

parameter pmœ can be calculated by summing the visit probability of the random walk

and the exit probability of the random walk for that module. The term Hpρmq is the

average code length of the random walk within the module which is named as module

code length. The term ρm is the probability distribution of the code of module m. A

more detailed form of the Map equation is given in eq. 3.5.

LpMq “ p
ÿ

mPM

qmq log p
ÿ

mPM

qmq ´ 2
ÿ

mPM

qm log qm ´
ÿ

αPV

pα logppαq`

ÿ

mPM

pqm `
ÿ

αPm

pαq logpqm `
ÿ

αPm

pαq
(3.5)

Here the term qm is the exit probability of module m and is defined by the relative

weight of links exiting the module m,
ř

mPM qm is the sum of the relative weight of

19

links between modules, the term pα is the visit probability of a vertex α during the

random walk, V is the set of all vertices in the network, pm is the visit probability

of a module m calculated by
ř

αPm pα. Interested readers are encouraged to read the

appendix section of the original work of Infomap [19] to learn more about the Map

equation.

3.2 Sequential Infomap Algorithm

In the sequential Infomap algorithm 1, line 6´ 9 compute the initial visit rate for

each vertex using power iteration method in a similar fashion of the PageRank [69]

approach, the total number of modules or communities at the very beginning is set

equal to the total number of vertices (line 10) and the exit probability for each module

is calculated (line 12). Line 13 computes the code length following equation 3.4. Line

15 ´ 23 do the greedy optimization part of the Map equation which include finding

the best community for a randomly chosen candidate vertex and updating the new

code length L (line 17 ´ 21) followed by converting the newfound communities into

some super nodes having possibly more than one vertices in an iteration (line 22) and

also updating the total number of communities (M) in this process. As long as we

will get a change in code length (L) where it is smaller than the previous iteration

code length (Lold) by more than some threshold value τ , the algorithm will continue

execution. The algorithm stops when convergence achieved for the value of the code

length in consecutive iterations. The output (line 24) of Algorithm 1 is the total

number of communities after convergence (M) which is usually less than the total

number of vertices in the network.

20

Algorithm 1 Sequential Infomap

Require: A graph GpV,Eq, V total vertices, E total edges, N Ð |V |

Ensure: M :M ď N , M is the total number of communities, M ! N

1: mi, i
th module

2: qmi , exit probability of module mi

3: τ , minimum threshold for codelength improvement

4: Lold, codelength of previous iteration

5: L, codelength of current iteration

6: for i “ 1 to N do

7: calculate initial vertex visit rate pvi Ð 1{N

8: compute vertex visit rate pvi by power iteration

9: end for

10: declare initial total module M Ð tmi “ tviu|vi P V u

11: for mi “ 1 to M do

12: calculate exit probability qmi

13: end for

14: calculate initial codelength LÐ LpMq

15: do

16: Lold Ð L

17: for i “ 1 to N do

18: pick randomly a vertex vi

19: mnew Ð findNewBestModulepviq

20: calculate L

21: end for

22: update M Ð convertModulestoSuperNodepq

23: while pLold ´ Lq ą τ

24: return M

21

4 SOLUTION STRATEGY: DISTRIBUTED INFOMAP, RESEARCH

CHALLENGES

We present the overview of our distributed-memory parallel algorithm in Algorithm

2. Our algorithm consists of two major parts. One part is distributing a partial graph

to each MPI process and working on that partial graph inside that process in par-

allel across all the processes. Another part of our parallel approach is synchronizing

the results of community membership for each partial graph distributed across all

the processes. Synchronization phase includes the operation of merging the partial

graphs distributed across processes in a manner so that uniform community mem-

bership is maintained for all of the vertices in GpV,Eq across all of the MPI processes.

The synchronization phase is essential for our approach since the assignment of

vertices to processors may change in different iterations and each processor may work

with a different set of vertices in each iteration. Therefore, each processor must up-

date community information about the vertices it is going to work with before starting

execution of the next iteration. All the processors participate in both computing com-

munities and synchronizing updates.

Line 7´ 15 of the algorithm 2 are similar to the sequential algorithm 1. How we

decide to divide the workload across the processes highly influences the scalability of

our distributed algorithm. From the parallel computing perspective, we know if each

of the processes deals with an equal amount of workload then it is very likely that all of

the processes will reach the finish line of the computation in similar time contributing

to the overall scale-up of our distributed computing. Initially, we chose to divide the

workload in the form of partial graphs among the processes using a naive approach

22

by adopting the metric of an equal number of vertices in each process. While this

resulted in better execution time compared to the sequential algorithm but there was

a serious issue of performance bottleneck in some processes. From that observation,

we have gone with a more sophisticated graph partitioner Metis [70] from Karypis

lab where the partial graphs are computed based on the edge-cut metric. The graph

partitions returned from the Metis partitioner have better workload distribution in

terms of the number of vertices and edges. However, we are aware of the fact that

graph partitioning itself is a time-consuming process, and relying heavily on Metis

partitioner in each iteration will drastically increase the overall execution time of our

algorithm. Therefore, we have come up with a combination of sophisticated parti-

tioning and naive partitioning where the very first graph distribution is done based

on the outcome from Metis partitioner (performed offline) and subsequent workload

distributions follow the naive vertex-based distribution approach. We report the ex-

perimental outcome before and after using Metis partitioner in Chapter 5.

Each process starts the execution of finding communities (line 16 ´ 25) with es-

sentially the same value of L and M . Line 18 highlights the use of Metis partitioner

for the very first iteration of our algorithm which subsequently is replaced by the

naive equal number of vertex distribution approach. Each process does the same

operation of randomly choosing vertices, assigning them community membership if

applicable and subsequent computation of codelength (L) on their own set of vertices

in an iteration (line 19´ 21). However, the bigger challenges of maintaining uniform

parameters (L, M , etc.) come during the supernode creation and the preparation of

next iteration phases (line 23 ´ 24). We present those challenges in section 4.1 and

how we tackle them in section 4.2.

23

4.1 Research Challenges

In this section, we describe the challenges we faced while solving the problem of

processing a network partially across distributed processes.

Figure 4.1.: Assignment of modules to vertices in two distributed processes

One major challenge when performing the module assignment for the individual

vertices is maintaining uniformity of community assignment during the parameters

synchronization stage mentioned in Algorithm 2. This happens because each pro-

cess updates the communities of each vertex in different orders based on the arrived

updated information from other processes. To illustrate this, consider the simple

scenario of 7 vertices p, q, r, s, t, u, v divided into two processes P1 and P2. Now

based on some processing order of the above vertices, following are the moves of the

vertices from own module to another module (N.B. by the term moves, here we mean

the community assignment decision that results from the maximum code length re-

duction in each case for the above individual vertex). Let’s assume that based on the

processing order, following are the moves

p ÝÑ u, t ÝÑ p, v ÝÑ p, q ÝÑ r. Here the symbol p ÝÑ u means vertex p is

moving to the community of vertex u. When we refer to the current community C

assignment of a vertex u, we represent it by the symbol Cu. If the above moves are

24

performed in the same order as exactly mentioned, following will be the community

assignment resulted from the execution of those moves in the sequential algorithm.

Cp Ð Cu, Ct Ð Cpp“ Cuq, Cv Ð Cpp“ Cuq, Cq Ð Cr (4.1)

In a distributed system, a possible scenario can be when those 7 vertices are dis-

tributed for processing into two processes P1 and P2, where vertices p, v, s go to

process P1 and vertices q, r, t, u go to process P2 as illustrated in figure 4.1.

Here, the 2 big circles represent 2 different processes and the circles inside rep-

resent individual vertices with their name. The arrows represent the move between

communities with the direction of arrowhead indicates from and to of the moves.

