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Abstract 

 
A 2-D DELFT3D model was developed to address the morphological response of 

Barataria Bay, the sediment deposition rate in the receiving basin, and the impact on the existing 

distributary channels within the broken marsh system due to the proposed Mid-Barataria 

Sediment Diversion. The model had a mesh size sufficient to accurately represent the 

development of the distributary channels, localized flooding, erosion, and salinity in the basin. 

The model predicts that the receiving basin will experience extensive erosion during the first 

year the diversion is open creating three major distributary pathways which flood much of the 

basin in freshwater. Most locations experience peak flood stage when the diversion reaches its 

peak capacity after which flood stage tends to decrease. The area of open water near the 

diversion opening will experience higher suspended sediment concentrations than those in the 

diversion due to the erosion of the receiving basin.  
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Chapter 1: Introduction 

1.1 Introduction 

Deltas across the world are some of the most sensitive features on the planet due to the large 

populations, vast agricultural resources, and their proximity to the sea. They rely on a constant 

inflow of sediment to maintain their elevation to counteract sea level rise, storm surge and wave 

attack, salt water intrusion, and human activities that erode them. Sea level rise is accelerating 

and is expected to eliminate 22% of the world’s coastal wetlands by 2100 (Nicholls et al., 1999) 

although this varies by region (Michener et al. 1997). 

The Mississippi River Delta has a large economic, cultural, and natural value to southern 

Louisiana and the United States as a whole (Batker et al., 2014). The Lower Mississippi River 

corridor contains wetlands, bayous, shallow estuaries, and emerged ridges formed through delta 

progradation during the late Holocene (Coleman et al., 1998) Annual floods developed natural 

levees and the low marshes surrounding the main channels of the river. Lobe switching carved 

new channels to the gulf, connected marshes systems to form interwoven deltaic wetlands 

(Russell, 1936; Russell, 1939; Russell, 1940; Fisk 1944; Kolb and Van Lopik, 1966). The delta is 

characterized as sediment supply dominated with low wave and tidal energy (Roberts, 1997) 

Prior to the 20th century long term land loss was balanced with the land building driven by the 

Mississippi River (Frazier, 1967; Penland et al., 1988; Paola et al. 2011). Since then, the human 

impact on these areas accelerated through increasing fertilizer usage, dams and levees, 

deforestation, and other land use changes (Bianchi and Allison, 2009). Whereas soil erosion rates 

have been accelerating due to human activities, the amount of water and sediment penetrating 

these areas has decreased (Syvitski, Kettner, Correggiari, & Nelson, 2005; Vörösmarty & 

Meybeck, 2004). 

Coastal Louisiana is experiencing some of the highest rates of wetlands loss on earth (Gagliano 

et al., 1981; Day et al., 2000). The causes of these losses are vest including subsidence, saltwater 

intrusion, sediment toxicity, artificial channel cutting leading to expansion, pond creation, 

urbanization, and oil and gas withdrawal (Britsch and Kemp, 1990; Penland et al., 2005; Turner, 

1997; Day et al., 2000, 2007; Reed, 2002; Morton et al., 2003, 2006; Barras, 2006). These are 

continually eroding the coastline while hurricanes are periodic events in the geologic record that 

account for significant wetland loss. Hurricane Katrina and Rita in 2005 destroyed a combined 

562 km2 of land in South Louisiana; (Barras, 2006).  Due to these numerous factors, more than 

1800 square miles of land has been lost to the Gulf of Mexico since the 1930s (Couvillion et al., 

2017). 

The wetlands of Louisiana are built of layers of uncompact peat and mud due to the yearly 

floods. Over time, the peat at the lower depths are dewatered and compacted by the weight of the 

overlaying soil (Morton et al., 2002). Vertical accretion of both mineral sediment and organic 

matter must be sufficient to offset this subsidence and sea level rise for these wetlands to survive 

(Mossa and Roberts, 1990; Conner et al., 1997; Simas et al., 2001; Van Wijnen and Bakker, 

2001; Lane et al., 2006; Paola et al., 2011; Delaune et al., 1983; Nyman et al., 1990; Cahoon and 
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Reed, 1995). Mineral deposits come from suspended sediment particles composed mainly of clay 

and silt which are trapped during high flow events. When the flow is slowed by bed friction and 

above ground structures (stems, trunks, pneumatophores, burrows, etc.) the particles flocculate 

and settle out (Wolanski and Gibbs, 1995; Young and Harvey, 1996). Without the addition of 

sediment from the Mississippi River, these wetlands become sediment starved (Baumann et al., 

1984; Boesch et al., 1994; Penland and Ramsey, 1990) and not able to outpace relative sea level 

rise (Blum and Roberts, 2009) 80% of which is subsidence (Dokka, 2006).  As the sea rises, the 

marshes become inundated allowing salt water to penetrate further into the back basin (DeLaune 

and White 2012). This is a positive feedback loop that is accelerating wetland loss. 

Climate change will bring increases in precipitation amount and intensity, rates of sea level rise, 

and frequency of hurricanes inundating more of these coastal wetlands. In coastal Louisiana, sea 

level rise will be a major factor in wetland survivability (Simas et al., 2001; Van Wijnen and 

Bakker, 2001; Day et al., 2008). Accelerated eustatic sea level rise, which is estimated by the 

IPCC to be between 40 to 120 cm by 2100 (IPPC, 2013; Horton et al, 2014), will lead to longer 

inundation periods, increase erosion and saltwater intrusions affecting the proliferation of 

vegetation leading to wetland loss (Day et al., 2005; Blankespoor et al., 2012). Hurricane 

intensity is expected to increase due to increased sea surface temperature (Mendelsohn et al. 

2012; Donnelly et al. 2015; Knutson et al. 2010). However, there are still limitations in scientific 

understanding of the divers of hurricane frequency and intensity (Zwiers et al. 2013), so specific 

increases are hard to predict and model. It is unknown whether coastal wetlands will be able to 

survive more frequent and severe storms (Michener et al. 1997, Day et al. 2008, Knutson et al. 

2010, Leonardi et al. 2016). 

Many of the solutions to these problems focus on moving sediment from the Mississippi River 

into the coastal marshland. However, human interventions, such as dams and bank protection, 

around the river basin have reduced the sediment load of the lower Mississippi by more than 

50% (Kesel, 1988; Meade and Moody, 2010; Horowitz, 2010).  In the delta, long, interconnected 

levee systems put in place after the great flood of 1927 to protect New Orleans and the 

surrounding populations have prevented the river from overflowing its banks and replenishing 

the sediment in the surrounding marshes (Baumann et al., 1984; Walker et al., 1987). This annual 

flooding would also resupply the marshes with fresh water preventing saltwater intrusion 

(Walker et al., 1987; Boesch et al., 1994; Day et al., 2000). Other causes of water and sediment 

loss include dredging for navigational channels, removal of water for industrial and agricultural 

use, and flood protection outflows like the Bonnet Carré Spillway, which has a maximum design 

capacity of 250,000 cfs, and an overflow weir near Bohemia at river mile 38.6. 

This study focuses on Barataria Basin which is nestled between the Mississippi and the 

Atchafalaya River. The Atchafalaya River has been known as a distributary channel of the 

Mississippi River since as early as the 1500s (Fisk, 1952). The river steadily increased its 

volume during the first half of the 20th century and would have captured the entire discharge of 

the Mississippi River if not for the Old River Control Structure. This was built in 1963 and was 

updated after a high flood in 1973 damaged the structure. To this day, the structure allows 30% 

of the flow of the Mississippi River to enter the Atchafalaya River, which is further supplied by 

the Red River creating a flow that is fairly equal to the Mississippi River (Roberts, 1998) 
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Today, Barataria Basin loses around 1300 acres of coastal wetlands each year (Couvillion et al., 

2017) leaving Plaquemines and Lafourche Parish even more susceptible to storms. Yet, over 100 

million tons of sediment pass down the Mississippi River adjacent to the Barataria Basin each 

year (Allison et al., 2012). To combat this problem, the State of Louisiana has planned a 

sediment diversion into the basin (CPRA, 2017). A sediment diversion is a control structure built 

through the levees of the Mississippi River to allow the river water, sediment, and nutrients to 

flow into the broken distributary channels remaining in the wetlands. These diversions are 

anticipated reduce the rate of land loss and possibly build land, restore freshwater habitats, and 

improve the overall health of the Gulf (Paola et al., 2011; Gagliano et al., 1970; Kim et al., 2009; 

Gagliano et al., 1973). 

A sediment diversion reintroduces sediment rich river water into the wetland by maximizing the 

sediment to water ratio in the diversion (Meselhe et al., 2012) and retaining this sediment in the 

receiving area by mimicking the natural effects of crevasse splay, which is an integral part in the 

evolution of deltas (Snedden et al., 2007; Day et al., 2009, 2012; Kim et al., 2009; Allison and 

Meselhe, 2010; Paola et al., 2011; Meselhe et al., 2012; Wang et al., 2014). Increasing the 

sediment ratio particularly of sand and coarse silt is controlled by the angular orientation and 

elevation at the intake of the diversion (Gaweesh and Meselhe, 2016; Yuill et al., 2016) and the 

proximity to bank margin lateral or point bars. These are significant sources of bed load material 

(Ramirez and Allison, 2013; Allison et al., 2014). Sediment capture in the receiving basin is a 

function of concentration, grain size, and flow. Coarse sediment, such as sand, is easier to 

capture in the receiving area due to its faster settling velocities and resistance to resuspension. 

Sand has limited consolidation and forms a substrate allowing for initial subaerial emergence. 

Once these are established with vegetation, silts become important for sustaining them through 

vertical accretion (Peyronnin et al., 2017). The orientation of these sediment accretions help to 

develop splay island channels by resisting local flow and shielding existing wetlands from waves 

(Wellner et al., 2005; Esposito et al., 2013). Inundation of saline marshes will account for about 

40% of future land loss but 10% comes from salt water intrusion (Reed et al., 2019). Both 

freshwater and sediment diversion establish salinity gradients acceptable for sustaining fish 

species, maintain wetlands stability, and reducing hypoxia in the Gulf of Mexico (Day et al., 

1997, 2009; LaPeyre et al., 2009; Rivera-Monroy et al., 2013; White et al., 2019). 

Sediment diversions are critical to restoring the Louisiana Coastline (DeLaune et al., 2003; Lane 

et al., 2006; Day et al., 2009; Allison and Meselhe, 2010; Paola et al., 2011; Meselhe et al., 2012; 

Teal et al., 2012), so the CPRA is planning to build two along the Mississippi River: Mid-

Barataria and Mid-Brenton. Together these will cost over $2.2 billion to help accomplish the 

ambitious goals set forward in Louisiana’s Coastal Master Plan, which aims to create 800 square 

miles of land over the next 50 years (CPRA, 2012; CPRA, 2017). The Mid-Barataria Diversion 

will be constructed just north of Myrtle Gove, LA at river mile 60.7 with a flow of 

approximately 2100 m3/s (Meselhe et al., 2012). The location of the diversion is placed just 

below a sandbar in the river to maximize sediment being transported through the diversion. The 

first of its kind project has been planned for decades which has allowed plenty of time for it to be 

modeled but construction is still a few years off (CPRA, 2012; CPRA, 2017; Meselhe et al., 

2012) so there is no hard data yet. While there are currently no large scale sediment diversions to 

base the Mid Barataria Diversion models, there are numerous other diversions of the Mississippi 
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River that provide a scientific basis for modeling this diversion (CPRA, 2017; Peyronnin et al., 

2017). 

