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ABSTRACT 
 

This dissertation consists of two essays. In the first essay, I  introduce a new measure of 

the firm life cycle and compare its efficacy with the three existing life cycle proxies: ‘cashflow 

patterns’, ‘earned contributed capital mix’, and the firm’s public ‘age’. More specifically, I show 

that two groups of firms, similar in all respects except in their innovations efficiencies, will adopt 

different dividend policies regardless of their calendar age, earned income, or the cash flow 

patterns. I employ a large sample of US manufacturing firms spanning from 1973 to 2017. I find 

that more innovative firms pay lower dividends than the less innovative firms,  irrespective of 

how we describe the life cycle stages. Besides, I perform a comprehensive cross-sectional look at 

the interrelations among various factors, including innovation output, growth, firm life cycle, and 

the dividend payout. I conclude that the intensity of innovation outputs has a direct relation with 

the firm's growth rate, and that, in turn, affects the firm’s life cycle, and thereby its dividend 

policy. 

 

In the second essay, I evaluate the returns to scale, tracking error, and the role of fund 

characteristics on the ETFs risk-return performance. I investigate the impact of asset base size 

growth on the risk-adjusted performance and on the tracking ability of ETFs to their benchmark 

indices. I use the quantile regression approach with survivorship biased free non-leveraged, non-

active, equity-only ETFs sample for ten years. I find that the ‘universe of equity ETFs’ do not 

provide increasing returns to scale. The results show that the size has a more substantial negative 

impact on the highest performing quantiles of the ETF cluster. I also observe that the ‘illiquidity,’ 

‘expense ratio,’ the ‘equal-weighted index composition’ among others are the main key drivers 

that exacerbate the inverse relationship between the size and the performance. However, the 

core blend style and the capitalization-weighted index composition have a positive effect. Finally, 

I conclude a negative relationship between the size and the tracking error. I document that the 

‘illiquidity,’ ‘expense ratio,’ and ‘volatility’ have a positive relationship with the tracking error. 

 

Keywords: Firm life cycle, Innovation, Growth, Dividend Policy, ETFs, Tracking Error, Performance
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CHAPTER 1 

 

INNOVATION, FIRM LIFE CYCLE, AND THE DIVIDEND PAYOUT 

 

 

1. INTRODUCTION 

 

Researchers have long embraced the linkage between a firm’s life cycle and its growth rate.  

According to Mueller (1972), a  business firm has an  'S' shaped growth pattern, with a period of 

slow growth at start-up followed by a period of more robust growth and eventually to maturity 

and stagnation. As the firm progresses through its lifecycle towards maturity, its ability to process 

information deteriorates. Moreover, the risk-taking incentives of the average manager diminish. 

Consequently, net investment in tangible assets decreases. The firm is not able to generate 

innovations to maintain continuous growth, and ultimately, it reaches a point at which the firm 

lacks profitable investment opportunities. This view has almost universally accepted in the 

academic and business communities. For example, Hubbard (2018), among others, suggests that 

in the early stage, the firm invests more to capitalize on its growth opportunities, while during 

the maturity stage, it invests in maintaining the assets in place. Faff et al. (2016) argue that the 

firm’s cash holdings go up in the introduction and growth stages but decrease in the mature and 

shake-out/decline stages as its financing need subsides. 

Mueller (1972)  extends the linkage between the life cycle and growth of the firm to its 

dividend payout decision by proposing that at the mature stage, a value-maximizing firm would 

begin distributing its earnings in dividends.  The literature, in general, agrees on the notion that 

the dividend payout follows a life cycle pattern, and the likelihood of dividend payments is 

positively related to the maturity of the firm (Fama and French, 2001, Grullon et al., 2002, and 

DeAngelo et al. 2006). Consistent with the view, Bulan, and Subramanian (2007) document that 

firms initiate/increase dividends after reaching maturity in their life cycles. According to Flavin 
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and O’Connor (2017),  the degree of dividend payouts increases over the life cycle of the firm, 

but peaks during the maturity stage. 

Although the life cycle theory of dividends is a broadly accepted notion, the debate continues 

about the right proxy to demarcate the stages of a firm’s life cycle, especially its maturity stage.  

The most popular empirical proxy appears to be the firm’s age. However, equating the life cycle 

to the 'calendar age' has been challenged by researchers who offer alternative proxies. For 

example, DeAngelo, et al. (2006) suggest ‘the contributed capital mix’, whereas Dickinson (2011) 

recommends ‘the cash flow patterns’ as an alternative to measure the life cycle stages.  Despite 

the extensive coverage of the firm lifecycle in the existing literature,  a clear demarcation of the 

stages, especially the maturity stage, is yet to emerge.  I argue that growth induced by innovation 

output has a crucial role in dictating the length of each stage and the corresponding dividend 

payout. 

The evidence is aplenty in the literature that links innovations to growth. Chan et al. 

(1990), Doukas and Switzer (1992), Blundell et al. (1999), Toivanen, et al. (2002), and Yang and 

Chen (2003) among others, present evidence that the innovative, small and medium-size firms 

have higher future growth opportunities and profitability than the non-innovative ones. 

Deschryvere (2014) finds that continuous product and process innovators show positive 

associations between R&D growth and sales growth. Coad et al. (2016) find that innovative firms 

grow more than non-innovative ones. Their quantile regression results show that the coefficient 

of innovation is higher for firms with the highest growth rates. Faff et al. (2016) opine that 

innovative firms may continue to grow in a given lifecycle stage longer than less innovative firms. 

Spescha & Woerter (2019) suggest that innovative firms based on R&D activities have higher sales 

growth rates than non-innovative firms. 

At least theoretically, a persistently innovative firm should be able to produce sustainable 

growth and, therefore, avoid paying dividends forever. Realistically, we should expect a highly 

innovative firm to stretch its life far beyond the “maturity” stage, irrespective of what proxy (age, 

contributed capital, or cash flow pattern) we use to measure it. For example, suppose there are 

two firms that are similar in all respects except their innovation efficiency, the one with 
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demonstrably high innovation efficiency would pay significantly lower dividends than the one 

that exhibits poor innovation performance.  

When using innovation efficiency as a proxy for the life cycle, a firm reaches its maturity 

once its innovation performance decreases to the level of the industry average. On the other 

hand, a poor performer in the innovation contest reaches the maturity stage much sooner than 

their counterparts in the same stage of the life cycle regardless of the proxies used. These are 

the issues I address in this paper and hypothesize the most appropriate proxy for a firm’s life 

cycle. I contribute to the literature by first defining a firm’s life cycle based on its innovation 

efficiency and then demonstrating how innovation might explain cross-sectional differences in 

dividend payments between two firms that are otherwise similar in all respects. Besides, I re-

examine and perform a comparative study of the most popular life cycle proxies in the extant 

literature. 

The results show that innovation superiority prevails in measuring  “maturity” irrespective 

of how it is defined. I find that there is no defined life cycle for all firms. Instead, the innovation-

based criteria define each firm’s life cycle individually. A young firm may fall in the declining stage 

if the firm loses its creativity, while an old firm that may otherwise qualify for the maturity stage 

based on age may continue to function as a growth firm and might decide not to pay (or raise) 

dividends.  Using innovation measure, I can see the life cycle occurring in three stages; first, when 

a firm’s innovation efficiency is higher than the industry average, the firm is at the growth cycle. 

It is likely to follow a low-dividend policy.  Second, when the firm’s efficiency level mirrors the 

industry,  the firm is in the maturity stage and may pay higher dividends. Finally, a firm with a 

below-industry level of efficiency is expected to be at the declining phase, but its dividend 

decision would likely depend on the management quality. 

Thus, I claim that the maturity hypothesis (as explained by the dividend payout) is better 

defined by innovation output intensity. The existing studies lack sufficient empirical researches 

that connect the innovation outputs or innovation success with the firm’s business life cycle, and 

I attempt to fill the gap. 
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Likewise, Dickinson (2011) study cashflow patterns during a corporate life and defines 

life-cycle stages in terms of a firm’s cash flow pattern. However, to the best of my knowledge, 

cashflow maturity as proposed by Dickinson has not been tested for the dividend payout. In this 

research, I put it in perspective and investigate whether the cashflow maturity of a firm is aligned 

with the maturity hypothesis associated with the dividend payouts.  I claim that this is an added 

contribution to the literature. 

The paper proceeds as follows. In section 2, I provide the literature review. Section 3 

introduces the main hypotheses. Section 4 presents the data and univariate analysis and 

empirical methodologies. Section 5 contains the discussion and presentation of the findings, 

theoretical underpinnings, and the policy implications, and finally, Section 6 concludes the paper. 

 

2. LITERATURE SURVEY 

 

2.1. Debate on the Life Cycle Measurement 

 

As discussed, there is no consensus yet in the literature on the definition of the life cycle1, 

although the ‘firm age’ has been the most popular proxy.2  In sharp contrast to the abundant 

empirical supports for ‘age’ to measure the life cycle, a few recent papers repudiate ‘age’ as a 

useful life cycle proxy. DeAngelo et al. (2006) argue that it is not the ‘age’ but the ‘earned to 

contributed capital ratio (RE/TA)’ is an excellent proxy to measure the firm life cycle. In contrast 

to DeAngelo’s findings, Megginson and Von Eije (2008) find no relationship between retained 

earnings to total equity ratios and the propensity to pay dividends in their study listed in EU 

 
1see Yan, Zhipeng and Zhao, Yan, A New Methodology of Measuring Firm Life-Cycle Stages (2010). International 

Journal of Economic Perspectives, 2010, Volume 4, Issue 4, 579-587.   
2 A debate, however, exists among scholars about the type of relation between age and the life cycle.  Some scholars  (see 

Anthony, J. H. & Ramesh, K., 1992; Bhattacharya et al., 2004; DeAngelo et al., 2010; Seifert and Gonenc, 2012; Chincarini et 

al., 2016; Kieschnick and Moussawi, 2018) believe that the relationship is linear, while others (e.g., Freeman, Carroll, Hannan 

(1983), argue that  the firm age follows ‘non-linear’ ‘U shape’ relation across life-cycle stages as the new firms grow faster but 

are more likely to fade out. 
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countries. However, they do find that age, size, and past profitability are positively related to the 

propensity to pay dividends. Dickenson (2011), on the other hand, discover that it is the cash flow 

pattern that accurately defines the firm life cycle. Faff et al. (2016) further claims that while these 

variables (‘earned to contributed capital ratio,' ‘firm size’ and ‘age’) do provide some indication 

of a firm’s life cycle progression, they have limitations and hence are unlikely to be the reliable 

life cycle proxies on their own. The paper attempt to address the issue with a new method called 

multiclass linear discriminant analysis (MLDA) to generate the main life-cycle proxy, as a function 

of age, earned to contributed capital ratio, profitability, and asset size.  The debate goes on for 

over two decades now, and the search for better life cycle measurement also continues on. In 

this context, I intend to extend the discussion from a new perspective that an ‘innovation output 

intensity’ plays a crucial role in the formation of the firm life cycle stages. 

 

2.2 Life Cycle Patterns, and the Dividend Policy: 

 

Following the dividend irrelevancy theory of Miller and Modigliani (1961) under the 

assumption of the perfect capital market, earlier studies devoted their attention to explaining 

firms’ dividend decisions by introducing market imperfections (e.g., information asymmetry). In 

more recent years, the focus has turned on market variables and firm characteristics. Fama and 

French (2001) investigate the patterns and the determinants of dividend payout policy over the 

period 1926-1999 and point to life cycle factors playing an essential role in the cash dividends 

payout decisions. Fama and French (2001) documents that dividend-paying firms are large and 

highly profitable and the firms that never paid dividends are small and unprofitable. The small 

firms have many investment opportunities that require external financing because their capital 

spending is far higher than their earnings. Fama and French (2001) concluded that dividend 

payers have the characteristics of mature firms, while firms that have never paid dividends have 

the features of young, fast-growing firms. In sum, the Fama-French (2001) study confirms a 

strong association between the patterns of dividend payment and firm characteristics that 

govern a firm’s life cycle stage.  While Fama-French(2001) concludes the decreasing propensity 

to pay dividends during their sample duration, Amin et al. (2015) and Floyd et al. (2015) find that 
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for US industrial firms, the declining propensity to pay dividends reverses after 2002. They 

present evidence of a consistent and steady surge in the percentage of dividend-paying firms 

from 2002 to 2012.  DeAngelo et al. (2004) also show that while the number of firms paying 

dividends have fallen, the total amount of cash dividends by US industrial firms has increased 

over time. 

Another major line of research is to analyze whether firms vary their dividend payments 

according to the stages of their life cycle in which they find themselves. Mueller (1972) proposed 

the life cycle hypothesis of dividends suggesting that a firm’s dividend policy should be 

determined based on where it is in its life cycle. On Mueller’s foundation work, Grullon et 

al.(2002) come up with the maturity hypothesis, saying that dividend payout signals the maturity 

of the firm.  Julio and Ikenbeery (2004) test the maturity hypothesis and explain disappearing and 

reappearing dividends in which they use firm age as the variable to define the firm maturity. 

Likewise, DeAngelo et al. (2006) show that the likelihood of dividend payment is related positively 

to the maturity of the firm measured by RE/TA or RE/TE. Their findings are in alignment with the 

view that younger firms are in the capital infusion stage, which limits their ability to pay 

dividends. In contrast, mature firms are profitable with few investment opportunities, which 

allows them to pay dividends in the stockholders.3 

Bulan et al. (2007) examine whether the firm life cycle affects firms' decisions to initiate 

dividends. They find that mature firms with a larger size, profitability, and cash reserves, fewer 

growth options, tend to start dividend payout. The argument is that as a firm becomes mature, 

the management has less incentive to preserve cash for future projects, and is, therefore, in a 

better position to make dividend payments. Thus, dividend payout is an integral part of the firm 

life cycle, and in most literature, it represents the maturity of the firm. 

 

 

 

 
3 See illustrations in Habib, Ahsan, and Hasan, Mostafa Monzur, Corporate Life Cycle Research in Accounting, 
Finance, and Corporate Governance: A Survey and Directions for Future Research (August 20, 2018). 
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2.3. Life Cycle Proxies and Their Limitation 

 

The Anthony & Ramesh (1992) paper is perhaps one of the earliest empirical work on 

accounting-based measures for classifying life cycle stages. The paper uses four variables: age, 

sales growth, dividend yield, and capital expenditure. They provide strong empirical supports for 

‘age’ as a lifecycle determinant. Bhattacharya et. (2004) uses 'firm age' to study the trends in pro 

forma reporting. They find that "young" firms are significantly less profitable, more liquid, higher 

P/E, and book-to-market than older firms in their industry. The univariate measures such as firm 

size and age assume that the firm progresses linearly over the life cycle; however, some of the 

recent studies suggest that a firm’s movement over the life cycle is dynamic (Helfat and Peteraf, 

2003).  In a recent study, Dickinson (2011) shows that the classification of firms into different life 

cycle stages based on Anthony and Ramesh (1992) is mostly erroneous because the underlying 

variables fail to capture the attributes of the firm life cycle. The paper argues that firms of the 

same age can learn at different rates because of imperfections in their feedback mechanism. 

Likewise, Faff et al. (2016) discuss that extant studies mostly use the listing year to measure firm 

age; however, many firms continue as unlisted private firms for an extended period. They argue 

that this introduces noise into the measurement of firm age. The paper study whether the 

corporate decision-making process is interdependent over the firm’s life-cycle, and it uses the 

‘age of the firm’ as one of the life cycles proxies in the multivariate measurement methods. The 

empirical research finds that firm age is not an appropriate proxy for the firm life cycle 

measurement.  The authors make the point that while univariate proxies such as age and firm 

size do provide some indications about firm maturity, they are unlikely to capture a firm's life 

cycle on their own to their inherent limitation. To address the problem, they employ a new 

method (multi-class linear discriminant) as a function of multiple relevant variables and study the 

corporate decision makings. They find that their new measure is more effective in comparison to 

the cash flow pattern proxies, as mentioned by Dickinson (2011) and the traditional proxy of ‘firm 

age’ (adjusted for industry and size effects) to study the corporate policy makings. The paper 

explains, like firm age, cash flow pattern, and size can also evolve non-monotonically across life-

cycle stages and hence are not a good life cycle proxy. 
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The interesting observation is that despite repudiation, a firm’s age continues to be 

broadly used in studies linking the life cycle to financial decisions other than dividends. DeAngelo 

et al. (2010) examine the effect of the life cycle on the likelihood of conducting SEOs. Using the 

number of years since listing (firm age), and dividend history, as proxies for the firm life cycle, 

the authors show that corporate life cycle stages have statistically and economically meaningful 

influences on the decision to conduct an SEO. Seifert and Gonenc (2012) examine the impact of 

a firm life cycle on firms' decisions to issue or repurchase equity or debt. They provide evidence 

in support of the life cycle theory of financing choices using ‘age’ as a life cycle proxy. They show 

that firms in the earlier stage of the life cycle (proxied by age) issue (repurchase) more (less) 

equity than do older firms. Keasey et al. (2015) introduce family firms in the life cycle literature 

and examine whether the life cycle of family firms influence the association between leverage 

and ownership. Their sample consists of European listed firms over the period 2000 thru 2009. 

They use firm age as the proxy for the life cycle and find that the relationship between ownership 

and leverage is positive (negative) for mature (growth) stage firms.  Chincarini et al. (2016) find 

that firm age (a proxy for firm life cycle) captures the time-variation of beta (systematic risk) and 

its relation to the cost of equity capital. Kieschnick and Moussawi (2018) use firm-age (since IPO) 

as a life cycle proxy and show that the level of debt a firm uses has a negative association with 

the age. They also show that this relation is driven primarily by the interaction between a firm's 

age and its governance features. 

To sum up, new firms are young but are also more likely to fail, which means that young 

firms can occupy both the introduction and the decline stages of the life cycle. An old firm can 

keep growing if they are inventing the new products and process aligning with the market 

demand. Therefore, the old firm is not necessarily mature, and similarly, a young firm may not 

be a growth firm either. I argue that 'growth,' induced by innovation output, can indeed shape 

the lifecycle patterns more appropriately. As Dickinson (2011) argues, the firm life cycle differs 

from firm age because firms of the same age can learn at different rates due to imperfections in 

their feedback mechanisms. She also highlights the fact that prior literature such as Anthony and 

Ramesh (1992) and Black (1998) rely on the development of the monotonic patterns on variables 

such as - age, sales growth, dividend payout, or some composite of these variables to assess life 
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cycle. However, according to Dickinson, the drawback in those researches is that a uniform 

monotonic distribution of life cycle stages across firms is inherently assumed. The assumption 

that a firm moves monotonically through its life cycle is an apparent fallacy because a business 

firm is a portfolio of multiple products, each at potentially in different product life cycle stages. 

I summarize the table below with the major life cycle proxies in use in the current 

literature. In this list, I introduce a new life cycle proxy ‘the innovation intensity.’ I claim that the 

new proxy is proven more accurate and economically meaningful than any other existing proxies 

currently in use because the innovation success of a firm is accountable for much of the firm 

growth that better explains the dividend life cycle. 

 

No. Paper Proxy Life Cycle Stages 

1 Miller and 

Friesen (1984) 

Age and sales growth Identify five life cycle stages – birth, growth, 

maturity, revival, and decline. Show each stage 

on average lasts for six years. 

2 Anthony and 

Ramesh (1992) 

The dividend, sales, capital expenditure, and 

firm age 

First accounting study to document the 

relationship between the life cycle and the stock 

returns. Identify three stages – growth, mature, 

stagnant 

3 Bhattacharya et 

al. (2004) 

Univariate measures – age, size, and 

profitability 

 

4 DeAngelo et al. 

(2006) 

Earned(internal) Contributed(external) 

Capital Mix, Retained Earnings to Total Assets 

or Retained Earnings to Total Equity 

Young, Mature, and Old. The underlying premise 

is that young firms have little or no retained 

equity and rely on contributed(external) equity, 

resulting in low RE/TE ratios. Mature firms, on 

the other hand, have greater access to internal 

funds (retained equity) and less need for 

contributed equity; hence they have larger RE/TE 

ratios. 

5 Dickinson (2010) Cash flow patterns from operating, investing 

and financing 

Five stages – introductory, growth, maturity, 

shakeout, and decline stages based on cash flow 

pattern classification; however, they do not 
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relate their life cycle stages with the dividend 

payout. 

6 Faff et al. (2016) MLDA  

(multiclass linear discriminant as a function of 

age, RE/TE, profit(EBIT/asset), and sales per 

year) 

They enhanced the Dickinson methodology by 

performing linear discriminant analysis. They 

classify life cycle into four stages -  introductory, 

growth, maturity, shakeout/decline stages 

7 This study (my 

dissertation) 

Innovation Intensity (degree of innovation 

success of a firm based on citation weighted 

patents output and dollar value-based patent 

output for firm ‘f’ on year ‘t’) 

The idea is that life cycle patterns are driven by 

growth, which, in turn, is driven by the degree of 

innovation success of the firm. Persistent 

innovators can push the maturity phase longer in 

comparison to the less innovative firms. I 

propose three phases - introductory, growth, and 

mature. I use Kogan et al. (2017) innovation 

output measures as an innovation index. 

 

 

 

2.4. Factors Affecting Firm Growth 

 

Is there a relation between growth and life cycle? 

The traditional determinants of firm growth are firm-specific characteristics such as age, 

size, legal structure, and innovation. These papers have demonstrated that small, young, and 

independent businesses grow at the fastest rate (Almus and Nerlinger, 1999). Some papers have 

entirely different views on growth, such as Geroski and Gugler's (2004) document that growth is 

mostly random, and there is little correlation in growth rates over time.  It argues that there is 

more variation in growth rates within firms than across firms over time. Benartzi, Michaely, and 

Thaler (1997) states that dividend reductions are associated with an improvement in the growth 

rate, while an increase in the earnings growth rate does not follow the dividend increases. 
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How does age affect firm growth? 

Herriott et al., (1984) and Levitt and March (1988) find a positive impact of age and 

explains that new firms face up to difficulties associated with lack of market recognition and 

economies of scale, and lack of alliances with partners. However, over time, these firms can 

strengthen their available resources, managerial knowledge, and the ability to handle 

uncertainty. Loderer et al. (2016) show that as firms mature, they become more rigid in exploiting 

benefits from the assets in place. They do not consider renewing their growth opportunities and 

hence, suffer a decline in firm value. Grullon et al. (2002) established the “maturity hypothesis” 

that argues that as firms mature, the investment and growth opportunities diminish. As a result, 

the expectations for return on their investments will fall. As the expected return deteriorates, 

companies dispense cash from their prior investments to the shareholders as dividends instead 

of turning the reserve cash into new ventures. 

How does r&d affect firm growth? 

The literature extensively discusses the effect of R&D investment on firm growth. 

Concerning future performance, many studies provide evidence showing that R&D investment is 

positively associated with future performance4. Grabowski and Muller (1978) assert that R&D 

expenditure plays an essential role as the innovative driver to increase the future growth 

opportunities and profitability of the firms. However, some studies report that R&D investment 

has no or minimal negative impact on future performance5. Chun et al. (2014)6 report that R&D 

investment directly affects future profitability as it enables the development of new products 

and new technologies. R&D investment can reduce costs through efficient production 

technology, which has a positive impact on future performance. 

 
4 see extensive discussion in Yoo et al. (2019) that cites the following papers Bublitz, B.; Ettredge, M. The information 
in discretionary outlays Advertising, research, and development. Account. Rev., 1989, 64, 108–124. 5., Kim, J.K.; Seo, 
J.S. The effects of R&D expenditures on the firm's value. Korean Int. Account. Rev., 2007, 20, 207–229. 6. and Chung, 
A.J.; Park, S.B. The effects of business groups on the association between R&D intensity and firm value. Korean Int. 
Account. Rev. 2014, 57, 38–58 
5 Lee, Y.H.; Lee, H.J. Impact of R&D expenditure size on financial performance focused on the IT service industry. J. 
Korea Soc. It Serv. 2009, 8, 1–14. 8.  and Choi, M.S.; Kim, Y.C. The relation between excess R&D expenditure and 
future earnings growth of a firm. Korean Account. Inf. Rev. 2011, 29, 1–28  
6 Chun, D.P.; Chung, Y.H.; Bang, S.S. Measuring R&D productivity of the major Korean firms: Using data envelopment 
analysis. Korean Acad. Soc. Account. 2014, 19, 173–190 
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However, the effects of R&D investment are not always positive7. For example, if R&D 

investment fails, sunk costs will increase, which can negatively affect the firm value. Amir et al. 

(2007) provide evidence that in industries with high R&D intensity, R&D investment has 

considerably more uncertainty than intangible investment assets, while in industries with low 

R&D intensity, there is no difference between the two. Chauvin and Hirschey (1993) argue that 

firms pursue technology innovation through R&D investment leading to revenue generation 

through new product development that positively affects profitability. They also explain that the 

R&D investment has a positive impact on the profitability of the firm because it improves 

production efficiency due to cost reduction. 

Based on the findings of the papers discussed above, the evidence on the effects of R&D 

on firms’ value is mixed depending on the degree of success of resulting innovations. This 

prompts us to use patents and citations as measures of success of the R&D investments. 

 

2.5. Innovation, Growth, and the Dividend Policy: 

 

Bulan and Subramanian (2007) extensively discussed the work of Knight (1921), 

Schumpeter (1934), and Mueller (1972) to explain that in its initial stages, the firm invests all 

available resources in developing innovation and improving its profitability. Afterward, the 

enterprise will proliferate as it enters new markets and expands its customer base before any 

significant competition can arise. While the innovative firms are growing, competitors begin to 

enter the market, adopting and improving upon the original firm's innovations. As the existing 

market becomes saturated and new markets are harder to find, the growth of the firm begins to 

slow down. To maintain growth and profitability, firms need to regenerate innovations. 

Anthony and Ramesh (1992) suggest that the capital expenditure is highest for growth 

firms, while firms in revival and decline have higher cash dividends. Gaver and Gaver (1993) find 

significantly lower dividend yields for growth firms than for non-growth firms. Fama and French 

(2001) show that firms with excellent investment opportunities payout substantially less or are 

 
7 Kay, N.M. The R&D function: Strategy and structure. Tech. Chang. Econ. Theory 1988, 282–294 
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much more likely to payout nothing. Moreover, the authors find that firms have become less 

likely to pay dividends, whatever their characteristics (such as size, profitability, or investment 

opportunities) during the period 1978–99. Huergo and Jaumandreu (2004a, 2004b) and Huergo 

(2006) find a negative impact of age on the probability to innovate, which shows that the 

youngest cohorts are conditional on the peculiarities of their activity and size, prone to innovate 

more than the oldest ones. Segarra and Teruel (2014) results show that investing in R&D 

increases the likelihood of becoming a high-growth firm. They use the Spanish CIS database to 

analyze the asymmetries of the innovation phenomenon from two different approaches. The 

paper considers the heterogeneous impact that R&D effort may exert on the firm growth 

distribution. 

 

3. HYPOTHESIS DEVELOPMENT 

 

As evidenced from the literature review, the life cycle of a firm is closely related to its 

expected growth rate. A successful firm goes through an extraordinary growth in the first cycle; 

a sustainable growth period follows in the second cycle and growth rate subsidies in the final 

cycle. Theoretically, the growth rate may reach zero if the firm chooses inaction to prevent the 

growth from falling to that level. The one that is more successful in innovation activities before 

reaching the final maturity stage is likely to pay lower dividends than the other firms that are less 

innovative. Innovation output helps firms to gain a competitive advantage over their competitors 

so that the firms can generate abnormal returns for their shareholders. However, innovation, 

through R&D, new products, or patent development, is an expensive and risky long-term 

investment. Firms need to take long-term risks to innovate; this means that only the responsible 

corporate governance with the right incentive can make such risky but worthy decisions on behalf 

of shareholders. Good corporate governance involves setting up long term strategies that 

support economic efficiency, financial stability, and sustainable growth. It ensures companies' 

access to capital for long-term investment in innovation, which is one of the critical factors to 

achieve long-run sustainable growth.  The interlink between good governance and innovation 

yields a higher sustainable growth rate that can determine the duration of firm life cycle stages.   
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Prior research evidence supports the link8 between sound corporate governance system and 

the innovation. A stable higher growth backed by great innovation makes it possible for the firm 

to achieve a more robust growth rate that can extend the growth phases of the firm’s life cycle. 