Vertex without an arrow (e.g. s) indicates no move has been found for that vertex

that results in compression of code length at the current iteration. In the distributed

platform, the community assignments in process P1 are Cp Ð Cu, Cv Ð Cp i.e. Cu.

The community assignments in process P2 are Ct Ð Cp, Cq Ð Cr. After this com-

munity assignment information is exchanged between these two processes P1 and P2

for synchronization across the processes following things happen.

In process P1

Cp Ð Cu, Cv Ð Cpp“ Cuq, Ct Ð Cpp“ Cuq, Cq Ð Cr (4.2)

In process P2

Ct Ð Cp, Cq Ð Cr, Cp Ð Cu, Cv Ð Cpp“ Cuq (4.3)

If we visualize the resultant communities in two different processes, it looks like

figure 4.2. This is not what we want. We want after synchronization, every process

will have the same community information.

Another problem we faced after distributing the vertices among processes is the

vertex bouncing problem. The notion behind this problem is when two vertices having

25

Figure 4.2.: Resultant communities in two different processes

strong affinity are distributed across processes, those vertices make multiple moves

that essentially represent one single move. It reduces code length erroneously multi-

ple times. This problem would not have effect if those strongly affined vertices were

feed into the same process in an iteration (line 20-25) described in Algorithm 2.

When two vertices u and v are distributed in two different processes. In one

process P1 where vertex u is assigned for computation, vertex u will move to the

community of vertex v. In process P2 where vertex v is assigned, v will move to

the community of vertex u. These two vertices should have moved only once in a

particular iteration. But because of the distribution across processes, it resulted in

one extra move and extra reduction of codelength. The problem can be illustrated in

figure 4.3.

An important observation is, in the initial few iterations, most of the vertices

change their communities. As the algorithm progresses, the number of vertices chang-

ing their communities decreases. It is intuitive that after a vertex moves to some

community and stays in that communities for a few subsequent iterations, it is likely

to stay in that community until the program finishes. That is because most of the

vertices find their communities in early iterations. Those vertices become stable in

26

Figure 4.3.: Vertices bouncing between communities

their assigned communities. In later iterations fewer to fewer community updates take

place. This observation leads us to the conclusion that in every iteration, considering

all of the vertices in the network for new communities as in line 22 of Algorithm 2

incurs redundant activities that waste CPU time and resources. It means we have to

reduce the number of vertices that are being considered for community assignments

after each iteration. We need to have a measure to distinguish and pick those vertices

which are more likely to change their communities in subsequent iterations.

4.2 Applied Heuristics

To maintain uniform assignment of the community for each vertex across all of

the processes, we have taken the heuristic of priority-based community assignment.

In this scheme, the decision of community assignment for a particular vertex is taken

by the process which is computing the new community for that vertex. This is a

simple yet effective approach for solving the challenge depicted in figure 4.2. So every

process will update the community assignment information for those vertices belong-

ing to other processes based on the decision those processes made. A process will

not further try to change the community assignment based on the combination of its

available information and newly received information from other processes. Figure

4.4 depicts the communities resulting from the same moves of vertices as depicted in

27

figure 4.1. Now if we have a retrospect of why the non-uniform communities resulted

in figure 4.2, that is because process P1 further updated the community information

of vertex t to Cu from Cp based on the available information it had along with re-

ceived information from the process P2. Interestingly, the process P1 didn’t have to

perform an additional step to get to this outcome. To summarize, the combination

of the received information from other processes and the own computational outcome

may result in inconsistency in community assignment of a few vertices.

Figure 4.4.: Uniform communities across processes for priority ordering

To prevent recomputing the community assignment for those vertices which are

unlikely to move from their current communities, we need to separate those vertices

from other vertices that are likely to move in a later iteration. Let’s name those

vertices as Inactive Vertices. On the other hand, those vertices which may move

to different communities in some later iteration, let’s call those as Active Vertices.

There is no deterministic way to decide which vertices will be active or inactive at

a particular iteration. Rather it is intuitive and empirically observed that those ver-

tices changing their community in an iteration will likely change their community in

the next iteration too. Moreover, the neighbors of such vertices may become active

due to the active vertices. So we need to have some prediction list of the vertices

that may be active before an iteration starts. And that prediction can be made from

28

the outcome of the community assignment of the previous iteration. The prediction

list may contain those vertices which change their communities in the previous it-

eration, the immediate neighbors of those vertices. It is empirically observed that

when a vertex is moved from one community to another, its’ immediate neighbors

contribute to more than 95% of the quality improvement for subsequent iteration [61].

To counter the vertex bouncing problem, we adopted ordering in assigning ver-

tices to communities to prevent multiple moves of vertices among communities which

otherwise should be a single move. Consider the scenario in figure 4.3, to prevent the

two moves of u Ñ v and v Ñ u in process P1 and process P2 respectively, we first

check the value of current communities of u and v. For instance, those are Cu and

Cv with two different community Ids. If the value of the Id for community Cu is less

than the value of the Id for community Cv we permit the move of u moving to Cv

instantly and do not permit the move otherwise.

29

Algorithm 2 Distributed Infomap

Require: A graph GpV,Eq, V total vertices, E total edges, N Ð |V |

Ensure: M :M ď N , M is the total number of communities, M ! N

1: mi, i
th module

2: qmi , exit probability of module mi

3: τ , minimum threshold for codelength improvement

4: Lold, codelength of previous iteration

5: L, codelength of current iteration

6: P , number of MPI processes spawned

7: for i “ 1 to N do

8: calculate initial vertex visit rate pvi Ð 1{N

9: compute vertex visit rate pvi by power iteration

10: end for

11: declare initial total module M Ð tmi “ tviu|vi P V u

12: for mi “ 1 to M do

13: calculate exit probability qmi

14: end for

15: calculate initial codelength LÐ LpMq

16: do

17: Lold Ð L

18: for i “ 1 to pN{P Ð metisq in parallel do

19: pick randomly a vertex vi

20: mnew Ð findNewBestModulepviq

21: calculate L

22: end for

23: update M Ð convertModulestoSuperNodepq

24: synchronize parameters across all processes

25: while (Lold ´ Lq ą τ

26: return M

30

5 EXPERIMENTAL ANALYSIS

5.1 Experimental Setup

Most of the experiments and corresponding results we included in this study are

executed on the Louisiana Optical Network Infrastructure (LONI) [71] system. The

computing cluster we used is QB2 [72]. It is a 1.5 Petaflop peak performance cluster

with 504 compute nodes, 20 processing core per node, more than 10000 Intel Xeon

processing cores, 2.8 PB Lustre file system. The computing cluster has RedHat En-

terprise Linux 6 Operating System, 56 Gb/sec (FDR) InfiniBand, 1 Gb/sec Ethernet

management network.

5.2 Implementation

We developed our implementation in C++ using the MPI framework with g++

compiler. The source code of our implementation is available online [73]. The program

supports the network in pajek (.net) format [74]. The major phase of the algorithm i.e.

the greedy optimization phase runs in multiple iterations. In the very first iteration,

each vertex represents its’ module. In each iteration, every process takes an almost

equal chunk of the vertices from the active vertices list. Each process computes the

change of MDL for a possible move of that vertex following any of the links that vertex

is connected to. It then greedily chooses the move to some module that reduces the

MDL most. Each processor prepares an information list of the vertices which have

been moved from one module to another. In the synchronization phase, each process

then sends that list and updates the community information based on the received

information. Each module is also converted to a notion what we call as supernode

31

which is a group of vertices with the same module id. All the inter edges between

a pair of supernodes are converted to a single edge with weight equal to the sum of

all edges between that pair of supernodes. After creating a network with supernodes,

the greedy optimization of reducing MDL is executed again on the supernode level

similar to what was performed on the vertex level previously. After each iteration,

the list of active vertices for the next iteration is computed. This process continues

until no more reduction in MDL happens in some successive iterations, i.e., it reaches

convergence. The final output of the program is the number of detected communities

along with the final compressed value of the MDL.