1.2 Caernarvon and Davis Pond 

Caernarvon and Davis Pond are freshwater diversions on the Mississippi River intended to 

reduce salt water intrusion in the receiving basins. Caernarvon is a gated structure that allows a 

maximum flow of 8000 cfs into the Brenton Estuary since it began operation in 1991 (Allison 

and Meselhe, 2010). It is a box culvert with five vertical lift gates that adjust the flow based on 

the Mississippi River discharge. A minimum river stage of 4 ft is needed to operate the diversion. 

On average the diversion has a flow of 1200 cfs and is open 60% of the year (CPRA, 2003). The 

goal of the diversion is to keep the average salinity at 15 ppt near Stone Island by operating the 

diversion December through May with a minimum flow of 500 cfs and a maximum of 7500 cfs 

(CPRA, 2020). Most of the flow (one half to two third) from the diversion travels east and south 

to Lake Leary while the rest travels to Oak River (DNR, 1991; USACOE, 1993). 

The Caernarvon Diversion was built on a historic crevasse that opened up in the early 1900s and 

was active during the Great Flood of 1927. This provided the first data of what a diversion like 

this would do. Deposition during this event was at least 22 mm/month, with a capture efficiency 

of 55% to 75% of suspended sediment concentrations that flowed in from the river. This crevasse 

deposition event shows how sediment and freshwater capture efficiencies can be enhanced 

through pulsed flooding (Day et al., 2016). 

The modern day diversion, however, was designed to introduce freshwater and were not 

designed to maximize sediment capture, yet they have still built land. Soil accumulation is a 

byproduct of this diversion and not the main goal. The Caernarvon Diversion has built 700 acres 

of new land and developed a sizable subdelta in and around Big Mar Pond (Baker et al., 2011, 

Lopez et al., 2014b). Sediment availability differs throughout the year. The TSS of water 

entering the Brenton Sound through the diversion ranged from 40 to 252 mg/L, with the lowest 

concentrations occurring in the summer and fall and the highest concentrations during the winter 

and spring. This sediment reached 10-15 km into the sound (Lane, 2007).  This land building 

takes time. From 1992 to 2005, Caernarvon had almost no land change before and after the 

diversion opening. Then Hurricane Katrina came and dramatically reduced the land cover in the 

receiving basin (Turner, 2019). Vegetation coverage around Caernarvon declined by 142 km2 or 

about 33% following the hurricane and the marshland near the outlets of the diversion lost more 

vegetation than further away (Kearney, 2011). Some studies show that nutrient influx from the 

diversion leads to more erodible soils which contributed to the large land loss after Hurricane 

Katrina (Howes et al., 2010). In fact, six major hurricanes have affected Louisiana since the 

opening of Caernarvon and the land has recovered from all of them but possibly not because of 

the diversion. Turner (2019) found that no significant land changes between the diversion 

opening and 2010 as compared to a control marsh. 

Davis Pond showed similar results. Davis Pond Diversion is located at river mile 118 above 

Head of Passes on the west bank of the river that has been operational since 2002. The diversion 

is made up of four gated reinforced concrete 14 by 14 ft culverts with inflow and outflow 

channels and a 570 cfs pumping station that has a maximum capacity of 10,670 cfs. The goal of 

the project is to preserve 33,000 acres of wetlands and benefit 777,000 acres of marshes over its 
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50 year lifespan (Allison and Meselhe, 2010; Das et al., 2012). However, there was no 

significant changes in land before and after the diversion was opened with a slight decrease of 

land in the flow path (Turner, 2019). DeLaune et al. (2013) researched the marsh soil accretion at 

12 locations around the northern Barataria Basin in both fresh and brackish marshes. He found 

that soil accretion ranged from ranged from 0.59 to 1.03 cm/yr. This vast majority of this 

accumulation was organic matter rather than mineral soil. This organic matter had void ratios 

over 0.9. He determined that this type of soil was more fragile than a mineral based marsh soil 

when subjected to saltwater intrusion and storm surge, but accretion of this material is helping to 

slow down and in some areas prevent the drowning the northern Barataria Basin which is 

experiencing a local subsidence of 1 cm/yr. This is consistent with the findings of Nyman et al., 

(1993) and Turner et al., (2000) that found vertical accretion is correlated with in situ organic 

accumulation. 

Yet a lot of sediment is making it into the receiving basin. During a period from November 2014 

to April 2015, the time of highest discharge through the diversion that year, Davis Pond received 

over 100,000 metric tons of sediment, 44% of which is retained within the basin. The mean flow 

velocity during this time was 0.21 m/s. For the summer through fall of 2015, less flood water 

flowed through the diversion. During this period, 36,000 metric tons of sediment enter the 

receiving basin and 81% of that is retained due to a mean velocity of only 0.10 m/s. This shows 

that while the high velocity brought and retained more sediment, the capture efficiently was cut 

in half. This is likely due to increased turbulence and bed shear stress in higher velocity currents 

and less capacity for deposition.  The retention rate of Davis Pond is one of the highest in the 

area due to the enclosed geometry of the receiving basin (Keogh et al., 2019). Much of this 

sediment is building up subaqueous which would not be captured in aerial imagery used by 

Turner (2019) (Day et al., 2016; Keogh et al., 2019) 

Das et al (2012) studied Davis Pond and determined that this diversion has a limited effect on the 

salinity of the upper and lower estuary. The upper estuary was already influenced heavily by 

other freshwater sources such as the Inner Coastal Water Way, rainfall and lock exchange flows 

limiting the effect of the large volume of fresh water from Davis Pond. The lower estuary’s 

salinity levels are controlled by marine processes limiting the effect of the diversion. The central 

estuary is heavily influenced by Davis Pond causing salinity levels to fluctuate by 10 ppt 

depending on the flow.  

Unlike Davis Pond, Caernarvon does not have a large source of freshwater near it but is a much 

smaller estuary of 2x108 m3 compared to 4.7x108 m3. Lane et al. (2007) found that the diversion 

was able to keep the upper estuary fresh throughout the year while spring pulses could cause the 

entire estuary to become fresh for less than a month. Lane also observed that there was a two 

week lag time between discharge and salinity changes in the lower estuary. 

From these findings future diversions should target a moderate water discharge and flow 

velocities to maximize sediment deposition and retention, while adding enough fresh water to 

maintain salinity gradients without flooding the wetlands. 

 

1.3 Bohemia Spillway/Mardi Gras Pass 
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Mardi Gras Pass is located within the Bohemia Spillway at river mile 43.7 on the east 

descending bank. This pass developed during the Mississippi River flood in 2011 through an 

overbank flow that developed into channelized flow over the natural levee, which eventually 

breached creating a new channel. Headwater erosion across a bar stabilized by trees allowed this 

pass to breach the Mississippi River completely in early 2012. This pass is now freely flowing 

distributary of the Mississippi River. Mardi Gras Pass is part of the larger Bohemia Spillway 

which encompasses almost a 12 mile reach of the river and has been active since the Great Flood 

of 1927 (Lopez et al., 2013). Today, Mardi Gras Pass can be defined as the four channels (two 

developed and two pre-existing canals) that extend 0.85 miles to the Back Levee Canal. This 

pass is significant because it is extremely rare for a new distributary channel to form along the 

Mississippi River due to the extensive levee system. Research on this pass that discharges 

freshwater, sediment, and nutrients is used to further understanding of our large scale sediment 

diversions but is still limited. 

Basin wide understanding of the effects of Mardi Gras Pass is hard to determine. The pass started 

at approximately 2000 cfs but grew to over 13,000 cfs in capacity in just 5 years however this is 

still much smaller than the Fort Saint Phillip breach that now has a flow of about 160,000 cfs. 

What is noticeable is that during the time since Mardi Gras Pass has opened, salinity levels in 

Breton Sound have decreased. Mardi Gras Pass and the Bohemia spillway also deliver significant 

fluvial sediment to the receiving basin with annual sediment loads around 0.3 MT per year 

(Allison et al., 2012). While this loading rate was found over just a couple years, if it were 

constant since the opening of the Bohemia Spillway then 62% of the annual sediment 

accumulation in the receiving basin is due to this diversion. Downstream almost 20 MT per year 

of sediment reaches the Breton Sound through eight additional river outlets. This sediment can 

be moved higher into the basin through tides, cold fronts, and hurricanes (Smith et al., 2015). 

Lopez et al. (2014) found the Bohemia Spillway has infilled some canals and prevented indirect 

wetland loss due to erosion and sea level rise with the canals. The Bohemia wetlands seem to be 

more resilient than the ones created by Caernarvon since land loss has been negligible around the 

spillway when net negative at Caernarvon. This led him to hypothesize that diversions should 

have high discharges and high sediment concentrations early in their operation followed by 

lower discharges for maintenance of the created wetlands. Numerous studies have shown that 

marshes that receive a constant supply of sediment are stable and growing more resilient 

compared to marshes that are saltier with no river inputs (Amer et al., 2017; Smith et al., 2015). 

They can accrete 1-5 cm of sediment during a seasonal flood, which offsets relative sea level rise 

at current rates (Kolker, 2012; Esposito et al., 2013) 

1.4 West Bay 

In 1839, a crevasse opened on the extreme southern tip of the Mississippi River. During the first 

century this crevasse was open, West Bay developed 297 km2 of land but then sea level rise, 

storms, and reduced sediment deposition lead to land loss exceeding land gain (Wells and 

Coleman, 1987). By the 1980s, West Bay returned to mainly open water (Barras et al., 2009). In 

2003, a two-hundred-yard crevasse cut into the bank on the Mississippi River, at river mile 4.7 

above Head of Passes, LA to mimic the natural crevasse that used to be there. It consists of an 

uncontrolled conveyance channel that has a designed capacity of 50,000 cfs at 50 percent 
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duration stage of the river.  The location was chosen to optimize bed material concentration in 

the diverted water and the channel was built at a 120 degree angle from downstream to enhance 

this sediment capture. Originally, the channel was 7.6 m deep but increased to 15.2 m with 

depths in some areas exceeding 20 m by 2009.  This change corresponds to an increase in the 

cross-sectional area from around 800 m2 to 1600 m2. In 2009, an island was constructed in West 

Bay in order to slow flow into the basin and retain more sediment. This decreased the predicted 

flow velocities within the base and promoted a backwater effect that reduced sediment transport. 

Local areas of sediment accumulation and erosion show that the diversion was continuing to 

evolve during this time (Barras et al., 2009). By 2014, erosion around the diversion stopped 

indicating that after 10 years of development the diversion finally stabilized (Yuill, 2016). Since 

then the diversion of uncontrolled discharges ranged from negative flow to 70,000 cfs, averaging 

around 27,000 cfs (Plitsch, 2017). During high flow this diversion fits Allison and Meselhe’s 

(2010) definition of a “large” diversion. 

Initially sediment deposition rates were equal or slightly greater than relative sea level rise but 

the bay has an average depth of 2-4 m meaning only infilling took place of the first few years 

and no large areas of new land were created (Andrus, 2007; Plitsch, 2017). Then the marsh 

began to accumulate sediment at a rate of 3 cm per year which exceeded relative sea level 

(Kolker et al., 2012). This has caused shoaling in the basin and splay islands have become 

emergent (USACE, 2012) following the floods of 2011 (Khan et al., 2013). 

Sediment for this diversion has distributed over a 13.5 km area with the maximum deposition on 

the seaward side of the receiving basin. This could be due to the silt deposition downstream 

instead of closest to the riverbank. However, most sediment is retained in the nearshore zone 

with a capture efficiency of near 70% (Kolker et al., 2012). Allison (2017) broke this down into 

different types of sediment retention over two weeks of low Mississippi River discharge. He 

found that silt retention in the basin was 60% but dropped to 4% by the end of the study while 

sand retention dropped from 100% to 40%. 