Besides, the innovative firms have more investment opportunities, and hence they better utilize 

the firm's assets in comparison to their less innovative counterparts. As a result, during the final 

stage (the lower growth phase or the maturity phase) of the firm life cycle, the innovative firm is 

expected to pay a lower dividend. The less innovative firms, on the other hand, will likely run out 

of investment opportunities and are expected to distribute higher payout in the form of the cash 

 
8 Baysinger et al. (1991) study the link between specific board characteristics and innovation and concluded that there 

is a definite link between the proportion of internal board members and R&D expenditure per employee. Tylecote and 

Visintin (2007) states that corporate governance is one of the main determinants of innovation and technological 

change. Tribó et al. (2007), Wu (2008), Latham & Braum(2009), Zhang et al. (2014), and few other papers claim that 

corporate interest has grown in the influence of governance mechanisms on innovation decisions in recent years. These 

papers argue that innovation efforts depend on factors that are influenced by corporate governance, such as ownership 

structure, shareholder identity, or the functioning of the board of directors. Aghion, van Reenen & Zingales (2013) 

develop a theoretical model to test the relationship between institutional ownership and innovation. They find a similar 

result as in previous literature, showing that larger institutional ownership is directly related to more innovation, as 

measured by cite-weighted patents. Brunninge et al. (2007) and Shapiro et al. (2015) suggests that the external 

directors on the board have a positive effect on strategic changes, including innovation. Similarly, Balsmeier et al. 

(2014) find that external directors with experience who sit on the boards of technology companies have a positive and 

significant effect on applications for patents in the companies which they advise and supervise. Chen (2012) and 

Lacetera (2001) find that firms that have board members with higher educational level tend to have a more thorough 

understanding of R&D processes and external environments, so they will be better positioned to implement R&D 

activities. Chen (2012) also finds that R&D investment is negatively related to board size. Lhullery (2011) indicates 

that certain board practices that address shareholders, such as duality, may individually have a positive influence on 

R&D investments, and this is in line with the results as found by Driver and Guedes (2012) for the UK data. However, 

if R&D does not necessarily boost firm growth as suggested by the mixed empirical evidence, then it does not make 

sense for the corporate governance to spend money on R&D.  
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dividend.  Thus, based on the discussion,  I present a general conceptual framework of empirical 

research in the figure, as shown below. 

 

As discussed, a feature of a mature company is a higher rate of dividend payout. I argue 

that if the two groups of firms in the same life cycle stage are pursuing different dividend payouts, 

say one firm with a lower dividend and another firm with a higher dividend, then Grullon’s 

maturity hypothesis implies that the firm that pays a lower dividend is not in the maturity phase 

yet, suggesting that the firms (that are paying lower dividends) are the innovative firms that can 

extend the growth phase. At the same time, while innovative firms keep growing, their non-

innovative counterparts are already in maturity as they started paying a higher dividend. As 

depicted in the figure, I posit that the firm with a sound governance system would, via innovation, 

be able to extend the growth period, and thereby, avoid increasing the dividend payout ratio 

during the mature phase of the firm life cycle. This model of corporate governance that promotes 

innovation will help the firm achieve its long-term goal of increasing shareholder value. Grounded 

on all these analyses backed by the comprehensive literature review and the research questions 

that I posed earlier, I attempt to test the working hypothesis that between two groups of firms 
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with similar characteristics (industry affiliation, size, re/te, life span among others) , the one with 

higher and persistent innovation, will produce more vigorous growth and, therefore, have a 

lower dividend payout.  Further, I investigate which definition of life cycle describes the firm 

maturity better: is it the firm age or the re/te or the cashflow pattern or the innovation intensity? 

I examine whether the two firms in the same age group but significantly different innovation 

success, initiate/increase the dividend payout at the same time? The same question goes to the 

firms of similar retained earnings ratio (re/te) and the cash flow patterns that demand an 

investigation. The underlying idea is that if the lifecycle proxies are efficient, then the maturity 

hypothesis and dividend payout should hold regardless of the life cycle measurements. 

 

4. SAMPLE, VARIABLES, AND THE DATA 

 

I use the data sample starting from 1973 because the disclosure of R&D expenditure is 

made compulsory for US firms in 1972 (see Hall and Oriani, 2006). I perform the initial analysis of 

the full sample data in Compustat from 1973 through 2016. I find that the majority of R&D firms 

in the Compustat database belong to the Manufacturing Industry Sector9. My observation is 

consistent with Autor et al. (2018) and Helper et al. (2012),10 who indicate that the manufacturing 

sector creates about two-thirds of U.S. R&D spending and patents even though they account for 

less than one-tenth of U.S. private non-farm employment. I use the Compustat database and 

focus on the US manufacturing firms (SIC classes 2000-3399). Consistent with the existing 

literature, I exclude firms that have average net operating assets, sales revenue, or market value 

of equity less than $1 million. I also exclude firms with missing values of variables I employ in the 

analyses. 

I cross-reference Kogan et al. (2017), Arora, et al. (2019) and NBER to merge the 

patent/citation database with the manufacturing sample. Kogan et al.(2017) develop two 

innovation measures based on innovation output. According to the paper, the first innovation 

 
9 see appendix on the distribution of data in the full Compustat sample 
10Helper et al. (2012) claim that a manufacturing share in US R&D spending is more than 68%. They document the 
fact based on the data from the National Science Foundation's Business R&D Survey. 
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measure is the dollar value of stock market reaction weighted patents output11. The paper 

explains that authors estimate the total dollar value of innovation produced by a given firm ‘f’ in 

year ‘t’ based on stock market reaction after the patent is published. It further illustrates that 

they sum up all the dollar values of patents ‘j’ that are granted to a firm ‘f’ on  year ‘t’. 

𝛳𝑓,𝑡
𝑠𝑚   = ∑ ᶓ𝑗𝑗∈𝑃𝑓,𝑡     , where 𝑃𝑓,𝑡 denotes the set of patents issued to firm 𝑓 in year 𝑡. 

The second innovation output measure of Kogan et al.(2017) is the citation-weighted (cw) 

patents based on the following model: 

𝛳𝑓,𝑡
𝑐𝑤    = ∑  (1 +

𝐶𝑗

�̂�𝑗
𝑗∈𝑃𝑓,𝑡

 ) 

Where, 

𝐶𝑗  𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑒𝑠 𝑡𝑜 𝑝𝑎𝑡𝑒𝑛𝑡  𝑗 
′ ′ 𝑜𝑛 𝑦𝑒𝑎𝑟 ′𝑡′  for firm ‘f’ 

�̂�𝑗  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑒𝑠 𝑡𝑜  𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑔𝑟𝑎𝑛𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑦𝑒𝑎𝑟 

Kogan’s et al. also mention that they normalized the above two measures with the book value of 

the firm (Compustat variable ‘at’).  I use both models above and normalized to total firm asset as 

a citation weighted innovation index to study the impact of innovation output on dividend 

payout. I also use their patent/citation data that are made available on their paper’s online 

appendix12 to match with the CRSP merged Compustat firms. I identify the data based on 

‘lpermno’ and ‘year’. I confirm the data match with other common Compustat variables that they 

have in common in the dataset. 

I create three subsamples to study the innovation differential impact on the dividend 

policy. The first one is the ‘less innovative’ sample consists of the firms that have below-median 

innovation index, the second one is the ‘innovative’ sample consists of the firms with above-

median innovation index, and the third one ‘persistent innovative’ sample consists of the firms 

 
11 Kogan, L., Papanikolaou, D., Seru, A. and Stoffman, N., 2017. Technological innovation, resource allocation, and 
growth. Quarterly Journal of Economics, 132(2), pp. 665-712 
 
12 data https://paper.dropbox.com/doc/U.S.-Patent-Data-1926-2010-t5nuNWnTH1InM0gyxkizL 

https://paper.dropbox.com/doc/U.S.-Patent-Data-1926-2010-t5nuNWnTH1InM0gyxkizL
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with minimum three years of consecutive citation weighted patents. Three subsamples provide 

a unique opportunity for a comprehensive empirical study on the impact of innovation intensity 

on the firm’s growth, and therefore, on its life cycle. I present the list of all the variables of 

interest in the Table ‘Variable Selection’13. 

 

5. EMPIRICAL 

 

5.1. Descriptive Statistics and Univariate Analysis: 

 

Table 1 presents the summary statistics of the variables of interest in the research. Panel 

A provides the mean, median, and standard deviation of all the variables used in the empirical 

regression models. Panel B includes descriptive information based on the three sub-samples: less 

innovators, innovators, and persistent innovators. It shows that less innovative firms have higher 

dividend payout compare to the other higher innovators. The persistent innovators have the 

lowest dividend payout among the three sub-groups. The pattern is opposite for innovation-

related ratios such as R&D, amortization intangible, and the innovation index. 

 

 

 

 

 

 

 

 

 
13 Please, see in the appendix 
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Table 1-Summary Statistics 

This table presents the summary statistics of the variables of interest. On the left side, I report the summary statistics of the sample. On the right side, I present the descriptive statistics for 

three sub-samples: Below Median Innovators, Above Median Innovators, and the Persistent Innovators. I exclude the data with missing values for total assets, sales, and retained earnings. 

I also exclude the data with total assets and sales revenue of less than one million. The sample consists of Compustat US manufacturing firms, and the duration is from 1973 to 2017. All the 

ratios are normalized with total assets except for retained earnings, which normalized with total equity.  

  Summary Statistics     Descriptive  Statistics 
 

Variable Obs Mean Std. Dev. Min Max   Mean (Less Innovator) Mean (Above Avrg Innovators) Mean (Pers. Innovators) 

divratio 97,586 0.0102532 0.0179087 0 0.1036962 
 

0.0127192 0.009604 0.0084059 

rdratio 69,615 0.0794518 0.1178053 0 0.8913236 
 

0.0159702 0.0897263 0.2328962 

amratio 70,646 0.0041438 0.0082118 0 0.0497061 
 

0.0036278 0.0051674 0.0039582 

lagRDint 65,025 0.3971088 2.341973 0 32.48936 
 

0.0188546 0.3660818 1.520077 

k_index 34,804 0.278142 0.8028689 0 59.83537 
 

0.1343905 0.2415297 0.9198633 

tsm 34,804 0.1241707 0.3198766 0 12.66584 
 

0.0553538 0.1385747 0.3025869 

CitWtedIndx 34,804 0.1539713 0.7020182 0 59.10666 
 

0.0790367 0.1029549 0.6172764 

k_npatratio 34,804 0.0576313 0.1651519 4.41E-06 9.948834 
 

0.0348008 0.0429479 0.1953191 

growth 91,496 0.0168501 0.2909636 -1.138524 1.372723 
 

-0.0061366 0.0089629 0.044308 

saleratio 98,030 1.198443 0.6191078 0.0003824 3.473551 
 

1.229964 1.068829 1.257369 

reteratio 97,686 -0.1538316 1.374183 -10.6917 0.8362576 
 

0.1629035 -0.0797781 -0.4988989 

retaratio 97,686 -0.1942011 1.936304 -117.0538 3.185593 
 

0.1615436 -0.0963028 -0.591824 

lvrgratio 97,373 0.0205816 0.0739933 -0.1262101 0.5900591 
 

0.0183442 0.0138055 0.0272686 

capxratio 97,006 0.0559828 0.0491085 0.0003321 0.271612 
 

0.0567416 0.0563519 0.0550293 

roa 98,025 -0.0135602 0.2192432 -1.474333 0.2552592 
 

0.0326349 0.0016685 -0.0666269 

ebitdaratio 97,750 0.0802126 0.2028395 -1.218589 0.397767 
 

0.1266225 0.0917925 0.0292786 

size 98,030 4.954555 2.200123 0.4725005 10.5502 
 

5.466657 5.217467 4.302368 

fcfratio 52,819 -0.0081381 0.3616535 -9.236738 42.21759 
 

0.0346974 0.0025942 -0.0542718 

age 98,030 38.68793 13.67428 7 58   41.72837 38.24774 36.1756 
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Table 2 presents the correlation matrix. I report only the statistically significant pairwise 

correlation between the variables. The significance of the correlation between the respective 

variables is in alignment with the existing literature. For example, firms with profitability 

measured by ROA or EBITDA are showing a positive relationship with the dividend payout ratio. 

Likewise, the firm age has a positive relationship with the dividend payout. R&D and Amortization 

of Intangibles have a negative relation with the dividend. Similarly, the innovation index shows a 

negative relationship with the dividend payout.  
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Table 2-Correlation Matrix 

This table presents the correlation matrix of the variables of interest. I exclude the data with missing values for total assets, sales, and retained earnings. I also exclude the data with total 

assets and sales revenue of less than one million. The sample consists of Compustat US manufacturing firms, and the duration is from 1973 to 2017. I exclude the data with missing values 

for total assets, sales, and retained earnings. I also exclude the data with total assets and sales revenue of less than one million. The sample consists of Compustat US manufacturing firms, 

and the duration is from 1973 to 2017. All the ratios are normalized with total assets except for retained earnings, which normalized with total equity. 

  divratio rdratio amratio lagRDint k_innIndex CitIndex k_npatratio growth saleratio reteratio retaratio lvrgratio capxratio roa ebitdaratio size fcfratio age 

divratio 1 
                 

rdratio -0.2434 1 
                

amratio -0.0706 0.0281 1 
               

lagRDint -0.1091 0.4928 -0.0257 1 
              

k_innIndex -0.0505 0.2279 0.0389 0.0662 1 
             

CitWtedIndex -0.0639 0.1681 0.0109 0.0437 0.9411 1 
            

k_npatratio -0.1438 0.3584 -0.0052 0.1137 0.7012 0.6864 1 
           

growth -0.0526 0.234 0.0775 0.3651 0.0844 0.0851 0.1502 1 
          

saleratio 0.1606 -0.2997 -0.1331 -0.2914 -0.0552 0.0022 0.0029 0.05 1 
         

reteratio 0.2592 -0.6517 -0.0733 -0.3277 -0.2329 -0.2032 -0.4415 -0.2272 0.2269 1 
        

retaratio 0.2013 -0.549 -0.0629 -0.291 -0.2006 -0.1652 -0.3963 -0.203 0.1647 0.8856 1 
       

lvrgratio -0.0682 0.042 -0.0197 -0.002 0.1084 0.1313 0.2133 0.0418 0.0707 -0.1203 -0.09 1 
      

capxratio 0.0704 -0.0365 -0.169 -0.0438 0.0305 0.0125 -0.0014 0.0051 0.1342 0.1117 0.0729 0.0009 1 
     

roa 0.267 -0.6766 -0.1265 -0.3836 -0.223 -0.1996 -0.3906 -0.2227 0.2856 0.7205 0.6229 -0.0949 0.064 1 
    

ebitdaratio 0.3035 -0.717 -0.0312 -0.441 -0.2278 -0.2089 -0.4105 -0.1769 0.3918 0.7371 0.6267 -0.0891 0.1301 0.9022 1 
   

size 0.4023 -0.4098 0.0544 -0.169 -0.1422 -0.1906 -0.4215 -0.1355 -0.0843 0.4362 0.3541 -0.2041 0.0308 0.3987 0.4438 1 
  

fcfratio 0.1835 -0.5685 0.0185 -0.3712 -0.2086 -0.1848 -0.3674 -0.1823 0.2272 0.587 0.6105 -0.026 -0.1092 0.6763 0.7239 0.3329 1 
 

age 0.452 -0.3548 -0.151 -0.1881 -0.0649 -0.0563 -0.1338 -0.1015 0.2643 0.3316 0.2591 -0.0246 0.0962 0.2974 0.332 0.3987 0.2155 1 
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The preliminary investigation of the relationship between the key variables in the sample 

data is consistent with the correlation matrix, as shown in the bin diagram below. Figure 1 shows 

that when there is high R&D, firms either do not pay or pay a very little dividend.  However, for a low R&D 

ratio, dividend payout is significant. 

 

Figure 1 - Inverse Relation Between Dividend Payout and R&D Expenses 

Likewise, in figure 2, the bin scatter plot diagram depicts a direct relationship between 

the age and the dividend payout. However, the dividend payout doesn’t seem to be monotonous 

as the firm ages through. 

 

Figure 2 - Dividend Payout Behavior by Firm Age 
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In Figure 3, the sample data show a strong inverse relationship between the R&D and the 

firm age. The graph shows a clear pattern that as firms ages thru, R&D steadily going down. 

 

Figure 3 – Firm Age vs R&D Ratio in the Manufacturing Industry 

 

5.2 Methodology  and Multivariate Analysis 

I summarize the empirical approach that is employed in sequential order as follows: 

a. In the first step, I examine the impact of innovation intensity on firm growth, focusing on 

R&D-rich US manufacturing firms. 

b. In the second step, I examine whether dividend payout is a function of firm maturity14. I 

investigate the existence of higher dividend payout during the ‘mature phase’ as defined 

by each of the popular life cycle proxies – cash flow patterns, re/te ratio, age, and the 

innovation intensity. 

c. In the third step, I investigate the relationship between the ‘degree of innovation’ and the 

‘dividend payout.’ I create two models each for a) the dollar-based dividend payout, and 

b) the probability-based dividend payout (likelihood of paying a dividend). First, I run the 

regression on the full sample. Then I perform a comprehensive analysis by dividing the 

 
14 Maturity as defined by firm age, retained earnings (DeAngelo et al,2006), and cash flow pattern Dickinson (2011) 
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samples into three sub-categories: a)  less (or no) innovation, b) above-average 

innovation, and c) persistent innovation. 

d. In the final step, I investigate the dividend payout behavior of the three groups of firms 

(less innovative, innovative, and persistent innovative). I select firms that belong to the 

‘same life cycle stage’, such as ‘maturity’ or ‘growth’ or ‘introduction’ phase as defined by 

popular life cycle proxies but are different in innovation intensity. In this section, I prove 

the working hypothesis that between groups of firms with similar characteristics (industry 

affiliation, size, life span/age, re/te, cashflow15), the one with a higher degree of 

innovation output has a lower dividend payout. 

I largely follow the existing literature such as Fama French(2001) and DeAngelo et al. 

(2006), among others, to design the empirical models and to determine the model specification 

for the above scenarios, and I discuss the details of the models and the empirical results in the 

following sections. 

 

5.2.1 Growth and Innovation: 

 

In section 5.2.1, I study the impact of innovation intensity on the firm’s sales growth. The 

effect of innovation on sales is different for different types of firms (Coad and Rao, 2008; Mason 

et al., 2009) and firms with varying levels of R&D intensity (Del Monte and Papani, 2003). The 

existing literature document heterogeneity in a firm’s innovativeness across and within the 

industry sector. Besides, I find no prior literature that explores the relationship between 

innovation and sales growth in the US manufacturing sector. Therefore, even if the main 

objective of the research is to examine the impact of innovation on the life cycle and dividend 

payout, I recognize that I first need to establish the role of innovation in sales growth focusing on 

the manufacturing industry. 

 
15 I do not find existing literature that test the dividend behavior based on the Dickinson(2011) cashflow pattern. 
This is the additional contribution to the literature.  
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To examine the impact of innovation on firm growth, I designed the panel regression 

model as in equation one below. In this model, I regress the (lagged) firm sales, age of the firms, 

and the (lagged) R&D intensity against the growth rate of a firm ‘i’ at time t. I follow a similar 

approach as in  growth vs innovation literature such as Spescha  and Woerter(2018)16 ,  Demirel 

and Mazzucato (2012)  and Colombelli  et al.(2013)17: 

 

𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑡 = 𝛽0 + 𝛽1 ln (𝑠𝑎𝑙𝑒𝑖,𝑡−1) + 𝛽1 ln (𝑖𝑛𝑛𝑜𝑣𝑖𝑛𝑡𝑖,𝑡−1) + 𝛽1 ln (𝑎𝑔𝑒𝑖,𝑡−1) + ɛ𝑖,𝑡     ---- Equation 1 

where, 

𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑡= 𝑙𝑛 (𝑠𝑎𝑙𝑒𝑖,𝑡) – ln (𝑠𝑎𝑙𝑒𝑖,𝑡−1) , 

𝑖𝑛𝑛𝑜𝑣𝑖𝑛𝑡𝑖,𝑡−1  𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑎𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝐾𝑜𝑔𝑎𝑛 𝑒𝑡 𝑎𝑙. (2016)  𝑜𝑟  

𝑅&𝐷 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑟𝑜𝑥𝑖𝑒𝑑 𝑏𝑦  
𝑅𝐷𝑖,𝑡

𝑆𝑖,𝑡−1
 as in Demirel and Mazzucato (2012)   

The dependent variable is the firm’s growth rate, which is the log-difference of the annual 

percentage change in sales. As a robustness check, I also use five-year rolling asset growth as an 

independent variable and confirm the consistency in the result.18 I define R&D intensity as the 

R&D for the firm (i) in year t, scaled by its sale in year t-1. I divide R&D intensity by lagged value 

of sales to avoid potential problems that arise due to the correlation between the right-hand side 

‘sales’ and ‘R&D’ variables (see Demirel and Mazzucato, 2012). In the model, I control for the size 

of a firm’s sales and its age. I follow existing literature19 to cross-reference and to come up with 

the model specification including the control variable.  Besides R&D intensity, I also use Kogan et 

al. (2017)’s citation weighted patent and stock market-weighted patent output measures as an 

innovation intensity variable. 

 
16 See page 12 and 13 on Andrin Spescha & Martin Woerter, 2019. "Innovation and firm growth over the business 
cycle," Industry and Innovation, Taylor & Francis Journals, vol. 26(3), pages 321-347, March. 
17 See page 13 on  Alessandra Colombelli, Naciba Haned, Christian Le Bas. On firm growth and innovation: Some 
new empirical perspectives using French CIS (1992–2004). Structural Change and Economic Dynamics, Elsevier, 
2013, 26, pp.14-26. ff10.1016/j.strueco.2013.03.002ff. ffhal-01079383f 
18 See Appendix A - Table C 
19 A similar approach is taken in Dunne and Hughes (1994), Yasuda (2005), Colombelli et al.(2013 ), Demirel and 
Mazzucato (2012) 
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I perform the Hausman specification tests to check whether the fixed or random effects 

is a better fit.  The examination reveals that the fixed effect is a better choice. Further, the fixed 

effect specification allows for the correlation of the unobserved firm-specific effects with the 

independent variables. I use both the firm fixed effects and the time fixed effects (to control for 

the years). 

According to Grossman and Helpman (1994A), a firm’s R&D investment is an endogenous 

strategy that is implemented based on the costs and potential outcomes of R&D as well as the 

institutional, legal, and economic settings that determine the success and profitability of these 

outcomes. Therefore, to address the endogenous nature of R&D investments, I use the System 

GMM. The data sample has large N (firms) and small T(year), so, I think, that the GMM is an 

appropriate method to address the possible endogeneity in this particular panel settings (see the 

similar line of literature Demirel and Mazzucato (2012), and Colombelli  et al.(2013) among other 

that use GMM in a similar setting).  

The regression results based on equation one is in Table 3. Specifications 1, 2, and 3 in 

Table 3 represent the FE regression with robust standard errors each for Kogan’s innovation 

output-based index, citation weighted patent output, and R&D intensity. I also check with 

clustered standard errors on the firm, and I got the same results as with the robust option. So, I 

report only the  ‘robust’ FE regression result in Table 3.  The last specifications are from the 

system GMM for the corresponding regression on Kogan’s innovation output-based index; 

citation weighted patent output, and R&D intensity. 
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Table 3-Impact of Innovation Intensity on Firm Growth 

In this table, I regress the (lagged) firm sales, age of the firms, and the innovation intensity against the growth rate of firm i at 
time t. 𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑡 = 𝛽0 + 𝛽1 ln (𝑠𝑎𝑙𝑒𝑖,𝑡−1) + 𝛽1 ln (𝑅𝐷𝑖𝑛𝑖,𝑡−1) + 𝛽1 ln (𝑎𝑔𝑒𝑖,𝑡−1) + ɛ𝑖,𝑡      where,  𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑡= 𝑙𝑛 (𝑠𝑎𝑙𝑒𝑖,𝑡) – ln 

(𝑠𝑎𝑙𝑒𝑖,𝑡−1).  The dependent variable is the firm’s growth rate, which is the log-difference of the annual percentage change in sales. 

I follow the existing literature to design the model and to select the model specification20. I define R&D intensity as the R&D for 
the firm (i) in year t, scaled by its sale in year t-121. I divide R&D intensity by lagged value of sales to avoid potential problems that 
arise due to the correlation between the right-hand side ‘sales’ and ‘R&D’ variables. In addition, to R&D, I also check innovation 
impact on growth using Kogan et al. (2017) innovation index as well as citation weighted patents. Specification 1 reports the 
result from the FE regression with Robust standard error with Kogan’s innovation index as the main independent variable.; 
specification 2 reports the result from the FE regression with Kogan’s citation weighted patents output as an independent 
variable.  Specification 3 reports the result for the laggedRDIntensity  as an independent variable. Specification 4, 5, and 6 are 
from the Sys-GMM regression for the endogeneity checks. I perform the Hausman test that reveals that FE is better-fit compare 
to the RE.  The sample consists of Compustat US manufacturing firms, and the duration is from 1973 to 2017. 
 

 (1) (2) (3) (4) (5) (6) 

 Growth-FE Growth-FE Growth-FE Growth 
Sys-GMM 

Growth 
Sys-GMM 

Growth 
Sys-GMM 

lnlagsaleratio -0.349*** -0.349*** -0.276*** -1.014*** -1.014*** -0.860*** 

 (-97.69) (-97.70) (-92.23) (-126.87) (-125.95) (-125.93) 

       

lnage 0.117*** 0.114*** 0.105*** 0.459*** 0.452*** 0.151*** 

 (5.22) (5.08) (9.85) (5.63) (5.52) (9.55) 

       

Kogan_index 0.0248***   0.0585***   

 (10.72)   (17.55)   

       

CitWtedIndex  0.0348***   0.0635***  

  (12.88)   (13.52)  

       

lnlagRDint   0.0903***   0.153*** 

   (46.78)   (47.05) 

       

L.growth    0.0394*** 0.0371*** 0.0446*** 

    (9.19) (8.54) (13.09) 

       

_cons -0.444*** -0.430*** -0.0931* -1.685*** -1.653*** -0.0506 

 (-5.36) (-5.19) (-2.39) (-5.57) (-5.45) (-0.88) 

N 
adj. R-sq 

No of Firms 
Firm FE 
Year FE 

33902 
0.141 
5,786 
YES 
YES 

33902 
0.142 
5,786 
YES 
YES 

63555 
0.219 
5,786 
YES 
YES 

 

24494 
 

2,911 
YES 
YES 

24494 
 

2,911 
YES 
YES 

51991 
 

4,697 
YES 
YES 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 3 shows that the impact of innovation (in all three measures as in spec1, 2, and 3) 

on firm growth is positive and statistically significant. The results of the three specifications are 

showing that innovation intensity induces positive growth for the firm.  However, as shown in 

the table, the lagged sales variable has a significantly negative impact on growth. And the ‘firm 

 
20I cross reference and extended the models following  Hall and Mairesse (1995) and Demirel et al. (2012).  I chose control variable based on 

Yasuda (2005) 
21 SEE Demirel et al. (2012).   
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age’ variable is a firm’s public age. It has a positive and statistically significant impact on the fixed-

effect as well as in the SYS-GMM model. The positive sign of age is unexpected because the effect 

of age on growth is often adverse, suggesting that growth slows down as firms ages (Dunne and 

Hughes, 1994). The positive sign for public age (listing age in the stock exchanges) maybe because 

of its association of  “publicly-held” for a longer time22. The firms that trade in the stock market 

have a lower financial constraint in compare to the private firms. So, lower financial constraints 

may play a positive role in publicly traded aging firms. I do not report statistically insignificant 

control variables. 