5.3 Performance Comparison

We performed a qualitative comparison of our distributed implementation of the

Infomap against the one designed by Bae et al. [61]. We performed the parallel perfor-

mance comparison against the distributed implementations [63] and showed that our

work outperforms that implementation in terms of scalability. The implementation

of Zeng et al. [64] is not publicly available online. Consequently, we had to rely on

the data provided in their paper [64] to reflect on the superiority of our work in terms

of speedup gain in later discussion.

5.4 Dataset

We used a network dataset of different sizes ranging from the network of 0.31M

vertices and 1.04M Edges to the network of 3M vertices and 117M edges. Table

5.1 gives a brief description of the dataset where columns 2 and 3 show the number

of vertices and edges in the network respectively. We have used Amazon, DBLP,

Youtube, Wiki-topcats, and soc-Pokec networks for our experiments with distributed

Infomap. The other networks in table 5.1 are significantly bigger and have shown

good scalability in our hybrid platform. Therefore, we discuss the experiment results

32

for those networks in chapter 7. All of the networks in our dataset are collected from

SNAP [75]. The reason for us choosing these networks is because of those networks

showing good community structures and thus suitable for evaluation and comparison

of our implementation.

Table 5.1: Network dataset for our experiments. We used several social and informa-

tion networks

Network # Vertices # Edges Description

Amazon 334863 925872 Amazon co-purchased network

DBLP 317080 1049866 CS bibliographical network

Youtube 1134890 2987624 Youtube social network

Wiki-topcats 1791489 28511807 Hyperlinks network from Wikipedia

soc-Pokec 1632803 30622564 Pokec online social network

LiveJournal 3997962 34681189 LiveJournal online social network

Orkut 3072441 117185083 Orkut online social network

5.5 Evaluation

5.5.1 Quality analysis of the Detected Modules

Infomap delivers better quality of communities among state-of-the-art techniques

as observed by several benchmark-studies [59, 60]. For quality comparison of the de-

tected communities, we used Modularity, Conductance, and convergence MDL value.

We compare our result with RelaxMap [61] which discovers communities with quality

as good as the original Infomap. In table 5.2 the values of Modularity and Con-

ductance are given for the shared memory based Infomap [61]. Distributed-memory

based implementations can achieve quality up to their sequential counterpart at best.

33

Thus our comparative study with RelaxMap makes it a sufficient comparison in terms

of qualitative analysis.

Table 5.2: Modularity and Conductance of the networks for the sequential Infomap

Network Modularity Conductance

Amazon 0.77 0.23

DBLP 0.59 0.41

Youtube 0.39 0.56

wiki-topcats 0.43 0.57

soc-pokec 0.52 0.47

libJournal 0.47 0.53

com-orkut 0.42 0.54

Convergence of the Objective Function

Our objective function of Infomap minimizes the MDL. It is challenging to improve

the MDL in distributed implementation in comparison to the sequential or shared-

memory based optimization. The outcome of the compression of a previous move

may not be available to other processors and the decision of change in MDL may

be affected by that which is not the case in sequential/shared implementation. In

case of distributed implementation, there is a possibility of premature convergence

resulting in an outcome of less improvement of the MDL as also observed by [63].

The outcome we achieved by optimizing the objective function 3.5 is very close to the

MDL improvement found in [61]. In table 5.1 we showed the initial MDL of the used

networks. In figure 5.1, we have shown the final converged value of the MDL. The

difference in MDL is very insignificant in all the cases with the highest difference is

for the network Wiki-topcats having a final MDL value greater than the MDL value

34

of [61] by only 0.39. It indicates the detected communities after convergence are

similar to that of the [61]. Our algorithm does not suffer from under clustering or

over clustering problems.

Figure 5.1.: Comparison of MDL after convergence between sequential and distributed

Infomap

Modularity

To measure the quality of the detected communities, we used Modularity (Q)

measure [13]. This is a measure of how well a network is partitioned into communities.

Given a network, Modularity score (Q) of that network means the fraction of edges

that fall within the communities minus the expected value of the same quantity if the

edges fall at random in a network with the same degree sequence. The mathematical

definition of this measure is given in equation 5.1.

Q “
ÿ

i

peii ´ a
2
i q (5.1)

35

Here, eii is the fraction of edges that fall within communities, a2i is the expected

value of the above quantity for the graph with the same degree sequence with random

edges. It is a positive decimal value if the number of edges within communities exceeds

the expected number. Typically a value of Q in the range 0.3´ 0.7 means significant

community structure [76]. One notable point is, we are not optimizing the Modularity

value to detect communities which is the general approach as mentioned in other

community detection mechanism [13, 14, 31]. Rather we are using the quality metric

(Q) for analyzing the quality of our detected communities we got by optimizing Map

equation as mentioned in equation 3.4. For the dataset in table 5.1 we have used

for our experiments, we listed the quality measurement metrics (i.e. Modularity,

Conductance) and their corresponding values from [61]. For measuring the quality of

Modularity, we also wanted to see whether the quality fluctuates with the increasing

number of processors. We can see from figures 5.2a, 5.2b, 5.2c, 5.2d the values of

Modularity vary insignificantly. In the histogram of the above-mentioned figures,

we put the difference of values corresponding to the sequential score. For instance,

in figure 5.2c and at the bar 256, the value of 0.03 means the Modularity score

we obtained for the network Wiki-topcats by running it on 256 processing core is

greater than by 0.03 from the Modularity value in [61]. One important note is,

higher Modularity values signify better communities. We marked all the Modularity

histogram plots bar-labels with the difference of Modularity from [61]. The `ve labels

indicate by how much the obtained Modularity is greater and the ´ve labels indicate

by how much the obtained Modularity is lower. To summarize, the Modularity values

we obtained for different networks we used are as good as the Modularity value we can

find from some sequential or shared-memory based implementation of Infomap. Also,

the quality of the detected communities does not vary with the number of partitioning

across an increasing number of processors.

36

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.55

 0.6

 0.65

2 4 8 16 32 64 128 256 512

M
od

u
la

ri
ty

 S
co

re

Processor Count

-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

(a) DBLP Network

 0

 0.1

 0.2

 0.3

 0.35

 0.4

 0.45

2 4 8 16 32 64 128 256 512

M
od

u
la

ri
ty

 S
co

re

Processor Count

0.01
0.0

-0.01 -0.01 -0.01
0.0

-0.01
0.0 0.0

(b) Youtube Network

 0

 0.1

 0.2

 0.3

 0.4

 0.45

 0.5

2 4 8 16 32 64 128 256 512

M
od

u
la

ri
ty

 S
co

re

Processor Count

0.01
0.02

0.01 0.01 0.01 0.01
0.0

0.03
0.01

(c) Wiki-topcats Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.55

 0.6

2 4 8 16 32 64 128 256 512
M

od
u
la

ri
ty

 S
co

re
Processor Count

0.01 0.01 0.02 0.02
0.0 0.01 0.0 0.0 -0.01

(d) Soc-pokec Network

Figure 5.2.: Change of Modularity values across the different number of MPI processes

for (5.2a) DBLP network, (5.2b) Youtube network, (5.2c) Wiki-topcats network, and

(5.2d) soc-Pokec network. The numeric value on top of each histogram bar of each

figure demonstrates the change of Modularity compared to the value of Modularity

for sequential algorithm where a positive value indicates higher Modularity and a

negative value indicates lower Modularity than the sequential version. The higher

the Modularity score, the better the quality of the discovered communities.