This shear strength of this soil was found to be 0.2 Pa (Xu, 2016). Sha (2018) followed up on 

Xu’s experiment and found that critical shear stress for resuspension was dependent on the time 

since deposition. Two months after deposition the sediment had a critical shear stress of 0.2 Pa 

but that increased to 0.45 Pa after 4 months of consolidation. They also showed that the enclosed 

basin with low salinity and minimal disturbances all favor mud deposition and retention. Allison 

(2017) demonstrated that tides, wind generated currents, and waves also have an effect on sand 

transport within the bay. 

1.5 Wax Lake Delta 

The Wax Lake Delta is one of the only areas in Louisiana that is gaining land. In 1942, the Army 

Corps of Engineers dredged the Wax Lake Outlet to reduce flooding in Morgan City (Latimer 

and Schweitzer, 1951; Fisk, 1952). This outlet was 40 km long, 8 km wide, 3 m deep channel 

that connected the Atchafalaya River to Atchafalaya Bay which is exposed to the open waters of 

the Gulf of Mexico. 

At first, all sands were removed in the channel allowing only clay and silt to enter Atchafalaya 

Bay. As the channel filled with these sandy deposits, a long sandbar developed separating the 
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Wax Lake Outlet from the Atchafalaya River. By 1973, Grand Lake had filled with deposits 

which allowed more sand to be transported through the Wax Lake Outlet (Roberts et al., 1980; 

Tye and Coleman, 1989). This early sand transport built the first subaerially exposed deposits in 

the Wax Lake Delta (Roberts et al., 1980). 

Initial channel development began to occur around 1970 (Roberts et al. 1980). These channels 

incised into the pre-delta substrate (Roberts et al., 1997; Wellner et al., 2005). Just like the West 

Bay diversion, over the years the channels in the Wax Lake Delta have gotten deeper and wider. 

From 1973 to 1999, the channels eroded up to 40% of modern flow depth. From 1991 to 2009, 

the channels widened by 11%. This forces a downstream migration of islands. During spring 

floods almost all available grains sizes are transported in suspension. Many of the current 

channels beds are almost entirely made of consolidated clay covered in alluvial sands, which can 

be eroded easily by sand rich water scouring the bedrock causing the particles to be entrained 

(Shaw et al., 2013). Adjustments in these channel networks are important to understand the 

stability of the distributary networks (Smart and Moruzzi, 1971). Changes in channel width force 

the migration of channel banks and island shorelines (Johnson et al., 1985; Visser et al., 1998; 

Viparelli et al., 2011). This causes the islands to migrate laterally downstream (Shaw et al., 

2013). 

When the flow changes from confined within the channel system and unconfined in the islands 

much of the flow is lost laterally before reaching the receiving basin (Hiatt and Passalacqua, 

2017). Only 25-50% of the flow will reach the island system (Hiatt and Passalacqua, 2015).  The 

variation is driven by vegetation roughness within models and not river flow due to backwater 

control of the subcritical flow. Vegetation on the islands increases velocities within the channels 

after significant lateral flow has occurred. Areas upstream of this lateral flow vegetation 

decreases velocities due to increased water levels and a higher cross-section. The gradient 

between these channels and islands develops a lateral flow to occur which influences the flow 

and deposition in the backwater (Hiatt and Passalacqua, 2017). 

The splay islands created by this diversion has influenced the sediment retention efficiency of the 

receiving basin (Roberts, 1998; Shaw and Mohrig, 2014; Shaw et al., 2016). These islands resist 

local currents to shield inland waters from waves to encourage more deposition and less uptakes 

(Wellner et al., 2005; Esposito et al., 2013) Travel times through these islands is three times 

longer than the channels at roughly 4 days. These islands are subject to tides and wind which can 

cause flow reversal that increases travel time allowing even more deposition to occur (Hiatt and 

Passalacqua, 2015). 

The channels reach 2-6 km beyond the sub-aerial emergent delta with bifurcations into similarly 

sized bifurcation channels with an average width of 150 m. These distributary channels develop 

through erosion of the foreset deposit. High river flow and high sand supply aggrade the bed 

inside and outside the channel. Erosion occurs at the sandy shoals along the sidewalls of the 

bifurcate channels to create a single primary channel. Low flow causes erosion at the channel 

tips and the beds of the subaqueous channels leading to a lengthening of the channels towards the 

bay. This process is mainly driven by tidal cycles that support sand suspension in the channels 

during the ebb tide. Very little sand is supplied from upstream (Shaw and Morhig, 2014; Shaw et 

al., 2016) 
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The delta has gone through multiple bifurcations until the modern delta was formed with five 

main channels. This transition resulted in a 66% reduction in characteristic flow depth and a 33% 

reduction in flow velocity. The channels maintain 86% of the flow from the feeder channel with 

14% of the flow being lost to shallow overland flow over weakly emergent islands. 

Characteristic channel depths and velocities remain fairly consistent even with channel widths 

varying by a factor of two. Velocity is maintained around 0.2 m/s (Buttles et al., 2007) 

Today, the delta receives around 30 Mt per year of sediment of which roughly 18% is sand (Kim 

et al., 2009). The large percentage of sand allows the delta to prograde into the bay at a rate of 

270 m/yr with 5 km2/yr of land built to or above mean sea level between 1980 and 2002 (Parker 

and Sequeiros, 2006). Composition of this new land is made of 67% sand (Roberts et al., 1997). 

The vegetation in the Wax Lake Delta has increased in area and vegetation index (NDVI) from 

1984 to 2011. This accounts of major storms like Hurricanes Lili (2002), Katrina and Rita (2005) 

and Ike (2008) where NDVI decreased significantly due to saltwater intrusion brought on by 

storm surge but recovered quickly and show an increase over the long term trend. This shows 

that the freshwater marshes within the delta are becoming more productive as the delta matures 

and are resilient to coastal storm disturbance (Carle and Sasser, 2016; Couvillion et al., 2017). 

In 2011, the large flood of the Mississippi River which pushes more sediment and freshwater 

into the marsh but has the potential to damage plants. Carle et al. (2015) showed that there was a 

net growth of 6.5 km2 of land at mean water level and 4.9 km2 at mean seal level. Almost 32% of 

the area accreted during the flood and started to transition to higher-elevation species. Most of 

this came in the transition from fully submerged aquatic vegetation: 55% remained unchanged 

while 13% converted to lower vegetation. This is a good model for large scale pulsed river 

diversions. Bevington and Twilley (2018) found that systems can change rapidly in a matter of 

months due to large river floods. High levels of organic matter also correlates to high elevation 

in marshes. This shows that organic matter production and accretion play into an important 

positive feedback loop in wetland development. 

Cold fronts can also play a role in vertical accretion of the marsh outside the sand rich delta. 

When cold fronts approach the Atchafalaya Bay water levels can elevate up to 1 m reversing 

discharge into the bay. This causes overbank flow into the coastal plain marshes building these 

up at over 1 cm per year (Roberts et al., 2015). 

1.6 Bonnet Carré Spillway 

The Bonnet Carré spillway is an existing gated water diversion of the Mississippi with a capacity 

of 250,000 cfs used to divert water around the city of New Orleans while the river is in flood 

stage. It differs from both freshwater and sediment diversions due to its sporadic openings (river 

flow must exceed 1.25 million cfs before it is opened) and it is not intended to help restore 

sediment (Only the top 10-15% of the water column is skimmed into the floodway (Nittrouer et 

al. 2012)) or fresh water to the receiving basin. During the flood of 2011, 10-20% of the river 

was diverted into the spillway but 31-46% of the total sand load in the Mississippi River was 

diverted into the spillway. Local river condition and the high flow during the flood led to high 

concentrations of suspended sand load. This is important in the planning of future diversions. 
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Meselhe et al. (2016) found that reductions in stream flow caused by large diversion such as the 

Bonnet Carré Spillway can result in aggradation of sand near the diversion and downstream of it. 

The quantity of this aggregation depends on the capture efficiency of the diversion and the 

quantity of the water captured. Invert elevation and the placement of diversions near lateral or 

point bars and the curvature of the river also play into these deposits. However, silt and clay 

capture are a function of the river hydrograph and not these other factors. 

1.7 Proposed Mid-Barataria Sediment Diversion 

The closest resemblance to what the Mid-Barataria will look like is West Bay Diversion and the 

Wax Lake Outlet (Peyronnin et al., 2017). Both of these are deliver sediment and freshwater to a 

receiving basin that has depths of 1 to 3 m (Kolker et al., 2012; Shaw and Mohrig, 2014). The 

difference is that the Mid-Barataria sediment diversion will be located farther upstream. This 

diversion will be located just north of Ironton on the west bank of the Mississippi River at river 

mile 61. The diversion will have an invert elevation of -40 ft, a width of 1,600 ft, and the 

conveyance channel will be 2 miles long. This will be a controlled diversion with a capacity of 

75,000 cfs that will be conveyed into the broken marshland and areas of shallow open water 

(CPRA, 2017).  From there it will make its way to Barataria Bay which is only 2 m deep (Wilson 

et al., 2008). The receiving area does not currently have defined distributary channels to convey 

the amount of water that will flow through the diversion (Shaw and Mohrig, 2014). This could 

cause temporary flooding of the marshland posing a risk to local communities until the flow 

develops these distributary channels (Lopez et al., 2014; Lacey, 1929; Cao and Knight, 2002). 

These channels could take 5 to 10 years to develop before the flow could operate at full capacity 

(Lopez et al., 2014). 

The vegetation in the receiving basin is already flood stressed (Snedden and Steyer, 2013; 

Snedden et al., 2015) and could die due to limited adaption time once the diversion is opened this 

in the short term increasing wetland loss (Snedden et al., 2015; Visser and Sandy, 2009). Fish 

and wildlife species may be affected as well. These effects could be limited if the operation is 

completed during the non-growing season for the first few years (Peyronnin et al., 2017). 

However, the proposal has the diversion opening whenever the river reaches 17000 m3/s (CPRA, 

2012). In recent years, this would have the diversion remaining open into late spring or early 

summer (USGS, 2019). 

Another problem that arises is the flooding at the mouth of the diversion. If it was to operate at 

full capacity on Day 1, the water could surge through these broken distributaries endangering 

users and scouring the point where the diversion channel meets the receiving basin (Wellner et 

al., 2005; Wright, 1977). Erosion of the marsh outside of the distributary channels could occur if 

velocities are greater than 20-50 cm/s but most of this material will eventually be trapped in the 

downstream wetlands. A gradual operational strategy of the first 10 years should reduce this 

erosion (Peyronnin et al., 2017). This will also help to build the emergent land area at the mouth 

of the diversion, which help with the suspended sediment capture (CPRA, 2017). 

Under future climate change scenarios, there will be a possible increase in discharge in the basin. 

Tao et al. (2014) determined that an additional −100 to +450 km3/yr of water will flow through 

the lower Mississippi. But this will not be evenly spread through the season. The spring floods 

will see increased discharge and then late summer droughts will decrease the flow (Nakaegawa 
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et al., 2013). Climate change literature predicts an increase in both floods and droughts across the 

Mississippi River watershed (Tao et al., 2014; Melillo et al., 2014) so future hydrographs are 

hard to predict (Falloon and Betts, 2006). Peyronnin et al. (2017) suggests that the operation of 

the sediment diversion should be adjusted to correspond with future river discharge patterns. 