 

5.2.2 Maturity Stage and Dividends 

 

In section 5.2.2, I examine whether the dividend payout is a function of the firm maturity 

based on different life cycle proxies. The mainstream literature that defines the life cycle based 

on the firm age document that dividend payouts increase along the lifecycle until peaking in the 

mature stage23. Dividend initiators exhibit mature tendencies (Fama French,2001; Grullon et al., 

2005). Moreover, the dividend-paying growth firms pay small dividends in comparison to 

dividend-paying mature firms (Brockman and Unlu 2009). Theoretically, firms paying higher 

dividends are already in the maturity phase that implies that the firms paying low or no dividends 

are in the growth phase. So, in this section, I check the impact of the innovation intensity on the 

dividend payout. I examine whether firms with low innovation intensity signals the maturity 

phase of the firm life cycle. Similarly, firms with high growth but no or low dividend payout 

suggests that these firms are currently in the growth phase. Therefore, I primarily study the 

dividend life cycle and how they differ based on innovativeness, but similar in firm characteristics, 

including age, retained earnings, and cash-flow patterns. 

I follow Owen and Yawson (2010) and use RE/TE to group firms into quantiles 

representing the lifecycle in young or mature or old/decline stages. The higher the RE/TE ratio, 

 
22 Carpenter and Peterson(2002) argue that when firms start to trade on the exchanges, they are subject to relaxed 
financial constraints which has positive effect on the firm growth. 
23 See Flavin and O’Connor (2017) 
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the mature the firm is. Likewise, based on Dickinson's (2011) cashflow patterns, I group firms into 

introduction, growth, mature, and shakeout/decline stages. Similarly, I use firm age to group 

firms into different ‘age’ quantiles to study if the older firms pay higher dividends. 

Table 4 presents the median value for different life cycle stages measured by the most 

popular life cycle proxies. The data shows a clear pattern along the life cycle stages. The life cycle 

model of dividends follows maturity hypothesis implying that the mature firms pay significant 

dividends than growth firms regardless of the lifecycle measures employed.  In alignment with 

the expectation, the median values of each of the proxies in Panel A, Panel B, and Panel C shows 

that the maturity stage has the highest dividend payout in comparison to other stages. The 

innovation, however, has an inverse relation with the dividend payout.  Unlike the other three 

proxies, innovation intensity shows the lowest median value during the maturity phase. 
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Table 4-Median Values by Life Cycle Stages for the Most Popular Proxies 

In this table, Panel A presents the median dividend payout by the life cycle stage proxied by each of the three popular life cycle measures, such as age, re/te, and cashflow pattern. In Panel 

A -exhibit 1, I first sort the firms by age and then group in to four quartiles. In Panel B, I group the firms based on Dickinson (2011) cashflow patterns(see appendix table 4 for reference). In 

Panel C, I group the firms based on re/te (ratio of retained to total equity). In Panel B, I present the new measure ‘the innovation intensity’. Panel B-exhibit 1 shows how the dividend payout 

pattern evolves as the citation weighted patent output increases. The second exhibit shows how the dividend payout pattern evolves when the innovation output index (combined both the 

citation weighted and stock market dollar value-weighted output) increases.  Dividend payout is either dividend to assets or dividend to annual sales as indicated. The sample consists of 

Compustat US manufacturing firms, and the duration is from 1973 to 2017. 

Panel A – Existing Life Cycle Measures: 
1. Dividend payout and lifecycle using 'age' quartiles 

  Age quartile 1 (young firms ) Age quartile 2 Age quartile 3 Age quartile 4 (old firms) 

Div to Assets 0.0201628 0.0177098 0.0139483 0.0181977 

Div to Sales 0.0157739 0.0129941 0.0133836 0.0197956 

     
2. Dividend payout and lifecycle using Cashflow Patterns  of 'Dickinson (2011)' life cycle stages 

  Introduction Growth Mature Shakeout/decline 

Div to Assets 0.0098069 0.012661 0.0212916 0.018121 

Div to Sales 0.0080905 0.0126352 0.0189042 0.013897 

     
3. Dividend payout and lifecycle using 'RE/TE' DeAngelo et al. (2006) life cycle stages 

                      Introduction             Growth Mature   

Div to Assets 0.0217522 0.0163264 0.0235058   

Div to Sales 0.0200189 0.0164639 0.0247742   

      
Panel B -  Innovation Output Based Measure: 

1. Dividend payout and lifecycle using 'Citation Weighted Innovation Output based on Kogan et al.(2016)' 

  

innovation index quartile 1  
(lowest innovators) 
  

innovation index quartile 2 innovation index quartile 3 innovation index quartile 4  
(highest innovators) 
  

Div to Assets .0162476 .0140002 .0113865 .006076 

Div to Sales .0169939 .0132373 .0100431 .00924993 

2. Dividend payout and lifecycle using  ‘Citation and Stock Market Value Weighted Innovation Index based on Kogan et al.(2016)' 

  

innovation index quartile 1  
(lowest innovators) 
  

innovation index quartile 2 innovation index quartile 3 innovation index quartile 4  
(highest innovators) 
  

Div to Assets .0141634 .012478 .0117392 .0098505 

Div to Sales .0136382 .0114052 .0105774 .0104740 
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Extant literature primarily tests the maturity hypothesis of the dividend life cycle using 

firm age and re/te ratio. As far as I am aware, the empirical studies are not available on how the 

dividend payout relates to the firm maturity based on the cash flow patterns. Therefore, in Table 

5 and Table 6, I further confirm whether the ‘maturity stage’ (defined by cash flow patterns, age, 

re/te, and the innovation intensity) captures the higher dividend payout.  The idea is that when 

a firm matures and if the higher dividend payout is the function of a firm maturity, then any 

appropriate life cycle proxies should be able to detect the higher dividend payout of the mature 

stage. 

In Table 5 and Table 6, I regress the ‘mature stage’ from different life cycle measurements 

against the dividend payout to confirm that dividend payout is related to maturity, regardless of 

the life cycle proxies used.  The model is below: 

 

Div ~ F(life cycle stage + Control Variables)   ---------- equation 2 

Prob(Payer = 1) = F(life cycle stage + Control Variables)   -------------- equation 3 

 

Table 5 reports the results from the cross-sectional OLS regression in which the dependent 

variable is the dollar amount of the dividend paid to total asset ratio. In Table 6, I present the 

likelihood of paying dividends due to the firm life cycle stages. I run the logistic regression in 

which the dependent variable is the dummy takes on a value of 1 for dividend payers and 0 for 

the dividend non-payers.
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Table 5 -Impact of Lifecycle Stages on Dividend Payout Based on Four Lifecycle Proxies  

This Table reports the impact of life cycle stages on dividend payout regardless of the life cycle proxies used. The dependent variable is the dollar value of dividend to total asset ratio. 

Specification 1 thru specification 4 shows the impact of each life cycle stage on dividend payout based on Dickinson(2011) cashflow patterns. Specifications 5, 6, and 7 are based on DeAngelo 

et al. (2006). Specification 8 thru 11 are based on age category quantiles, and specification 12 is from the less innovative firms, Specification 13 is from average innovative firms and 

Specification 14 reports the impact of persistent innovations(highly innovative firms) on the dividend payout. All regressions are robust stand error. I reported statistically significant control 

variables. The objective of the table is to show that the dividend payout is a function of firm maturity regardless of the life cycle measures in the literature. The sample consists of Compustat 

US manufacturing firms, and the duration is from 1973 to 2017. 

 (1) 
DicIntro 

(2) 
DicGrwth 

(3) 
DicMature 

(4) 
DicDecline 

(5) 
RETE-Y 

(6) 
RETE-G 

(7) 
RETE-M 

(8) 
AgeCat1 

(9) 
AgeCat2 

(10) 
AgeCat3 

(11) 
AgeCat4 

(12) 
Less-Innov 

(13) 
Innov. 

(14) 
Pers-Innov 

 divratio divratio divratio divratio divratio divratio divratio divratio divratio divratio divratio divratio divratio divratio 

lnage 0.0151*** 0.0135*** 0.0153*** 0.0161*** 0.0156*** 0.0173*** 0.0138***     0.00835*** 0.00838*** 0.00863*** 

 (44.49) (39.24) (44.96) (47.50) (45.22) (55.45) (44.45)     (45.24) (45.09) (46.70) 

               

lnebitdarati
o 

0.00657*** 0.00670*** 0.00670*** 0.00622*** 0.00689*** 0.00695*** 0.00558*** 0.00676*** 0.00658*** 0.00674*** 0.00655*** 0.00610*** 0.00610*** 0.00613*** 

 (33.26) (34.56) (33.79) (32.54) (34.95) (37.49) (31.60) (33.66) (32.21) (32.99) (32.82) (54.84) (54.91) (55.21) 

               

reteratio 0.00449*** 0.00436*** 0.00457*** 0.00427***    0.00588*** 0.00667*** 0.00716*** 0.00595*** 0.00416*** 0.00422*** 0.00416*** 

 (11.93) (12.01) (12.06) (11.63)    (13.22) (14.63) (14.60) (14.06) (22.06) (22.31) (22.09) 

               

lvrgratio -0.0446*** -0.0480*** -0.0444*** -0.0430*** -0.0453*** -0.0511*** -0.0358*** -0.0454*** -0.0355*** -0.0384*** -0.0277*** -0.0323*** -0.0324*** -0.0324*** 

 (-11.05) (-11.55) (-11.01) (-11.33) (-11.63) (-13.69) (-11.20) (-10.72) (-8.65) (-9.23) (-8.02) (-35.25) (-35.27) (-35.45) 

               

CitWtedInd
ex 

-0.00145*** -0.00159*** -0.00145*** -0.00114** -0.00175*** -0.00207*** -0.00184*** -0.00167*** -0.00131** -0.00148*** -0.000703*    

 (-3.46) (-3.55) (-3.45) (-3.09) (-3.82) (-4.14) (-4.23) (-3.57) (-3.20) (-3.30) (-2.17)    

               

saleratio -0.000604** -0.00133*** -0.000644** -0.000438* -
0.000833*** 

-
0.000793*** 

-
0.000944*** 

0.000801*** 0.00126*** 0.00195*** 0.000816*** -0.00154*** -0.00159*** -0.00166*** 

 (-2.68) (-5.81) (-2.86) (-1.97) (-3.69) (-3.58) (-4.33) (3.58) (5.59) (8.64) (3.75) (-12.63) (-13.01) (-13.72) 
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capxratio -0.0199*** -0.0163*** -0.0198*** -0.0135*** -0.0201*** -0.0134*** -0.0153*** -0.0163*** -0.0123*** -0.0123*** -0.0139*** -0.0196*** -0.0201*** -0.0193*** 

 (-9.57) (-7.90) (-9.53) (-6.47) (-9.60) (-6.52) (-7.61) (-7.59) (-5.78) (-5.70) (-6.89) (-15.39) (-15.84) (-15.25) 

               

DIntrod -0.00160***              

 (-4.24)              

               

DGrowth  -0.00565***             

  (-26.97)             

               

DMature    0.04023***            

   (18.28)            

               

Ddeclinesh
akeout 

   0.00272**           

    (3.28)           

               

retecat1du
m 

    -0.00418***          

     (-15.37)          

               

retecat2du
m 

     -0.00663***         

      (-38.15)         

               

retecat3du
m 

      0.00963***        

       (47.59)        

               

agecat1du
m 

       -0.00709***       

        (-26.09)       
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agecat2du
m 

        -0.00790***      

         (-36.63)      

               

agecat3du
m 

         -0.000648**     

          (-3.01)     

               

agecat4du
m 

          0.0113***    

           (52.23)    

               

innovlevel1
dum 

           0.01046***   

            (11.62)   

               

innovlevel2
dum 

            -
0.000430*** 

 

             (-3.47)  

               

innovlevel3
dum 

             -0.02067*** 

              (-14.96) 

               

_cons -0.0276*** -0.0194*** -0.0279*** -0.0338*** -0.0268*** -0.0316*** -0.0279*** 0.0284*** 0.0273*** 0.0253*** 0.0229*** -0.00316*** -0.00237*** -0.00312*** 

 (-21.73) (-14.46) (-21.97) (-26.48) (-19.96) (-25.28) (-23.07) (41.59) (40.27) (37.61) (35.70) (-4.43) (-3.30) (-4.38) 

N 
adj. R-sq 

28742 
0.235         

28742 
0.248         

28742 
0.235         

28742 
0.245         

28755 
0.224         

28755 
0.250         

28755 
0.278         

28742 
0.184         

28742 
0.196         

28742 
0.165         

28742 
0.245         

29126 
0.155         

29126 
0.154 

29126 
0.157         

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5- Impact of Lifecycle Stages on the Propensity to Pay Dividend Based on Four Lifecycle Proxies  

This Table reports the propensity to pay dividends due to the life cycle stages regardless of the life cycle proxies selected. The dependent variable is the binary ‘dividend payer’(equals 1 if  

DVC  > 0 , 0 otherwise). Specification 1 thru specification 4 are the propensity of paying dividends due to the life cycle stage based on Dickinson(2011) cashflow patterns, specifications 5, 6, 

and 7 are the propensity of paying dividend due to life cycle stage based on DeAngelo et al(2006). Specification 8 thru 11 are the propensity of paying dividend based on age category 

quantiles, and specification 12 is the propensity of paying dividend due for the less innovative firms(less than median R&D/TA), Specification 13 is the propensity of paying a dividend for 

the average innovative firms(above average R&D/TA) and Specification 14 reports the propensity of paying a dividend for the persistent innovations. I reported statistically significant control 

variables. I examine if the propensity of paying a dividend  is a function of firm maturity based on all the popular life cycle proxies in the literature. The sample consists of Compustat US 

manufacturing firms, and the duration is from 1973 to 2017. I extended the cross-sectional logit regression model of Fama-French(2001). 

 (4) 
Dick. - I 

 

(3) 
Dick. - G 

 

(1) 
Dick. - M 

 

(2) 
Dick. - D 

 

(5) 
DAng.-Y 

(6) 
DAng.-G 

(7) 
DAng.-M 

(8) 
AgeCat1-

Y 

(9) 
AgeCat2 

(10) 
AgeCat3-

M 

(11) 
AgeCat4 

(12) 
LessInnov 

(13) 
Ave.Innov 

(14) 
Pers.Inno 

 DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer DivPayer 

lnage 0.616*** 0.590*** 0.642*** 0.623*** 0.564*** 0.625*** 0.592***    0.480*** 0.589*** 0.613*** 0.623*** 
 (70.21) (65.45) (73.87) (70.93) (65.51) (71.06) (69.78)    (42.93) (67.63) (68.73) (72.47) 
               

lnebitdaratio 0.0790*** 0.0865*** 0.0779*** 0.0828*** 0.0660*** 0.0827*** 0.0647*** 0.0826*** 0.0812*** 0.0844*** 0.0832*** 0.0856*** 0.0845*** 0.0852*** 
 (19.66) (21.73) (19.56) (20.40) (17.51) (20.70) (17.29) (20.66) (20.45) (21.02) (20.87) (21.49) (20.98) (21.48) 
               
reteratio 0.150*** 0.150*** 0.148*** 0.152***    0.158*** 0.153*** 0.154*** 0.161*** 0.148*** 0.154*** 0.145*** 

 (14.43) (14.58) (14.32) (14.41)    (14.94) (14.81) (14.48) (14.84) (14.27) (14.48) (14.22) 
               
lvrgratio -1.837*** -1.899*** -1.801*** -1.838*** -1.576*** -1.830*** -1.658*** -1.686*** -1.707*** -1.811*** -1.615*** -1.645*** -1.877*** -1.535*** 

 (-14.13) (-14.35) (-14.41) (-14.12) (-12.96) (-14.23) (-14.11) (-13.46) (-13.40) (-14.01) (-13.48) (-14.19) (-13.96) (-14.28) 
               
CitWtedIndex -0.0737*** -0.0766*** -0.0677*** -0.0743*** -0.0736*** -0.0750*** -0.0782*** -0.0677*** -0.0687*** -0.0729*** -0.0626***    
 (-3.85) (-3.88) (-3.72) (-3.85) (-3.91) (-3.88) (-4.06) (-3.74) (-3.83) (-3.81) (-3.58)    

               
saleratio 0.0304*** 0.0143** 0.0318*** 0.0283*** 0.0223*** 0.0279*** 0.0236*** 0.0290*** 0.0234*** 0.0295*** 0.0366*** 0.0314*** 0.0262*** 0.0363*** 
 (5.60) (2.61) (5.86) (5.21) (4.18) (5.14) (4.43) (5.37) (4.34) (5.39) (6.78) (5.85) (4.82) (6.82) 

 
capxratio -0.338*** -0.273*** -0.221*** -0.347*** -0.420*** -0.322*** -0.276*** -0.318*** -0.306*** -0.340*** -0.295*** -0.238*** -0.343*** -0.249*** 
 (-5.82) (-4.71) (-3.80) (-5.99) (-7.32) (-5.57) (-4.86) (-5.58) (-5.40) (-5.87) (-5.20) (-4.24) (-5.92) (-4.35) 

 
DIntrod -0.127***              
 (-9.63) 

 
             

DGrowth  -0.111***             
  (-16.56) 

 
            

DMature   0.0832***            
   (15.59)            
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Ddeclineshakeout    -0.0654           

    (-2.92)           
               
               

retecat1dum     -0.251***          
     (-26.58)          
               

retecat2dum      -0.0304***         
      (-6.11)         
               
retecat3dum       0.154***        

       (25.06)        
               
agecat1dum        0.260*       
        (22.29)       

               
agecat2dum         -0.201***      
         (-29.94)      

               
agecat3dum          -0.0179***     

          (-3.43)     
               

agecat4dum           0.166***    

           (27.32)    
               
Innovlevel1dum            0.173***   

            (34.71)   
               
Innovlevel2dum             -0.0556***  
             (-10.18)  
Innovlevel3dum              -0.160*** 
              (-26.33) 
_cons -1.578*** -1.428*** -1.708*** -1.598*** -1.348*** -1.594*** -1.574*** -2.520*** -1.319*** -1.618*** -1.127*** -1.543*** -1.536*** -1.569*** 

 (-47.09) (-40.25) (-51.13) (-47.68) (-39.12) (-47.54) (-47.74) (-48.65) (-38.95) (-49.00) (-28.27) (-47.11) (-44.52) (-47.56) 

N 29126 29126 29126 29126 29126 29126 29126 29126 29126 29126 29126 29126 29126 29126 
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The results in Table 5 and Table 6 confirm that the mature stage has a statistically 

significant positive impact on the dividend payout. Likewise, age and re/te ratio have a 

statistically significant positive relationship with the dividend payout. The older the firm, the 

higher the propensity to pay dividends. The same is the case for the retained earnings ratio; the 

higher the re/te ratio, the higher the likelihood of paying a dividend. The innovation index, 

however, shows that the higher the innovation intensity, the lower the propensity to pay 

dividends. Specification 1 and Specification 2 also show that the introduction and growth phase 

have a statistically negative relationship with the dividend payout. For all the regression in table 

5 and table 6, I control for firm profitability, sales size, and leverage ratio as in Fama-

French(2001). I provide the evidence that regardless of the firm life cycle used; dividend payout 

is higher in the mature stage. 

Further, I perform robust testing for each life cycle proxies interacting with high 

innovation dummy and low innovation dummy. The result is in Table 13. I find a consistent result 

that the higher innovation interaction weakens the dividend payout impact of the mature stage. 

The results are highly significant. 

 

5.2.3 Degree of Innovation and Dividends 

 

In section 5.2.3, I design the model to study the relationship between the degree of 

innovativeness and the dividend payout. In the first stage (5.2.3.1), I estimate the dividend 

payout regressions for the dividend payout amount vs. the innovation intensity measured by the 

innovation index. In the second stage, I investigate the propensity (likelihood) of paying a 

dividend based on the innovation intensity. In both cases, I perform the analysis based on cross-

sectional regression24 . 

 

 

 
24 in the first stage, I use cross-sectional OLS and in the second stage, I use cross-sectional logit regression 
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5.2.3.1. Innovation intensity and dividends 
 

Table 7 reports the cross-sectional OLS regression result on the impact of innovation 

intensity on the dollar value of dividend payout. The main independent variable is the innovation 

index. I control for firm age, retained earnings, profitability as proxies by ebitdaratio, capxratio, 

and sales ratio. Specification 1 is the result of the below-median R&D sample; specification 2 is 

from the above-median R&D sample; specification 3 is from the persistent innovators. The last 

column is the result of the full sample. The dependent variable is the dividend payout (a dollar 

amount). 

Div ~ F(innovation intensity as measured by innovation index + Control Variables)   ---- equation 4 

div ~ InnovationIndex + control variable   ---  Spec.  Full Sample (eq 4.1) 

 

The full sample is sorted by the innovation index in lowest to highest order to find the 

median value. I then divide the sample into two groups: a) less innovative firms that have citation 

weighted patent output below median value, and b) innovative firms that have citation weighted 

patent output above the median value. I also create the third sample with persistent innovators 

that has a citation weighted patent for at least three consecutive years. The results in Table 7 

show how the ‘innovation intensity’ affects the dividend payout based on the degree of 

innovativeness. 
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Table 6-  Impact of Innovation Intensity on Dividend Payout 

In Table 7, I report the cross-sectional regression result on the impact of innovation intensity on the dollar value of dividend 

payout. The dependent variable is the dividend ratio (cash dividend payout normalized by total asset). The main independent 

variable is the innovation index. I control for firm age, retained earnings, roa, capxratio, and sales ratio. Specification 1 is the 

result of the below-median innovation sample; specification 2 is from the above-median; specification 3 is from the persistent 

innovators. The last column is the result of the full sample. The sample consists of Compustat US manufacturing firms, and the 

duration is from 1973 to 2017. 

 (1) 
Less-Innovative 

 

(2) 
Innovative 

(3) 
 High-Innovative 

(4) 
Full Sample 

 divratio divratio divratio divratio 
CitWtedIndex -0.00213* -0.2040*** -0.8014*** -0.00888*** 
 (-2.21) (-5.85) (-7.34) (-9.12) 
     
lnage 0.0118*** 0.0215*** 0.0177*** 0.0186*** 
 (9.17) (17.81) (34.97) (41.37) 
     
ebitdaratio 0.0172*** 0.0674*** 0.101*** 0.0740*** 
 (5.00) (14.14) (36.07) (35.11) 
     
lvrgratio -0.0146* -0.0866* -0.0214* -0.00869 
 (-2.46) (-2.44) (-2.03) (-1.42) 
     
lnfcfratio 0.000822* 0.00201*** 0.000371 0.000965*** 
 (2.22) (4.80) (1.85) (5.66) 
     
saleratio 0.00246** -0.00446*** -0.00202*** -0.00182*** 
 (3.28) (-5.21) (-4.57) (-5.00) 
     
_cons -0.0386*** -0.0610*** -0.0616*** -0.0603*** 
 (-8.62) (-13.25) (-30.83) (-34.76) 

N 
adj. R-sq 

12085 
0.232 

11083 
0.259   

7730 
0.277 

30898 
0.252 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

  

 

I find a statistically significant negative relationship between the div payout and the 

innovation index. However, if when examining the coefficients, the persistent innovators have a 

more substantial negative impact in comparison to the other specifications in the Table. Similarly, 

the above-median innovators also show a higher negative impact compare to their less 

innovative counterparts.  I confirm the statistical significance of the differences in coefficients for 

three levels of innovation as indicated in the table 7. 



 
 

40 
 

5.2.3.2  Innovation intensity and propensity to pay dividends 
 

I examine the propensity to pay a dividend based on the cross-sectional logit regression. 

In this case, I mostly follow the approach adopted by Fama & French (2001) that employs the 

logit regression using distinct characteristics of dividend payers and non-payers as explanatory 

variables. The formal model used by Fama-French (2001) is as follow: 

𝑌𝑡 = β0 + β1 𝐸𝑡/𝑇𝐴𝑡
 + β2 𝑑𝑇𝐴𝑡/𝑇𝐴𝑡

  + β3 𝑇𝐴𝑡 +  ɛ𝑖,𝑡       -- Equation 6 

where 

𝑌𝑡 : the decision to pay dividends. It equals 1 for payers at time t and 0 otherwise. 

𝐸𝑡  : earnings at time t 

𝑇𝐴𝑡 : total assets at time t 

𝑑𝑇𝐴𝑡 : 𝐴𝑡 – 𝑇𝐴𝑡−1 the growth rate of assets 

𝐸𝑡/𝑇𝐴𝑡
, 𝑑𝑇𝐴𝑡/𝑇𝐴𝑡

 & 𝑇𝐴𝑡 are proxies for profitability, growth, and size respectively 

Profitability, growth, and size are the distinct characteristics of payers and non-payers.  I use sales 

growth to total asset ratio as a growth proxy. I design the logit models as presented below: 

Div Payer𝑡 ~  F(innovation intensity + Control Variables)   ------------------ equation 7 

Div Payer𝑡~ InnovationIndex + control variable .....................................   Spec.  Full Sample (eq 7.1) 

Where, 

 'Div Payer𝑡′ is the likelihood of paying a dividend. It equals 1 for payers at time t and 0 otherwise. 

The results are in Table 8.  I repeat the same process as in equation 5 with the same 

specification in the right-hand side, except, the dependent variable, in this case, is the dummy 1 

or 0 (div payer = 1 for payers otherwise 0 for non-payers). 
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Table 7 – Impact of Innovation Intensity on the Propensity to Pay Dividend Payout 

In Table 8, I report the propensity to pay a dividend based on the degree of innovation.  I follow Fama-French(2001) to model 
the logit regression.  The dependent variable is the binary variable ‘dividend payer’(equals 1 if payer, 0 otherwise).  The main 
independent variable is the innovation index. I control for firm age, retained earnings, roa, capxratio, and sales ratio. 
Specification 1 is the result from the below-median R&D sample; specification 2 is from the above-median R&D sample; 
specification 3 is from the persistent innovators. The last column is the result from the full sample. The sample consists of 
Compustat US manufacturing firms, and the duration is from 1973 to 2017. 
  
 (1) 

Less-Innovative 
 

(2) 
  Innovative 

 

(3) 
High Innovative 

(4) 
Full Sample 

 divpayer divpayer divpayer divpayer 

     
CitWtedIndex -0.431* -0.735*** -0.773*** -1.144*** 
 (-2.52) (-4.60) (-6.97) (-14.34) 
     
lnage 5.202*** 3.644*** 2.942*** 3.227*** 
 (12.43) (20.87) (35.80) (44.90) 
     
ebitdaratio 4.335*** 5.989*** 5.280*** 5.531*** 
 (4.04) (8.02) (10.43) (14.60) 
     
lvrgratio -27.81*** -25.57*** -32.09*** -33.22*** 
 (-4.86) (-4.22) (-7.98) (-11.17) 
     
saleratio 0.530** 0.128 -0.0924 -0.0952 
 (2.78) (1.20) (-1.34) (-1.76) 
     
lnfcfratio 0.0913 -0.173** -0.125*** -0.122*** 
 (1.00) (-3.14) (-3.71) (-4.57) 
     
capxratio -1.870 -6.143*** 5.733*** 1.153 
 (-0.76) (-3.61) (5.31) (1.41) 
     
_cons -20.67*** -14.35*** -11.27*** -12.30*** 
 (-13.18) (-21.08) (-34.29) (-43.53) 

N 
Pseudo R2 

12085 
0.2863 

11083 
0.2345 

7755 
0.2073 

30898 
0.2384 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

In Table 8, I examine the propensity to pay dividends based on the degree of 

innovativeness. I use cross-sectional logit regression with the dependent variable as dividend 

payer (1 for the payer, 0 for non-payer).  In this table, I find a very similar pattern as in the cross-

sectional OLS. Therefore, I present convincing evidence that dividend payout does depend on the 
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degree of innovativeness, the more substantial the innovation, the stronger the negative 

relationship between the dividend payout and the innovation intensity. 

5.2.4. Dividend Payout: Same Life Cycle Stage but Different Degree of Innovation 

Finally, in section 5.2.4, I examine the propensity to pay a dividend by three groups of 

firms (less innovative, innovative, and persistent innovative) that belong to the ‘same life cycle 

stage such as ‘maturity’ or ‘growth’ as defined by popular life cycle proxies but are significantly 

different in degree of innovation. The purpose is to test the primary hypothesis that among 

groups of firms in the same life cycle stage and with similar characteristics (industry affiliation, 

size, life span/age, re/te, cashflow25), the one with a higher degree of innovation output has a 

lower dividend payout. 