Conductance

According to the study by Yang et al. [77], when the network contains well-

separated disjoint communities, Conductance delivers the best quality analysis of the

detected communities. For unweighted networks, Conductance measures the fraction

of the total number of edges that point outside the community, and for weighted

networks, it is the fraction of the total weight of such edges. For directed network,

37

Conductance |Ec
out|

|Ec
in|`|Ec

out|
and for the undirected network, Conductance |Ec

out|

2|Ec
in|`|Ec

out|
.

Motivated by the idea of electric conductivity where the higher value of Conductiv-

ity means connected paths and 0 or less conductivity means no connection or loosely

coupled connection, high Conductance means communities are not well-separated and

disjoint, the portions of intra-edges and inter-edges are not well-separated. On the

other hand, a low value of Conductance means the communities are well-separated

and if not completely but highly disjoint. The smaller the value of Conductance is,

the better the quality of the discovered community is.

We use the similar concepts and figures that we used for modularity in 5.5.1 with

the only difference is having ´ve difference of Conductance from shared/sequential

Infomap means a higher quality of the detected communities. From figures 5.3a,

5.3b, we can see the conductance value is insignificantly greater than [61] and for

figures 5.3c, 5.3d the Conductance values are insignificantly lower. Therefore we can

conclude that the quality of the detected communities of our distributed Infomap is

as good as the sequential Infomap.

5.5.2 Distributed Performance Analysis

Workload Balancing

We used Metis [70] graph partitioner to distribute workload among processors.

The purpose is not only to ensure equal workload balance among individual rank

but also to attain minimizing edge-cut across the different partition sub-graphs to

reduce the effect of vertex bouncing problem as mentioned in section 4.1. To ensure

that each process shares an equal amount of computational workload, each processor

is given the subset of vertices and corresponding edges as returned by the Metis

partitioner. Across different iterations, we have observed that the number of vertices

each processor has to deal with is fairly equal. As a result, each of the processors takes

38

 0

 0.1

 0.2

 0.3

 0.4
 0.42

 0.45

2 4 8 16 32 64 128 256 512

C
on

d
u
ct

an
ce

Processor Count

0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
0.0

(a) DBLP Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.55

 0.6

 0.65

2 4 8 16 32 64 128 256 512

C
on

d
u
ct

an
ce

Processor Count

0.01
0.03

0.02
0.06 0.04

0.05 0.04
0.02 0.02

(b) Youtube Network

 0

 0.1

 0.2

 0.3

 0.45

 0.5

 0.55

 0.6

2 4 8 16 32 64 128 256 512

C
on

d
u
ct

an
ce

Processor Count

-0.05 -0.05 -0.04 -0.05 -0.06 -0.05 -0.05 -0.04

0.0

(c) Wiki-topcats Network

 0

 0.1

 0.2

 0.3

 0.4

 0.45

 0.5

2 4 8 16 32 64 128 256 512

C
on

d
u
ct

an
ce

Processor Count

-0.01 -0.01
-0.02

-0.01
0.0

-0.01
0.0 0.0

0.01

(d) soc-Pokec Network

Figure 5.3.: Change of conductance values across the different number of MPI pro-

cesses for (5.3a) DBLP network, (5.3b) Youtube network, (5.3c) Wiki-topcats network,

and (5.3d) soc-Pokec network. The numeric value on top of each histogram bar of each

figure demonstrates the change of conductance compared to the value of conductance

for sequential algorithm where a positive value indicates higher conductance and a

negative value indicates lower conductance than the sequential version. The lower

the value of conductance is, the better the quality of the discovered communities is.

almost an equal amount of time to complete execution of the algorithm as shown in

figures 5.4 and 5.5.

39

Figure 5.4.: Workload imbalance resulting from naive vertex distribution across pro-

cesses

Figure 5.5.: Balanced workload across processes resulting from workload distribution

by Metis partitioner

Speedup and Parallel Efficiency

We measure the speedup and time-performance using the networks in our ex-

perimental dataset. Figure 5.6 depicts the runtime of our algorithm for 3 different

40

 100

 150

 200

 300

 400

 600

 800

 1200

 1600

 2400

 1 2 4 8 16 32 64 128 256 512

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

No. of Processes

youtube
wiki-topcats

soc-pokec

Figure 5.6.: Reduction of processing time for networks of different sizes from a single

process to 512 processes

networks using a different number of processors. From those figures, it can be ob-

served that we have achieved high scalability of reaching 512 processors for the bigger

networks (e.g. wiki-topcats, soc-Pokec). For a fairly large network like Youtube, we

have achieved consistent scalability improvement using up to 256 processors. For

smaller networks we used for our experiments (e.g. Amazon, DBLP) the benefit of

scalability is overruled by MPI communication cost across increased number of pro-

cessors. Communication cost is dependent on the underlying network infrastructure

of the computation nodes whereas the computation cost is controlled by the amount

of computation to be performed due to the size of the network dataset. For bigger

networks there is much computation to be performed and thus we can reach higher

scalability. This is natural and expected.

In table 5.3 we have shown the maximum speedup of our algorithm achieved

using the different number of processors in comparison to the sequential runtime of

our algorithm. The speedup gains get higher for bigger graphs with the increasing

41

number of processors. For smaller networks, the speedup gains decrease after rising

to a limit. One important thing is, the amount of speedup we can achieve depends

highly on the problem type we are dealing with. For the problem of Infomap, the

speedup gain is not radically higher as also evident from the work of [64] although

they have used a significant number of processors.

Table 5.3: Speedup factors on various social and information networks.

Network Speedup

Amazon 1.64

DBLP 1.92

Youtube 2.80

wiki-topcats 4.25

soc-pokec 5.10

 0.02
 0.05

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64 128 256 512

P
a
ra

lle
l
E
ff

ic
ie

n
cy

No. of Processes

Amazon
DBLP

Youtube
wiki-topcats

soc-pokec

Figure 5.7.: Degree of parallelism obtained against different processor count

42

We have used parallel efficiency measure to perform quality analysis of our dis-

tributed implementation in terms of workload balancing and effect of increasing pro-

cessing nodes. The Parallel efficiency ε of an algorithm compares the parallel runtime

to the best possible runtime assuming perfect scalability [61]. The parallel efficiency

ε “ Tseq
pT ppq

, where p is the number of parallel units, T ppq is the time with p parallel

units, and Tseq is the time of the sequential version.

Figure 5.7 depicts parallel efficiency in the form of histogram plot for the different

networks across the different number of processes in the distributed platform. The

higher the change in the histogram bar is, the less amount of efficiency gain is ob-

tained by increasing the number of processing units. On the other hand, the less

change in height of the histogram bar is with an increasing number of processors

signifies a greater amount of parallelism. In figure 5.7, we can see the histogram

bar for soc-Pokec has less change in height than others followed by Wiki-topcats and

the rest for an increasing number of processes until all of them converge close to

0. It means for larger networks our algorithm delivers better parallel efficiency than

smaller ones which is understandable as big networks need more computation work

which can benefit from adding more processors. Converging close to 0 means adding

extra processing units for computation may not benefit the parallel efficiency.

In table 5.3 we showed the maximum speedup we achieved for different networks

we used for our experiments. The notable thing is for every network the speedup is not

the same as the number of edges and vertices of the network play an important role

in computation and communication costs. Speedup for every network in the dataset

is measured against the runtime of detecting communities in a single processing unit.