1.8 Previous Models of Barataria Basin 

Georgiou et al. (2010) developed a multidimensional model to study the Barataria Basin’s 

response to multiple diversion of the Mississippi River. This was accomplished through two 

different models: A one-dimensional link-node model used for simulations over 20 years, and a 

higher resolutions FVCOM model for shorter timespans. Both models predict that during high 

flood years, diversions can increase water levels from 0.4 m in the upper part of the receiving 

basin to 0.05 m in Barataria Bay. Locally at the diversion water levels were shown to reach more 

than 1 m if flows were high enough. Both high and low flow diversion scenarios had a 

significant effect of salinities in the basin. The upper Basin was converted to freshwater lakes 

and ponds with salinities below 0.5 ppt. Diversions dropped the salinity in the middle of the 

Basin around Little Lake about 5 ppt but with high variability. The lower part of the Basin also 

drops around 10 ppt. From the model it was determined that the Basin had three distinct parts. 

The first part, a region north of the GIWW, is primarily freshwater and receives mostly 

freshwater runoff. The central region is very dynamic since tide, waves, and the diversions will 

all act in this area and will be the first to show a response to diversions. The lower region is 

dominated by the exchange with the Gulf of Mexico making it very dynamic but the diversions 

have less of an impact here.  

The Water Institute developed a similar model in DELFT3D to connect the Barataria Basin and 

the Mississippi River through the Mid-Barataria Sediment Diversion in a single model. This is a 

depth average 2D model to reduce computation time since velocity and water levels are the most 

important factors in sediment transport. This model accounts for scour and the movement of 

sediment which changes downstream geometry and water surface elevation. Parameters from 

West Bay Sediment Diversion were used in this model. A spread of 0.1 to 1.0 Pa was used as the 

critical shear stress that resulted in significant variation in sediment deposition and land building 

capabilities (Meselhe et al., 2015).  

 

The most recent Louisiana Coastal Master Plan used an Integrated Compartment Model to study 

this diversion. This is a coast wide mass balance model used for a large number of 50-year 

simulation. This a large scale model so resolutions of the model is small enough to collect valid 

sediment transport data making projections at a 30 m by 30 m grid cell resolution of the wetland 

area (Brown et al., 2017). The settling velocity of these particles were calculated using Stokes’ 

Law. The representative particle diameters for the sand, silt, and clay was determined using 

existing calibration datasets. A critical shear stress of 0.1 Pa was used for sediment suspension 

(McCorquodale et al., 2017). Data for riverine inflow was calculated using years from 1964 to 

2014 at Tarbert Landing truncating at 1.25 million cfs, since the Bonnet Carré Spillway would 

divert all flow above that level. Tide data came from across the region with the closest station to 

the Barataria Basin at Caillou Bay. Gridded wind data was obtained from NCDC’s North 

American Regional Reanalysis. This model was run over 50 years with limited analysis taking 

place of the developing distributary channels during year one (Brown et al., 2017).  
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Brown et al. (2017) used an AdH model validated against surface elevation, discharge, and 

salinity to study the land building capability of the diversion. This model shows that there is net 

land gain in the near vicinity of the diversion outlets and net land loss farther away from them 

over the project’s 50 year lifespan. This loss occurs where there is significant inundation without 

substantial sediment deposition. Overall they found that there was no net land gain due to this 

inundation. However, if the diversion operation was optimized there could be near net zero land 

change. One limitation of this study was that their vegetation growth model only used one 

variable to predict growth: inundation depth. The CPRA and Water Institute models have much 

more complex vegetation models. This model found that water freshens significantly during the 

diversion operation and when the diversion operation is ceased, recovery depends on prevailing 

offshore conditions rather than the minimal flow they simulated traveling through the diversion. 

They did note that salinity levels in Southwestern Barataria Bay were minimally affected by the 

diversion operation.  

On the other hand, Lezina and Barth (2019) found that the Mid-Barataria Sediment Diversion 

could benefit as much as 47 square miles of land over its 50 year lifespan. This model shows that 

salinity changes will occur over the lifetime of the project whether or not the diversion is built. 

Their model assumes a year round 5000 cfs of water. When the river reaches 450,000 cfs at Belle 

Chasse the diversion gates will open allowing 35,000 cfs of water into the bay. When the flow 

reaches 1 million cfs the diversion will allow 75,000 cfs into the bay. The model showed that the 

maximum water height during the diversion’s operation will be half a foot at Lafitte and about a 

food at Grand Bayou. Wilkinson Canal water heights could increase by just under three feet.  

1.9 Objectives of the Research 

The primary objective of this study was to investigate the evolution of a distributary system 

when a large sediment laden diversion is introduced into a broken marsh. 

A secondary objective is to determine the impacts on flooding throughout the receiving waters of 

the diversion while the distributary is developing.   

1.10 Methodology in General 

The following approach will be used to address the primary and secondary objectives: 

a) The purposed 75,000 cfs Mid-Barataria Diversion into Barataria Basin will be used as a 

test case for considering the evolution of a distributary system. 

b) The flood risk at the Grand Bayou Community will be used to examine flood risk and 

flood risk changes during the development of the distributary system. 

c) A numerical model will be calibrated to physical observation in the Basin and applied to 

study the introduction of the large diversion. 

d) The impacts will be considered by comparing the ‘no diversion’ and ‘diversion’ results 

for normal and high flood years on the Mississippi River.  
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Chapter 2: Methods 
 

2.1 Model Selection 

Delft3D-FLOW is a multi-dimensional program that calculates unsteady flow based on tidal and 

hydrological/meteorological forcing over the grid. Delft3D-FLOW is designed to solve the 

Navier Stokes equations for incompressible flow over a structured grid using appropriate initial 

and boundary conditions (Deltares, 2011).  

The program Delft3D was chosen because it includes the relevant physical process involved in 

hydrodynamics and morphology of distributary development in the receiving area of a large 

diversion and meets the following criteria: uses the finite volume method, available to non-

commercial researchers, free to registered users, open source code, structured curvilinear grid 

system, salinity module, wind module, a robust sediment module, a large users group and 

pre/post processing tools. Multiple studies of Barataria and Breton Basins, Pontchartrain Estuary, 

Lower Mississippi River and the surrounding coast have used Delft3D (Sadid et al., 2018, Brown 

et al., 2019; McCorquodale et al., 2017; Amini, 2014). The previous work on this domain was 

also done in Delft3D so a continuation was beneficial to prevent conversion errors.  

2.2 Domain 

The model covers the Barataria Basin in southern Louisiana, extending from The Pen in the 

north to the barrier islands on the southern end, and Bayou Lafourche to the Mississippi River 

shown in Figure 2.1. This domain was selected to include the Mid-Barataria sediment diversion’s 

entire drainage area. To reduce computational time, the geographic location of Lake Salvador 

was not included in the bathymetry but its storage was included due to a manipulation of the 

grid. The Coriolis Effect was set to be the same over the entire grid and is estimated using 29 

degrees north latitude.  

Figure 2.1 Modeling domain of the Barataria Basin excluding Lake Salvador (Google Earth). 
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2.3 Grid Design 

Bathymetric (NOAA/CPRA) data were interpolated onto the grid in Delft3D. The horizontal 

coordinates are in Universal Trans-Mercator zone 15R in meters, while the vertical coordinate 

system is in North American Vertical Datum of 1988 (NAVD88) also in meters. A total of 561 

longitudinal nodes and 901 lateral nodes were assigned to discretize the domain into a grid. 

These nodes created 505,461 cells with a maximum size of 10000 m2 and a minimum size of 400 

m2.  A portion of the grid is shown in Figure 2.2. To properly account for some of the changes 

around the mouth of the diversion and immediately south of it, the smallest mesh was used in 

this location with cells as small as 400 m2. After initial calibrations which were not producing 

adequate results, the top row (northerly portion) of the grid was extended to account for the 

storage of Lake Salvador without adding additional nodes. The final grid is shown in Figure 2.3. 

As this is a depth averaged model, only one vertical layer was used.  

Figure 2.2: The final grid around the sediment diversion with a fine mesh around the mouth to properly account for 

bathymetric changes. 
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Figure 2.3: The final grid map of the entire Barataria Basin including the extended top row of cells to capture the 

storage of Lake Salvador. 

2.4 Bathymetry 

The bathymetry and topography of the basin were taken from the NOAA digital elevation data 

and supplemented with data collected by CPRA. Dr. Ioannis Georgiou produced the original 

bathymetry during the initial development of the model. To simplify the topography, the area 

from the river to the back levee was raised to the height of the levee system to take it out of the 

hydrodynamic calculations. The diversion was drawn at RM 60.7 following the angle of the grid 

which is near Myrtle Grove on the Mississippi River. The diversion was assumed to be 12 m 

deep and 100 m wide which gives a maximum velocity of 1.8 m/s and prevents in-channel 

deposition. The mouth of the diversion was constructed of a gradual ramp of erodible materials 

rising from the depth of the diversion to the depth of the receiving basin in 100 m. This allowed 

the diversion to scour its own path. The bottom of the diversion channel itself was set so no 

erosion could occur, but sediment could still be deposited and eroded on top of this non-erodible 

layer. Thin dams were placed on either side of the diversion until it reached the receiving basin 

to prevent flow moving laterally and erosion of the channel sides from occurring.  

Monitoring stations were chosen to get a good coverage of the domain. A total of 21 monitoring 

stations were set up to track the hydrodynamic and morphologic changes across the grid. Bayou 
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Perot, Barataria WW, Little Lake Cutoff, Little Lake Dosgris, Hackberry Bay, and Barataria Bay 

were used as calibration points because the USGS has physical monitoring stations here. A map 

of the bathymetry and monitoring stations is shown in Figure 2.4. 

Figure 2.4: Bathymetry and monitoring station of the study domain including the storage in Lake Salvador. 

2.5 Time Frame 

Two different time frames were used to simulate a year with normal Mississippi River discharge 

and a year with high Mississippi River discharge. The year 2017 was chosen for the normal 

discharge year as the peak flow of the river measured at Belle Chasse was 32,000 m3/s and the 

Bonnet Carré spillway was not opened. The year 2018 was chosen as a higher discharge year 

because the peak discharge reached 37,000 m3/s and the Bonnet Carré Spillway was open for 22 

days. These recent years were chosen because they are representative of these two flow regimes 

(Figure 2.5) and because these data are available at the Belle Chasse USGS Station. 
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Figure 2.5: Mississippi River discharge from 2010-2019 with the selected high and normal flow year (High flow: 

2018 in red. Normal Flow: 2017 in yellow) 

The Normal Flow model was run using data from April 1, 2017 through July 9, 2017. The 

diversion was simulated to be open 79 days with it operating at peak flow for 20 days. The High 

Flow model was run using data from February 1, 2018 to June 30, 2018. The diversion was open 

107 days. It was at peak discharge for 53 days. The time step of both the models is one minute. 

Results were stored hourly in history files and twice a day in map files.  

2.6 Boundary Conditions 

The model is driven by the Mississippi River discharge through the sediment diversion, tides at 

the Gulf of Mexico, wind over the domain, and Gulf salinity. Two boundary conditions were set 

up for the model. A Gulf of Mexico boundary condition, labeled as ‘Down’, was applied to the 

all the southernmost grid cells as a stage dependent condition. The diversion operated as its own 

discharge boundary. This is applied to cell (817, 561). Boundary condition data are obtained 

from several different sources (described in Section 2.6.1) and corroborated using other local 

data points.  

2.6.1 River and Diversion Discharge 

The Mississippi River discharge was taken from the USGS observations at Belle Chasse, LA 

(Station 07374525). Between the Belle Chasse station and the proposed Mid-Barataria Sediment 

diversion the Mississippi River loses flow through the Caernarvon Diversion on the east bank of 

the river at RM 82. The flow rate of this diversion is measured by USGS (USGS 

295124089542100 Caernarvon Outfall Channel at Caernarvon, LA) and can reach a max 

discharge of 225 m3/s. Since this volume of water is minimal compared to the Mississippi River 

discharge the effects are negligible on the total flow of the river and therefore not modeled.  
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No other diversions were modeled in this study. The largest diversion into the Barataria Basin is 

the Davis Pond diversion that is designed to add fresh water north of this study area. During 

calibration it was determined that the Davis Pond was not needed to model the hydrodynamics in 

the area. It did have a slight effect on the salinity in the area leading to a slight over prediction of 

salinities in the middle of the basin.  