 

5.2.4.1 Life Cycle Defined by Cash Flow Pattern: Same Stage but Different Degree of Innovation 
 

In this section, I test whether groups of firms (based on the degree of innovations) in the 

same life cycle stage as defined by cash flow pattern (Dickinson,2011) have a similar propensity 

to pay dividends. I run the following cross-sectional logit regression similar to Fama-French (2001) 

in which the dependent variable is the div payer equal to 1 if the firm pays dividends and 0 

otherwise. 

Div Payer𝑡~ life cycle stage defined by cashflow pattern26 + InnovationIndex + control variable  -- equation 

9 

Table 9 tests the main hypothesis for the firms in the same life cycle stage defined by the cashflow 

patterns.  Table 9 Panel A reports the result for the firms in the life cycle stage '3-mature' 

(Dickinson,2011). Similarly, Panel B presents the result for the firms in the life cycle stage, '2-

Growth' (Dickinson,2011). I run the logit model of equation 9 on the full sample as well on the 

other three sub-samples based on a different degree of innovation: 1. Below average innovators 

 
25 I do not find existing literature that test the dividend behavior based on the Dickinson(2011) cashflow pattern. 

This is the additional contribution to the literature.  
26 See appendix reference table 1 for the cashflow pattern as defined by Dickinson(2011) 
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2. Above-average innovators, and 3. Persistent Innovators. In both cases in Panel A and Panel B, 

the results undoubtedly show that innovation differentials cause disparities in dividend payout 

for the firms in the same life cycle stage defined by Dickinson(2011) cash flow patterns. 

Table 8-Likelihood of Paying Dividend due to Different Degree of Innovation for the Same 
Cashflow Patterns Group (Based on the Life Cycle Stages of Dickinson,2011) 

 
In Table 9, I present the of logit regression result performed on the firms of the same ‘cashflow pattern’ group (based on 

Dickinson,2011) but with different degrees of innovation. I follow Fama-French(2001) to model the logit regression.  The 

dependent variable is the binary variable ‘dividend payer’(equals one if payer, 0 otherwise).  The main independent variable is 

the innovation index. I control for firm age, retained earnings, roa, capxratio, and sales ratio. Specification 1 is the result of the 

below-median R&D sample; specification 2 is from the above-median R&D sample; specification 3 is from the persistent 

innovators.  The last column is the result of the full sample. Panel A reports the logit regression result for the mature stage as 

defined by cashflow patterns. Panel B reports the result for the Shakeout stage as defined by the cashflow patterns. The sample 

consists of Compustat US manufacturing firms, and the duration is from 1973 to 2017. 

Panel A (Dickinson,2011 - life cycle stage 3-Mature') 

 (1) 
Less-Innovative 

(2) 
Innovative 

(3) 
High Innovative 

(4) 
Dic-Mature Sample 

 
 divpayer divpayer divpayer divpayer 

     
CitWtedIndex 3.598 -6.31*** -17.04** -9.202** 
 (0.28) (-4.13) (-3.12) (-3.06) 
     
lnage 7.371** 2.044*** 1.893*** 2.017*** 
 (2.62) (3.94) (10.07) (11.70) 
     
reteratio 4.669 2.850*** 1.483*** 1.596*** 
 (1.73) (4.30) (7.32) (8.26) 
     
lnebitdaratio 0.946 0.293 -0.108 0.140 
 (0.86) (0.88) (-0.61) (1.03) 
     
lnsaleratio 0.844 -0.641 0.832*** 0.487** 
 (0.40) (-1.28) (3.76) (2.60) 
     
lnlvrgratio -0.325 -0.0806 -0.283*** -0.211*** 
 (-1.56) (-0.98) (-6.89) (-6.27) 
     
lncapxratio -1.271 1.179*** 0.259* 0.263** 
 (-1.65) (3.74) (2.29) (2.65) 
     
_cons -34.40** -3.629 -8.473*** -7.937*** 
 (-2.88) (-1.71) (-10.05) (-10.62) 

N 
Pseudo R2 

4500 
0.5801 

2640 
0.3641 

1397 
0.2509 

8537 
0.2509 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Panel B (Dickinson,2011 - life cycle stage 2-Growth') 

 (1) 
Less-Innovative 

(2) 
Innovative 

(3) 
High Innovative 

(4) 
Dic-Growth Sample 

 
 divpayer divpayer divpayer divpayer 
     
CitWtedIndex -5.655 -19.19 -2.594** -3.871*** 
 (-1.89) (-1.95) (-3.07) (-4.25) 
     
lnage 1.849* -0.305 2.668*** 2.298*** 
 (2.19) (-0.14) (7.24) (7.45) 
     
reteratio 3.772** 4.339 1.700*** 2.276*** 
 (3.28) (1.42) (4.10) (6.02) 
     
lnebitdaratio 0.118 -0.561 0.218 0.0284 
 (0.21) (-0.29) (0.78) (0.12) 
     
lnsaleratio 0.594 -3.468 0.452 0.286 
 (0.65) (-1.33) (1.30) (0.94) 
     
lnlvrgratio -0.230 -0.300 -0.0344 -0.0724 
 (-1.46) (-1.11) (-0.52) (-1.32) 
     
lncapxratio -0.00974 -0.422 0.0638 0.0293 
 (-0.03) (-0.51) (0.40) (0.21) 
     
_cons -10.29** -5.529 -9.211*** -9.279*** 
 (-2.65) (-0.49) (-5.80) (-6.58) 

N 
Pseudo R2 

4050 
0.3580 

3500 
0.2863 

1415 
0.4532 

8965 
0.3117 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

All the variables in empirical models in sections 2, 3, and 4 are normalized by dividing with 

the total asset except for RETE in which case I normalize retained earnings with total equity. I 

follow the existing literature Fama-French(2001), Deangelo (2006), Dickinson(2011), and Faff et 

al. (2016) to identify the control variables. I do not report statistically insignificant control 

variables. The dividend amount equations 2, 4, and 5 are estimated using cross-sectional ordinary 

least squares with standard errors clustered by firms27. The payer specification in equation 3, 7, 

8, 9, 10, and 11 are estimated using the logistic regression. 

 
27 See Peterson(2009) 
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5.2.4.2 Life Cycle Defined by RE/TE: Same Stage but Different Degree of Innovation 
 

I test whether groups of firms (based on the degree of innovations) in the same life cycle 

stage as defined by earned contributed capital (DeAngelo,2006) have a similar propensity to pay 

dividends. I run the following cross-sectional logit regression similar to Fama-French(2001) in 

which the dependent variable is the div payer equal to 1 if the firm pays dividends and 0 

otherwise. 

Div Payer𝑡~ life cycle stage defined by re/te + InnovationIndex + control variable  -- equation 10 

I apply similar logic as in Table 9 for earned contributed capital mix re/te ratio in Table 10.  I run 

the logit model as given in equation 10 on the full sample as well as on the other three sub-

samples based on a different degree of innovation: 1. Below average innovators 2. Above-

average innovators, and 3. Persistent Innovators. 
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Table 9-Likelihood of Paying Dividend due to Different Degree of Innovation for the Same 
RETE Group (Based on DeAngelo et al.,2006) 

In Table 10, I present the of logit regression result performed on the firms of the same ‘RE/TE’ group (based on DeAngelo et 
al.,2006) but with different degrees of innovation. I follow Fama-French(2001) to model the logit regression.  The dependent 
variable is the binary variable ‘dividend payer’(equals one if payer, 0 otherwise).  The main independent variable is the innovation 
index. I control for firm age, retained earnings, roa, capxratio, and sales ratio. Specification 1 is the result from the below-median 
R&D sample; specification 2 is from the above-median R&D sample; specification 3 is from the persistent innovators.  The last 
column is the result from the full sample. Panel A reports the logit regression result for the re/te quartile two groups. Panel B 
reports the result for the re/te quartile four groups. The sample consists of Compustat US manufacturing firms, and the duration 
is from 1973 to 2017. 
 

Panel A: RE/TE Quartile 1 

 (1) (2) (3) (4) 
 divpayer divpayer divpayer divpayer 

     
CitWtedIndex -0.868 -3.890*** -5.557** -4.059*** 
 (-0.21) (-4.64) (-2.24) (-6.22) 
     
lnage 21.20* 1.835*** 1.836*** 1.949*** 
 (1.98) (3.51) (7.61) (9.19) 
     
reteratio 46.21* 3.490* 2.015** 2.490*** 
 (2.25) (2.31) (2.84) (4.05) 
     
lnebitdaratio 5.415* 0.787* 0.347 0.563*** 
 (2.02) (2.39) (1.80) (3.64) 
     
lnsaleratio -6.492 -0.260 1.188*** 0.737*** 
 (-1.72) (-0.52) (4.61) (3.52) 
     
lnlvrgratio -1.447 -0.0260 -0.286*** -0.214*** 
 (-1.81) (-0.32) (-5.90) (-5.55) 
     
_cons -99.36* -5.862** -8.406*** -7.974*** 
 (-1.99) (-2.73) (-8.34) (-9.03) 

N 
Pseudo R2 

5092 
0.5742 

1790 
0.2327 

1116 
0.2015 

8048 
0.2216 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Panel A: RE/TE Quartile 3 

 (1) 
Less-Innovative 

(2) 
Innovative 

(3) 
High Innovative 

(4) 
RETE Q3 Sample 

 divpayer divpayer divpayer divpayer 

     
CitWtedIndex -1.138 -2.167*** -2.350*** -2.015*** 

 (-1.78) (-4.25) (-6.63) (-8.81) 
     

lnage 3.406*** 2.811*** 2.442*** 2.536*** 
 (4.09) (8.27) (16.86) (19.56) 
     

reteratio 4.626*** 2.613*** 1.592*** 1.843*** 
 (4.19) (5.98) (9.73) (12.07) 
     

lnebitdaratio 1.147* 0.511** 0.289** 0.386*** 
 (2.42) (2.73) (2.73) (4.43) 
     

lnlvrgratio -0.151 -0.178*** -0.274*** -0.235*** 
 (-1.74) (-3.50) (-9.76) (-10.41) 
     

lnsaleratio -0.0316 0.155 0.660*** 0.482*** 
 (-0.05) (0.55) (4.47) (3.84) 
     

_cons -13.62*** -11.20*** -10.47*** -10.48*** 
 (-3.84) (-7.97) (-17.01) (-19.17) 

N 
Pseudo R2 

2521 
0.3987 

585 
0.3311 

162 
0.3772 

3268 
0.3003 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 
 

The results in Table 10 presents the dividend payout differentials among the firms in the 

same RE/TE group. Panel A shows RE/TE ‘quartile one’ firms (young firms, according to the re/te 

classification), and the data clearly shows that the persistent innovators have a stronger negative 

effect on the dividend payout even if all the three groups are in the same re/te quartile. The 

innovation impact distinction is even more apparent in Panel B that presents the RE/TE ‘quartile 

three’ firms (mature firms, according to the re/te classification). The results are consistent with 

the story that two groups of firms that are in the same life cycle phase, as defined by RETE have 

a different dividend policy. 
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5.2.4.3 Life Cycle Defined by ‘Age’: Same Stage but Different Degree of Innovation 
 

I have extensively discussed that mainstream literature still uses firm age to proxy for the 

firm life cycle. Therefore, I also attempt to test whether groups of firms(based on the degree of 

innovations) in the same age category have a similar propensity to pay dividends. I run the 

following cross-sectional logit regression similar to Fama-French(2001) in which the dependent 

variable is the div payer equal to 1 if the firm pays dividends and 0 otherwise. 

Div Payer𝑡~ age + InnovationIndex + control variable  -- equation 11 

Table 11 Panel A reports the result for the firms in the age group 25 to 30. Similarly, Panel B 

presents the result for the firms in the age group 45 to 50. The results in Table 11 include three 

sub-samples based on a different degree of innovation: a). Below average innovators, b) Above-

average innovators,  and c) Persistent Innovators. 
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Table 10-Likelihood of Paying Dividend due to Different Degree of Innovation for the Same 
Age Group 

In Table 11, I present the of logit regression result performed on the firms of the same ‘age’ group but with different degrees of 
innovation. I follow Fama-French(2001) to model the logit regression.  The dependent variable is the binary variable ‘dividend 
payer’(equals 1 if payer, 0 otherwise).  The main independent variable is the innovation index. I control for firm age, retained 
earnings, roa, capxratio, and sales ratio. Specification 1 is the result of the below-median R&D sample; specification 2 is from the 
above-median R&D sample; specification 3 is from the persistent innovators.  The last column is the result of the full sample. 
Panel A reports the logit regression result for the age group 50 to 55. Panel B reports the result for the age group 25-30. The 
sample consists of Compustat US manufacturing firms, and the duration is from 1973 to 2017. 
 

Panel A (Age Group 25 to 30) 

 (1) 
Less-Innovative 

 

(2) 
  Innovative 

 

(3) 
High Innovative 

(4) 
Full Sample 

 divpayer divpayer divpayer divpayer 

     
CitWtedIndex -0.340 -2.474*** -3.072*** -2.628*** 
 (-1.19) (-4.15) (-8.74) (-12.11) 
     
lnage 4.455** 2.094** 2.253*** 2.448*** 
 (3.10) (2.99) (5.27) (7.08) 
     
lnebitdaratio 0.484* 0.764*** 0.463*** 0.542*** 
 (2.18) (5.79) (5.81) (8.65) 
     
lnlvrgratio -0.252*** -0.214*** -0.333*** -0.291*** 
 (-4.28) (-5.92) (-14.23) (-16.41) 
     
lnsaleratio 1.457*** 0.113 0.414*** 0.266** 
 (3.59) (0.63) (3.56) (2.89) 
     
_cons -18.16*** -7.928** -9.308*** -9.745*** 
 (-3.58) (-3.24) (-6.24) (-8.07) 

N 
Pseudo R2 

607 
0.1310 

1000 
0.1182 

2439 
0.1202 

4046 
0.1200 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Panel B (Age Group 45 to 50) 

 (1) 
Less-Innovative 

 

(2) 
  Innovative 

 

(3) 
High Innovative 

(4) 
Full Sample 

 divpayer divpayer divpayer divpayer 

divpayer     
CitWtedIndex -3.955 -2.715 -26.50*** -14.88*** 
 (-1.46) (-0.17) (-9.01) (-9.71) 
     
lnage 4.161*** 27.04** 6.477*** 5.475*** 
 (4.70) (2.87) (10.11) (11.05) 
     
lnebitdaratio 0.881*** -0.377 0.598*** 0.567*** 
 (4.53) (-0.71) (5.80) (6.54) 
     
lnlvrgratio -0.298*** -0.118 -0.361*** -0.313*** 
 (-7.08) (-0.67) (-11.43) (-13.19) 
     
lnsaleratio 0.177 -3.953* 0.000383 0.0282 
 (0.73) (-2.28) (0.00) (0.21) 
     
reteratio 2.140*** 10.74** 2.317*** 2.273*** 
 (6.87) (2.92) (10.13) (12.60) 
     
_cons -17.26*** -113.2** -26.19*** -22.33*** 
 (-4.91) (-2.96) (-10.31) (-11.36) 

N 
Pseudo R2 

870 
0.2895 

660 
0.6026 

2275 
0.2775 

3811 
0.2820 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

As shown in Table 11, firms in the same age group (Panel A 25 to 30 years) but the one 

with persistent innovations have the propensity to pay less dividends in comparison to the other 

less innovative groups.  Similarly,  Panel B, I run the regression for the firms' age 45 to 50, and I 

see the consistent patterns that persistent innovators tend to pay less dividends even if the three 

groups of firms based on the degree of innovation are in the same age group. 
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6. ROBUST TESTING  
 

In Table 3, I use sales growth as dependent variable to study the innovation impact on the 

firm growth.  In Table 12, I use five year rolling asset growth28 as a proxy for firm growth. The 

variables of interest are the life cycle proxies innovation index, RETE ratio, Cashflow ratio and 

Age. The results are consistent that innovation proxy (in this case Kogan index as innovation 

index) have statistically significant positive relationship with the asset growth. Whereas RETE and 

age has statistically significant negative relationship with the asset growth. On the other hand, 

cashflow pattern has positive relationship with the asset growth. 

Table 12 - Impact of Life Cycle Proxies on Asset Growth 

In this table, the dependent variable is the asset growth and variables of interest are the life cycle proxies such as RETE, 

CASHFLOW, AGE and INNOVATION. The control variables are the log of EBITDARATIO, SALES RATIO, and LEVERAGE RATIO. The 

sample consists of Compustat US manufacturing firms, and the duration is from 1973 to 2017. 

 (1) (2) (3) (4) 

 assetgrwth assetgrwth assetgrwth assetgrwth 

lnebitdaratio -0.0312 0.0704** 0.0602* 0.0993*** 

 (-0.53) (2.62) (2.15) (3.77) 

     

lvrgratio -1.320 -0.515 -0.514 -0.515 

 (-0.88) (-1.30) (-1.24) (-1.32) 

     

saleratio -1.045*** -0.734*** -0.739*** -0.654*** 

 (-12.43) (-21.64) (-20.17) (-19.00) 

     

koganindex 0.421***    

 (4.29)    

     

reteratio  -0.0118*   

  (-0.39)   

     

cashflowratio   0.308**  

   (1.56)  

     

age    -0.0194*** 

    (-13.05) 

_cons 2.216*** 2.121*** 2.073*** 2.912*** 

 (12.04) (26.21) (23.88) (29.24) 

N 24293 59351 55162 59483 

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001 

 
28 See Fama French(2001) that uses asset growth as a proxy for firm growth 
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In Table 13, I check the impact of firm growth measured by five year rolling asset growth 

on the dividend payout. The first two specifications are from the cross-sectional OLS and the last 

two specifications are form the logit regression. The results are consistent that firm growth have 

negative relationship with the dividend payout. 

Table 13 - Impact of Asset Growth on Dividend Payout 

In this table, the variables of interest is the five year asset growth as a growth proxy and the dependent variable is the dividend 

payout.  The control variables are the log of EBITDARATIO, SALES RATIO, CAPX Ratio and LEVERAGE RATIO. Specification 1 and 

specification 2 are from the OLS regression in which the dividend ratio is the dollar value of dividend payout normalized by total 

asset. Specification 3 and 4 are the results from the cross-sectional logit regression in which dependent variable is the binary 1 

for dividend payer and 0 is for non-payer. The sample consists of Compustat US manufacturing firms, and the duration is from 

1973 to 2017. 

 (1-robust OLS) (2- robust OLS) (3-logit) (4-logit) 
 

 divratio divratio divpayer divpayer 

main     
fiveyearassetgrwthrate -0.000241*** -0.000208*** -0.125*** -0.273*** 
 (-15.42) (-12.81) (-26.72) (-30.43) 
     
lnebitdaratio  0.00777***  0.812*** 
  (61.73)  (39.64) 
     
lvrgratio  -0.0430***  -30.62*** 
  (-21.89)  (-32.77) 
     
     
     
rdratio              -0.0416***                -15.69*** 
  (-25.47)  (-55.28) 
     
capxratio            0.000184               4.730*** 
  (0.09)  (16.14) 
     
_cons            0.0122***              0.0327***             0.113***              2.804*** 
 (170.84) (78.20) (13.23) (42.88) 

N 70415 40695 70707 40780 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

Finally, in Table 14, I create an interaction term of high innovation vs low innovation 

against the mature phase defined by each of the life cycle proxies. Panel A is for the maturity 

stage defined by cashflow pattern. Panel B is for the maturity stage defined by RETE and Panel C 

is for the maturity stage defined by firm age. In all the panels, dividend payout ratio is the 
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dependent variables.  I create two dummy variable one each for low innovation (if the firms have 

citation weighted patent less than the industry median) and high innovation (if the firms have 

citation weighted patent above the industry median). Then I create corresponding variables 

interacting with the mature phase defined by each of the life cycle proxies.  

Table 14 - Impact of ‘Maturity’ and High vs Low ‘Innovation Interaction’ on Dividend Ratio  

In this table, the variable of interest is the maturity stage defined by each of the popular life cycle proxies RETE, CASHFLOW and 

AGE. The dependent variable is the dividend payout.  The control variables are the log of ebitda ratio, sales ratio, capx ratio, free 

cashflow ratio  and the leveraged ratio. Specification 3 has the interaction term of mature phase and low innovation index 

dummy. Specification 4 has the interaction term of mature phase and high innovation index dummy. Panel A is for Cashflow 

pattern maturity stage, Panel B is for RETE maturity phase and Panel C has firm age. The sample consists of Compustat US 

manufacturing firms, and the duration is from 1973 to 2017. 

Panel A - Cashflow Pattern Maturity Stage     
  -1 -2 -3 -4 

  divratio divratio divratio divratio 

DMature 0.00699*** 0.00700*** 0.00631*** 0.00730*** 

 (51.88) (37.13) (32.26) (38.46) 

     
lnebitdaratio  0.00540*** 0.00536*** 0.00539*** 

  (40.68) (40.42) (40.67) 

     
lvrgratio  -0.0268*** -0.0259*** -0.0262*** 

  (-13.82) (-13.38) (-13.55) 

     
saleratio  -0.00160*** -0.00146*** -0.00161*** 

  (-9.48) (-8.65) (-9.54) 

     
fcfratio  0.000767** 0.000809** 0.000772** 

  (2.84) (3.00) (2.86) 

     
capxratio  0.000729 0.000457 0.00161 

  (0.35) (0.22) (0.77) 

     
DMXlowinovdum   0.00454***  

   (12.50)  

     
DMXhighinnovdum    -0.00802*** 

    (-11.71) 

     
_cons 0.00884*** 0.0210*** 0.0207*** 0.0209*** 

  (132.06) (48.07) (47.53) (47.98) 

N 92502 39016 39016 39016 

adj. R-sq 0.082 0.101 0.105 0.104 
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Panel B – RETE (Maturity Phase) 

  -1 -2 -3 -4 

  divratio divratio divratio divratio 

retecat3dum 0.0142*** 0.0120*** 0.0117*** 0.0120*** 
 

(54.56) (38.65) (34.76) (38.68)      

lnebitdaratio 
 

0.00583*** 0.00583*** 0.00583*** 
  

(44.66) (44.64) (44.67)      

lvrgratio 
 

-0.0253*** -0.0253*** -0.0253*** 
  

(-13.06) (-13.07) (-13.06)      

saleratio 
 

-0.000696*** -0.000693*** -0.000696*** 
  

(-4.14) (-4.12) (-4.14) 
     

fcfratio 
 

0.00146*** 0.00146*** 0.00146*** 
  

-5.43 -5.44 -5.44 
     

capxratio 
 

-0.00113 -0.00114 -0.00112 
  

(-0.54) (-0.54) (-0.53) 
     

reteXlowinovdum 
 

0.00172* 
 

   
(2.21)       

reteXhighinnovdum 
  

-0.00669* 
    

(-2.79) 
     

_cons 0.00982*** 0.0231*** 0.0231*** 0.0231*** 

  -164.76 -55.31 -55.28 -55.31 

N 92502 39016 39016 39016 

adj. R-sq 0.091 0.104 0.104 0.104 

 

Panel C - AgeCat4 (Age Maturity) 

  -1 -2 -3 -4 

  divratio divratio divratio divratio 

agecat4dum 0.0132*** 0.0135*** 0.0126*** 0.0134*** 
 

(86.56) (50.22) (44.31) (49.84)      

lnebitdaratio 

 
0.00605*** 0.00601*** 0.00604*** 

  

(47.13) (46.85) (47.08)      

lvrgratio 
 

-0.0239*** -0.0231*** -0.0235*** 
 

 (-12.48) (-12.07) (-12.29) 
     

saleratio 
 

-0.000627*** -0.000551*** -0.000645*** 



 
 

55 
 

  
(-3.78) (-3.31) (-3.89) 

     

fcfratio 
 

0.00146*** 0.00146*** 0.00146*** 
  

(5.51) (5.52) (5.50)      

capxratio 
 

-0.00686*** -0.00676** -0.00578** 
  

(-3.33) (-3.28) (-2.80) 
     

ageXlowinovdum 
  

0.0000537*** 
 

   

(8.66) 

 

     

ageXhighinnovdum 
   

-0.000113*** 
    

(-9.66) 
     

_cons 0.00838*** 0.0232*** 0.0228*** 0.0234*** 

  -134.84 -56.76 -55.53 -57.11 

N 92502 39016 39016 39016 

adj. R-sq 0.075 0.126 0.127 0.128 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

In Table 14, Panel A shows that higher innovation interaction with the mature phase 

(defined by cashflow) have negative impact on the dividend payout ratio whereas less innovation 

interaction with the mature phase (defined by cashflow)  have a positive impact on the dividend 

payout ratio. Similarly, Panel B shows that higher innovation interaction with the mature phase 

(defined by RETE) have negative impact on the dividend payout ratio whereas less innovation 

interaction with the mature phase (defined by RETE)  have a positive impact on the dividend 

payout ratio. Likewise, Panel C shows that higher innovation interaction with the mature phase 

(defined by age) have negative impact on the dividend payout ratio whereas less innovation 

interaction with the mature phase (defined by age)  have a positive impact on the dividend 

payout ratio. In all the Panels, both positive and negative relations of lower innovation vs higher 

innovation are statistically significant at 0.1% level. Thus, we have a strong evidence that there is 

a clear difference in dividend payout even if the firms are in the ‘same life cycle stage’ defined by 

RETE, Cashflow Patterns or the firm age.  
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7. CONCLUSIONS 

 

I provide sufficient evidence that the existing firm life cycle proxies failed to capture the 

innovation impact differentials on the dividend life cycle stages. I prove that among the two 

groups of firms, one with the higher innovation pays lower dividends in comparison to its lower 

innovative counterparts controlling for the firm characteristics such as age, size, profitability, 

growth opportunity, re/te, and the cashflow patterns. The last proxy in the life cycle literature is 

Faff et al. (2016) MLDA measure, which is the function of age, RE/TE, profit(EBIT/asset), and 

sales). It is highly likely that this proxy also suffers from the weakness as it does not account for 

the innovation intensity impact in its measurement. However, I left this part for future research. 

I believe that I present comprehensive research on the dividend life cycle and how it is 

impacted due to the degree of innovation. I establish a positive relationship between 

innovativeness and firm growth. Likewise, I examine whether the maturity hypothesis holds 

regardless of the firm life cycle proxies used. I then investigate the relationship between the 

dividend payout (as a firm’s maturity characteristic ), and the degree of innovativeness.  I 

document that the more persistent the firm innovation, the stronger the negative relationship 

between the innovativeness and the dividend payout. Finally, I empirically highlight the 

shortcomings of the existing life cycle proxies that they are not fully capturing the firm 

characteristics, especially, the impact of innovation output while defining the life cycle stages. 

Further, I study retained earnings ratio and the cash flow patterns to determine whether 

and, if so, how the life cycle of a firm affects its dividend policy. Based on the evidence presented, 

I argue that innovation intensity is the most effective measure to estimate the dividend life cycle. 

While I have provided sufficient empirical evidence (with multiple robustness checks) on the 

superiority of innovation intensity as a life cycle proxy to measure the maturity of a firm, there is 

a certain limitation that demands further exploration. For example, the approximate cut-off line 

between the life cycle stages will need to be determined based on the degree of innovation, firm 

growth rate, and the dividend payout of a firm. I conclude that while none of the life cycle proxies 

are perfect, the citation weighted innovation output effect is the key growth driver that 
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determines the firm life cycle, and surprisingly, the innovation characteristics of the firm are not 

sufficiently examined in the life cycle literature. I claim that this study contributes to the literature 

by attempting to fill the void.  Perhaps, based on this fact, I can also claim that innovation 

intensity stands better among all the life cycle proxies available on this line of literature. I provide 

convincing evidence that citation backed innovation output better captures the cross-sectional 

variability of the dividend payout during the firm maturity regardless of the life cycle proxies 

used. 