43

6 COMPARISON WITH STATE-OF-THE-ART TECHNIQUES

Table 6.1: Comparison of our work with state-of-the-art techniques

Work Name Type Strength Weakness

Infomap Sequential Highly accurate Computationally

expensive

RelaxMap Shared-memory

parallelism

Highly accurate as

sequential Infomap

Limited scalability

Gossipmap Asynchronous

distributed-memory

parallelism

Less inter-process

communication

Scalability up to 128

processes

Distributed

Infomap

Synchronous

distributed-memory

parallelism

Highly accurate as

sequential Infomap

Moderate speedup

Hybrid

Infomap

Synchronous

distributed`shared

memory parallelism

High accuracy &

high speedup gain

44

6.1 Experimental Setup

To compare runtime performance with existing distributed implementation [63]

Gossipmap we have used our local computing servers in the department of CS at

UNO. The server is a single computing node with 32 processing cores and 512 GB

of memory. The operating system used is Ubuntu 16.04 of codename Xenial Xerus.

The reason behind using our local computing server instead of the more powerful

LONI [71] system is the user level restriction in installing required libraries in a

publicly shared computing domain. Gossipmap uses Graphlab Powergraph [78] as

the building framework which we could not install in the LONI server.

6.2 Comparison with GossipMap

 250

 500

 750

 1000

 1500

 2500

 4500

 6500

 1 2 4 8 16 32

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

No. of Processes

LiveJournal network

Distributed Infomap
GossipMap

Figure 6.1.: Runtime comparison between Gossipmap and our distributed Infomap

for the network LiveJournal for up to 32 MPI processes

We report the runtime comparison for three different networks (LiveJournal, soc-

Pokec and Wiki-topcats) executed by Gossipmap and our distributed Infomap. Fig-

45

ures 6.1, 6.2, and 6.3 illustrate the outcome. From these figures, it can be realized

the sequential runtime performance of our implementation is way better than the

Gossipmap. For instance, in figure 6.1 the sequential completion time for finding

communities is 6734.53 seconds for Gossipmap whereas the sequential runtime for

our distributed implementation is 2813.93 seconds with runtime reduction of 2.40ˆ.

Gossipmap seems to get better parallel runtime reduction because of this poor se-

quential execution time. However, we observed in all the figures our approach is

getting a smooth decrease in runtime with an indication of better utilization of CPU

resources or good parallel efficiency in the context of MPI processes. Also, the change

of runtime for 16 to 32 MPI processes almost become flat as evident in figures 6.1 and

6.2 indicating that parallel efficiency gain is getting poor for a higher number of MPI

processes in Gossipmap which is not the case for our distributed Infomap. We did not

test on a higher number of MPI processes (e.g., 64 or 128 processes) because of the

CPU core limitation of our local computing server. That kind of test may not deliver

the genuine scalability performance of Gossipmap and our distributed Infomap.

 250

 500

 750

 1000

 1500

 2500

 4500

 6500

 1 2 4 8 16 32

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

No. of Processes

soc-pokec network

Distributed Infomap
GossipMap

Figure 6.2.: Runtime comparison between Gossipmap and our distributed Infomap

for the network soc-Pokec for up to 32 MPI processes

46

 250

 500

 750

 1000

 1500

 2500

 4500

 6500

 1 2 4 8 16 32

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

No. of Processes

Wiki-topcats network

Distributed Infomap
GossipMap

Figure 6.3.: Runtime comparison between Gossipmap and our distributed Infomap

for the network Wiki-topcats for up to 32 MPI processes

 0

 3

 6

 9

 12

 15

 18

 20

1 2 4 8 16 32

M
in

im
u
m

 D
es

cr
ip

ti
o
n
 L

en
g
th

 (
M

D
L)

#Process

GossipMap
Distributed Infomap

Figure 6.4.: Minimum description length (MDL) comparison after convergence for

the LiveJournal network between Gossipmap and distributed Infomap.

47

When making a qualitative comparison in the context of MDL for the LiveJour-

nal network we did not see any significant difference between Gossipmap and our

distributed Infomap. It indicates that both of the implementations can converge to

some point delivering similar quality of the discovered communities.

48

7 HYBRID (DISTRIBUTED + SHARED) MEMORY PARALLELISM

The hybrid implementation of Infomap is a continuation of our previous work [65] on

distributed Infomap. In our hybrid design, we overcome the limitation of not being

able to process very large networks in our distributed Infomap. The hybrid work has

shown scalability with the highest amount of computing resources we could get as an

individual researcher from the LONI system and has a promising prospect of scaling

up to billion size networks given a bigger high-performance computing platform than

LONI.

7.1 Experimental Setup

For the experiments in the hybrid platform, we used the LONI [71] clusters. We

have used 10 OpenMP threads in each of the MPI processes to ensure maximum

speedup gain in each of the computing nodes in the clusters. In each computing node

in LONI clusters, there are 20 processing cores. Therefore, we ran 2 MPI processes per

computing node each having 10 OpenMP threads to ensure maximum performance.

Because of the resource limitation of how many computing nodes a researcher can

request for computation in LONI, we could not go beyond 128 computing nodes and

test hybrid performance beyond 256 MPI processes.

7.2 Algorithmic Analysis and Performance Measure

Our distributed algorithm on Infomap delivers high scalability up to 512 pro-

cessors. Community detection using the Information-theoretic approach is highly

sequential in nature. In certain parts of the algorithm, applying distributed paral-

49

lelism incurs significant communication cost across processors which outweighs the

benefit of distributed computation. However, we observed that those parts of the

algorithm can still exploit the benefit of shared memory parallelism using multiple

threads. Therefore, we have used OpenMP to use shared memory parallelism in-

side our distributed algorithm. We have extended our distributed algorithm as we

described in chapter 4 to hybrid implementation (MPI+OpenMP). We found signif-

icant performance benefit using this approach over the state-of-the-art distributed

information-theoretic approaches without compromising the quality of the discovered

communities. Analyzing the differences between our distributed-memory parallel In-

fomap and hybrid approach can be more realizable if we look at the algorithm 3.

The significant difference between the distributed algorithm and hybrid algorithm

is seen in line 8´11 where we used t number of OpenMP threads in each MPI process

to compute the vertex visit rate using power iteration. For bigger networks, the out-

come of this approach is highly blissful. We reused the spawned threads (t threads)

in computing exit probability inside each process (line 13 ´ 15). In the community

detection phase (line 17 ´ 26), OpenMP threads are utilized again to speed up the

supernode creation and parameter synchronization phases (line 24´ 25) which is an-

other difference between distributed Infomap and hybrid Infomap. The outcome of

using OpenMP threads inside each MPI process to speedup computation turns out

highly efficacious as we report in subsequent comparisons.

Figure 7.1 shows the breakdown of execution time for different networks. The

smaller networks such as Amazon, DBLP do not have that much computation that

can exploits the benefits of parallelism. Consequently, the line becomes almost flat

after 16´32 processes. For larger networks the performance gain across an increasing

number of processors is realizable. For Youtube network with approximately 1.1M

vertices and around 3M edges, the execution time for a single process is around

50

 10

 20

 50

 100

 150

 250

 500

 750
 1000

 1500

 2500

 4500
 6500

 1 2 4 8 16 32 64 128 256

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

No. of Processes

Amazon
DBLP

Youtube
Wiki-topcats
LiveJournal

Orkut

Figure 7.1.: Execution time comparison (drawn in log scale)

370 seconds which reduces to around 70 seconds for 256 processes. For bigger net-

works such as Wiki-topcats with 1.7M vertices and 28M edges, LiveJournal with

4M vertices and 34.6M edges, the scalability curves are steeper. For instance, for

Wiki-topcats network we achieved a processing time of 171 seconds for 256 processes

where it takes 1630 seconds to compute in sequential algorithm. For the LiveJournal

network, the sequential processing time is 2040 seconds and the parallel processing

time is 249 seconds for 256 processes. The massive network of our experiment is the

Orkut social network with 3M vertices and 117M edges. The sequential algorithm

takes 6888 seconds to discover communities whereas it takes 615 seconds to discover

communities in 256 processes. This is a massive performance boost over sequential

execution time.