While some studies, such as Brown et al. (2019), only studied the effect of the Mid-Barataria 

Sediment Diversion operating at maximum capacity, this study uses a ramping up of the 

diversion from a minimum flow of 500 m3/s when the Mississippi River discharge reaches 

17,000 m3/s to a maximum flow of 2125 m3/s when the Mississippi River discharge is over 

30,000 m3/s. The diversion is opened when the river reaches 17,000 m3/s because studies of 

rating curves at Belle Chasse show sand suspension at 12,000 m3/s in the lowermost Mississippi 

River was negligible (Allison et al., 2013). USGS sediment records show that bedload movement 

of sand starts at approximately 8,000 m3/s. However, significant resuspension of bed load 

material takes place at about 19,000 m3/s as shown by iso-kinetic and backscatter studies on the 

Myrtle Grove bar (Ramirez and Allison, 2013). All diversion operations tested in this study 

begin at 500 m3/s and ramp linearly to their respective max flow rates over the same number of 

days. This pattern with the river discharge is shown in Figure 2.6 and Figure 2.7 for the normal 

river flow and high river flow scenarios respectively.  

Figure 2.6: Normal river flow year using the 2017 hydrograph to determine discharge.  
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Figure 2.7: High river flow year using the 2018 hydrograph to determine discharge.  

2.6.2 Tidal Flux 

Brown et al. (2019) tried to use a combination of several tidal gauges and tidal harmonics to 

predict local tides. They found that the inherent uncertainty in the process did not guarantee a 

more representative tidal boundary and it created localized currents at the boundary. For this 

study only one tidal location is used for the Gulf of Mexico boundary condition. The data are 

from water levels measured at Grand Isle (USGS Station 073802516) and checked using the 

station at Caminada Pass northwest of Grand Isle (USGS Station 07380249). The tidal boundary 

for the normal and high flow years are shown in Figure 2.8 and Figure 2.9. 

 

 
Figure 2.8: Stage level of the Gulf of Mexico during the normal river flow year as measure by USGS Station 

073802516 at Grand Isle which was applied as the boundary condition in the model. 
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Figure 2.9: Stage level of the Gulf of Mexico during the high river flow year as measure by USGS Station 

073802516 at Grand Isle which was applied as the boundary condition in the model. 

 

2.6.3 Salinity 

Salinity data were obtained from observations at Grand Isle (USGS Station 073802516) and 

checked using the station at Caminada Pass northwest of Grand Isle (USGS Station 07380249). 

During 2017, there were data missing from both of these locations so a third location within 

Barataria Bay was used (USGS Station 291929089562600) and the data were scaled based on 

previous observational differences between the stations. The complete salinity dataset is shown 

in Figure 2.10 and Figure 2.11 for normal and high river flow years respectively. Since Grand 

Isle station is in the center of the domain on the southern boundary and there are relatively small 

changes in salinity laterally along the boundary compared with perpendicular to it, the salinity 

was assumed to be constant across the Gulf of Mexico boundary. The water in the diversion was 

assumed to be completely fresh or a salinity of 0 ppt.  

Figure 2.10: Salinity boundary condition for the Gulf of Mexico near the Barrier Islands during the normal river 

flow simulation. 
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Figure 2.11: Salinity boundary condition for the Gulf of Mexico near the Barrier Islands during the normal river 

flow simulation. 

2.6.4 Sediment 

The model was designed for one class of non-cohesive sediments and two classes of cohesive 

sediments. A dynamic sediment rating curve produced by McCorquodale et al. (2017) was 

utilized to produce concentrations in mg/L. Equation 2.1 calculates the sand concentration in the 

river based on the discharge at Tarbert Landing. This equation uses a variable based on the rising 

and falling limbs as well as past history of the discharges in the river shown in Equations 2.2 and 

2.3. 

[2.1]     𝐶𝑠𝑎𝑛𝑑 = {
𝐶𝑠𝑎𝑛𝑑 𝐻𝑖𝑔ℎ𝑓𝑜𝑟

𝑑𝑄

𝑑𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑠𝑎𝑛𝑑 𝐿𝑜𝑤𝑓𝑜𝑟
𝑑𝑄

𝑑𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

} {
3.5

1+
〈𝑄〉12 𝑚𝑜
〈𝑄〉56 𝑦𝑟

} {
3.5

1+
〈𝑄〉3 𝑚𝑜
〈𝑄〉56 𝑦𝑟

}

3

4

 

 

[2.2]    𝐶𝑠𝑎𝑛𝑑 ℎ𝑖𝑔ℎ = 1.7327 ∗ 10−4𝑄𝑐𝑓𝑠 − 5.580 ∗ 10
−11𝑄𝑐𝑓𝑠

2 − 50. 
 

[2.3]    𝐶𝑠𝑎𝑛𝑑 𝑙𝑜𝑤 = 15.48667 ∗ 10−5𝑄𝑐𝑓𝑠 − 6.48148 ∗ 10
−11𝑄𝑐𝑓𝑠

2 + 13. 

 

Where, 

The sign of dQ/dt is based on a 6 day average;  
〈𝑄〉12 𝑚𝑜= preceding 12 month mean daily flow;  
〈𝑄〉3 𝑚𝑜= preceding 3 month mean daily flow;  
〈𝑄〉56 𝑦𝑟= preceding 56 year mean daily flow;  

 𝑄𝑐𝑓𝑠= present time daily flow. 
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Fines were calculated using a similar strategy shown in Equations 2.4 through 2.6.  

[2.4]   𝐶𝑓𝑖𝑛𝑒𝑠 = {
𝐶𝑓𝑖𝑛𝑒𝑠 𝐻𝑖𝑔ℎ 𝑓𝑜𝑟

𝑑𝑄

𝑑𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐶𝑓𝑖𝑛𝑒𝑠 𝐿𝑜𝑤𝑓𝑜𝑟
𝑑𝑄

𝑑𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

}

{
 
 

 
 [

1.8 𝑓𝑜𝑟
𝑑𝑄

𝑑𝑡
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

2.5 𝑓𝑜𝑟
𝑑𝑄

𝑑𝑡
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

]

1+
〈𝑄〉12 𝑚𝑜
〈𝑄〉56 𝑦𝑟

}
 
 

 
 

{
2.5

1+
〈𝑄〉3 𝑚𝑜
〈𝑄〉56 𝑦𝑟

}

1+𝑠𝑖𝑔𝑛(
𝑑𝑄
𝑑𝑡
)

2

 

[2.5]    𝐶𝑓𝑖𝑛𝑒𝑠 ℎ𝑖𝑔ℎ = 8.2963 ∗ 10
−4𝑄𝑐𝑓𝑠 − 7.3343 ∗ 10

−10𝑄𝑐𝑓𝑠
2 + 1.2673 ∗ 10−16𝑄𝑐𝑓𝑠

3 − 68.7 

 

[2.6]  𝐶𝑓𝑖𝑛𝑒𝑠 𝑙𝑜𝑤 = 5.18667 ∗ 10
−4𝑄𝑐𝑓𝑠 − 6.40537 ∗ 10

−9𝑄𝑐𝑓𝑠
2 + 1.9032 ∗ 10−16𝑄𝑐𝑓𝑠

3 − 40.3 

 

Where, 

The sign of dQ/dt is based on a 6 day average;  
〈𝑄〉12 𝑚𝑜= preceding 12 month mean daily flow;  

〈𝑄〉3 𝑚𝑜= preceding 3 month mean daily flow;  
〈𝑄〉56 𝑦𝑟= preceding 56 year mean daily flow;  

 𝑄𝑐𝑓𝑠= present time daily flow. 

It is assumed that 70% of the fines are silt and 30% are clay. The results of these equations are 

shown in Figure 2.12 and 2.13 for normal and high river flow years respectively along with the 

discharge associated with these concentrations.  

 
Figure 2.12: Sediment concentrations in the diversion produced by dynamic sediment rating curves for the normal 

river flow year. 
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Figure 2.13: Sediment concentrations in the diversion produced by dynamic sediment rating curves for the normal 

river flow year. 

This load was imposed at the diversion boundary. It was assumed that the concentration of 

sediment coming in from the Gulf of Mexico was negligible.  

 

2.7 Wind Forcing 

 

Wind data were obtained from three stations around Grand Isle since this is the area of the model 

where the effect of the wind is largest. The stations were labelled by priority. Any data gaps were 

filled by the next station on the list. Table 2.1 gives the wind station information. Figure 2.14 and 

Figure 2.15 give the final wind data that were applied uniformly across the domain during the 

normal and high flow year respectively. Air density was assumed to be 1 kg/m3 and the 

temperature 15 C during the entire run. Barometric pressure gradient over the domain were 

neglected. 

 

Location ID Description 

USGS 073802516 Barataria Pass at Grand Isle, LA 

USGS 07380249 Caminada Pass NW of Grand Isle, LA 

USGS 291929089562600 Barataria Bay near Grand Terre Island, LA 

Table 2.1: Wind Observation Stations Used in Boundary Conditions 
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Figure 2.14: Wind speed as observed at Grand Isle during the spring of 2017 which will be used as the wind data for 

the normal flow year. 

 

 
Figure 2.15: Wind speed as observed at Grand Isle during 2018 which will be used as the wind data for the normal 

flow year. 

2.8 Initial Conditions 

Initial sediment concentrations within the domain were assumed to be zero. The initial water 

level was set to sea level across the entire grid. Salinity within the basin was analyzed for the last 

decade to determine average salinity levels in the basin during the model run. Salinity levels at 

the start of February in 2018 was used as the initial condition for the 2018 calibration run and 

were determined to be close to the average values for the last decade. These values, shown in the 

Lake Pontchartrain Basin Foundation Hydrocoast maps in Figure 2.16, were then used for all 

model runs.  
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Figure 2.16: Hydrocoast from Lake Pontchartrain Basin Foundation used as the initial salinity condition for the 

model (LPBF, 2018). 

 2.9 Morphology  

Five layers of bed sediment were used to create an erodible bed. Space varying thickness was 

used to determine depth of erosion availability. The thickness of the layers in the bed of the 

channels was set to 2 m while the marshland was set to 1 m. The sediment concentration of each 

layer is shown in Table 2.2. Roughness of the bed is also spatially varying. Manning’s n of 

0.023, 0.033, and 0.098 are used for the bed of the channels, the edge of the marshland, and the 

central marsh respectively. Marsh channels were assumed to be anything with an initial depth of 

0.25 m; Marsh centers were defined as any area over 0.5 m above sea level and the marsh edge is 

between these values. However, before any morphologic change could occur a spin up interval of 

1440 minutes was applied.  

Sediment Mass Fraction by Layer 

Layer  1 2 3 4 5 

Clay 0.25 0.22 0.22 0.2 0.2 

Silt  0.7 0.68 0.68 0.6 0.6 

Sand 0.05 0.1 0.1 0.2 0.2 
Table 2.2: Sediment mass fraction by layer 

 

Specific density of the fines was assumed to be 2650 kg/m3 and the dry bed density 500 kg/m3. 

The critical bed shear stress was assumed to be 0.1 Pa (van Ledden, 2003; Pandoe and Edge, 
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2008; Deltares, 2013; Ghose Hajra et al., 2014).  Sand was assumed to have a dry bed density of 

1600 kg/m3 and a D50 of 183.34 mm. Settling velocity of each sediment class is laid out in Table 

2.3.  