The final sequence in the empirical study is to examine whether firm innovation is the 

result of good corporate governance.  This notion has been sufficiently tested and has supporting 

evidence in the existing studies. I can still verify that the persistent innovators in the 

manufacturing sample have good corporate governance. I left this part also for future research 

because corporate governance is a separate topic and should be studied within its own merits. 
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Appendix A (Chapter 1) 
 
Chapter 1 Appendix Table A - Variable Selection  

 
  

  

Name Variable Formula Comments 

Dividend Ratio divratio  div/at   
R&D Ratio rdratio  xrd/at   
Lag R&D Intensity lagRDint  xrd/lagsale   
Amort. Intangible Ratio amratioratio  am/at Amortization of 

Intangible Assets 
includes trademark, 
patents, copyright, 

etc.. 

Citation Weighted Innovation Index tcw    I use Kogan et 
al.(2017) model 

  

Kogan Index tcw + tsm Following Kogan, I use 
also the combination of 
citation weighted and 

stock market value 
weighted patents 

output. 

 

Growth growth   lnsale - lnlagsale   
Return on Equity Ratio roeratio  roe/at   
Return on Asset Roaratio ni/at   
EBITDA Ratio ebitdaratio   ebitda/at   
SALE Ratio saleratio  sale/at   
Retained earnings to total equity reteratio  re/te   
Retained earnings to total asset retaratio   re/at   
Leverage Ratio lvrgratioratio  lvrg/at   
CAPX Ratio capxratioratio  capx/at   
Size size  log(at)   
Total Equity totequity  te   
Free Cash Flow fcf   oancf - xidoc + intpn - 

((pi-ni)/pi)*xint - capx 
  

Firm Age age current year - linkeddt   

Four Factor Innovation Index  tcw + tsm + rdratio + 
amratio 

 

 
Chapter 1 Appendix Table B – Compustat  Derived Variables References 

Variable Formula Variable Name 

 eps ni/csho Earnings per share 

 epsratio   eps/at Earnings per share to total asset 

divratio dvc/at Dividends Common/Ordinary 

 rdratio   xrd/at R&D to total asset 

 payoutratio 
 

(dvp+dvc+prstkc)/ib Payout ratio as defined by compustat 

 capxratio   capx/at CAPEX to total asset 

 roa ni/at Net income to total asset / Return on Assets 
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 roe ni/(csho*prcc_f) Return on Equity 

 be   prcc_c * csho Book Equity Value 

 mv   csho*prcc_f Market Value 

 markettobook   mkvalt/bkvlps Market to Book Value 

 cashflowratio   (ibc + dp)/at Cashflow  

 cashholdingratio che/at Cash holding 

 costofcapital xint/dlc Cost of Capital 

 lvrg  (dltt+dlc)/seq Leverage 

 lvrgratio   lvrg/at Leverage Ratio 

 tangibleassetratio   ppent/at Tangible Assets 

 tobinsq (at + (csho*prcc_f)-ceq)/at Tobin’s Q 

 totalequity pstkc+csho Total Equity 

freecashflow   oancf - xidoc + intpn - ((pi-ni)/pi)*xint - capx Free Cash Flow 

 totalequity pstkc+csho Total Equity 

retainedearningstotatalequity re/te Retained earnings to total equity 

retainedearningstotatalasset re/ta Retained earnings to total asset 

totalequitytototalasset te/ta Total equity to total asset 

cashflowtototalasset cash/ta Cash to total asset 

am Amortization of Intangible Assets Amortization of Intangible Assets includes 

trademark, patents, copyright, etc.. 

 

 

Chapter 1 Appendix Table C - Dickinson (2011) Life Cycle Stages Based on Cashflow Patterns 

Cash Flow Introductory Growth Maturity Shakeout Shakeout Shakeout Decline Decline 

Operating  - + + - + + - - 

Investing - - - - + + + + 

Financing + + - - + - + - 

 

From the table, the maturity of the firm starts when the financing cash flow reaches to zero.  
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CHAPTER 2 
 

SCALE EFFECTS ON ETFS PERFORMANCE 

 

 

1 INTRODUCTION  
 

According to Zhu (2018) “if the nature of the returns to scale is not constant, fund size is 

informative”. The paper claims that the unobserved skill is reflected in two observable measures: 

return and size. It goes on saying that the traditional framework that studies managerial skill and 

ignores size fails to fully utilize the available information. So, the paper implies that if the returns 

to scale is constant, then size doesn’t matter; otherwise, it does. Now, the question is - does 

index-tracking funds such as ETFs exhibit managerial portfolio selection skill? And according to 

Crane et al. (2018), the answer is ‘surprisingly yes’. The paper applies methods designed to 

measure mutual fund skill to a cross-section of index funds that is unlikely to exhibit managerial 

portfolio selection skill and find that the index tracking fund does exhibit skill that is persistent 

and is in similar proportion as in active funds. Therefore, a critical question arises, does ETFs have 

constant returns to scale?29 or do they have either increasing or decreasing returns to scale?30 

Zhu(2018) findings suggest that if ETFs follow increasing or diminishing returns to scale, then size 

does matter, so it demands investigation.  

The motivation also comes from the conflicting findings in the extant literature for the 

size effect on fund performance. One side of the argument suggests that size does erode fund 

performance due to diseconomies of scale ( see Chen et al. , 2004; Yan, 2008) whereas the other 

side implies that fund size has no relation to the fund performance ( see  Phillips et al., 2018; 

Pastor, Stambaugh, and Taylor, 2015; Reuter and Zitzewitz, 2015). Consistent with Chen et al. 

 
29 Evidence of constant returns to scale include Edelen, Evans, and Kadlec (2007), Elton, Gruber and Blake (2012), 
Ferreira, Keswani, Miguel, and Ramos (2013), Reuter and Zitzewitz (2015), Pástor, Stambaugh, and Taylor (2015)  
and Phillips, Pukthuanthong, and Rau (2016).   
30Evidence supporting diseconomies of scale at the fund level include Yan (2008), Busse, Jiang, and Tang (2014), 
Golez and Shive (2015), Harvey and Liu (2017), and Zhu (2018).  
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and Yan(2008), Zhu (2018) and Pastor et al. (2019) also document stronger evidence of 

decreasing returns to scale. However, older papers such as Grinbalt and Titman (1989) find mixed 

evidence that fund returns decline with fund size. Further, Berk and Green (2004) conclude that 

there should be no significant relation between fund size and performance in the cross-section. 

Unlike all these papers, Indro et al. (1999) find a nonlinear relation between fund size and 

performance. They observe that performance initially increases and then decreases in fund size. 

These results from the conventional funds are simply perplexing.  

Now, let’s take a closure look on where the broader equity ETFs falls in the fund 

categories. SEC classifies ETFs as open-end funds31. However, by design ETFs are a hybrid asset 

fund between an open-end and a closed-end fund. They share a resemblance to an open-end 

fund because units can be created when investors buy the ETF. They share a similarity to closed-

end funds in the sense that units can be freely traded regardless of whether units are created or 

not. The hybrid structure allows for a mechanism where funds can be traded continuously during 

the trading hours, and this intraday trading feature makes the ETFs as one of the most liquid 

instruments that attract high turnover clientele, such as hedge funds and high-frequency traders 

for speculation, arbitrage, and hedging (Ben-David et al., 2018).  

Furthermore, market index-tracking ETFs is expected to capture the equity market return 

by replicating the performance of a broad capitalization-weighted market index at low fees 

compare to the traditional funds. Hence, many consider the terms passive and ETF to be 

synonyms32. However, I argue that there are multiple concerns in generalizing the ‘broader 

universe of ETFs’ as a passive investment. One concern is that continuous trading of ETFs in the 

exchanges should be of no relevance for the passive investors because investing in passive funds 

supposed to be based on buy and hold strategy for the long-term investors who need to avoid 

frequent trading. Ben-David et al. (2017) test the propositions that “the mutual funds may appeal 

to short-term investors due to the absence of commission fees, while ETFs may appeal to long-

term investors due to lower management fees”, however, they find exact opposite results and 

 
31 See https://www.sec.gov/reportspubs/investor-publications/investorpubsinwsmfhtm.html 
32 See similar discussion in Blitz, David and Vidojevic, Milan, The Performance of Exchange-Traded Funds 
(September 23, 2019). Available at SSRN: https://ssrn.com/abstract=3458275   

https://www.sec.gov/reportspubs/investor-publications/investorpubsinwsmfhtm.html
https://ssrn.com/abstract=3458275
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document that investors in ETFs have significantly shorter horizons33. Another concern is that not 

every equity ETFs contain low costs. There are ETFs with expense ratios higher than many mutual 

funds, and there is no homogeneity in cost across the ETFs spectrum.   

Crane et al. (2018) cite Elton et al. (2004) to make a point that net-of-fee performance is 

persistent within S&P 500 funds due primarily to fee differences to which investor flows respond.  

Crane et al. paper further show not only performance differences across a wider set of index 

funds but also performance differences in terms of tracking error among funds with the same 

benchmark (e.g., S&P 500), suggesting heterogeneity within the same benchmark itself. Likewise, 

I argue if the objective of ETFs is to promote passive investing, then, in theory, few ETFs on the 

broader market should be sufficient for the investors; in reality, there are thousands of ETFs now 

competing for different ‘active investment strategies’ via custom-designed exchange-traded 

funds.  

In the sample for this study, the non-leveraged, non-inverse, non-active ‘equity only ETFs’ 

consists of one thousand fifty-one ETFs, and among those, only a few tracks the market index, 

and the majority of them track indices that are focusing on a particular sector or investment 

theme (value, growth, small-cap, large-cap, momentum, dividend, emerging markets, sector, 

etc.). According to Easley, Michayluk, O'Hara, and Putniņš (2018), ETFs have a median active 

share of 93.1% and median tracking error of 8.8%, relative to the passive market portfolio. 

Robertson (2018) further concludes that far from being passive, ETFs are a different form of 

delegated management, where the delegee is the index creator rather than the fund manager34.   

Therefore, with their hybrid structure under a different form of delegated management 

via index, I think that ETFs demand separate investigation of returns to scale behavior within its 

own merits.  Moreover, due to the lack of empirical study on ETFs performance in the existing 

literature, the risk-return superiority over mutual funds or the broader market is anecdotal at 

best. The gap in the literature is surprising, given the significant rapid growth in the number of 

 
33 See page 9-10 on Ben-David, Itzhak and Franzoni, Francesco A. and Moussawi, Rabih, Exchange Traded Funds 
(ETFs) (August 2017). Annual Review of Financial Economics, Volume 9, 2017 
34 See similar discussion in Blitz, David and Vidojevic, Milan, The Performance of Exchange-Traded Funds 
(September 23, 2019). Available at SSRN: https://ssrn.com/abstract=3458275  

https://ssrn.com/abstract=3458275
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ETFs debut and the asset base size growth in recent years.  Thus, in light of massive fund inflow35 

into this relatively new financial innovation lately, it is vital to empirically find out the various 

aspects of the scale effect on the exchange-traded funds' performance, including the tracking 

error.  

 

Figure 1-Increase in ETFs Size Over the Years 

 

 

Potential Factors Behind the Rapid Growth in ETFs Size: 

 

i. Diversification at a low cost 

Risk mitigation via diversification at a low cost is one of the main incentives for ETF 

investors. Hakansson (1978) and Rubinstein (1989) first imagine the idea of trading a diversified 

basket of stocks such as exchange-traded funds. They suggest that investors should be able to 

trade a diversified asset to mitigate investment risk. They imply that traditional mutual funds are 

diversified but not tradable in the stock exchanges. Stocks are tradable but not diversified. 

Therefore, ETFs are developed as a diversified ‘stock baskets’ to trade in the exchanges. The first 

ETF (S&P500 ETF ticker ‘SPY’) debut in the US market in 1993. Since then, ETFs growth story has 

 
35 See figure 1, how quickly the ETFs asset base has grown over the years 
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been phenomenal36. They have revolutionized the asset management industry by taking market 

share from traditional investment vehicles such as mutual funds and index futures (Ben-David et 

al., 2018).  

 

ii. Liquidity and Trading Flexibility 

Hill (2015) suggests ETFs provide liquid access to virtually every financial market and allow 

large and small investors to build institutional-caliber portfolios. ETFs trade on the exchanges like 

the individual stocks but seeks to replicate the performance of a particular index like an index 

mutual fund. They track a defined benchmark such as specified index, a sector of the industry, 

the stock market of a foreign country, or a specific portfolio of fixed income securities. Thus, they 

are the innovative products that put together favorable characteristics of open-ended and 

closed-ended mutual funds and present a more flexible and liquid product for larger investors37. 

Besides, high levels of transparency and the quick availability of custom-designed ETFs for the 

specific investment objectives offer additional incentives to the investors.  Likewise, ETFs have 

high tax efficiency with no material premiums or discounts to the funds' intraday net asset value 

and no fund load (entrance fees, or exit fees, like in many mutual funds).  

No doubt, these key features make the investors to warmly embrace the phenomenal 

growth of the exchange-traded funds in recent decades. However, the big question that remains 

unclear is whether these great features of ETFs are helping to create higher risk-adjusted returns 

for the investors? In other words, do ETFs beat the broader market? Likewise, do they beat the 

traditional index funds? Similarly, another aspect of interest is whether and how these features 

are impacting the tracking ability of the ETFs to their underlying indexes.   

 

 
36 see the book title "Exchange- Traded Funds and the New Dynamics of Investing." The author provides an 

extensive discussion on the history, extraordinary growth in recent years, and where it is heading as an alternative 
investment asset in the future. It mentions that the first ETF (ticker 'SPY') tracking the S&P 500 broader market 
index debut in 1993. Sector ETFs tracking the nine sectors of the S&P 500 come to the market in 1998. In the same 
year, ETFs providers introduce the first actively managed ETFs. Also, in the international market, Europe debut first 
ETF in 1998. The number of ETFs trading in the US exchanges surpassed 2000 by 2018. 
37 See broader discussion on Martin Lettau & Ananth Madhavan, 2018. "Exchange-Traded Funds 101 for 

Economists," Journal of Economic Perspectives, American Economic Association, vol. 32(1), pages 135-154, Winter. 
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The research focus and the summary of findings: 

The fund economies of scale offer cost reductions obtained from increasing asset base 

size growth. And with an increase in scale, costs per unit of output decrease. The fixed costs 

spread over more units of output. As a result, operational efficiency is often higher, with 

increasing scale leading to lower variable costs (Haslem,2017). I argue that if ETFs are a passive 

investment, then theoretically, they should hold increasing returns to scale38. If they are hybrid 

instruments, then there should be an existence of inefficiencies that may promote diseconomies 

of scale. Furthermore, as discussed, ETFs trade in the exchanges very frequently violating passive 

buy and hold philosophy, and they have a wide range of expense ratios. There are ETFs with a 

higher expense ratio than many mutual funds39.  

With all these analyses thus far, I attempt to investigate the ‘returns to scale behavior’ in 

connection to the broader ‘equity ETFs universe’ using the quantile regression approach. 

Primarily, I focus on three main research questions; first, do ETFs risk-adjusted-performance 

increases with the increase in size? (in other words, do ETFs hold economies of scale?). Second, 

does size matter for the tracking ability of the ETFs to their underlying index? And third, do other 

fund attributes (such as liquidity, expense ratio, number of holdings, fund age, lagged fund 

return, fund flows, and the investment styles (small-cap, large-cap, value, growth, core/blend, 

among others) promotes or worsens the size vs. performance relationship? In other words, do 

these factors play any role in returns to scale? A better understanding of these critical questions 

would naturally be useful for investors, and policymakers, especially in light of the enormous 

money inflows that have increased the mean size of ETFs in the recent past. I believe that the 

study will help address even more important question what matters most in ETFs selections from 

a performance perspective for both the retail and the institutional investors? 

In terms of methodology, Zhu(2018) criticizes existing literature that quantifies scale 

effects based on the ordinary least squares (OLS) approach that directly regresses fund returns 

 
38 See discussion in Adams, John C. and Hayunga, Darren K. and Mansi, Sattar, Returns to Scale in Active and 
Passive Management (December 4, 2018). Available at  SRN: https://ssrn.com/abstract=3295799   
39 See Blitz, David and Vidojevic, Milan, The Performance of Exchange-Traded Funds (September 23, 2019). 
Available at SSRN: https://ssrn.com/abstract=3458275  

https://ssrn.com/abstract=3295799
https://ssrn.com/abstract=3458275
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on lagged fund sizes. The paper raises the concern that the validity of the OLS model is based on 

the assumption that fund size is uninformative. To address the issue, I primarily use quantile 

regression to investigate the size impact on the risk-adjusted alpha and the tracking error. 

However, I perform robust testing using cross-sectional regression (using Fama McBeth(1973) 

and panel OLS with clustered standard error on ETFID) so that I can compare the results with the 

existing findings in the literature. I use a similar cross-sectional model specification as in 

Yan(2008) and Chen et al. (2004) to examine how the scale impact on ETFs performance differs 

from the conventional mutual fund’s size impact on their returns. I also investigate the 

interaction effect of various fund attributes, investment styles, and fund types on the ETF size to 

find out whether the fund attributes, investment styles, and the fund types play any role in the 

returns to scale behavior.  

The empirical findings show that ETFs, in general, do not have increasing returns to 

scale40. I find some evidence of positive returns while increasing the asset base initially; however, 

the positive returns have a distinct decreasing pattern as the size grows, and ultimately the 

positive alpha turns in to negative at the high end of the size cluster (largest quantiles). I find an 

inverse size effect i.e., size has a more substantial negative impact on the highest performing 

quantiles of the ETFs (high performing cluster). I observe that the decay in performance is steady 

as the asset base size increases. However, I find that the size impact on the tracking ability of 

ETFs to their underlying index is marginal. I observe that illiquidity and expense ratio aggravate 

the inverse relation of size and return performance, including the tracking error performance as 

well. I also notice that growth and value investment styles positively impact the size vs. 

performance relationship. Likewise, I observe that ETFs with capitalization-weighted index 

composition have a positive role, but the equal-weighted index composition has a negative 

influence on the size performance relationship.  

 The rest of the paper follows as below: a brief discussion on the related literature review 

is in section two. Section three presents the data and univariate analysis, and section four 

 
40 The results are similar to the extant literature that find evidences supporting diseconomies of scale at the fund 
level include Yan (2008), Busse, Jiang, and Tang (2014), Golez and Shive (2015), Harvey and Liu (2017), and Zhu 
(2018).  
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presents the empirical details, including the findings of the study. Finally, section five concludes 

the paper. 

 

2 LITERATURE SURVEY AND HYPOTHESIS DEVELOPMENT 

 

In the index-based fund literature, Frino and Gallagher (2001,2002) imply that the index 

represents a paper portfolio that enables the instantaneous and costless implementation of a 

passive benchmark strategy. However, other papers argue that liquidity of the stock and the size 

of the fund have an essential impact on the replication technique implemented by the index-

tracking funds such as ETFs (see Keim,1999; and Frino et al.,2004). Likewise, Dellva (2001) 

perform a comparative study between the index mutual funds and the ETFs, and document that 

ETFs are relatively unattractive to retail investors dealing in small asset due to the transaction 

costs associated with trading. The paper implies that there are little or no benefits associated 

with tax-deferred, long term retirement class investors utilizing such products.  

Likewise, some studies cite demand shocks due to market volatility as one of the potential 

factors that may cause absolute price inefficiency in ETFs (Coval and Stafford 2007). As ETFs 

trades in the exchanges, the trading cost is another concern that may contribute to the 

diseconomies of scale.41 Perold and Salomon (1991) also argue that a large asset base erodes 

performance as a result of increased trading costs due to liquidity constraints and price 

movement. They imply that returns decline while wealth created increases up to a point where 

the cost of additional trading exceeds the opportunity cost of not trading.  Thus, I argue that ETFs 

are not free of inefficiencies, especially, the higher tracking error is the evidence that ETFs have 

inefficiencies that may introduce diseconomies of scale.  In the next section, I attempt to relate 

the findings from the conventional funds’ literature in the context of the research focus ‘returns 

to scale’. 

 

 
41 Edelen, Evans, and Kadlec (2007) find that trading costs are a major source of diseconomies of scale. 
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2.1 Examining Returns to Scale  
 

 According to Gao and Livingston(2008), scale economies enable the cost per unit of 

output to decrease when the asset base increases. Likewise, Latzko (2002) document that cost 

economies of scale from asset growth go to fund investors as lower expense ratios. Tufano and 

Sevick (1997) also agree with the notion that the fund expense ratio declines with the fund size. 

So, there is a general consensus that a lower expense ratio generally helps increase the funds’ 

asset base.  

Fund size represents the total amount of capital committed by the investors of the Fund. 

Chen et al. (2004) investigate the effect of size on the performance of actively managed funds for 

the years 1962–1999. They use cross-sectional variation to see whether performance depends 

on the scalability of the fund. They find that fund returns both before and after fees, and 

expenses decline with the lagged fund size. The paper explains that the association of size vs. 

fund alpha is most notable among funds that have small and illiquid stocks implying that scale 

effects are related to liquidity. Chen’s paper further argues that the lack of liquidity requires large 

funds to invest in less-than-best ideas with larger positions that decrease performance. The paper 

also mentions that the fund size may be correlated with other factors such as fund age, the 

number of holdings, investment styles, etc. that these factors can also drive the return 

performance.  

Consistent with Chen's observation, few other papers also find that size erodes fund 

performance because of diseconomies of scale due to trading costs42 related to liquidity or price 

impact (Lowenstein, 1997). Likewise, Pollet and Wilson (2008) find evidence that when funds 

become larger, they failed to diversify into new assets. They argue that instead of adequately 

diversifying, those funds just scale up their current asset allocation. They conclude that illiquidity 

makes a large fund to have to invest in non-optimal assets, thereby eroding performance. Becker 

and Vaughan (2001) also argue that as a fund grows larger, it becomes difficult to execute desired 

reallocation resulting reduction in the speed and nature of portfolio adjustment that ultimately 

 
42 Edelen, Evans, and Kadlec (2007) find that trading costs are a major source of diseconomies of scale. 
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impairs fund performance. Similarly, Chu (2009) study the impact of size on tracking error in the 

Hong Kong market and document that the magnitude of the tracking errors has a negative 

relation to the size of ETFs. Chu’s study also documents a positive relation to the expense ratios 

of the funds.   

In recent research, Zhu (2018) finds weaknesses in Pastor et al. (2015), which document 

that there is no relation between size and performance. Zhu argues that the method of Pástor et 

al. suffers misspecification bias resulting from a model restriction, which may be problematic for 

the fund size process. Unlike Pástor et al., Zhu finds evidence of diseconomies of scale at the fund 

level after correcting for the misspecification. One caveat, though, Zhu’s research includes only 

funds that fall into one of the nine size categories (small, mid, and large-capitalization stocks) and 

style (value, blend, and growth) and excluded bond, international, sector, money market, and 

other non-equity funds. However, the implications of the data restriction are unclear. Reducing 

the number of investment categories may yield a reduction in potential misclassifications, but it 

may also compromise the robustness of the results. Nevertheless, Pastor et al. (2019) discover 

additional evidence of decreasing returns to scale and support Zhu’s findings.  

To sum up, first, there is no broad consensus on the size impact on fund performance 

based on the conventional funds’ researches, and second, when it comes to ETFs, there is not 

even an economically meaningful empirical research available yet in the literature. Therefore, I 

argue that the research has a unique contribution to the literature that I provide a broader 

perspective on ‘the returns to scale behavior’ based on the evidence from the ‘large universe of 

equity exchange-traded funds’. 

 

 2.2 The role of ‘other’ investment factors on the size vs. performance relationship  
 

Yan (2008) reconfirmed previous findings from Chen et al.'s (2004) that performance 

declines with fund size, and fund liquidity plays a mediating role in size vs. return relationship. 

The study also observes that it is both the fund size and the liquidity that is combinedly 

responsible for causing performance to decrease. His research also finds trading costs as one of 
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the factors contributing to the diseconomies of scale. Pastor et al. (2018) find that funds with a 

larger size, lower expense ratio, and higher turnover hold more-liquid portfolios. Their findings 

also show that better-diversified funds hold less-liquid stocks. They study tradeoffs among active 

mutual funds' characteristics and confirm model-predicted tradeoffs that larger funds are 

relatively cheaper. Nevertheless, based on their new measure of activeness, larger and less 

expensive funds are not active compare to the small funds.  

Elton, Gruber, and Blake (2012) propose that the decrease in expense ratio can offset the 

diseconomies of scale of the large funds. They state that fund size has no impact on future fund 

performance. Rompotis (2012) study the impact of expense ratio on the ETFs tracking error and 

finds no statistically significant relationship between tracking error and the expense ratio. The 

paper argues that since the expense ratios for the ETFs do not change that often (and sometimes 

not at all) during the data period investigated, there may not be a statistically significant 

relationship between tracking error and the expense ratio. The expense ratio can be omitted for 

several ETFs because of collinearity. 

Similarly, other researches such as Pastor et al. (2018); Carhart (1997); Elton, Gruber & 

Blake (2012) have shown that expense ratio declines with size and decline with success, with the 

top-performing funds decreasing fees and the poor performing funds increasing fees. Yan (2008) 

cites Chan and Lakonishok (1995) and Keim and Madhavan (1997) to make an argument 

that investment style can provide additional insight into the nature of economies of scale in fund 

management. The paper document that the adverse effect of scale on performance is more 

pronounced among low book to market, i.e., growth funds. Further, Chen et al. (2004) use cross-

sectional variation to see whether performance depends on lagged fund size. They find an inverse 

relationship between the lagged asset base and the risk-adjusted returns. Thus, many ‘other’ 

funds attribute, as highlighted in this paragraph, may also play a mediating role in the scale vs. 

performance relationship that needs empirical investigation.  

2.3 Hypothesis Development   

 

Theoretically, when a fund performs well every year, the money inflows grows, the size 

increases, and the cost decreases. The scale economies offer further insights into the role of 
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other investment factors that include the importance of the liquidity, number of holdings, age, 

and various investment styles on size vs. performance relation. The scale is also often associated 

with the lagged fund flow, lagged fund return, and the lagged fund size. Lower expense ratios 

and higher liquidity drive the inflows and which in turn help determine the persistence of 

performance that is expected to increase the asset base. Similarly, as ETFs holdings are 

transparent, the lower information asymmetry helps mitigate the investment risks and 

contributes to the decrease in cost that helps increase in fund inflows. However, what is unknown 

is how the increase in scale affects ETFs risk-adjusted return performance. Besides, scale impact 

on the tracking ability of the ETFs with their benchmark while increasing their asset base growth 

is also another critical aspect of empirical investigation.  

As discussed earlier, we cannot rule out the diseconomies of scale in ETFs because of its 

hybrid nature and varying degree of activeness among the broader equity ETFs universe. The 

fund companies custom design ETFs to achieve specific investment objectives, including active 

strategies. Besides, ETFs trade heavily in the exchanges violating the passive strategy of buy and 

hold. The heavy intraday trading may also introduce other inefficiencies due to demand shocks 

and market volatilities. Furthermore, some industry practitioners often cite low expense ratios 

as the reason to invest in ETFs; however, if that is true, I argue that it is not in alignment with the 

economic theory that often said, ‘you get what you pay for.’ 

Therefore, based on all these analyses thus far and based on the literature survey, I 

examine the increasing returns to scale hypothesis focusing on non-active, non-inverse, and non-

leveraged equity ETFs. I test whether the scale has a positive impact on ETFs performance in 

terms of risk-adjusted return as well as in terms of tracking error. I subdivide the full sample into 

four size quantiles and then examine the performance differential in those quantiles.  Further, I 

use quantile regression to see the size impact on the lowest-performing funds vs. the highest 

performing funds. In addition, I analyze the pattern by examining the size effect on the 10th, 25th, 

50th, 75th, and 90th percentile of the performance metrics. Finally, to investigate the reasons why 

ETFs failed to hold the increasing returns to scale, I perform an exploratory investigation on 
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various investment factors that potentially play a mediating role43 and drives the relationship 

between the scale economies and ETFs performance.  

 

3 DATA AND THE UNIVARIATE ANALYSIS 

 

I examine the US-listed ETFs because the US ETF industry is relatively matured in 

comparison to the financial markets in other countries. The primary source of time-series data is 

the Thomson Reuters DataStream database, and some of the cross-sectional variables are from 

the Morningstar and ETFDB.COM44. The data sample period is from 2009 through 2018 (10 years). 