In figure 7.2, we illustrated the performance gain in terms of speedup. Our hy-

brid approach obtained better speedup than state-of-the-art techniques to the best

51

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32 64 128 256

S
p
ee

d
u
p
 F

a
ct

o
r

No. of Processes

Amazon
DBLP

Youtube
Wiki-topcats
LiveJournal

Orkut

Figure 7.2.: Speedup factor achieved for different networks

of our knowledge. For smaller networks in our dataset, the speedup gain is compara-

ble to state-of-the-art techniques. However, for a large network such as LiveJournal,

we have achieved a much better speedup (8.18ˆ) than the work of Zeng et al. [64]

which achieves a speedup of 3.05ˆ despite using thousands of processes. The high-

est speedup they achieved in their work is 6.02ˆ for UK-2007 network whereas the

highest speedup we achieved is 11.15ˆ with our largest network of Orkut. It also

demonstrates that the size of the networks controls the speedup gain in our algo-

rithm. The bigger the network is, the higher the speedup gain is as evident from the

curves in figure 7.2.

Figure 7.3 illustrates a coarse estimation of how much time on average it can take

to process a network. We have seen in the speedup figure 7.2 that we get higher

speedup for bigger networks, that observation is also corroborated by the findings in

figure 7.3. Although, the number of vertices in a network also plays a role in the pro-

52

 5000

 6000

 7000

 8000

 9000

Amazon DBLP Wiki-topcats LiveJournal Orkut

T
im

e(
m

s)
/M

ill
io

n
 E

d
g
e

Networks

Figure 7.3.: Time taken on average in millisecond for processing per million of edges

for sample networks. The larger the networks, the time taken to process a million

edge gets smaller with a few exceptional cases.

 2
 4

 8

 16

 24

 32

 40

Amazon DBLP Wiki-topcats LiveJournal Orkut

E
d
g
es

/V
er

te
x

Networks

Figure 7.4.: Average edge distribution per vertex determines the speedup gain and

processing time.

cessing time but the number of edges majorly determines the amount of computation

that needs to be performed. It can be observed that our algorithm achieves better

53

parallelism when there is much computation to perform which is the case for bigger

networks. It can be also seen that we achieved better speedup for the network Wiki-

topcats than the network LiveJournal in figure 7.2, a similar fact is also observed in

figure 7.3 where we get a spike for the network LiveJournal although the processing

time is generally decreasing per-million of edges for the networks. Also, there is an-

other previous observation verified by the current observation in figure 7.3. We have

used Metis [70] edge-cut partitioner to divide the workload among processes. Before

that, we used the naive vertex-based partitioner which turn out to be not-so-good

partitioning strategy. Therefore, we can conclude that to ensure workload balancing,

an equal edge-based partitioning is more effective than an equal vertex-based parti-

tioning given the nature of this algorithm.

Figure 7.4 is a complementary illustration to the findings of figure 7.3 and figure

7.2. The average number of edges per vertex determines the potential speedup gain.

If network Ga has Va vertices and Ea edges whereas the network Gb has Vb vertices

and Eb edges, the average number of edges per vertex for network Ga is ēa “ Ea{Va

and the average number of edges per vertex for network Gb is ēb “ Eb{Vb. Based on

the observation from our findings illustrated in figures 7.2, 7.3 and 7.4, we can say

that if the execution speedup achieved for network Ga is some positive real number

sa and for network Gb is some positive real number sb and ēa ą ēb, then sa ą sb.

In figure 7.5, we show the parallel efficiency of our algorithm for the experiment

dataset across the different number of processes. We used the same formula of the

parallel efficiency ε “ Tseq
pT ppq

for our distributed performance analysis here in this

hybrid approach, where p is the number of parallel units, T ppq is the time with p

parallel units, and Tseq is the execution time of the sequential version. The parallel

efficiency falls with the increasing number of processes which is real and expected. A

significant reason is the communication cost increasing with the number of processes

54

 2 5
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

P
a
ra

lle
l
E
ff

ic
ie

n
cy

 (
%

)

No. of Processes

Amazon
DBLP

Youtube
Wiki-topcats
LiveJournal

Orkut

Figure 7.5.: Parallel efficiency (%) corresponding to the number of processes

outweighs the benefit of parallel performance gain. Being highly sequential in nature,

the communication cost is inevitable for synchronization across processes in Infomap.

However, we continue to gain better parallel efficiency for larger networks such as

Wiki-topcats, LiveJournal, and Orkut with more than 20% using 32 processes.

 0.2
 0.6

 1

 2

 4

 6

 8

 10

20 40 80 160 320 640 1280 2560

P
a
ra

lle
l
E
ff

ic
ie

n
cy

 (
%

)

No. of Threads

Amazon
DBLP

Youtube
Wiki-topcats
LiveJournal

Orkut

Figure 7.6.: Parallel efficiency (%) corresponding to the number of threads

55

As our hybrid approach also consists of many threads, we illustrate the parallel

efficiency gain for the different number of threads used in figure 7.6. Each of the MPI

processes spawns 10 OpenMP threads. The number of used threads therefore also

increases with the number of used MPI processes. For instances, the total number

of threads used for running the experiments with 128 MPI processes are 1280. We

have used OpenMP threads in calculating rank vector for each vertex and creating

super nodes during the module update process. The amount of parallel efficiency we

achieved as shown in figure 7.6 although seems small but that is because it reflects

the parallel efficiency gain for only that small portion of our algorithm computing the

rank vector and the modules-update.

7.3 Quality Measure

We have achieved a significant performance gain by using the hybrid approach. To

ensure this improvement is not obtained by compromising the quality of the detected

communities, we compare against the same quality metrics we used in our distributed

algorithm comparative study, i.e., Modularity, Conductance, and Minimum Descrip-

tion Length (MDL) of the convergence. We compared the values of those metrics

across different networks for the sequential algorithm and the hybrid one with maxi-

mum number of processes we used. We obtained almost uniform results for different

networks for the minimum and the maximum number of processes that corroborates

the fact that the quality of our hybrid approach does not vary over networks or the

number of MPI processes.

In figure 7.7, we show the Conductance measure for sequential vs 256 processes.

In all of the networks, the hybrid approach returns either the same or similar con-

ductance values. It is important to note a lower value of conductance means a higher

quality of the detected communities. For all the networks we have observed less than

5% change in Conductance values. In case of Wiki-topcats network, we received 3%

56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Amazon DBLP Youtube Wiki-topcats LiveJournal Orkut

C
o
n
d
u
ct

a
n
ce

Networks

#Process = 1
#Process = 256

Figure 7.7.: Conductance measured for minimum (1) and maximum (256) number of

processes for different networks

higher conductance value than the sequential one. One possible reason for such fluc-

tuation can be the conversion of network in CSR (Compressed Sparse Row) format.

All the networks we have used in our experiments are undirected except Wiki-topcats.

Conversion to CSR format results in the undirected network for the corresponding

directed one adding extra edge information. This might have happened in the case

of Wiki-topcats network and doing distributed processing of that network resulted in

a bit lower-quality of the detected community.

A similar trend is also observed for the quality of the discovered community by

Modularity in figure 7.8. For all the networks we observed the same value of the

Modularity metrics except for the Wiki-topcats network where the Modularity value

is less by 7.5%. The reason is explained above for the conductance metric. It is

important to note that lower Modularity value means less quality of the discovered

community.