 

Sediment Type Settling velocity 

Clay 0.00275 mm/s unflocculated (Mikes and Manning, 2010; Reins, 2018) 

Silt 0.71 mm/s (Maggi, 2013; Reins, 2018) 

Sand 
Use Van Rijn 84 equations to predict settling with a reference height of 1 and 

a threshold sediment thickness of 0.05m 

Table 2.3: Settling velocity parameters based on sediment type 

2.10 Changing Conditions 

Day et al. (2012) and Blankespoor et al. (2012) find that coastal restoration and protection 

projects should consider the impacts of relative sea level rise when predicting benefits. Since, 

this model is only looking at the early development of the distributary channels sea level rise was 

not simulated. Likewise, no large storms were modeled in the selected scenarios. 
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Chapter 3: Calibration 
 

3.1 Calibration Overview 

 

The calibration was run using water depth and salinity data at multiple locations throughout the 

study area (Table 3.1) and simulated during two years with varying river discharge. Since the 

model is looking at small time scales in channel development, the model was calibrated over a 

small time scale. One month from 2017, representing a normal river discharge year, and one 

month from 2018, representing a high river discharge year, were used to calibrate the model.  

USGS Station 

Number 

Latitude Longitude Site Description  

07380330 29.56577778 -90.16555556 Bayou Perot at Point Legard near 

Cutoff, LA 

07380335 29.51750000 -90.18138889 Little Lake near Cutoff, LA 

292800090060000 29.46666667 -90.10000000 Little Lake near Bay Dosgris east of 

Galliano, LA 

292859090004000 29.48305556 -90.01111111 Barataria Waterway south of Lafitte, LA 

07380251 29.42250000 -89.95055556 Barataria Bay north of Grand Isle, LA 

073802512 29.39833333 -90.04111111 

 

Hackberry Bay northwest of Grand Isle, 

LA 

Table 3.1: Geographic location of USGS stations used during the calibration of the model 

For this calibration, statistical measures established by Meselhe and Rodrigue (2013) were used. 

A Normalized Root Mean Square Error, the Pearson Product-Moment Correlation Coefficient, 

and the Percent Bias were all calculated for each station and assed based on the criteria 

established in the same paper. These statistics were computed using hourly averaged data for the 

modeled and field data. To produce useful statistics, the vertical datum was shifted by one meter 

to ensure there were no negative values. The model’s roughness coefficient (at bed level, marsh 

edge, and marsh center), horizontal eddy viscosity and diffusivity, and initial conditions were 

adjusted until the statistical analysis proved the model was operating within an acceptable range. 

A minimum eddy viscosity of 1m2/sec is enforced on the model but the turbulence equations can 

yield more viscosity. This number was determined through model calibration and previous 

research. Originally, an eddy viscosity of 0.1 m2/s was used since this was the value used in 

Brown et al. (2019) but the calibration showed this was insufficient. Horizontal diffusivity was 

60 m2/s and roughness was space varied. These parameters resulted in 83% of stations passing on 

water depth and 67% of stations passing on salinity. The remaining poor caparisons in modeled 

results could be due to gaps in field data and outliers in the observed data that skews the results. 
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3.2 Water Depth Calibration 

Figure 3.1 through Figure 3.6, represent a sample of the calibration curves for water surface 

elevation around Barataria Bay. These points were displayed because they represent spatially 

diverse points within the system and also correspond to areas of interest during the sediment 

diversion simulations. The water surface elevation produced by the model closely resembles the 

observed data. Storm induced changes to the water surface elevation appears to be captured at 

each calibration point. This calibration verifies that roughness coefficient and conveyance 

volumes are sufficient to produce realistic results. The roughness is particularly important 

because it will determine the spatial extent of inundation associated with the sediment diversion. 

It also confirms that the assumption of spatially static wind and uniform tidal influence along the 

boundary. 

 

 
Figure 3.1: Modeled and field surface elevation data at Little Lake Near Cutoff, LA during the normal river flow 

model calibration. 
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Figure 3.2: Modeled and field surface elevation data at Little Lake Near Cutoff, LA during the high river flow model 

calibration. 

 

 
Figure 3.3: Modeled and field surface elevation data at Barataria Waterway South of Lafitte, LA during the normal 

river flow model calibration. 
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Figure 3.4: Modeled and field surface elevation data at Barataria Waterway South of Lafitte, LA during the high 

river flow model calibration. 

 

 
Figure 3.5: Modeled and field surface elevation data at Barataria Bay North of Grand Isle, LA during the normal 

river flow model calibration. 
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Figure 3.6: Modeled and field surface elevation data at Barataria Bay North of Grand Isle, LA during the normal 

river flow model calibration 

 

Water level during the high flow matches the observations better than the low flow year, 

however, both seem to represent the observed data quite well. Open areas show a very strong 

calibration but smaller waterways such as Hackberry Bay and Little Lake near Bay Dosgris show 

a slight damping of amplitude. This is apparent in both high and low flow years and could be due 

to the resolution of the model not capturing the full volume of smaller canals. 

 

3.3 Salinity Calibration 

 

Salinity is much harder to model accurately in part because salinity transport is a three 

dimensional phenomenon. The mixing is determined by roughness and geometry which are 

already validated using hydrodynamic variables. The calibration of salinity involve adjustment of 

the dispersivity. Any large discrepancies in the salinity models may indicate errors with the 

hydrodynamic model that were not detected during that calibration. Figures 3.7 through 3.12 

show modeled and field observed hourly salinity data at various locations within the domain. 

Some field observations were not available during the timeframe chosen to calibrate the model.  
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Figure 3.7: Modeled and field measures of salinity in Bayou Perot at Point Legard near Cutoff, LA during the 

normal river flow model calibration. 

 

 
Figure 3.8 Modeled and field measures of salinity in Bayou Perot at Point Legard near Cutoff, LA during the high 

river flow model calibration. 
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Figure 3.9: Modeled and field measures of salinity at Barataria Waterway South of Lafitte, LA during the normal 

river flow model calibration. 

 

 
Figure 3.10: Modeled and field measures of salinity at Barataria Waterway South of Lafitte, LA during the high 

river flow model calibration. 
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Figure 3.11: Modeled and field measures of salinity at Barataria Bay North of Grand Isle, LA during the normal 

river flow model calibration. 

 

 
Figure 3.12: Modeled and field measures of salinity at Barataria Bay North of Grand Isle, LA during the high river 

flow model calibration. 

 

The model starts to track salinity data after about 7 days of real time simulation. After this time, 

the model does a fairly good job at predicting salinity levels. During storms the salinity response 

is dampened in larger bodies of water and is highly variable in smaller systems. Part of this could 
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be due to the fact that there are 3D features in the salinity circulation that are not represented in 

this depth averaged model.  

3.4 Calibration Equations  

 

3.4.1 Root Mean Square Error 

 

The RMSE measures the variation of the modeled data to observed data (Legates and McCabe, 

1999). This is estimated by taking the square root of the average of differences between modeled 

and observed data. It is calculated using Equation 3.1. 

 

[3.1]           𝑅𝑀𝑆𝐸 = √
∑ (𝑀𝑖−𝑂𝑖)

2𝑛
𝑖=1

𝑛
∗

𝑛

∑ (𝑂𝑖)
2𝑛

𝑖=1

 

 

Where, 

M=Modeled Value 

O=Observed Value 

n=number of observations 

 

Small RMSE percentages mean a better fit of the data. For the RMSE analysis water depth is 

used instead of stage because stage is in reference to an arbitrary datum. However, the graphs of 

the results are shown in stage. For two dimensional models, the desired target for water depth is 

less than 0.15 for all stations. Acceptable range is less than 0.15 for 80% of stations. All of 

modeled stations achieved the values of less than 0.15.  

 

Modeled salinity values are commonly out of phase with the observed values. To counteract this, 

daily mean salinities were compared instead of hourly data (Meselhe, 2013). Over 80% of 

stations had RMSE values below 0.5 during the high flow year and 67% of stations surpassed 

this threshold during a normal flow year meaning that salinity falls within the acceptable range. 

Results of both the water depth and salinity RMSE calculations are shown in Table 3.2.  

 

RMSE Analysis 

Station 
2018 Water 

Depth (m) 

2017 Water 

Depth (m) 

2018 

Salinity 

(ppt) 

2017 

Salinity 

(ppt) 

USGS 292800090060000 0.136 0.138 0.368 0.365 

USGS 7380335 0.141 0.107 0.543 0.139 

USGS 073802512 0.126 0.132 0.230 0.258 

USGS 292859090004000 0.105 0.100 0.253 0.345 

USGS 07380330 0.054 0.066 0.684 0.572 

USGS 07380251 0.045 0.049 0.256 0.627 

Number of Passing Stations  5 5 4 4 

Table 3.2: Results of RMSE analysis at the calibration points for 2018, representing a high flow year, and 2017, 

representing a normal flow year, along with the number of passing stations.  



 
 
 

37 

 

3.4.2 Pearson Product-Moment Correlation Coefficient 

 

The Pearson product-moment correlation coefficient, r, determines the phasing between the 

modeled and observed values (Legates and McCabe, 1999) by accounting for how well the peaks 

and troughs of the curve line up. This is calculated using Equation 3.2: 

 

[3.2]         𝑟 =
∑ (𝑀𝑖−𝑀̅)(𝑂𝑖−𝑂̅)
𝑛
𝑖=1

√∑ (𝑀𝑖−𝑀̅)
2𝑛

𝑖=1 √∑ (𝑂𝑖−𝑂̅)
2𝑛

𝑖=1

 

 

Where, 

M=Modeled Value 

𝑀̅ = Mean of modeled values 

O=Observed Value 

𝑂̅ = Mean of observed values 

n=number of observations 

 

The results of this calculation can be -1 to +1, where a value of +1 means the crests and troughs 

are perfectly in alignment. This measure is not as reliable in this model calibration since the 

sample size is small and data are scarce for salinity. Water depth achieved greater than 0.9 for 

over 80% of the stations during the 2018 calibration and 100% of the stations during the 2017 

calibration meaning the data falls in the acceptable range as shown in Table 3.4.2.1. USGS 

Station 7380335 experienced a slight phase shift causing this to fail the test. The salinity values 

are greater than 0.5 for 50% of the stations for both years meaning that the salinity is acceptable 

(Meselhe, 2013). However, all of the low predictions of salinity come from records with 

incomplete field data.  

 

Pearson Product-Moment Correlation Coefficient Analysis 

Station 
2018 Water 

Depth, r (r2) 

2017 Water 

Depth, r (r2) 

2018 Salinity,  

r (r2)  

2017 Salinity,  

r (r2) 

USGS 292800090060000 0.903 (0.82) 0.914 (0.84) 0.175 (0.03) 0.858 (0.74) 

USGS 7380335 0.708 (0.5) 0.931 (0.87) 0.592 (0.35) 0.596 (0.36) 

USGS 073802512 0.918 (0.84) 0.995 (0.99) 0.139 (0.02) 0.119 (0.01) 

USGS 292859090004000 0.953 (0.91) 0.946 (0.89) 0.508 (0.26) 0.747 (0.56) 

USGS 07380330 0.965 (0.93) 0.903 (0.82) 0.561 (0.31) 0.62 (0.38) 

USGS 07380251 0.947 (0.9) 0.944 (0.89) 0.671 (0.45) 0.263 (0.07) 

Number of Passing 

Stations  
5 6 4 4 

Table 3.3: Results of Pearson Product-Moment Correlation Coefficient analysis at the calibration points for 2018, 

representing a high flow year, and 2017, representing a normal flow year, along with the number of passing stations. 
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3.4.3 Bias 

 

Bias occurs when a model is constantly over or under predicting quantities which is calculated 

using Equation 3.3. Bias can usually be corrected or taken into account for analysis 

 

[3.3]          𝐵𝑖𝑎𝑠 =
𝑀̅−𝑂̅

𝑂̅
 

 

Where, 

𝑀̅ = Mean of modeled values 

𝑂̅ = Mean of observed values 

 

Bias can be returned as positive or negative. Desired values are within 10 for water depth and 

within 20 for salinities. Both of these metrics were achieved for each flow regime as shown in 

Table 3.4.  