The total number of ETFs in the sample is 1051. I use the monthly time series data for the ETFs 

that have inception dates from 1993 through 2015. I exclude ETFs created after 2015 to ensure 

that I have three years of minimum data. I exclude bonds, currency, commodities, inverse, 

leveraged, and volatility ETFs. I include only non-leveraged equities ETFs that trade in the US 

stock exchanges. Further, I exclude ETFs that are marked as ‘active.’ The variables list is shown in 

the variable selection table (see in the appendix). Edwin J. Elton et al. (2001) suggests that it is 

not a good idea to make inferences based on the performance of small funds due to a potential 

upward bias in the reported returns among the observations consisting of small funds. This bias 

is problematic for the analysis in this study as well because the focus of the research is the 

relationship between scale economy and performance. Therefore, I exclude ETFs with less than 

$15 million in total net assets.  

Table 1 shows the summary statistics for the ETF sample. TNA is the total net assets (in 

millions). The expense ratio is the total annual management fees and expenses divided by year-

end TNA. Liquidity is proxied from normalized bid-ask price spread45.  Flow is the percentage of 

new fund flow into the Exchange Traded Fund over the period under investigation. Age is the 

 
43 See earlier discussion in literature review, Chen et al(2004) and Yan(2008) among others highlights how other 
factors such as fund attributes like liquidity, and investment styles can worsen or promotes size performance 
relationship. 
44 Please, see the variable selection table in the appendix. 
45 I follow Hameed et al(2010) to create normalized bid-ask spread.  

 Hameed, A., Kang, W., Viswanathan, S., 2010. Stock market declines and liquidity. Journal of Finance 65, 257–293. 
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number of years since the inception of the ETF. The number of holdings is the number of stocks 

in an ETF. NAV is the net asset value. Volume Turn Over is the total trade transactions that 

occurred in a month. Historical volatility is the five-year standard deviation of the asset return. 

Premium/Discount is the difference between the NAV and the current market value of the ETFs. 

Lagged variables indicated are the previous time period value for the respective variables. Net 

Asset Return is the monthly ETF return after the expense ratio.  
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Table 1 - Descriptive Statistics 

Table 1 shows the descriptive statistics for the ETF sample, excluding ‘active ETFs’. TNA is the total net assets under management 
in millions of dollars. Expense Ratio is the total annual management fees and expenses divided by year-end TNA. Liquidity is 
proxied from normalized bid-ask price spread.  Flow is the percentage of new fund flow into the Exchange Traded Fund over 
period under investigation. Age is the number of years since the establishment of the ETF. The number of Holdings is the number 
of stocks in an ETF. NAV is the net asset value. Volume Turn Over is the total trade transactions that occurred in a month. 
Historical Volatility is the five-year standard deviation of the asset return. Premium/Discount is the difference between the NAV 
and the current market value of the ETFs. Lagged variables indicated are the previous time period value for the respective 
variables. Net Asset Return is the monthly ETF return after the expense ratio. The ETF sample is from January 2009 to December 
2018. I include non-leveraged equity ETFs with TNA more than $15 million. I sort the total net assets and create the size quintiles. 
In the table, the left side provides the summary statistics of the full sample, and the right side provides the descriptive statistics 
of the size quantiles.  
  

Summary Statistics Descriptive Statistics by Size (lnTNA) Quantiles 

Variables        N  Mean SD Median Min Max Size1 
Mean 

Size2 
Mean 

Size3 
Mean 

Size4  
Mean 

TNA 87135 2085.474 8759.851 264.5 15 306670.6 43.57181 157.7836 536.0237 7604.821 

LogTNA 87135 5.776646 1.786539 5.57784 2.70805 12.63353 3.664858 5.008457 6.212919 8.220756 

AGE 87004 12 4 13 3 27 10 11 12 15 

No.Holdings 86346 334 651 101 0 8572 199 246 323 562 

TradVol 87135 26134.48 179131.8 1290 0 8979386 429.9184 1478.634 6700.485 95932.71 

Expratio 86346 0.442309 0.374474 0.42 0.03 9.62 0.5311368 0.4931522 0.4389424 0.3083885 

Norm.BASpread 76325 0.006443 0.075306 0.00098 -0.0022 1.980101 0.0098389 0.0077896 0.0056212 0.0026229 

HistVol 87135 0.19385 0.10435 0.1762 0 1.1737 0.2000133 0.1999479 0.1949981 0.1804412 

NAV 54478 51.01998 36.39026 39.8174 1.1867 372.53 34.84094 44.09509 52.3524 69.83654 

NOSH 87135 35220 104541 6550 50 1696702 1645 4870 14267 120102 

PremDisc 54478 0.513868 3.913892 0.0065 -44.78 65.8259 0.1353033 0.4146493 0.8679351 0.6009388 

VIX 87135 17.39478 6.41507 15.73 9.51 46.35 17.73408 17.61208 17.27957 16.95334 

Alpha_CAPM 82133 -0.005552 0.020155 -0.00272 -0.326 0.2549092 -
0.0109822 

-
0.0053383 

-
0.0039831 

-
0.0026382 

NetExcRet 85095 -0.032358 0.07698 -0.02018 -0.4901 0.5610936 -0.031527 -
0.0295469 

-
0.0316673 

-
0.0365979 

LagFlow 84666 0.398181 48.15397 0 -0.9996 12805 0.330296 0.5577195 0.6709446 0.0307266 

 

 

The mean size for the overall sample is $2085 million. The smallest ETF has a value of $15 

million, and the largest ETF has a value of $306670 million. The average age of all sample funds 

is 12 years. The average number of stocks in an ETF is 334. The average monthly trading volume 

is 26134 transactions. The mean expense ratio of the sample ETFs is 0.44%.  I calculate the 

normalized bid-ask spread using the formula: spread = (ask price/bid price - 1)/midpoint of ask 
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price plus bid price46. The average normalized spread is 0.6%. Likewise, the historical volatility is 

19%. The average number of shares outstanding in the sample ETFs is 35220.  The average CAPM 

alpha is negative 0.5%, and the average net excess return is negative 0.3%. The average lagged 

fund flow is 39%.  

I sort the total net assets and create the size quantiles. In Table 1, the left side provides 

the summary statistics of the full sample, and the right side provides the descriptive statistics of 

the size quantiles.  The summary statistics report the number of observations, the monthly time-

series cross-sectional mean, the standard deviations, median, minimum, and maximum value for 

the full ETFs sample. The descriptive statistics on the right side provide mean values comparison 

by size quantiles. I create size quantiles (smallest to largest) sorted by the total net asset. As 

observed from Table 1 under descriptive statistics, size represented by total net asset is in 

increasing order. The mean size for quantile 1 is $43 million, for quantile 2 is $157million, for 

quantile 3 is $536 million, and quantile 4 is $7604 million.  Under the descriptive statistics, as the 

size increases, the bid-ask spread shows decreasing. This pattern is consistent with Chordia et al. 

(2001) and Jones(2002) that documents that bid-ask spreads of US equities decline substantially 

over the past decade. The same is the case for expense ratio, historical volatility, and the CAPM 

alpha. On the other hand, while size increases, the trading volume, net asset value (NAV), age, 

the number of holdings, the number of shares outstanding, and the premium or discount are 

increasing.  I do not see a consistent pattern for historical volatility. The variables of interest are 

reported in the appendix table ‘Variable Selection.’ 

The subsequent univariate analysis is to examine the correlation matrix. Table 2 reports 

the correlation matrix among the fund attributes and the lagged asset returns. I take cross-

sectional correlations on monthly data and report the time-series averages of the cross-sectional 

correlations.  

 
46 See Hameed et al. (2010) 
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Table 2 - Correlation Matrix 

Table 2 present the correlation matrix of the variables of interests TNA is the total net assets under management in millions of dollars. Expense Ratio is the total annual management fees 
and expenses divided by year-end TNA. Liquidity is proxied from normalized bid-ask price spread.  Flow is the percentage of new fund flow into the Exchange Traded Fund over period 
under investigation. Age is the number of years since the establishment of the ETF. The number of Holdings is the number of stocks in an ETF. NAV is the net asset value. Volume Turn Over 
is the total trade transactions that occurred in a month. Historical Volatility is the five-year standard deviation of the asset return. Premium/Discount is the difference of the NAV and the 
current market value of the ETFs. Lagged variables indicated are the previous time period value for the respective variables. Gross excess return is the asset return minus risk free rate 
before expense ratio, and the Net Asset Return is the monthly ETF return after expense ratio. The ETF sample is from January 2009 to December 2018. I include non-leveraged equity only 
ETFs with TNA more than $15 million.   
 
 

  TNA LogTNA Expratio AGE TradVol NHoldings HistVol NBASpread NAV NetExcRet alpha_capmp lagRet LagFlow 

TNA 1             

LogTNA 0.5097 1            

Expratio -0.1372 -0.2502 1           

AGE 0.2746 0.4713 -0.1247 1          

TradVol 0.5749 0.3437 -0.037 0.2406 1         

NHoldings 0.1569 0.2643 -0.2101 0.012 0.0495 1        

HistVol -0.0473 -0.1036 0.1423 0.1761 0.1006 -0.1777 1       

NBASpread -0.0239 -0.0802 0.0329 -0.0401 -0.0181 -0.0165 0.0331 1      

NAV 0.3534 0.4178 -0.2506 0.367 0.084 0.1288 -0.1524 -0.0502 1     

NetExcRet -0.0153 -0.0016 -0.0755 0.1015 -0.0043 0.0248 0.1147 -0.0142 -0.0096 1    

Alpha_capmp 0.0826 0.2459 -0.2983 0.3923 0.032 0.0793 0.0385 -0.0428 0.2363 0.5211 1   

LagRet 0.009 0.0129 -0.0092 0.0108 -0.0062 0.0014 -0.0039 -0.0076 0.0211 0.3155 0.0294 1  

LagFlow -0.0022 -0.0051 0.0029 -0.0026 -0.0021 -0.0035 -0.0058 -0.0005 -0.0066 -0.0011 -0.0042 0.0016   1.0000   
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As observed in the table, TNA and log(TNA) have similar relationships with other variables. The 

expense ratio, historical volatility, normalized bid-ask spread, net excess return, and the lagged 

fund flow have a negative relation with the size. On the other hand, age, trading volume, number 

of holdings, NAV, CAPM alpha, and lagged gross return have a positive relationship with the size. 

Similarly, the normalized bid-ask spread has an inverse relation with turnover, the number of 

holdings, and it has a direct relation with expense ratio, nav, age, historical volatility, and asset 

return. Likewise, expense ratio has a positive relation with fund flow and historical volatility, and 

it has a negative relation with turnover ratio, nav, age, number of holdings, and asset return.  

 

4 EMPIRICAL 

 

Zhu (2018) suggests that the natural log of FUNDSIZE is a better measure to study the 

scale effect because of severe (positive) skewness in dollar FUNDSIZE. As such, I use the log of 

the total net asset (logTNA) as a proxy for the ETF size. Following a similar line of literature, 

including Zhu’s paper, the base model is as shown below : 

 

𝑟𝑖𝑠𝑘𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑎𝑙𝑝ℎ𝑎  = 𝛼 + 𝛽(𝐿𝑜𝑔𝑇𝑁𝐴𝑖,𝑡) +  u𝑖,𝑡 

 

As the paper explains, this model allows for 𝛽 = 0, which is constant returns to scale, and 

𝛽 > 0, which is economies of scale. The paper argues that these two situations are theoretically 

unrealistic because a non-negative 𝛽  implies that a fund’s investment strategy is infinitely 

scalable. According to the paper, a large fund would become the market and hence a zero-gross 

alpha. Likewise,  𝛽 < 0 is considered a diminishing return to scale. In the model, the dependent 

variable is the risk-adjusted return, and the independent variable is the ETF size proxied by the 

log of the total net asset. The term u𝑖,𝑡 represents the unobserved variable and the error term 

together. I extend this base model, as shown in equation 3.  
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Chen et al. (2004) explain that the fixed-effect approach is subject to a regression to the 

‘mean bias.’ The paper caution that a fund with a year or two of lucky performance will 

experience an increase in fund size, but performance regress to the mean, will lead to a spurious 

conclusion that an increase in fund size is related to a decrease in fund returns. The paper claims 

that measuring the effect of fund size on performance using cross-sectional regressions is less 

subject to such bias. Therefore, I chose quantile and the cross-sectional regression for empirical 

research. I adopt two main approaches based on the extant literature: first, as a preliminary 

analysis, I use a cross-sectional regression approach, and then I use a quantile regression 

approach to investigate the scale effect in a more detailed setting. I use quantile regression to 

study the scale impact on the tracking error as well.  

 

Study 1: Scale Effect on ETFs Performance  - Cross-Sectional Regression Approach   

 

In this approach, the purpose is to analyze the performance of ETF securities through the 

lens of the expected return theory, such as the Capital Asset Pricing Model (CAPM) and Factor-

Based Asset Pricing model. The factor values and the risk-free rate are from the Fama French 

website. Asset Return is the monthly ETF return. I calculate the excess return as asset return 

minus the risk-free rate.  

 

There are two steps involved in the process. First, I run the factor regressions, as shown 

in equations one and two below:  

 

CAPM:  𝑅𝑖 - 𝑅𝑓 = 𝛼𝑖 + 𝑏𝑖 (𝑅𝑚 - 𝑅𝑓)  + ɛ𝑖       --- (1) 

4-Factor Carhart: 𝑅𝑖 - 𝑅𝑓 = 𝛼𝑖 + 𝑏𝑖 (𝑅𝑚 - 𝑅𝑓) + 𝑠𝑖 SMB + ℎ𝑖  HML + 𝑤𝑖 WML + ɛ𝑖  --- (2) 

Where: 𝑅𝑖 − 𝑁𝑒𝑡 𝑎𝑠𝑠𝑒𝑡 𝑟𝑒𝑡𝑢𝑟𝑛,      𝑅𝑓 − 𝑅𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 𝑝𝑟𝑜𝑥𝑖𝑒𝑑 𝑏𝑦 30 𝑑𝑎𝑦 𝑡𝑟𝑒𝑎𝑠𝑢𝑟𝑦 𝑛𝑜𝑡𝑒 

 

Then I save the estimated constant of the above regression generating the rolling estimated monthly 

alpha distributions for each ETF in the dataset.   Once I have the alpha distribution for each fund, I then 

perform the cross-sectional regression using risk-adjusted factor-alpha that I get from equation 1 and 
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equation 2 above as dependent variables, and the log of the total net asset as the leading independent 

variables. I add control variables in accordance with the related existing literature. 

 

𝑟𝑖𝑠𝑘𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑎𝑙𝑝ℎ𝑎  = 𝛼 + 𝛽(𝐿𝑜𝑔𝑇𝑁𝐴𝑖,𝑡) + 𝛽𝑖,𝑡(𝑋𝑖,𝑡)+ ɛ𝑖,𝑡, where, 

𝑋𝑖,𝑡 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + ɛ𝑖  --- (3) 

 

I run the regression on each of the ETFs size quantiles and present the results of equation 3 in 

Table 3. The Table provides information on how the performance benchmarks compare when 

the ETFs asset growth increases. If the alpha coefficient is positive, the expected excess return 

on the fund is automatically higher than the risk-adjusted market return.  
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Table 3 - Scale Effect on ETFs Performance (A Cross-sectional Approach) 

Table 3 shows the cross-sectional regression estimates of the risk-adjusted alpha regressed on ETF size measured by total net 
asset size (logTNA). I use OLS regression (with clustered standard errors on ETFID) and Fama-MacBeth (1973) cross-sectional 
regression. TNA is the total net assets under management in millions of dollars. Expense Ratio is the total annual management 
fees and expenses divided by year-end TNA. Liquidity is proxied from normalized bid-ask price spread.  Flow is the percentage 
of new fund flow into the Exchange Traded Fund over the period under investigation. Age is the number of years since the 
establishment of the ETF. The number of Holdings is the number of stocks in an ETF. NAV is the net asset value. Volume Turn 
Over is the total trade transactions that occurred in a month. Historical Volatility is the five-year standard deviation of the asset 
return. Premium/Discount is the difference of the NAV and the current market value of the ETFs. Lagged variables indicated are 
the previous time period value for the respective variables. Net Excess Return is the monthly ETF return after the expense ratio. 
The ETF sample is from January 2009 to December 2018. I include non-leveraged equity, only ETFs with TNA more than $15 
million. The dependent variables are risk-adjusted alpha (CAPM and Carhart four-factor). The main independent variable is the 
size of the asset under management measured by log( TNA), and control variables are Expense Ratio, Fund Age, Liquidity,  
Trading Volume Turnover, Number of Holdings, Historical Volatility, Lagged Excess Return, and the  Lagged Fund Flow. Each 
regression in Panel A and Panel B is run on four size quantiles. Panel A is from the Fama-McBeth regression. Panel B is the result 
of the OLS regression.  The first four columns are for CAPM Alpha, and the second four columns are for Carhart Four Factor 
Alpha. In both cases, the log of total net asset is the proxy for fund size and is the main independent variable. I control for 
different investment styles and fund types dummies, as shown in the table. 
 
Table 3 Panel A  :  Fama McBeth(1973) Cross-Sectional Regression by Size Quantiles 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 CAPM_Alpha CAPM_Alpha CAPM_Alpha CAPM_Alpha Carhart 

Alpha 
Carhart 
Alpha 

Carhart 
Alpha 

Carhart 
Alpha 

LogTNA 0.656*** 0.274*** 0.211*** -0.0333 0.570*** 0.293*** 0.192*** 0.00843 
 (5.56) (4.73) (6.28) (-1.11) (4.89) (5.02) (6.63) (0.37) 
         
Expratio -0.871*** -1.049*** -1.085*** -0.536*** -0.972*** -1.202*** -1.194*** -0.552*** 
 (-6.91) (-29.42) (-21.06) (-7.11) (-9.61) (-20.66) (-23.37) (-7.20) 
         
AGE 0.200*** 0.0897** 0.0537* 0.0530*** 0.171*** 0.0787** 0.0567* 0.0516*** 
 (4.54) (3.08) (2.30) (6.70) (3.85) (2.95) (2.65) (8.64) 
         
LogTVOL -0.178*** -0.147*** -0.112*** -0.0804*** -0.183*** -0.151*** -0.112*** -0.0830*** 
 (-5.39) (-5.83) (-6.75) (-6.23) (-4.75) (-5.80) (-7.69) (-6.22) 
         
NHoldings -0.000118 -0.000228*** -0.0000577* 0.000224 -0.000309* -

0.000284*** 
-

0.000107*** 
-0.000268** 

 (-1.11) (-12.56) (-2.17) (1.42) (-2.52) (-13.43) (-4.26) (-2.69) 
         
NBASpread -26.69*** -69.84*** -101.6*** -135.0*** -38.51*** -81.33*** -95.99*** -188.3*** 
 (-3.62) (-11.02) (-7.52) (-5.50) (-5.98) (-9.66) (-6.77) (-6.24) 
         
PremDisc -0.0870 0.0159*** -0.0272 0.00435 -0.0727 0.0224*** -0.0487 0.00510 
 (-1.16) (7.00) (-1.08) (1.44) (-0.71) (8.87) (-1.50) (1.85) 
         
LNetExRetPctg 0.0456*** 0.0309*** 0.0240*** 0.0190 0.0368*** 0.0260*** 0.0181** 0.0123* 
 (6.40) (4.30) (3.80) (1.79) (5.22) (4.01) (3.19) (2.24) 
         
HistVol -2.725*** -1.011 -1.533*** -0.273* -2.958*** -0.612 -1.743*** -0.0160 
 (-7.10) (-1.86) (-4.38) (-2.60) (-6.78) (-1.15) (-4.98) (-0.15) 
         
GrowthDum 0.204 0.867*** 1.042*** 0.328*** 0.156 0.796*** 0.977*** 0.338*** 
 (1.02) (12.51) (16.77) (6.98) (1.38) (12.38) (16.53) (7.12) 
         
ValueDum 0.717*** 0.613*** 0.764*** 0.198*** 0.790*** 0.583*** 0.747*** 0.225*** 
 (4.78) (6.95) (12.15) (6.00) (5.14) (6.61) (11.36) (6.35) 
         
CoreDum 0.395*** 0.488*** 0.740*** 0.225*** 0.362*** 0.536*** 0.771*** 0.242*** 
 (7.61) (5.33) (8.53) (6.64) (9.89) (5.66) (8.69) (6.86) 
         
IndCapWtD 0.129 -0.0585* -0.0438* -0.0418** 0.0676 -0.149*** -0.0501** -0.0373** 
 (1.64) (-2.22) (-2.53) (-3.34) (0.68) (-3.75) (-2.96) (-3.24) 
         
IndEqWtD 0.130** -0.0314 0.218*** 0.162*** 0.0676 -0.125*** 0.198*** 0.162*** 
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 (2.93) (-1.52) (8.57) (6.35) (0.94) (-4.70) (7.29) (6.41) 
         
_cons -4.189*** -1.697* -1.474* -0.0993 -3.172*** -1.497* -1.312* -0.108 
 (-4.17) (-2.60) (-2.66) (-0.74) (-3.55) (-2.40) (-2.62) (-0.81) 

N 
adj. R-sq       

8948 
0.4926 

10460 
0.5671 

11539 
0.5100 

12828 
0.7668 

7624 
0.4919 

9614 
0.5575 

11024 
0.5139 

11806 
0.7668 

t statistics in parentheses   * p < 0.05, ** p < 0.01, *** p < 0.001 

 
Panel B:  OLS by Size Quantiles 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 AlphaCAPM AlphaCAPM AlphaCAPM AlphaCAPM AlphaCarhart AlphaCarhart Alpha_Carhart Alpha_Carhart 

LogTNA 0.488*** 0.184*** 0.205*** 0.117*** 0.375*** 0.218*** 0.166*** 0.106*** 
 (8.77) (4.55) (6.80) (12.24) (6.17) (5.23) (5.54) (10.48) 
         

Expratio -0.740*** -0.969*** -1.050*** -1.092*** -0.728*** -1.001*** -1.141*** -1.118*** 
 (-16.63) (-42.26) (-24.72) (-27.77) (-16.09) (-43.65) (-26.99) (-27.11) 
         

AGE 0.297*** 0.141*** 0.0979*** 0.0620*** 0.276*** 0.130*** 0.0979*** 0.0670*** 
 (44.38) (38.17) (33.64) (38.01) (37.70) (33.96) (34.01) (39.71) 
         

LogTVOL -0.0820*** -0.0892*** -0.0821*** -0.149*** -0.108*** -0.0895*** -0.0768*** -0.134*** 
 (-3.74) (-7.04) (-8.23) (-24.57) (-4.50) (-6.91) (-7.72) (-21.12) 
         

NHoldings 0.000314*** -0.0000958* 0.0000105 -0.0000158* 0.000105 -0.000179*** -0.0000126 -0.0000228** 
 (3.68) (-2.54) (0.47) (-2.17) (1.09) (-4.63) (-0.49) (-2.67) 
         

NBASpread -5.010* -1.586* -1.524 -1.494 -10.13*** -1.550 -1.439 -1.913* 
 (-2.54) (-2.40) (-1.82) (-1.93) (-3.31) (-1.61) (-1.77) (-2.39) 
         

lnVIX -0.661*** -0.200*** -0.220*** -0.140*** -0.675*** -0.146** -0.165*** -0.0461 
 (-7.22) (-3.78) (-4.76) (-5.20) (-6.78) (-2.66) (-3.60) (-1.63) 
         

PremDisc 0.0461*** -0.0000826 0.00476* 0.00582*** 0.0473*** 0.00711 0.00630** 0.00702*** 
 (3.91) (-0.02) (2.01) (3.99) (3.39) (1.57) (2.60) (4.28) 
         

LNetExRetPctg 0.178*** 0.129*** 0.121*** 0.0955*** 0.175*** 0.125*** 0.118*** 0.0967*** 
 (62.19) (74.42) (79.88) (106.11) (55.92) (69.77) (78.24) (102.59) 
         

LagFlow -0.00162 -0.000318 0.000109 -0.000273 0.000477 -0.000308 0.000170 -0.000279 
 (-1.10) (-0.42) (0.22) (-0.71) (0.18) (-0.41) (0.36) (-0.72) 
         

GrowthDum 0.784*** 0.782*** 0.974*** 0.598*** 0.838*** 0.737*** 0.948*** 0.665*** 
 (4.51) (10.41) (15.86) (18.79) (4.66) (9.72) (15.47) (19.28) 
         

ValueDum 0.646*** 0.425*** 0.668*** 0.363*** 0.876*** 0.450*** 0.683*** 0.456*** 
 (4.53) (6.31) (10.62) (11.15) (5.85) (6.58) (10.86) (12.98) 
         

CoreDum 0.0558 0.336*** 0.522*** 0.371*** 0.0931 0.397*** 0.569*** 0.439*** 
 (0.94) (10.49) (17.97) (20.28) (1.38) (11.35) (18.52) (19.94) 
         

IndCapWtD 0.228*** -0.0860** -0.129*** -0.0759*** 0.246*** -0.171*** -0.125*** -0.0687*** 
 (4.57) (-2.92) (-5.04) (-4.13) (4.52) (-5.63) (-4.95) (-3.66) 
         

IndEqWtD 0.123 -0.109** 0.128** 0.370*** 0.143* -0.191*** 0.103** 0.396*** 
 (1.80) (-2.85) (3.19) (12.05) (1.98) (-4.88) (2.59) (12.07) 
         

_cons -3.181*** -1.458*** -1.432*** -0.0746 -2.297*** -1.549*** -1.299*** -0.396*** 
 (-10.28) (-6.05) (-6.41) (-0.79) (-6.79) (-6.22) (-5.82) (-3.99) 

N 
adj. R-sq 

8506 
0.486 

9966 
0.531 

11074 
0.500 

12310 
0.602 

7259 
0.474 

9180 
0.528 

10563 
0.510 

11379 
0.607 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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I mainly use the regression framework proposed by Fama McBeth (1973), to study the 

impact of size on risk-adjusted fund alpha. Table 3 Panel A reports the results. I estimate a cross-

sectional regression of risk-adjusted alpha and report the average regression coefficients. I adjust 

the t-statistics for the serial correlation using the Newey-West Method. I provide evidence that 

both CAPM alpha and four-factor Carhart alpha are positively related to ETF size; however, the 

size impact shows a distinct decreasing pattern as the size quantile grows. The findings support 

the existing literature such as Yan (2008), Harvey and Liu (2017), and Zhu (2018), among others, 

that provide evidence for the diminishing returns to scale.  

As shown in Table 3, Panel A, on the largest size quantile, CAPM alpha has a negative 

relationship with the ETFs size. That means the largest ETFs have inferior performance compare 

to the risk-adjusted market return.  Panel A also reports that expense ratio, the log of trading 

volume, illiquidity (as measured by normalized bid-ask spread), and historical volatility have a 

negative relation with the risk-adjusted returns. On the other hand, age, lagged asset return, 

investment styles such as value and blend, and equal-weighted index composition have a 

statistically significant positive relationship with the size. The literature also mentions that the 

Fama McBeth approach addresses the possible issue of other fund attributes correlating with the 

fund size47.   

As robust testing, I also use the pooled panel OLS regression (both robust and clustered 

standard error on the ETF ID). I find the same results from both the regressions - robust as well 

as the clustered standard error on ETFs. I report the results of panel OLS in Panel B. The 

coefficient of interest is the ‘loading’ on fund size (log of TNA), which captures the relationship 

between fund size and the fund performance, controlling for other fund attributes.  The results 

in Panel B are comparable with the results in Panel A. In this case also, expense ratio, log of 

trading volume, illiquidity (as measured by normalized bid-ask spread), and historical volatility 

have a negative relation with the risk-adjusted returns. Likewise, age, lagged asset return, 

investment styles such as value, and blend have a statistically significant positive relationship 

with the size. The positive relation between the lagged fund return and fund risk-adjusted-

 
47 See Chen et al(2004), Yan(2008) 
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performance indicates that there is some persistence in fund performance. The results are 

statistically significant at 0.1% level. The decreasing effect of size on fund performance is 

consistent in both Fama McBeth as well as in OLS results.  