57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Amazon DBLP Youtube Wiki-topcats LiveJournal Orkut

M
o
d
u
la

ri
ty

 S
co

re

Networks

#Process = 1
#Process = 256

Figure 7.8.: Modularity measured for minimum (1) and maximum (256) number of

processes for different networks

 0

 3

 6

 9

 12

 15

 18

 20

Amazon DBLP Youtube Wiki-topcats LiveJournal Orkut

M
in

im
u
m

 D
es

cr
ip

ti
o
n
 L

en
g
th

 (
M

D
L)

Networks

#Process = 1
#Process = 256

Figure 7.9.: Convergence Minimum Description Length (MDL) for minimum (1) and

maximum (256) number of processes

In figure 7.9, the resultant Minimum Description Length (MDL) value are il-

lustrated. The MDL value indicates the average number of bits per step required to

58

describe an infinite random walk on a network partitioned based on the resultant num-

ber of discovered communities. For all the networks we have observed the same MDL

values for both 256 processes and sequential algorithm with 2% under-convergence

for Wiki-topcats network and 1% under-convergence for Orkut network. As the event

of under-convergence is expected in distributed platform as also observed by Bae et

al. [61], this minimum change of the convergence MDL is an expected outcome for a

distributed algorithm.

59

Algorithm 3 Hybrid Infomap

Require: A graph GpV,Eq, V total vertices, E total edges, N Ð |V |

Ensure: M :M ď N , M is the total number of communities, M ! N

1: mi, i
th module

2: qmi , exit probability of module mi

3: τ , minimum threshold for codelength improvement

4: Lold, codelength of previous iteration

5: L, codelength of current iteration

6: P , number of MPI processes spawned

7: t, number of OpenMP threads spawned

8: for i “ 1 to N in t´ way parallel do

9: calculate initial vertex visit rate pvi Ð 1{N

10: compute vertex visit rate pvi by power iteration

11: end for

12: declare initial total module M Ð tmi “ tviu|vi P V u

13: for mi “ 1 to M in t´ way parallel do

14: calculate exit probability qmi

15: end for

16: calculate initial codelength LÐ LpMq

17: do

18: Lold Ð L

19: for i “ 1 to pN{P Ð metisq in parallel do

20: pick randomly a vertex vi

21: mnew Ð findNewBestModulepviq

22: calculate L

23: end for

24: update M Ð convertModulestoSuperNodepq in t´ way parallel

25: synchronize parameters across all processes

26: while (Lold ´ Lq ą τ

27: return M

60

8 CONCLUSION

In this thesis, we have presented our design of distributed-memory parallel Infomap

capable of discovering communities with similar quality to sequential Infomap. Our

experimental analysis shows that we can scale down the execution time of processing

massive networks. While doing experimental analysis with our distributed Infomap

design, we observed that certain parts of our algorithm can benefit from parallelism

but communication cost is dominating the parallel computation benefit. We then

redesign a hybrid algorithm which led us to even more scaling down of the execution

time and greater speedup compared to the state-of-the-art techniques. This happens

without compromising the quality of the detected communities while processing even

bigger networks with 100 millions of edges. Our hybrid work overcomes the limitation

of our distributed design. In the future, we want to extend our endeavor to deal with

the dynamic network and target-oriented community search.

61

LIST OF REFERENCES

[1] Mason A. Porter, Jukka-Pekka Onnela, and Peter J. Mucha. Communities in
networks. ArXiv, abs/0902.3788, 2009.

[2] Santo Fortunato. Community detection in graphs. ArXiv, abs/0906.0612, 2010.

[3] M. Newman. Communities, modules and large-scale structure in networks. Na-
ture Physics, 8:25–31, 12 2011.

[4] Bhaskar DasGupta and Devendra Desai. On the complexity of newman’s com-
munity finding approach for biological and social networks. Journal of Computer
and System Sciences, 79(1):50 – 67, 2013.

[5] A. Karataş and S. Şahin. Application areas of community detection: A review.
In 2018 International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT), pages 65–70, Dec 2018.

[6] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo. Scalable static and
dynamic community detection using grappolo. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–6, Sep. 2017.

[7] Tiago P. Peixoto. Efficient monte carlo and greedy heuristic for the inference of
stochastic block models. Phys. Rev. E, 89:012804, Jan 2014.

[8] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75 –
174, 2010.

[9] M. E. J. Newman. Finding community structure in networks using the eigenvec-
tors of matrices. Physical Review E, 74(3), Sep 2006.

[10] M. E. J. Newman. Spectral methods for community detection and graph parti-
tioning. Physical Review E, 88(4), Oct 2013.

[11] Luca Donetti and Miguel A Muñoz. Detecting network communities: a new
systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and
Experiment, 2004(10):P10012, Oct 2004.

[12] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[13] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Phys. Rev. E, 69:026113, Feb 2004.

62

[14] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, Oct 2008.

[15] Santo Fortunato and Marc Barthélemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.

[16] Tiago P. Peixoto. Parsimonious module inference in large networks. Phys. Rev.
Lett., 110:148701, Apr 2013.

[17] Tiago P. Peixoto. Entropy of stochastic blockmodel ensembles. Phys. Rev. E,
85:056122, May 2012.

[18] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community
structure in networks. Phys. Rev. E, 83:016107, Jan 2011.

[19] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proceedings of the National Academy of Sci-
ences, 105(4):1118–1123, 2008.

[20] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs
for testing community detection algorithms. Phys. Rev. E, 78:046110, Oct 2008.

[21] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping commu-
nities. Phys. Rev. E, 80:016118, Jul 2009.

[22] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December
1998.

[23] A. Buluç and K. Madduri. Parallel breadth-first search on distributed memory
systems. In SC ’11: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12, 2011.

[24] S Szabó. Parallel algorithms for finding cliques in a graph. Journal of Physics:
Conference Series, 268:012030, jan 2011.

[25] Shaikh Arifuzzaman and Bikesh Pandey. Scalable mining, analysis, and visu-
alization of protein-protein interaction networks. International Journal of Big
Data Intelligence (IJBDI), 6(3/4), 01 2019.

[26] M. A. Motaleb Faysal and S. Arifuzzaman. A comparative analysis of large-scale
network visualization tools. In 2018 IEEE International Conference on Big Data
(Big Data), pages 4837–4843, Dec 2018.

[27] Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. PATRIC: a paral-
lel algorithm for counting triangles in massive networks. In Proceedings of the
22nd ACM International Conference on Information and Knowledge Manage-
ment (CIKM 2013), San Francisco, CA, USA, pages 529–538, October 2013.

[28] S. Arifuzzaman and M. Khan. Fast parallel conversion of edge list to adjacency
list for large-scale graphs. In Proceedings of the 23rd High Performance Com-
puting Symposium (HPC 2015), Alexandria, VA, USA, pages 17–24, April 2015.

63

[29] S. Arifuzzaman, Maleq Khan, and Madhav Marathe. A space-efficient parallel
algorithm for counting exact triangles in massive networks. In Proceedings of
the 17th IEEE International Conference on High Performance Computing and
Communications (HPCC 2015), New York City, USA, pages 527–534, August
2015.

[30] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Fast parallel algo-
rithms for counting and listing triangles in big graphs. ACM Trans. Knowl.
Discov. Data, 14(1), December 2019.

[31] Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. Finding community
structure in very large networks. Phys. Rev. E, 70:066111, Dec 2004.

[32] Roger Guimerà, Marta Sales-Pardo, and Lúıs A. Nunes Amaral. Modularity from
fluctuations in random graphs and complex networks. Phys. Rev. E, 70:025101,
Aug 2004.

[33] Claire P. Massen and Jonathan P. K. Doye. Identifying communities within
energy landscapes. Phys. Rev. E, 71:046101, Apr 2005.

[34] Andres Medus, Guillermo Acuña, and CO Dorso. Detection of community struc-
tures in networks via global optimization. Physica A: Statistical Mechanics and
its Applications, 358:593–604, Dec 2005.

[35] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi. Defining and identifying communities in networks. Proceedings
of the National Academy of Sciences, 101(9):2658–2663, 2004.