 

Bias Analysis 

Station 
2018 Water 

Depth  

2017 Water 

Depth 
2018 Salinity 2017 Salinity 

USGS 292800090060000 0.053 0.117 0.200 0.483 

USGS 7380335 0.097 0.094 0.382 2.399 

USGS 073802512 0.063 0.105 0.142 0.395 

USGS 292859090004000 0.000 0.091 0.090 0.756 

USGS 07380330 0.011 0.041 0.058 0.289 

USGS 07380251 0.018 0.015 0.135 0.653 

Number of Passing Stations  6 6 6 6 

Table 3.4: Results of bias analysis at the calibration points for 2018, representing a high flow year, and 2017, 

representing a normal flow year, along with the number of passing stations. 

 

3.4.4 Critical Model Outputs 

 

The stage and salinity can be calibrated directly on this model. Unfortunately, since no other 

diversions were modeled, sediment cannot be directly calibrated. Instead the values of settling 

velocity, sediment formulation coefficients, sediment substrate parameters, and morphological 

parameters were all determined using previous research.   
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Chapter 4: Results 
 

4.1 Introduction 

 

The stage level, erosion, velocity, and sediment transport of the model runs were processed to 

show the variation from the No Diversion scenario. The various diversion scenarios are 

compared to each other under each Mississippi River flow year shown in Figure 4.1 and 4.2 and 

described in Section 2.6.  

 

 
Figure 4.1: The operation scenarios for the Mid-Barataria Sediment Diversion during the Normal River Flow Year 

 

 
Figure 4.2: The operation scenarios for the Mid-Barataria Sediment Diversion during the High River Flow Year 
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Monitoring stations over the model domain was analyzed and three district distributary channels 

develop from the diversion shown in Figure 4.3, so only information from monitoring stations 

within these paths were shown. The paths are as flows: The Northern Path flows from the 

diversion south west to Bayou DuPont and then north west through Bayou DuPont to The Pen, 

over into North Barataria Waterway then travels through Bayou Rigolettes/Perot into Barataria 

Bay through Little Lake. The Southern Path flows south and then west through the broken 

marshland into Bayou DuPont, then south into Round Lake east into Lake Laurier and into 

Wilkinson Bayou. The Mid-Barataria Waterway Path comes from a collection of flow through 

the broken marsh system east through the open water of Bayou DuPont and into Mid-Barataria 

Waterway. From there it flows south through the waterway into the bay. All of these locations 

are shown in Figure 4.4 along with the observations points in the model.  

 

 

 
Figure 4.3: Three major distributary channels established by the Mid-Barataria Sediment Diversion. 

 

 



 
 
 

41 

 
Figure 4.4: Locations described in this chapter are in blue and monitoring stations with data displayed in this chapter 

are in red.  

 

4.2 Water Level 

 

The Mid-Barataria Sediment Diversion will introduce a large quantity of Mississippi River water 

into the receiving basin. Where this water will flow depends on how the water interacts with the 

distributary channels already present in the receiving basin. Monitoring stations placed in the 

model domain captured this rise in water level. All monitoring stations and location references 

are shown in Figure 4.1. Water level data are displayed using a 48-hour moving average filter to 

remove all tidal signals still present in the difference files.  

 

The station closest to the diversion is Bayou DuPont just over 3 km away. Even with the gradual 

opening of the diversion, the water levels rise over half a meter within the first week of the 

diversion opening. Figure 4.5 shows the difference in water level between each operational 

scenario of the diversion and the reference No Diversion datum at Bayou DuPont. The first ten 

days the diversion is not open and water levels are nearly constant with the No Diversion water 

levels. Once the diversion is opened and flow begins to increase, water levels increase based 

upon operational scenario of the diversion. This is the same for the high and normal flow years. 

The operation of the diversion can change water levels at this point greatly. Operating the 

diversion at maximum flow during a high flow year can cause up to 1 m in water level rise above 

the No Diversion water levels but operating the diversion at 50% maximum flow during a 

normal flow year only causes an increase in water levels of 0.6 m above the No Diversion case. 

During the normal flow year, the maximum water level at this point is reached before the 

diversion reaches its full capacity at Day 50. Then there is a significant decrease in water levels 

between Day 60 and Day 70 while the diversion was still operating at capacity. During the high 

flow year, the water level peaks at this location at Day 35 when the diversion reaches its peak 

discharge but the water level soon begins to decrease at this station while the diversion is still 

operating at its capacity (Figure 4.6).   
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Figure 4.5: The difference in water levels at Bayou DuPont during a normal Mississippi River discharge year as 

compared to the No Diversion scenario with a 48-hour centered moving average filter applied to remove tidal 

differences.  

 
Figure 4.6: The difference in water levels at Bayou DuPont during a high Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 
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Approximately 11 km south of the diversion is Round Lake. This significant lake is the first lake 

that flow from the diversion will reach. This location shows similar water level elevations as 

Bayou DuPont (Figure 4.7). Its initial rise in water level is over the same amount of time during 

both river flow scenarios (Figure 4.8). After the initial rise, flood levels remain similar between 

Bayou DuPont and Round Lake. When the diversion closes it takes water levels at each location 

less than a day to return to the no diversion scenario.  

 

In Barataria Waterway, water levels increase as the flow out of the diversion increases, peaking 

when the diversion reaches its maximum capacity before dropping back to almost zero after 

closure of the diversion.  In the northern and central parts of Barataria Waterway the flow is 

dominated by the diversion which increases water levels 0.4 m when the diversion is operating at 

maximum capacity and 0.2 m when it is at 50% capacity during a normal flow year (Figure 4.9 

and 4.10). The high flow conditions increase water levels to 0.4 m when the division is at 

capacity and 0.2 m at 50% capacity as compared to No Diversion scenario (Figure 4.11 and 

4.12).  

 

 
Figure 4.7: The difference in water levels at Round Lake during a normal Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 
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Figure 4.8: The difference in water levels at Round Lake during a high Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 

 
Figure 4.9: The difference in water levels in North Barataria Waterway during a normal Mississippi River discharge 

year as compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal 

differences. 
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Figure 4.10: Mid-Barataria Waterway water level difference during a normal Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 

 
Figure 4.11: North Barataria Waterway water level difference during a high Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 
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Figure 4.12: The difference in water levels in Mid-Barataria Waterway for the 50% maximum, 70% maximum, and 

maximum flow of the diversion during a high Mississippi River discharge year as compared to the No Diversion 

scenario with a rolling 48-hour average filter applied to remove tidal differences. 

 

The southern terminus of Barataria Waterway is tide dominated, but the diversion still increases 

the water level here by 0.17 - 0.22 m when the diversion reaches capacity as shown in Figure 

4.13 and Figure 4.14. Tides can still alter the water level by more than this amount.  

  

Outflow from the diversion also travels north into Lake Salvador as shown in Figure 4.15 and 

Figure 4.16. Here the water levels can rise as high as 0.4 m during the maximum flow in the 
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Figure 4.13: South Barataria Waterway water level difference during a normal Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 

 
Figure 4.14: South Barataria Waterway water level difference during a normal Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 
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Figure 4.15: The difference in water levels in Lake Salvador during a normal Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 

 
Figure 4.16: The difference in water levels in Lake Salvador during a high Mississippi River discharge year as 

compared to the No Diversion scenario with a rolling 48-hour average filter applied to remove tidal differences. 
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Grand Bayou also has a large tidal influence like the southern terminus of Barataria Waterway. 

However, it reaches a maximum water level much sooner and resembles the areas nearest the 

diversion during both normal and high flow year, shown in Figure 4.17 and Figure 4.18. During 

the high flow year, the water level begins to taper off around Day 60 which is 10 days before the 

diversion begins to reduce flow. Operating the diversion at 50% of the maximum flow will 

reduce flood heights in the area by 0.15 m during the operation of the diversion. Once the 

diversion is closed it takes less than a day for the water levels to return to normal.  

 

 
Figure 4.17: The difference in water levels in Grand Bayou for the 50% maximum, 70% maximum, and maximum 

flow of the diversion during a normal Mississippi River discharge year as compared to the No Diversion scenario 

with a rolling 48-hour average filter applied to remove tidal differences. 
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Figure 4.18: The difference in water levels in Grand Bayou for the 50% maximum, 70% maximum, and maximum 

flow of the diversion during a high Mississippi River discharge year as compared to the No Diversion scenario with 

a rolling 48-hour average filter applied to remove tidal differences. 

 

4.3 Depth Averaged Velocity 

 

Velocities were calculated throughout the domain. Areas of high velocity indicate potential 

erosion and low velocities indicate potential deposition. Selected velocities shown below are 

compared to the No Diversion scenario which should mostly remove the influences of tides. 

However, these velocities would contain the velocity change due to a changing tidal prism 

caused by the diversion or phase changes due to changes in the flow pathways.  

 

As the diversion is opening, water rushes into the ‘still’ water receiving basin. After the flow 

enters the marsh, higher velocities occur south of the diversion during both normal and high flow 

years as shown in Figure 4.19 and Figure 4.20. Soon the diversion starts to develop three major 

distributary channels: a) south through Round Lake and Wilkinson Bayou, b) west through 

multiple small channels created by the diversion that eventually connect to Barataria Waterway, 

and c) north via Bayou DuPont into northern Barataria Waterway and eventually south through 

Bayou Rigolettes/Perot as shown in Figure 4.21 and Figure 4.22. Once these three channels 

develop, flow through Grand Bayou begins to drop as indicated in Figure 4.23 and Figure 4.24.  
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Figure 4.19: Depth averaged velocity in m/s one day after the diversion is opened (Day 11) during the normal 

Mississippi River discharge year over the domain based on Universal Trans-Mercator Zone 15R.  

 

 
Figure 4.20: Depth averaged velocity in m/s one day after the diversion is opened (Day 19) during the high 

Mississippi River discharge year over the domain based on Universal Trans-Mercator Zone 15R. 
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Figure 4.21: Depth averaged velocity in m/s once the diversion reaches maximum capacity on Day 50 during the 

normal Mississippi River discharge year over the domain based on Universal Trans-Mercator Zone 15R. 

 

 
Figure 4.22: Depth averaged velocity in m/s once the diversion reaches maximum capacity on Day 36 during the 

high Mississippi River discharge year over the domain based on Universal Trans-Mercator Zone 15R. 
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Figure 4.23: Depth averaged velocity in m/s just prior to the diversion reducing flow (Day 69) during the normal 

Mississippi River discharge year over the domain based on Universal Trans-Mercator Zone 15R. 

 

 
 Figure 4.24: Depth averaged velocity in m/s just prior to the diversion reducing flow (Day 86) during the high 

Mississippi River discharge year over the domain based on Universal Trans-Mercator Zone 15R. 
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The Barataria Waterway carries two of the major distributary channels. Northern Barataria 

Waterway has an increase in velocity of about 0.17 m/s during the normal and high flow years 

regardless of the diversion’s operation scenario. The peak of this flow happens before the 

diversion reaches full capacity during the normal flow year (Figure 4.25) and right as the 

diversion reaches capacity during a high flow year (Figure 4.26). This part of the Barataria 

Waterway receives flow from Bayou DuPont while the middle part of Barataria Waterway 

receives flow from the small distributary channels already present in the marsh but enhanced by 

the diversion. The velocity in the middle of Barataria Waterway follows the operation of the 

diversion closely peaking at Day 60 during the normal flow year and Day 80 during a high flow 

year. Operating the diversion at capacity increases velocity here by 0.5 m/s during normal flow 

years and 0.6 m/s during high flow years (Figure 4.27 and 4.28). This is similar to the southern 

terminus of the waterway as well (Figure 4.29 and 4.30). 