Chen et al. (2004) caution that there could be a problem when using a cross-sectional 

variation. The paper mentions that funds of different sizes may be in different styles. It explains 

that small funds might be more likely than large funds to pursue small stock, value stock, and 

price momentum strategies, which have been documented to generate abnormal returns. To 

address these issues, they suggest adjusting the fund performance by various benchmarks that 

can mitigate the heterogeneity in fund styles. As such, in the study, I cross-compare the 

benchmark adjusted returns using CAPM and the Carhart four-factor models. In addition, I 

control for investment style and fund style dummies in the regression. I find that the decreasing 

trend in size effect is consistent in both CAPM alpha as well as in Carhart four factor-alpha.  

 

Study 2: Scale Effect on ETFs Performance  - Quantile Regression Approach  
 

Koenker and Basset (1978) introduce quantile regression, and it has been widely used in 

the finance literature, for example,  Wang et al.(2015)48 uses QR to study the risk analysis in 

mutual funds, likewise, Chen & Huang (2011)49 investigates the relationship between fund 

governance and performance using quantile regression approach. The quantile regression is 

useful in situations where the relationship between the independent variable(s)  and the 

dependent variable changes at different levels of the dependent variable or where the 

association between the dependent and independent variables is heterogeneous. Likewise, 

quantile regression does not impose the assumptions of homogeneity and normality in the 

dependent variable, and it is effective when the dependent variable is heteroscedastic and/or 

highly skewed.  

 
48 See Wang, N-Y., Chen, S-S., Huang, C-J., & Yen, C-H., (2015). “Using Quantile Regression to Analyze Mutual Fund 
Risk and Investor Behavior of Variable Life Insurance”. International Journal of Economics and Finance, 7(1), pp.97-
106. 
49 See Chen, C. R., & Huang, Y., (2011). “Mutual Fund Governance and Performance: A Quantile Regression Analysis 
of Morningstar's Stewardship Grade”. Corporate Governance: An International Review, 19(4), pp.311-333 
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Highlighting the importance of quantile regression approach, Koenker, R. and Hallock, K. 

(2001) cites Mosteller and Tukey (1977)50  to suggest that “one can do better by computing 

several regression curves corresponding to the various percentage points of the distributions and 

get a complete picture of the data set.” Accordingly, I use the quantiles to describe the 

distribution of the dependent variable (in this case, factor risk-adjusted alphas) against the 

explanatory variables.  It is an appropriate method to study the different effects of the 

independent variable(s) on the dependent variable51. Therefore, I think that quantile regression 

is a better fit for empirical research as well because it gives a more comprehensive picture of the 

effect of the scale effect on the ETF performances.  I reference the actual quantile regression 

model from Koenker and Basset (1978) as follows52:  

The 𝜃th regression quantile, 0 < 𝜃 < 1 is defined as any solution to the minimization problem: 

Min bϵ𝑅𝐾 [∑ 𝜃|𝑦
𝑡

−  𝑥𝑡 𝑏| +  ∑ (1 − 𝜃)|𝑦
𝑡

−  𝑥𝑡 𝑏|𝑡𝜖{𝑡:𝑦𝑡 > 𝑥𝑡𝑏  }   𝑡𝜖{𝑡:𝑦𝑡 > 𝑥𝑡𝑏  } ] 

Where  𝜃𝜖 (0,1), {𝑥𝑡 ∶ 𝑡 = 1, … … . , 𝑇} denote  sequence of (row) K-vectors of a known design matrix, and 

{𝑦𝑡 ∶ 𝑡 = 1, … … . , 𝑇} is a random sample on the regression process 𝑢𝑡 =  𝑦𝑡 −  𝑥𝑡  𝛽 .   

The classical OLS minimizes the sum of squared residuals, whereas, in the quantile 

regressions, I minimize the weighted sum of absolute deviations53. According to Tchamyou et al. 

(2017) the conditional quantile of the dependent variable or 𝑦𝑡 given 𝑥𝑡 is Q𝑦 (θ/𝑥𝑡) = 

𝑥′𝑡β0  where unique slope parameters are modeled for each θ𝑡ℎ specific quantiles.  Tchamyou et 

al. implies that this formulation is analogous to E(y/x) = 𝑥′𝑡β in the OLS slope where parameters 

are examined only at the mean of the conditional distribution of the dependent variable.  

Further, I conduct a heteroscedasticity test to justify the use of quantile regression. I find 

that the Breusch-Pagan test statistic is significantly different from zero. Therefore, I have 

 
50 See page 12 in Koenker, R. and Hallock, K. (2001) Quantile Regression. Journal of Economic Perspectives, 15, 
143-156. 
51 Note that, if the dependent variable is normally distributed, quantile regression will generate the same 
coefficient estimates at different estimates at different conditional percentiles of the dependent variable in which 
case it provides no additional information compare to classical OLS. 
52 See page 38 in Koenker and Basset (1978) 
53 See page 10 in  S. Tchamyou, Vanessa and Asongu, Simplice, Conditional Market Timing in the Mutual Fund 
Industry (January 2017). Research in International Business and Finance, 42 (December), pp.1355-1366 (2007).  
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heteroscedasticity in the dataset that justifies the use of quantile regression.   In section A below, 

I perform the quantile regression for the risk-adjusted alpha, and in section B, I perform the 

quantile regression for the tracking error.   

 

Section A: Scale Effect on ETFs Risk-Adjusted Performance  

 

I estimate the quantile regressions at the 10th, 25th, 50th, 75th, and 90th percentile to 

find the scale impact on ETFs with varying degrees of performances. The dependent variables are 

the risk-adjusted alpha that I generated using equation 1 (for CAPM alpha) and in equation 2 (for 

Carhart alpha).  I use the same model as in equation 3 for the quantile regression as well. The 

results of the OLS and the quantile regressions are in Table 4.   
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Table 4 Scale Effect on the Risk Adjusted ETFs Performance - A Quantile Regression Approach 

Table 4 reports quantile regression results for the risk-adjusted ETFs performance as measured by CAPM alpha as in 
Panel A, and the four-factor Carhart alpha as in Panel B. The first column?(spec1) in each panel is from the OLS 
regression, and the next five columns each are the results of the quantile regression performed on 10th, 25th, 50th, 
75th, and 90th percentiles. The dependent variables are the CAPM alpha in Panel A, and the four-factor Carhart 
alpha in Panel B. The main independent variable is the ETF size. TNA is the total net assets under management in 
millions of dollars. LogTNA is the logarithm of TNA and is a proxy for ETF size. Expense Ratio is the total annual 
management fees and expenses divided by year-end TNA. Liquidity is proxied from normalized bid-ask price spread.  
Flow is the percentage of new fund flow into the Exchange Traded Fund over the period under investigation. Age is 
the number of years since the establishment of the ETF. Number of Holdings is the number of stocks in a ETF. NAV 
is the net asset value. Volume Turn Over is the total trade transactions that occurred in a month. Historical Volatility 
is the five-year standard deviation of the asset return. Lagged variables indicated are the previous time period value 
for the respective variables. This table provides information on how ETFs risk-adjusted performances (measured by 
CAPM alpha as in Panel A, four-factor Carhart alpha as in Panel B)  are impacted by the ETF size under different 
quantiles.  
 
Table 4 – Panel A {Dependent Variable - CAPM alpha ) 

 (1-OLS) (1-QReg 10th) (2-QReg 25th) (3-QReg 50th) (4-QReg 75th) (5-QReg 90th) 
 CAPM Alpha CAPM Alpha CAPM Alpha CAPM Alpha CAPM Alpha CAPM Alpha 

LogTNA 0.202*** 0.426*** 0.281*** 0.138*** 0.0288*** -0.0608*** 
 (26.14) (27.99) (35.23) (22.96) (4.87) (-6.70) 
       

Expratio -0.886*** -0.762*** -0.914*** -1.014*** -1.015*** -1.027*** 
 (-50.32) (-21.89) (-50.22) (-73.96) (-75.09) (-49.56) 
       

AGE 0.120*** 0.149*** 0.114*** 0.0751*** 0.0426*** 0.00917*** 
 (66.11) (41.55) (60.97) (53.24) (30.63) (4.30) 
       

LogTVOL -0.133*** -0.331*** -0.229*** -0.123*** -0.0394*** 0.0290*** 
 (-21.34) (-26.88) (-35.54) (-25.40) (-8.25) (3.96) 
       

NBASpread -2.669*** -19.16*** -6.054*** -2.531*** -1.216** -0.837 
 (-5.22) (-18.98) (-11.46) (-6.36) (-3.10) (-1.39) 
       

lnVIX -0.245*** -0.768*** -0.269*** -0.0104 0.147*** 0.161*** 
 (-8.59) (-13.65) (-9.14) (-0.47) (6.71) (4.81) 
       

PremDisc 0.00755*** 0.0125*** 0.00870*** 0.00580*** 0.00441** 0.00132 
 (4.32) (3.63) (4.81) (4.26) (3.28) (0.64) 
       

LNetExRetPctg 0.130*** 0.129*** 0.113*** 0.104*** 0.0983*** 0.0972*** 
 (140.45) (70.43) (117.79) (144.43) (137.94) (89.01) 
       

LagFlow -0.000525 -0.00267*** -0.0000888 -0.000317 -0.0000665 -0.000283 
 (-1.40) (-3.60) (-0.23) (-1.09) (-0.23) (-0.64) 
       

NHoldings -0.0000120 0.00000393 -0.0000222 -0.0000328*** -0.0000308*** -0.0000572*** 
 (-1.05) (0.17) (-1.87) (-3.67) (-3.50) (-4.24) 
       

GrowthDum 0.642*** 0.00243 0.275*** 0.664*** 0.900*** 1.027*** 
 (16.88) (0.03) (6.98) (22.42) (30.83) (22.94) 
       

ValueDum 0.331*** -0.280*** -0.0672 0.369*** 0.669*** 0.872*** 
 (9.03) (-3.87) (-1.77) (12.92) (23.76) (20.20) 
       

CoreDum 0.268*** -0.270*** -0.0535** 0.279*** 0.640*** 0.838*** 
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 (14.81) (-7.56) (-2.86) (19.80) (46.10) (39.37) 
       

IndCapWtD -0.0940*** -0.121*** -0.120*** -0.104*** -0.0885*** -0.0524** 
 (-5.83) (-3.81) (-7.18) (-8.32) (-7.15) (-2.76) 
       

IndEqWtD 0.101*** -0.151** -0.00203 0.121*** 0.143*** 0.195*** 
 (4.30) (-3.23) (-0.08) (6.57) (7.87) (7.02) 
       

_cons -1.172*** -0.901*** -1.100*** -0.863*** -0.630*** 0.115 
 (-14.32) (-5.57) (-12.99) (-13.54) (-10.02) (1.19) 

N 
adj. R-sq 

          Pseudo 
R2 

41856 
0.478 

41856 
 

0.3983 

41856 
 

0.3720 

41856 
 

0.3623 

41856 
 

0.2797 

41856 
 

0.2970 

 
Table 4 Panel B: Dependent Variable Carhart Four Factor Alpha:  
 

 (1-OLS) (1-QReg 10th) (2-QReg 25th) (3-QReg 50th) (4-QReg 75th) (5-QReg 90th) 
 Carhart Alpha Carhart Alpha Carhart Alpha Carhart Alpha Carhart Alpha Carhart Alpha 

LogTNA 0.195*** 0.412*** 0.275*** 0.153*** 0.0400*** -0.0628*** 
 (24.80) (27.08) (34.12) (24.86) (6.38) (-5.91) 
       
Expratio -0.916*** -0.803*** -0.966*** -1.057*** -1.026*** -1.048*** 
 (-52.77) (-23.89) (-54.35) (-77.69) (-74.11) (-44.67) 
       
AGE 0.113*** 0.143*** 0.114*** 0.0800*** 0.0494*** 0.0129*** 
 (61.94) (40.45) (60.94) (55.85) (33.86) (5.24) 
       
LogTVOL -0.125*** -0.326*** -0.226*** -0.133*** -0.0415*** 0.0425*** 
 (-19.74) (-26.65) (-35.00) (-26.79) (-8.23) (4.98) 
       
NBASpread -3.141*** -22.57*** -9.797*** -4.656*** -1.232* -1.015 
 (-5.10) (-18.94) (-15.55) (-9.65) (-2.51) (-1.22) 
       
lnVIX -0.187*** -0.664*** -0.223*** 0.0521* 0.227*** 0.275*** 
 (-6.46) (-11.87) (-7.52) (2.30) (9.82) (7.03) 
       
PremDisc 0.00930*** 0.0112** 0.0101*** 0.0101*** 0.00771*** 0.00329 
 (5.05) (3.14) (5.34) (6.99) (5.25) (1.32) 
       
LNetExRetPctg 0.128*** 0.129*** 0.111*** 0.103*** 0.0969*** 0.0957*** 
 (135.41) (70.78) (115.20) (139.82) (128.94) (75.22) 
       
LagFlow -0.000132 0.000115 -0.000106 -0.000231 0.0000115 -0.000212 
 (-0.34) (0.16) (-0.27) (-0.77) (0.04) (-0.41) 
       
NHoldings -0.0000318* -0.000000443 -0.0000251 -0.0000416*** -0.0000543*** -0.0000814*** 
 (-2.49) (-0.02) (-1.92) (-4.16) (-5.34) (-4.73) 
       
GrowthDum 0.683*** 0.137 0.323*** 0.629*** 0.839*** 0.940*** 
 (17.86) (1.85) (8.25) (20.95) (27.48) (18.19) 
       
ValueDum 0.435*** -0.0823 0.0548 0.400*** 0.658*** 0.839*** 
 (11.75) (-1.15) (1.45) (13.79) (22.30) (16.79) 
       
CoreDum 0.344*** -0.146*** 0.0276 0.337*** 0.641*** 0.804*** 
 (17.43) (-3.81) (1.37) (21.77) (40.67) (30.14) 
       
IndCapWtD -0.107*** -0.111*** -0.134*** -0.128*** -0.108*** -0.0262 
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 (-6.58) (-3.54) (-8.08) (-10.05) (-8.33) (-1.20) 
       
IndEqWtD 0.100*** -0.154*** -0.0213 0.0857*** 0.0841*** 0.173*** 
 (4.21) (-3.34) (-0.87) (4.59) (4.43) (5.39) 
       
_cons -1.217*** -0.987*** -1.127*** -1.053*** -0.890*** -0.207 
 (-14.58) (-6.11) (-13.18) (-16.09) (-13.36) (-1.84) 

N 
Adj. R2 
Pseudo R2 
 

38381 
0.4871 

38381 
 

0.3993 

38381 
 

0.3721 

38381 
 

0.3323 

38381 
 

0.2758 

38381 
 

0.2075 

 
 

 
In the table, there are two types of significant coefficients: those that are significantly 

different from zero, and those that are significantly different from the OLS coefficients (outside 

of the confidence interval). The graphical visual is more intuitive than in the table to see the 

differences. For example, the coefficient on the log(TNA) at the 10th, 25th, 50th, and 75th  

quantiles are significantly different from zero. The coefficient on the log(TNA) on the 10th and 

90th percentiles are also significantly different from the OLS coefficient. The quantile regression 

results in Table 4-Panel A for CAPM and Panel B for the Carhart four-factor model clearly show 

that the size effect is different for low performing vs. high performing ETFs clusters. The results 

in both the panels have a monotonously decreasing coefficients representing the size impact 

differentials on the increasing order of risk-adjusted performance percentiles. The tables also 

show that ETFs size negatively impacts the high performing ETFs in sharp contrast to the lower 

performing ETF quantiles.  

Size has a strong positive impact on the individual ETFs belonging to the lowest end of the 

quantiles. The observations are consistent in both the panels CAPM and Carhart four-factor risk-

adjusted-performance.  In Panel A, the first specification is from the panel OLS; the second, third, 

fourth, fifth, and sixth specifications are from the quantile regression corresponding to the 10th, 

25th, 50th, 75th, and 90th percentile of CAPM alpha. As shown from the table, at the 10th 

percentile, it has a positive coefficient of 0.429 whereas at the 90th percentile, it is negative 

0.0634. Clearly, high performing ETFs have an inverse relation with the size, whereas the low 

performing ETFs have a positive relationship with the size.  When it comes to expense ratio, it 

has a negative relationship with the alpha in all the quantiles; however, the high performing ETFs 

alpha has a stronger negative relationship with the expense ratio. When it comes to illiquidity, 
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the highest performing percentile ETFs have the least negative impact of illiquidity, where is the 

lowest-performing percentile has the strongest negative impact of illiquidity. The results are very 

similar in Panel B for the Carhart four factor-alpha. 

I present the coefficients from the quantile regressions in the graphs. As shown in the 

figures for Table 4 Panels A(figure 2) and B(figure 3),  the quantiles of the dependent variable are 

on the horizontal axis and the coefficient magnitudes on the vertical axis. The OLS coefficient is 

plotted as a horizontal line with the confidence interval (see two horizontal lines around the 

coefficient line). The OLS coefficient does not vary by quantiles. The quantile regression 

coefficients are plotted as lines varying across the quantiles with confidence intervals around 

them. If the quantile coefficient is outside the OLS confidence interval, then I have significant 

differences between the quantile and OLS coefficients. The graph shows that the quantile 

coefficients for the independent variable (log of TNA) on risk-adjusted alpha (dependent variable) 

are significantly different from the OLS coefficients. Moreover, the effect of the log of TNA 

gradually decreases along the quantiles for individual ETFs with lower performance to individual 

ETFs with higher performance.  
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Figure 2 - Quantile Graphs from CAPM Regression 
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Figure 3 - Quantile Graphs from four factor Carhart Model  
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The results from the quantile regression is consistent with the results from the cross-

sectional regression.  I support Petajisto (2013) findings that larger funds are more likely to be 

closet indexers who earn inferior returns, implying that the indexation strategies employed by 

larger funds drive the poor returns earned by these funds.  

 

Section B: Scale Effect on Tracking Error Performance  

 

Wermers (2003) uses tracking error to measure fund performance and claims that it is 

positively related to the contemporaneous fund alpha. Cremers & Petajisto (2009), on the other 

hand, argue that tracking error represents the active share fraction of portfolio holdings that 

differ from the passive benchmark index, thus emphasizing stock selection. These papers study 

the index mutual funds, and the focus is on ETFs. I argue that tracking error is the volatility of 

fund return in excess of the benchmark, so it emphasizes beta risk. Therefore, it is important to 

see the scale effect on tracking errors as well. 

I extend the following Rompotis (2012) model to estimate the tracking error : 

𝑻𝑬 = 𝜶𝟎 + 𝜶𝟐 𝒍𝒏𝑻𝑵𝑨 +  𝜶𝟑𝑹𝒊𝒔𝒌 + 𝜶𝟒 𝒅𝒊𝒔𝒄𝒐𝒖𝒏𝒕 𝒐𝒓 𝒑𝒓𝒆𝒎𝒊𝒖𝒎 + 𝜶𝟓 𝒔𝒑𝒓𝒆𝒂𝒅 + 𝜶𝟔 𝒆𝒙𝒑𝒆𝒏𝒔𝒆 𝒓𝒂𝒕𝒊𝒐 +  ɛ   

where, 

The tracking error is the dependent variable:  σɛ = Stdev [RETF  − RBenchMarkIndex ]  

The discount or premium is the difference between the NAV – (price*shares outstanding).   

Risk is proxied using the historical volatility of the asset. 

 The main independent variable is the lagged asset size  

Control variables are Expense Ratio, Liquidity, Flow, Age, Number of Holdings, NAV, Historical Volatility, and Lagged Fund Flow.  

The results in Table 5 show that size has a marginal effect on the tracking ability of ETFs 

against their benchmark index. The 10th percentile of the TE has a stronger negative relationship 

with the size; however, other quantiles appears to be within the margin of a confidence interval.  

The coefficient of ‘logTNA’ is negative in all the quantiles that mean size has a marginal negative 

impact on the tracking error. The quantile graph(figure 4) underneath the table also clearly shows 

that the size effect is within the margin of the confidence interval.  The illiquidity spread and the 



 
 

98 
 

expense ratio both have statistically significant positive relation in all the quantiles that suggest 

higher the illiquidity spread higher the tracking error. The same is the case for the expense ratio 

that higher the expense ratio higher the tracking error.   

 

Table 5 -Impact of Size on Tracking Error 

In this table, I investigate the impact of ETF size on the tracking error of ETFs. Tracking error is the std of differences 
between the ETF return percentage minus the underlying benchmark return percentage. The main independent variable is 
the ETF size measured by log of the total net asset(TNA) in millions of dollars. Expense Ratio is   the total annual management 
fees and expenses divided by year-end TNA. Liquidity is proxied from normalized bid-ask price spread.  Flow is the percentage of 
new fund flow into the Exchange Traded Fund over the period under investigation. Age is the number of years since the 
establishment of the ETF. The number of Holdings is the number of stocks in an ETF. NAV is the net asset value. Volume Turn Over 
is the total trade transactions that occurred in a month. Historical Volatility is the five-year standard deviation of the asset return. 
Premium/Discount is the difference of the NAV and the current market value of the ETFs. Lagged variables indicated are the 
previous time period value for the respective variables. The Net Asset Return is the monthly ETF return after the expense ratio. 
The ETF sample is from January 2009 to December 2018. I include non-leveraged equity, only ETFs with TNA more than $15 
million. I exclude the control variables that are statistically insignificant. I extend the following Rompotis (2012) model to 
estimate the tracking error:  𝑻𝑬 = 𝜶𝟎 + 𝜶𝟐 𝒍𝒏𝑻𝑵𝑨 +  𝜶𝟑𝑹𝒊𝒔𝒌 +  𝜶𝟓 𝒔𝒑𝒓𝒆𝒂𝒅 + 𝜶𝟔 𝒆𝒙𝒑𝒆𝒏𝒔𝒆 𝒓𝒂𝒕𝒊𝒐 +  ɛ   where the 
tracking error is  𝜎ɛ = Stdev [𝑅ETF  −  𝑅BenchMarkIndex ] . Risk is proxied using the standard deviation of the five-year 
historical volatility of the asset returns. The first specification in the below is from the OLS regression, and the next five 
columns are from the quantile regression for the 10th, 25th, 50th, 75th, and the 90th percentiles. 
 
 

 OLS 10th 25th 50th 75th 90th 

 (1) (2) (3) (4) (5) (6) 
 absTE absTE absTE absTE absTE absTE 

LogTNA -0.0289*** -0.00516** -0.0124*** -0.0290*** -0.0143 -0.0307 
 (-4.34) (-3.04) (-4.83) (-5.05) (-1.34) (-1.57) 
       
Expratio 0.0954*** 0.0117*** 0.0246*** 0.0907*** 0.143*** 0.177*** 
 (17.37) (8.38) (11.60) (19.12) (16.19) (11.00) 
       
HistVol -0.357*** -0.0123 -0.0677 -0.261** -0.781*** -0.786** 
 (-3.44) (-0.47) (-1.69) (-2.91) (-4.70) (-2.59) 
       
LogTVOL 0.0187*** 0.00110 0.00297 0.00971* 0.0143 0.0304* 
 (3.68) (0.85) (1.51) (2.22) (1.76) (2.04) 
       
LogSpread 0.0442*** 0.000810 0.00554* 0.0137** 0.0728*** 0.118*** 
 (7.18) (0.52) (2.33) (2.58) (7.38) (6.56) 
       
_cons 0.711*** 0.0595*** 0.183*** 0.426*** 1.022*** 1.656*** 
 (15.83) (5.20) (10.57) (10.99) (14.20) (12.58) 

N 
adj. R-sq       

3581 
0.4770 

3581 
0.6400 

3581 
0.6302 

3581 
0.5040 

3581 
0.6103 

3581 
0.6345 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 4 – Quantile Graphs from Tracking Error Regression 

 

 

 

I reconfirm the results from the quantile regression in Table 5 with the regression using 

bootstrapped observations, and I find a consistent result. The results are similar to  Chu (2009) 

study that documents that the magnitude of the tracking errors has a negative relation to the 

size of ETFs. Likewise, as I reported, Chu’s paper also documents a positive relation to the 

expense ratios of the funds, and the results also support this finding. 
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Study 3: Interaction of investment factors on ETF size and their impact on the excess return 

performance  

 

In Table 6, I study the interaction effects of the ETF size (log of TNA) with the various fund 

attributes, investment styles, and the fund types.  I generalize the cross-sectional model with the 

interaction term as in equation 4.2 below in which excess return is the dependent variable, and 

the log of total net asset is the independent variable.  Equation 4.1 reflects the base model with 

no interaction term. 

𝑅𝑖 - 𝑅𝑓 = 𝛼 + β (𝐿𝑜𝑔𝑇𝑁𝐴𝑖,𝑡)  +   δ𝑖 𝑋𝑖  + ɛ𝑖    ---  Equation  ( 4.1 ) 

  𝑅𝑖 - 𝑅𝑓 = 𝛼 + β (𝐿𝑜𝑔𝑇𝑁𝐴𝑖,𝑡)  + β𝑖 * δ (𝐿𝑜𝑔𝑇𝑁𝐴𝑖,𝑡) * (𝑍𝑖) +   δ𝑖 𝑋𝑖  + ɛ𝑖    ---  Equation  ( 4.2 ) 

Where  

𝐿𝑜𝑔𝑇𝑁𝐴𝑖,𝑡  𝑖𝑠 𝑡ℎ𝑒 𝐸𝑇𝐹 𝑠𝑖𝑧𝑒 𝑝𝑟𝑜𝑥𝑦  

𝑍𝑖   𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑓𝑢𝑛𝑑 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑎𝑛𝑑 𝑑𝑢𝑚𝑚𝑖𝑒𝑠 𝑓𝑜𝑟 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑠𝑡𝑦𝑙𝑒𝑠 𝑎𝑛𝑑 𝑓𝑢𝑛𝑑 𝑡𝑦𝑝𝑒𝑠 

𝑋𝑖  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

 

I examine the interaction effect of ‘𝑍𝑖′ and log(TNA) on ETFs excess return performance where, 

‘𝑍𝑖
′   represent fund attributes such as liquidity, expense ratio, volume turnover, age, number of 

holdings, and historical volatility,  and dummies for investment styles (such as growth, value, and 

core) and the fund types (such as small, medium and large-cap).  Panel A of Table 6 reports the 

results for liquidity interaction, expense ratio interaction, trading volume interaction, age 

interaction, historical volatility interaction, and the number of holdings interaction. In the Table, 

specification 2, 3, 4, 5, 6 and 7 have the corresponding interaction term. Specification 1 is the 

base model without interactions. Likewise, Panel B of Table 6 reports  the results for   investment 

styles dummies – growth, value and core/blend, and the index composition dummies – 

capitalization weighted and the equal weighted composition. In the Table, specification 2, 3, 4, 

5, and 6 has the corresponding interaction term. Specification 1 is the base models without 

interactions. 
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Table 6 Factors Affecting Size vs Performance Relationship 

(Examining the interaction effect of various investment factors on the relationship between the ETF size and the net excess returns) 
 
In table 6, I examine effect of  interaction between the  ‘𝑋𝑖′ and the  ETF size on its net excess return performance,  where 𝑋𝑖  are liquidity, expense ratio, trading volume, number 
of holdings, age and the historical volatility. I also included dummies for investment styles(value, growth, core blend), cap types( small, medium, large), and the  index comp osition 
weight (equal weight, capitalization weight). I use cross-sectional OLS regression methodology as outlined in the following equations to study the interaction effects.  TNA is the 
total net assets under management in millions of dollars. Expense Ratio is  the total annual management fees and expenses divided by year-end TNA. Liquidity is proxied from normalized bid-
ask price spread.  Flow is the percentage of new fund flow into the Exchange Traded Fund over the period under investigation. Age is the number of years since the establishment of the 
ETF. The number of Holdings is the number of stocks in an ETF. NAV is the net asset value. Volume Turn Over is the total trade transactions that occurred in a month. Historical Volatility is 
the five-year standard deviation of the asset return. Premium/Discount is the difference between the NAV and the current market value of the ETFs. Lagged variables indicated are previous 
time period value for the respective variables. The Net Asset Return is the monthly ETF return after the expense ratio. The ETF sample is from January 2009 to December 2018. I include 
non-leveraged equity only ETFs with TNA more than $15 million. The dependent variable is the net excess return. The main independent variable is the size (Log of TNA). I exclude 
statistically non-significant effects.  
 