[36] Sanjukta Bhowmick and Sriram Srinivasan. A Template for Parallelizing the
Louvain Method for Modularity Maximization, pages 111–124. Springer New
York, New York, NY, 2013.

[37] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. Fast algorithm for
modularity-based graph clustering. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, AAAI’13, page 1170–1176. AAAI Press,
2013.

[38] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed framework for pri-
oritizing iterative computations. IEEE Transactions on Parallel and Distributed
Systems, 24(9):1884–1893, Sep. 2013.

[39] Chun Yew Cheong, Huynh Phung Huynh, David Lo, and Rick Siow Mong Goh.
Hierarchical parallel algorithm for modularity-based community detection using
gpus. In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors, Euro-Par 2013
Parallel Processing, pages 775–787, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[40] M. Naim, F. Manne, M. Halappanavar, and A. Tumeo. Community detection
on the gpu. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 625–634, May 2017.

[41] Christian L. Staudt and Henning Meyerhenke. Engineering high-performance
community detection heuristics for massive graphs. In 2013 42nd International
Conference on Parallel Processing, pages 180–189, Oct 2013.

64

[42] Christian L. Staudt and Henning Meyerhenke. Engineering parallel algorithms
for community detection in massive networks. IEEE Transactions on Parallel
and Distributed Systems, 27(1):171–184, Jan 2016.

[43] Jianping Zeng and Hongfeng Yu. Parallel modularity-based community detec-
tion on large-scale graphs. In 2015 IEEE International Conference on Cluster
Computing, pages 1–10, Sep. 2015.

[44] Jianping Zeng and Hongfeng Yu. A study of graph partitioning schemes for par-
allel graph community detection. Parallel Computing, 58(C):131–139, October
2016.

[45] Naw Safrin Sattar and Shaikh Arifuzzaman. Parallelizing louvain algorithm:
Distributed memory challenges. In Proceedings of 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing (DASC), Athens, Greece, pages
695–701, 2018.

[46] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu, D. Chavarrià-
Miranda, A. Khan, and A. Gebremedhin. Distributed louvain algorithm for
graph community detection. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 885–895, May 2018.

[47] J. Reichardt and D. R. White. Role models for complex networks. The European
Physical Journal B, 60(2):217–224, Nov 2007.

[48] Jake M. Hofman and Chris H. Wiggins. Bayesian approach to network modu-
larity. Phys. Rev. Lett., 100:258701, Jun 2008.

[49] M. E. J. Newman and E. A. Leicht. Mixture models and exploratory analysis in
networks. Proceedings of the National Academy of Sciences, 104(23):9564–9569,
2007.

[50] Carolyn J Anderson, Stanley Wasserman, and Katherine Faust. Building stochas-
tic blockmodels. Social Networks, 14(1):137 – 161, 1992. Special Issue on Block-
models.

[51] Katherine Faust and Stanley Wasserman. Blockmodels: Interpretation and eval-
uation. Social Networks, 14(1):5 – 61, 1992. Special Issue on Blockmodels.

[52] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social Networks, 5(2):109 – 137, 1983.

[53] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community
structure in networks. Phys. Rev. E, 83:016107, Jan 2011.

[54] Tiago Peixoto. graph-tool.

[55] M. A. M. Faysal and S. Arifuzzaman. Fast stochastic block partitioning using a
single commodity machine. In 2019 IEEE International Conference on Big Data
(Big Data), pages 3632–3639, 2019.

[56] Ahsen J. Uppal and H. Howie Huang. Fast stochastic block partition for
streaming graphs. 2018 IEEE High Performance extreme Computing Confer-
ence (HPEC), pages 1–6, 2018.

65

[57] A. J. Uppal, G. Swope, and H. H. Huang. Scalable stochastic block partition. In
2017 IEEE High Performance Extreme Computing Conference (HPEC), pages
1–5, Sep. 2017.

[58] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra, P. Montic-
ciolo, A. Reuther, S. Samsi, W. Song, D. Staheli, and S. Smith. Streaming graph
challenge: Stochastic block partition. In 2017 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–12, Sep. 2017.

[59] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: A
comparative analysis. Phys. Rev. E, 80:056117, Nov 2009.

[60] Rodrigo Aldecoa and Ignacio Mar̀ın. Exploring the limits of community detection
strategies in complex networks. Scientific Reports, 3:2216, Jul 2013.

[61] Seung-Hee Bae, Daniel Halperin, Jevin West, Martin Rosvall, and Bill Howe.
Scalable flow-based community detection for large-scale network analysis. In
2013 IEEE 13th International Conference on Data Mining Workshops, pages
303–310, Dec 2013.

[62] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M. Hellerstein. Distributed graphlab: A framework for machine
learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April
2012.

[63] Seung-Hee Bae and Bill Howe. Gossipmap: a distributed community detection
algorithm for billion-edge directed graphs. In SC ’15: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–12, Nov 2015.

[64] Jianping Zeng and Hongfeng Yu. A distributed infomap algorithm for scalable
and high-quality community detection. In Proceedings of the 47th International
Conference on Parallel Processing, ICPP 2018, pages 4:1–4:11, New York, NY,
USA, 2018. ACM.

[65] M. A. M. Faysal and S. Arifuzzaman. Distributed community detection in large
networks using an information-theoretic approach. In 2019 IEEE International
Conference on Big Data (Big Data), pages 4773–4782, Dec 2019.

[66] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,
September 1978.

[67] Peter D. Gr:unwald, In Jae Myung, and Mark A. Pitt. Advances in Minimum
Description Length: Theory and Applications (Neural Information Processing).
The MIT Press, 2005.

[68] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948.

[69] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. ISDN Syst., 30(1-7):107–117, APR 1998.

66

[70] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December
1998.

[71] Louisiana optical network infrastructure. http://hpc.loni.org/resources/
hpc/system.php?system=QB2.

[72] LSU HPC. Qb2 cluster. http://www.hpc.lsu.edu/docs/guides.php?system=
QB2.

[73] Md A M Faysal. Distributed infomap. https://github.com/
Drakule-Mihawk101/DistInfomap.git.

[74] Vladimir Batagelj and Andrej Mrvar. Pajek. http://mrvar.fdv.uni-lj.si/
pajek/.

[75] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[76] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining Social-
Network Graphs, page 325–383. Cambridge University Press, 2 edition, 2014.

[77] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
based on ground-truth. Knowl. Inf. Syst., 42(1):181–213, January 2015.

[78] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. Graphlab: A new parallel framework for machine
learning. In Conference on Uncertainty in Artificial Intelligence (UAI), July
2010.

67

VITA

Md Abdul Motaleb Faysal was born in a small village in the suburb area of Dhaka in

Bangladesh. He is the 2nd youngest member in his family of the 6 siblings.

As a student, he finished his undergraduate degree of bachelor of science in Com-

puter Science and Engineering (CSE) from Bangladesh University of Engineering and

Technology (BUET) in the year 2014. He started his career as a software engineer

in a software company in Bangladesh in the same year. To pursue higher education,

Faysal resigned from his position as a software engineer in July, 2017.

Later, he joined the University of New Orleans (UNO) in fall 2017 as a Gradu-

ate Research Assistant in the Computer Science department to pursue his Ph.D. He

is a part of the Big Data and Scalable Computing group supervised by Dr. Shaikh

Arifuzzaman (Assistant Professor, CS at UNO). His research interest focuses on high-

performance computing, graph algorithms, big data mining, and scalable computing.

Apart from the study and research, Faysal is often seen in the UNO campus

playing cricket, soccer, and badminton with his friends. He loves to go on a long

drive and travel places with scenic beauty.

68

	Accelerating the Information-Theoretic Approach of Community Detection Using Distributed and Hybrid Memory Parallel Schemes
	Recommended Citation

	tmp.1588793393.pdf.riFhx