 (1) 
BaseModel 

(2) 
Spread_Inter. 

(3) 
ExpRatio_Inter. 

(4) 
Trad.Vol_Inter. 

(5) 
Age Interaction 

(6) 
Vix Interaction 

(7) 
No. Of Hold Int. 

 

 Net Excess Return Net Excess Return Net Excess Return Net Excess Return Net Excess Return Net Excess Return Net Excess Return 

lntna 0.438*** -0.0620 0.485*** 0.300*** -0.181*** 0.387*** 0.439*** 

 (32.75) (-1.66) (33.45) (13.01) (-5.11) (6.10) (32.61) 

        

lnnbaspread -0.219*** 0.180*** -0.215*** -0.222*** -0.210*** -0.219*** -0.219*** 

 (-16.08) (5.82) (-15.81) (-16.30) (-15.56) (-16.05) (-16.08) 

        
expratio -0.193*** -0.186*** 0.629*** -0.186*** -0.181*** -0.193*** -0.193*** 

 (-6.42) (-6.21) (6.08) (-6.18) (-6.07) (-6.42) (-6.42) 

        
lnage 0.456*** 0.458*** 0.467*** 0.458*** -1.043*** 0.457*** 0.456*** 

 (14.68) (14.82) (15.02) (14.74) (-12.25) (14.69) (14.67) 

        
lntradingvol -0.384*** -0.386*** -0.374*** -0.492*** -0.402*** -0.384*** -0.384*** 

 (-38.85) (-39.21) (-37.65) (-27.85) (-40.82) (-38.86) (-38.83) 

        
lnnumberofholdings -0.0322*** -0.0388*** -0.0373*** -0.0348*** -0.0414*** -0.0322*** -0.0301** 

 (-4.11) (-4.97) (-4.76) (-4.45) (-5.32) (-4.12) (-3.22) 

        
lnvix 0.186*** 0.176*** 0.182*** 0.186*** 0.196*** 0.0711 0.186*** 

 (4.31) (4.09) (4.22) (4.31) (4.57) (0.49) (4.31) 

        
lagnetexcessreturn 0.0639*** 0.0637*** 0.0624*** 0.0658*** 0.0622*** 0.0638*** 0.0639*** 

 (9.51) (9.53) (9.30) (9.81) (9.35) (9.51) (9.51) 

        
growthdum 0.549*** 0.543*** 0.526*** 0.564*** 0.475*** 0.549*** 0.546*** 

 (9.45) (9.39) (9.06) (9.70) (8.22) (9.44) (9.27) 
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valuedum 0.171** 0.167** 0.154** 0.178** 0.0816 0.172** 0.168** 

 (3.02) (2.96) (2.72) (3.14) (1.45) (3.02) (2.94) 

        
coredum 0.112*** 0.0987*** 0.115*** 0.104*** 0.0778** 0.112*** 0.110*** 

 (4.15) (3.66) (4.25) (3.85) (2.89) (4.14) (4.00) 

        
indxcompcapwtdum 0.197*** 0.181*** 0.167*** 0.194*** 0.176*** 0.197*** 0.198*** 

 (7.99) (7.36) (6.69) (7.85) (7.19) (7.98) (8.00) 

        
indxcompeqwtdum 0.195*** 0.198*** 0.178*** 0.186*** 0.197*** 0.194*** 0.196*** 

 (5.12) (5.25) (4.69) (4.91) (5.23) (5.11) (5.13) 

        

lntnaspread_int  -0.0686***      

  (-14.37)      

        
lntnaexpratio_int   -0.165***     

   (-8.30)     

        
lntnatradingvol_int    0.0175***    

    (7.38)    

        
lntnaage_int     0.263***   

     (18.89)   

        
lntnavix_int      0.0192  

      (0.83)  

        

lntnanumberofholdings_int       -0.00000102 

       (-0.40) 
        

_cons -3.329*** -0.433 -3.583*** -2.534*** 0.356 -3.020*** -3.339*** 

 (-21.77) (-1.72) (-23.01) (-13.56) (1.44) (-7.47) (-21.53) 

N 
adj. R-sq 

19780 
0.193 

19780 
0.201 

19780 
0.196 

19780 
0.195 

19780 
0.207 

19780 
0.193 

19780 
0.193 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Panel B (Interaction effect with investment styles dummies) 
 

 (1) 

Base-Model 

(2) 

Growth Interaction 

(3) 

Value Interaction 

(4) 

Core Interaction 

(5) 

CapWted Interaction 

(6) 

Equal Wted 

Interaction 

 

 Net Excess Return Net Excess Return Net Excess Return Net Excess Return Net Excess Return Net Excess Return 

lntna 0.438*** 0.434*** 0.436*** 0.394*** 0.408*** 0.438*** 

 (32.75) (32.20) (32.34) (24.84) (26.73) (32.51) 

       

lnnbaspread -0.219*** -0.219*** -0.219*** -0.217*** -0.217*** -0.219*** 

 (-16.08) (-16.11) (-16.10) (-15.96) (-15.89) (-16.07) 

       

expratio -0.193*** -0.193*** -0.193*** -0.195*** -0.187*** -0.193*** 

 (-6.42) (-6.40) (-6.41) (-6.49) (-6.20) (-6.42) 

       

lnage 0.456*** 0.457*** 0.454*** 0.449*** 0.452*** 0.456*** 

 (14.68) (14.71) (14.60) (14.44) (14.52) (14.68) 

       

lntradingvol -0.384*** -0.383*** -0.384*** -0.386*** -0.385*** -0.384*** 

 (-38.85) (-38.71) (-38.78) (-39.06) (-38.94) (-38.77) 

       

lnnumberofholdings -0.0322*** -0.0315*** -0.0320*** -0.0338*** -0.0362*** -0.0321*** 

 (-4.11) (-4.02) (-4.08) (-4.32) (-4.59) (-4.09) 

       

lnvix 0.186*** 0.186*** 0.187*** 0.184*** 0.186*** 0.186*** 

 (4.31) (4.30) (4.32) (4.26) (4.31) (4.31) 

       

lagnetexcessreturn 0.0639*** 0.0629*** 0.0637*** 0.0649*** 0.0635*** 0.0638*** 

 (9.51) (9.35) (9.49) (9.67) (9.45) (9.50) 

       

growthdum 0.549*** 0.107 0.552*** 0.595*** 0.554*** 0.549*** 

 (9.45) (0.52) (9.49) (10.12) (9.52) (9.45) 

       

valuedum 0.171** 0.173** -0.0795 0.204*** 0.181** 0.172** 

 (3.02) (3.05) (-0.43) (3.58) (3.19) (3.02) 

       

coredum 0.112*** 0.111*** 0.112*** -0.280*** 0.118*** 0.112*** 

 (4.15) (4.12) (4.16) (-3.50) (4.35) (4.15) 

       

indxcompcapwtdum 0.197*** 0.195*** 0.198*** 0.204*** -0.109 0.198*** 

 (7.99) (7.88) (8.00) (8.25) (-1.41) (7.97) 

       

indxcompeqwtdum 0.195*** 0.192*** 0.197*** 0.197*** 0.185*** 0.185 

 (5.12) (5.05) (5.18) (5.18) (4.85) (1.53) 
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lntnagrowthdum_int  0.0657*     

  (2.24)     

       

lntnavaluedum_int   0.0389    

   (1.42)    

       

lntnacoredum_int    0.0673***   

    (5.21)   

       

lntnaindxcompcapwtdum_int     0.0529***  

     (4.19)  

       

lntnaindxcompeqwtdum_int      0.00172 

      (0.08) 

       

_cons -3.329*** -3.320*** -3.320*** -3.016*** -3.116*** -3.329*** 

 (-21.77) (-21.70) (-21.70) (-18.37) (-19.34) (-21.76) 

N 

adj. R-sq 

19780 

0.193 

 

19780 

0.193 

19780 

0.193 

19780 

0.194 

19780 

0.193 

19780 

0.193 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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The results in Table 6 shows that the spread and expense ratio have the highest negative impact 

on size vs. performance relationship. In panel A, spec 2 shows the spread interaction, spec 3 

shows the expense ratio interaction, spec 4 shows the trading volume interaction, spec 5 shows the 

age interaction, spec 6 shows the vix interaction, and spec 7 shows the number of holdings 

interaction. The result reports that the spread, and expense ratio negatively affects the size vs. 

performance relationship. While trading volume, and age positively affect the size vs. performance 

relationship. VIX and the number of holdings, however, have an insignificant effect.  

In panel B, I test the interaction effect of investment style – growth, value and core, and 

fund types – equal-weighted and capitalization-weighted.  Spec 2 has the growth dummy 

interaction, spec 3 has value dummy interaction, spec 4 has the core dummy interaction, spec 5 

has the capitalization-weighted index composition interaction, and spec 6 has the equal-

weighted index composition interaction. Core-blend style interaction positively affects the size 

vs. performance relationship; however, the ‘growth’ and the ‘value’  interaction show 

insignificant. Likewise, capitalization-weighted index interaction shows a statistically positive 

effect, while equal-weighted index interaction shows insignificant effect. 

Yan(2008) finds that illiquidity worsens the size vs. performance relationship. The paper 

argues that if fund size erodes fund performance because of illiquidity, then the coefficient on 

the interaction term should be significantly negative. And it indicates that the fund size erodes 

performance more among funds that are less liquid. I find a statistically significant negative 

coefficient on the spread interaction with a size, and I confirm that the price spread worsens the 

size performance relationship in ETFs as well. I find a very similar result for the expense ratio as 

well, indicating that the higher expense ratio augments the inverse relationship of size vs. 

performance.  

In Table 7, I perform robust testing for the scale effect on ETF performance. In this Table, 

I use the full ETF sample, excluding the active ETFs. I sort the full sample and create four size 

categories. Then I create an interaction term of size categories with log(TNA). I use risk-adjusted 

alpha (CAPM and Carhart Four Factor) as the dependent variable. I examine the interaction effect 

of size categories and the log(TNA) on the risk adjusted alpha.  
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Table 7 Impact of Size Category Interaction on Risk-Adjusted Alpha 

Table 7 shows the cross-sectional regression estimates of the risk-adjusted alpha on the full sample regressed on ETF size 
measured by total net asset size (logTNA). Unlike in table 3, here I examine the interaction effect of four size categories using OLS 
(with clustered standard errors on ETFID) and Fama McBeth regression. TNA is the total net assets under management in millions 
of dollars. Expense Ratio is  the total annual management fees and expenses divided by year-end TNA. Liquidity is proxied from 
normalized bid-ask price spread.  Flow is the percentage of new fund flow into the Exchange Traded Fund over period under 
investigation. Age is the number of years since the establishment of the ETF. Number of Holdings is the number of stocks in an 
ETF. NAV is the net asset value. Volume Turn Over is the total trade transactions that occurred in a month. Historical Volatility is 
the five-year standard deviation of the asset return. Premium/Discount is the difference of the NAV and the current market value 
of the ETFs. Lagged variables indicated are the previous time period value for the respective variables. Gross excess return is the 
asset return minus risk-free rate before the expense ratio, and the Net Asset Return is the monthly ETF return after expense ratio. 
The ETF sample is from January 2009 to December 2018. I include non-leveraged equity, only ETFs with TNA more than $15 
million. I sort the total net assets to create four different size categories. The dependent variables are the CAPM Alpha and the 
four-factor Carhart Alpha. The main independent variable is the size of the asset under management measured by log( TNA), and 
control variables are Expense Ratio, Fund Age, Liquidity,  Trading Volume Turnover, Number of Holdings, Historical Volatility, 
Lagged Excess Return, and the  Lagged Fund Flow. I control for investment styles and fund type dummies.  Spec 1 thru spec 4 are 
from the CALPM alpha. Spec 5 thru spec 8 are from the Carhart Four Factor Alpha. Columns 2, 4, 6 and 8 have the interaction 
term added. 

 (1) 
OLS 

(2) 
OLS 

(3) 
Fama-Beth 

(4) 
Fama-Beth 

(5) 
OLS 

(6) 
OLS 

(7) 
Fama-Beth 

(8) 
Fama-Beth 

 alpha_capm alpha_capm alpha_capm alpha_capm alpha_4f alpha_4f alpha_4f alpha_4f 

LogTNA 0.147*** 0.428*** 0.0663 0.235*** 0.205*** 0.474*** 0.107** 0.282*** 

 (4.34) (6.51) (1.82) (4.29) (5.89) (6.78) (3.09) (5.89) 
         

Expratio -0.874*** -0.879*** -0.757*** -0.757*** -0.909*** -0.912*** -1.041*** -1.037*** 

 (-14.93) (-15.00) (-7.97) (-7.99) (-15.49) (-15.78) (-11.99) (-12.03) 
         

AGE 0.0756*** 0.0752*** 0.00857 0.00861 0.0740*** 0.0736*** 0.0353* 0.0356* 

 (8.50) (8.45) (0.52) (0.52) (8.51) (8.45) (2.36) (2.38) 
         

LogTVOL -0.134*** -0.132*** -0.0575* -0.0573* -0.149*** -0.148*** -0.0958*** -0.0966*** 

 (-4.95) (-4.87) (-2.60) (-2.62) (-5.50) (-5.41) (-4.57) (-4.62) 

         

LogNHold -0.0219 -0.0227 -0.0433*** -0.0437*** -0.0516* -0.0529* -0.0445*** -0.0449*** 

 (-1.04) (-1.08) (-5.82) (-6.08) (-2.27) (-2.33) (-5.31) (-5.36) 
         

HistVol 0.905 0.888 -0.733* -0.739* -0.502 -0.517 -0.253 -0.255 
 (1.71) (1.67) (-2.05) (-2.07) (-0.86) (-0.88) (-0.58) (-0.59) 

         

LogSpread -0.115*** -0.117*** -0.132*** -0.136*** -0.0829*** -0.0839*** -0.151*** -0.154*** 
 (-6.78) (-6.88) (-11.08) (-11.29) (-4.89) (-4.95) (-12.34) (-12.71) 

         

LNetExRet 9.397*** 9.377*** 6.481*** 6.465*** 10.81*** 10.80*** 5.238*** 5.230*** 
 (30.36) (30.44) (7.40) (7.41) (39.31) (39.37) (5.35) (5.35) 

         

GrowthDum 0.630*** 0.639*** 0.825*** 0.830*** 0.697*** 0.703*** 0.672*** 0.674*** 
 (5.09) (5.22) (12.65) (12.77) (5.67) (5.77) (9.75) (9.73) 

         

ValueDum 0.150 0.154 0.344*** 0.345*** 0.374* 0.376* 0.326** 0.327** 
 (0.98) (1.01) (4.14) (4.15) (2.49) (2.52) (3.32) (3.34) 

         

CoreDum 0.183 0.187* 0.393*** 0.397*** 0.345*** 0.348*** 0.355*** 0.355*** 
 (1.92) (1.98) (7.77) (7.83) (3.48) (3.53) (5.51) (5.46) 

         

IndCapWtD -0.111 -0.111 -0.00151 -0.00190 -0.199** -0.198** -0.196*** -0.195*** 
 (-1.61) (-1.62) (-0.03) (-0.04) (-2.98) (-2.98) (-3.80) (-3.77) 

         

IndEqWtD 0.0673 0.0556 0.0654** 0.0594** 0.0399 0.0316 -0.0478 -0.0494 
 (0.54) (0.45) (3.06) (2.80) (0.34) (0.27) (-1.25) (-1.29) 

         

lntnasizecat
_int 

 -0.0456***  -0.0273***  -0.0433***  -0.0279*** 

  (-5.08)  (-6.06)  (-4.73)  (-6.94) 

         
_cons -1.868*** -2.768*** -1.237*** -1.798*** -1.463*** -2.322*** -1.519*** -2.099*** 
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 (-10.24) (-10.58) (-4.21) (-5.59) (-8.27) (-8.80) (-5.44) (-6.81) 

N 
adj. R-sq 

69026 
0.261 

69026 
0.263 

69026 69026 61923 
0.255 

61923 
0.257 

61923 61923 
 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

The result of Table 7 indicates a statistically significant negative interaction term for both 

the CAPM as well as the Carhart four factor alpha. Further, the result from the cross-sectional 

OLS regression and from the Fama-McBeth regression are consistent. This is an additional 

empirical evidence that there is a negative effect of size on the ETFs risk-adjusted-performance.   

Thus, the findings from this study are largely in align with the existing results in the ETFs 

literature. Svetina (2015) document that, on average, ETFs underperform their benchmark 

indices and are not immune to tracking error. The paper mentions that only 17% of all ETFs 

directly compete with index funds; those that do, provide returns that are, for the most part, 

statistically indistinguishable from those provided by matched index funds54. Likewise, 

Bhattacharya et al. (2017)55 report that retail traders who invest in ETFs perform worse than 

retail traders who stick with traditional funds. They argue that the ease of ETF trading leads retail 

investors to attempt to time the market that results in poor performance.  Similarly, Glushkov 

(2016)  examines the performance of a smaller sample of smart beta ETFs and document a poor 

performance for factor ETFs compared to their mutual fund counterparts. With all these 

evidences, I conclude that the investment appeal of ETFs has weak empirical support in the data 

even though they have some competitive advantage in terms of trading, tax efficiency, and 

flexibility. In terms of risk-adjusted performance, there is no convincing empirical evidence that 

the ETFs can beat the conventional actively managed funds or the broader market index. 

 

 
54 Svetina, Marko, Exchange Traded Funds: Performance and Competition (November 19, 2015). Journal of Applied 
Finance (Formerly Financial Practice and Education), Vol. 20, No. 2, 2010.  
55 Bhattacharya, Utpal, Benjamin Loos, Steffen Meyer, and Andreas Hackethal, 2017, Abusing ETFs, Review of 
Finance 21 (3), 1217–1250. 
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5 CONCLUSIONS 

  
In this paper, I make a comprehensive evaluation of a scale to returns hypothesis focusing 

on exchange-traded funds. Unlike most extant literature, I use quantile regression to examine 

the differentials in size impact on fund performances.  I provide a robust result that ETFs do not 

provide increasing returns to scale; instead, I observe steady diminishing returns to scale. I 

observe slightly positive risk-adjusted returns initially when the asset base is growing; however, 

the positive effect disappears as the fund size grows.  Zhu(2018) states that in a decreasing return 

to scale world, a positive alpha indicates that investors have not given enough money to a 

particular fund, while a negative net alpha suggests that investors have given the fund too much 

money. Consistent with this view, the result shows that at the lower end of the size quantiles, 

the risk-adjusted alpha is positive, and at the higher end of size quantiles, the alpha is turning in 

to negative. 

Furthermore, the quantile regression results show that ETFs size has a stronger negative 

impact on the high performing quantiles. In contrast, it shows a positive impact on the individual 

ETFs belonging to the lowest end of the quantiles. The results are consistent in both the quantile 

as well as in the cross-sectional regression. Moreover, patterns are steady for CAPM and for 

Carhart four-factor risk-adjusted-performance. The robust testing result with size category 

interaction also shows a statistically significant negative impact on ETFs performance. The study 

support Zhu (2018) findings that documents a decreasing return to scale at the fund level, 

implying that the fund alpha and the fund size are not two independent entities.  When it comes 

to the tracking error ability of the ETFs, the result shows that the tracking error has a negative 

relationship with the size56; however, the size impact is within the margin of the confidence 

interval.  

Further, I provide evidence that spread (illiquidity) and expense ratios are the two main 

factors that worsen the size vs. performance relationship. This finding is consistent with the 

conventional fund research of Yan (2008). I observe that the higher the illiquidity, the stronger 

 
56 It is consistent with Chu (2009) findings that concluded a negative relation of size and tracking error 
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the negative effect of size on performance. However, I find that trading volume, age, and 

historical volatility positively affect the scale performance relationship. Likewise, ETFs with core 

blend investment styles positively affect the size performance relationship. The growth and value 

investment style have insignificant or weak effect. Finally, the capitalization-weighted index has 

statistically significant positive effect on the size performance relationship.  
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Appendix B (Chapter 2) 
 

Appendix B: Table A  -  Variable Selection: 

Variable Name Proxy for Brief information Data Source 

pricesp500 S&P500 Monthly Time Series 

Price 

S&P500 is generally considered 

broader US stock market 

Thomson Reuters Datasreams 

marketreturn S&P500 monthly return Calculated as change in monthly 

market price divided by previous 

month market price expressed in 

percentage 

Derived Variable 

price ETF monthly time series price  Thomson Reuters Datasreams 

grossreturn ETF gross return Calculated as change in monthly asset 

price divided by previous month asset 

price expressed in percentage 

Derived Variable 

expenseratio Expense Ratio ETF operating Cost Morning Star 

netreturn Gross Return minus Expense 

Ratio 

Monthly net asset return is after all 

costs 

Derived Variable 

tna Total Net Asset Total asset under management Morning Star 

logtna ETF Size  Size as measured by total net asset Derived Variable 

nav Net asset value Total asset dividend by shares 

outstanding 

Thomson Reuters Datasreams 

premDiscount Premium or Discount Difference in net asset value minus 

market value 

Derived Variable 

bidprice Bid Price Monthly time series of ETF bid price Thomson Reuters Datasreams 

askprice Ask Price Monthly time series of ETF ask price Thomson Reuters Datasreams 

baspread Bid-Ask Spread (Normalized) 

(Hameed, JF 2010)  

(Ask Price-Bid price)/midpoint of bid 

price plus ask price 

Derived Variable 

Nosh Number of shares 

outstanding 

 Thomson Reuters Datasreams 

logfundflow Log of Monthly Total Fund 

Flow into ETF 

𝑓𝑙𝑜𝑤𝑡 = (𝑛𝑜𝑠ℎ𝑡  − 𝑛𝑜𝑠ℎ𝑡−1)/ 𝑛𝑜𝑠ℎ𝑡−1 Derived Variable 

logage Log of ETF age in Years Current year minus year of inception Morning Star 

lgnumofholdings Stock Holdings in a ETF  Morning Star 

histvol Asset risk Five-year standard deviation of return Thomson Reuters Datasreams 

volturnover Volume Turnover total monthly buying and selling 

transactions 

Thomson Reuters Datasreams 

Vix Market Risk or Volatility market risk as measured by VIX 

 

Thomson Reuters Datasreams 

riskfreerate Risk free rate US treasury 30-day note. I use the 

data from Fama French Website 

Fama French Website 

mrktrf Market factor risk Fama French Factor – market factor Fama French Website 

shb Value factor risk Fama French Factor – small minus big Fama French Website 

hml Size factor risk Fama French Factor – high minus low Fama French Website 

mom Momentum factor risk Carhart – Momentum Factor Fama French Website 

valuegrowth Investment Style Growth, value Morning Star 

largesmall Fund size category Large Cap, Small Cap Morning Star 

passiveactive Management Style Active, Passive, Enhanced 

 

Morning Star 

lagassetreturn Lagged ETF Return Previous month return Derived Variable 



 
 

115 
 

lagfundflow Lagged ETF Flow Previous month fund flow Derived Variable 

lagsize Lagged ETF Size Log of previous month total net asset Derived Variable 

te Tracking Error Standard deviation of the difference 

between the asset and the underlying 

benchmark returns, 𝜎ɛ = Stdev 

[𝑅ETF  − 𝑅BenchMarkIndex ]     

 

Derived Variable 

indexprice Price of underlying Index Time series price of index  

 

 

Appendix B: Table B  -  Size and Performance Trend Over the Sample Duration 

Panel A - TNA Quantiles Over the Years  
    year  mean p25 p50 p75 p90 p99 

2009 1248.811 66.8 181.4 643.5 2334.4 20055.2 

2010 1398.509 67.85 201.9 705.3 2821.8 23121.1 

2011 1563.955 79.65 229.25 762.8999 3131.5 27172.7 

2012 1636.85 72.05 230.7 778.2 3158.1 31021.9 

2013 1851.148 79.6 251 925.7 3849.2 33645.1 

2014 1977.541 89.4 276.1 982.2 3960.1 30096.9 

2015 2078.171 88.6 275.65 1020 4273.797 29114.2 

2016 2086.856 79.2 249.1 915.2 4142.199 31589.6 

2017 2609.898 90.5 306 1171.6 4810.398 37746.8 

2018 3042.126 100.1 368.5 1453.45 5602.349 46685.5 

   Total  2085.474 82.7 264.5 996.3999 3968 33976.1 

Panel B - Net Excess Return Quantiles Over the Years    
    year  mean p25 p50 p75 p90 p99 

2009 0.0114398 -0.0349601 0.0188323 0.0736269 0.1305012 0.232123 

2010 -0.0034176 -0.037269 0.0014172 0.0371665 0.0708502 0.1218805 

2011 -0.0110778 -0.0443068 -0.0031335 0.0244069 0.0610661 0.1625025 

2012 -0.0032679 -0.0243842 -0.0026477 0.0266561 0.0601558 0.1246376 

2013 0.0074021 -0.0159498 0.0076303 0.035831 0.061945 0.1030466 

2014 -0.0013768 -0.0253829 0.0035291 0.0267232 0.0502888 0.0975321 

2015 -0.0102625 -0.0328296 -0.0080646 0.0134781 0.0533422 0.1170547 

2016 -0.0201768 -0.0432178 -0.0198448 0.0052093 0.033932 0.1156501 

2017 -0.0584052 -0.0844144 -0.0613 -0.0348824 -0.0087778 0.0336824 

2018 -0.1565181 -0.1878579 -0.1561113 -0.1209486 -0.0931186 -0.0352769 

   Total  -0.0337944 -0.0748996 -0.0203234 0.0141527 0.0490078 0.1347734 

Panel C- Four-Factors Carhart Alpha Quantiles Over the Years   
    year  mean p25 p50 p75 p90 p99 

2009 -0.037666 -0.0407636 -0.020269 -0.0075654 0.0064792 0.0614347 

2010 -0.0035605 -0.011646 -0.0030459 0.005683 0.0157814 0.0534621 

2011 -0.0001848 -0.0067722 0.0002029 0.008132 0.0155141 0.0334173 

2012 -0.0025598 -0.0069308 -0.0001677 0.0055759 0.0100219 0.0208943 
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2013 -0.0012837 -0.0061213 -0.0002483 0.0049606 0.0093819 0.031976 

2014 0.0032384 -0.0032599 0.0032911 0.0091246 0.0147392 0.0376023 

2015 0.0006232 -0.0048671 0.0017683 0.0076949 0.0118722 0.020963 

2016 -0.005147 -0.0104997 -0.0038675 0.0029204 0.0061869 0.0113456 

2017 -0.0108163 -0.0168471 -0.0090006 -0.0019668 0.0019976 0.0063716 

2018 -0.0291395 -0.0367425 -0.0220299 -0.0133426 -0.0074679 -0.000857 

   Total  -0.0075597 -0.0136465 -0.0039806 0.0036634 0.0095016 0.0277087 

 

 

Appendix B: Table C  - Key differences between the Mutual Fund and the ETF   

 Mutual Fund ETF 

Expense Ratio, Fees 

and loads 

Vary but are typically higher than ETFs, 

may charge frontend fees 

Common active exposures such as growth and value are 

available at low cost 

Subscription & 

redemption costs 

Typically paid from fund assets Paid by broker creating or redeeming the ETF 

Liquidity All transactions occur at the close and at 

the fund’s NAV 

Liquidity available intraday.  

Two levels of liquidity – in the primary market due to 

creation/redemption process and in the secondary market due 

to intraday buy/sell activity in the exchanges   

Taxes Redemption gains are borne by remaining 

shareholders in the fund 

In-kind transaction do not incur capital gains taxes.  Bernstein 

(2001) demonstrates the tax advantages of ETFs in comparison 

to traditional mutual funds. 

Transparency Required quarterly but may be available at 

higher frequencies 

Required daily 

Trading/Access Required set up with the mutual fund 

manager 

Bought or sold from any brokerage account like individual 

stocks 

 

Source: See book page 159 -   Anantha N. Madhavan , “Exchange- Traded Funds and the New Dynamics of Investing”  
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