 

 
Figure 4.25: Depth averaged velocity due to different diversion operational strategies in North Barataria Waterway 

during a normal Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour 

average filter applied to remove tidal differences. 
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Figure 4.26: Depth averaged velocity due to different diversion operational strategies in North Barataria Waterway 

during a high Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour 

average filter applied to remove tidal differences.  

 

 
Figure 4.27: Depth averaged velocity due to different diversion operational strategies in Mid-Barataria Waterway 

during a normal Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour 

average filter applied to remove tidal differences.  
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Figure 4.28: Depth averaged velocity due to different diversion operational strategies in Mid-Barataria Waterway 

during a high Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour 

average filter applied to remove tidal differences.  

 

 
Figure 4.29: Depth averaged velocity due to different diversion operational strategies in South Barataria Waterway 

during a normal Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour 

average filter applied to remove tidal differences.  
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Figure 4.30: Depth averaged velocity due to different diversion operational strategies in South Barataria Waterway 

during a high Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour 

average filter applied to remove tidal differences. 

 

At Grand Bayou velocities also increase following the diversion operation. During the normal 

and high flow scenarios, the velocities can reach 0.4 m/s when the diversion is at full capacity. 

Running the diversion below capacity can reduce the velocity in the channel to up to 0.25 m/s 

(Figures 4.31 and 4.32).  
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Figure 4.31: Depth averaged velocity due to different diversion operational strategies in Grand Bayou during a 

normal Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour average filter 

applied to remove tidal differences.  

 

 
Figure 4.32: Depth averaged velocity due to different diversion operational strategies in Grand Bayou during a high 

Mississippi River discharge year compared to the No Diversion scenario with a rolling 48-hour average filter 

applied to remove tidal differences. 
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4.4 Geomorphology 

 

4.4.1 Basin Wide 

 

The diversion begins to scour a channel at the mouth of the diversion so that the flow can enter 

the basin (Figure 4.33). Immediately after opening of the diversion there is a strong southern 

current with a large eddy created south of the diversion and minimal movement of water to the 

north. As the flow through the diversion increases, the mouth of the diversion continues to erode 

forming a deeper channel at the mouth of the diversion. The strong southern current increases 

and the higher elevated land below the flooded surface begins to erode. Sediment is deposited in 

the counter rotating eddies just north and to the south of the diversion. Another portion of the 

flow goes west south west from the diversion making its way to Barataria Waterway. The area 

between this flow and the southern flow creates an area of nearly stagnate water southwest of the 

diversion where sediment is deposited (Figure 4.34).  

 

 
Figure 4.33: Erosion of the marshland two days after the diversion opened during a normal Mississippi River flow 

year with velocity vectors demonstrating flow paths. Blue is accumulation and brown is erosion in meters over a 

portion of the domain based on UTM Zone 15R. 
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Figure 4.34: Erosion of the marshland when the diversion reaches maximum discharge during a normal Mississippi 

River flow year with velocity vectors demonstrating flow paths. Blue is accumulation and brown is erosion in 

meters over a portion of the domain in meters based on UTM Zone 15R.  

 

When the diversion is beginning to close, the distributary routes have been firmly established. 

The strong southern velocity is still present but has reduced in magnitude and the overland flow 

to the south west continues. However, velocities to the north increased while the diversion was at 

capacity changing what started off a deposition area to one of net erosion as shown in Figure 

4.35. This pattern is present in all operation scenarios during normal and high river flow.  
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Figure 4.35: Erosion of the marshland when the diversion begins to reduce in discharge during a normal Mississippi 

River flow year with velocity vectors demonstrating flow paths. Blue is accumulation and brown is erosion in 

meters over a portion of the domain based on UTM Zone 15R. 

  

Regardless of the Mississippi River Flow scenario when the diversion is opened, the receiving 

basin immediately begins to erode. First, the channel at the mouth of the diversion is scoured and 

the channels between open bodies of water begin to incise. Erosion occurs in the channel that 

connects Round Lake to Barataria Waterway, shown in Figure 4.36 and Figure 4.37, as the 

diversion is increasing in discharge during both river flow years. Once the diversion reaches 

maximum capacity the receiving basin immediately adjacent to the diversion erodes and accretes 

in an arced pattern showing that some large-scale eddies are forming from the diversion during 

both river flow years (Figure 4.38 and Figure 4.39). Sediment is deposited in large bodies of 

water like Round Lake and The Pen. A middle section of Barataria Waterway also experiences 

sediment deposition because of the channel conveys water from Round Lake to the northern part 

of Barataria Waterway and down through Bayou Rigolettes/Perot and Little Lake.  
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Figure 4.36: Erosion of the marshland when the diversion is increasing discharge during a normal Mississippi River 

flow year. Blue is accumulation and brown is erosion in meters over a portion of the domain based on UTM Zone 

15R. 

 
Figure 4.37: Erosion of the marshland when the diversion is increasing discharge during a high Mississippi River 

flow year. Blue is accumulation and brown is erosion in meters over a portion of the domain based on UTM Zone 

15R. 
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Figure 4.38: Erosion of the marshland when the diversion is at maximum discharge during a normal Mississippi 

River flow year. Blue is accumulation and brown is erosion in meters over a portion of the domain based on UTM 

Zone 15R. 

 
Figure 4.39: Erosion of the marshland when the diversion is increasing discharge during a high Mississippi River 

flow year. Blue is accumulation and brown is erosion in meters over a portion of the domain based on UTM Zone 

15R. 
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By the time the diversion is closed this pattern of deposition in large water bodies and erosion in 

channels is well established. The mouth of the diversion has dug a distributary channel 6 to 8 m 

deep while creating natural levees of sediment deposits along the sides of it. Other deposition is 

present along the levee system near the diversion and the rest of the immediate receiving basin is 

eroded. The Pen, Bayou DuPont, Round Lake, and Lake Laurier all have significant sediment 

deposits. Barataria Waterway has an area of extreme sediment deposit between the Northern Path 

and Mid-Barataria Path. The latter of these flows travels south through the waterway and into 

Barataria Bay eroding the whole length of the waterway it travels through. On the edges 

sediment is deposited in a natural levee building process (Figure 4.40 and Figure 4.41) 

 

 
Figure 4.40: Erosion of the marshland when the diversion closes during a normal Mississippi River flow year. Blue 

is accumulation and brown is erosion in meters over a portion of the domain based on UTM Zone 15R. 
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Figure 4.41: Erosion of the marshland when the diversion closes during a high Mississippi River flow year. Blue is 

accumulation and brown is erosion in meters over the entire domain based on UTM Zone 15R. 

 

4.4.2 Localized Geomorphology 

 

Overall the patterns of erosion in the receiving basin are similar during normal and high river 

flow and diversion operation, but some localized differences exist. At Bayou DuPont a linear 

erosion pattern occurs that differentiates based on diversion operation strategy (Figure 4.42). 

Starting at Day 10 of the normal flow scenario, which is the first day the diversion opens, erosion 

begins. It continues linearly until diversion begins to reduce its flow. The difference between 

operating the diversion at capacity versus 50% capacity changes the erosion by 0.1 m. A similar 

patter occurs during the high flow scenario except the diversion is open longer to allow for more 

erosion, up to 1.3 m, with a difference of 0.1 m between operating the diversion at capacity 

versus 50% capacity (Figure 4.43). 
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Figure 4.42: Erosion at Bayou DuPont due to the operational strategy of the diversion during a normal Mississippi 

River discharge year. 

 
Figure 4.43: Erosion at Bayou DuPont due to the operational strategy of the diversion during a high Mississippi 

River discharge year. 
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Figure 4.44 shows that during a normal flow year erosion occurs in the channel at Grand Bayou, 

but it takes nearly 10 days after the diversion is opened for it to begin and tapers to nearly zero 

even before the diversion closes. Operating the diversion at 50% of the maximum flow will 

reduce the erosion in the channel at Grand Bayou by 0.08 m. During a high river flow year, 

Grand Bayou can erode over 0.2 m when the diversion is operated at capacity versus 0.05 m 

when it is operated at 50% capacity (Figure 4.45).  

 

 
Figure 4.44: Erosion at Grand Bayou due to the operational strategy of the diversion during a normal Mississippi 

River discharge year. 
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Figure 4.45: Erosion at Grand Bayou due to the operational strategy of the diversion during a high Mississippi River 

discharge year. 

 

Up to 0.2 m of erosion occurs at the southern end of Barataria Waterway during the normal flow 

year (Figure 4.46) and 0.5 m during the high flow year (Figure 4.47). The central part of the 

waterway does not erode under the 50% maximum flow strategy but will erode almost 0.2 m 

during the maximum flow capacity during a normal river flow year (Figure 4.48). However, the 

50% maximum flow strategy will erode this part of the channel 0.1 m during the high flow year 

and the diversion operated at capacity can cause up to 0.5 m of erosion (Figure 4.49). One of the 

only areas in a major channel in the domain that accumulates sediment is the northern part of 

Barataria Waterway (Figure 4.50). This sediment accumulates quickly adding 0.2 m under 50% 

maximum flow strategy to over 1.2 m when the diversion is operated at capacity. Sediment 

accumulation stops when the diversion begins to reduce its flow. The also occurs during the high 

flow year where almost 2 m of sediment is accumulated in the channel (Figure 4.51). 
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Figure 4.46: Erosion of the Mid-Barataria Waterway due to the operational strategy of the diversion during a normal 

Mississippi River discharge year. 

 
Figure 4.47: Erosion of the Mid-Barataria Waterway due to the operational strategy of the diversion during a high 

Mississippi River discharge year. 

 

-0.2

-0.15

-0.1

-0.05

0

0.05
0 10 20 30 40 50 60 70 80 90 100

C
um

u
la
ti
ve
	E
ro
si
o
n	
an
d
	S
e
d
im
e
nt
a
ti
on
	
(m

)

Time	(Days)

Erosion	at	Mid-Barataria	Waterway	during	Normal	Flow	Year	
under	Various	Diversion	Flow	Scenarios	

50%	Maximum	Flow 70%	Maximum	Flow Maximum	Flow

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
0 25 50 75 100 125 150

C
um

u
la
ti
ve
	E
ro
si
o
n	
an
d
	S
e
d
im
e
nt
a
ti
on
	
(m

)

Time	(Days)

Erosion	of	Mid-Barataria	Waterway	during	High	Flow	Year	
under	Various	Diversion	Flow	Scenarios	

50%	Maximum	Flow 70%	Maximum	Flow Maximum	Flow



 
 
 

70 

 
Figure 4.48: Erosion of the South Barataria Waterway due to the operational strategy of the diversion during a 

normal Mississippi River discharge year. 

 
Figure 4.49: Erosion of the South Barataria Waterway due to the operational strategy of the diversion during a high 

Mississippi River discharge year. 
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Figure 4.50: Accumulation in the North Barataria Waterway due to the operational strategy of the diversion during a 

normal Mississippi River discharge year. 

 
Figure 4.51: Accumulation in the North Barataria Waterway due to the operational strategy of the diversion during a 

high Mississippi River discharge year. 
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4.5 Sediment 

 

When the diversion is first opened, velocities are not high enough to keep sand suspended in the 

flow until it reaches the receiving basin. Instead, it is deposited within the diversion channel. 

Once the velocity increases in the diversion, this sediment is re-suspended and transported out of 

the division into the receiving basin. As the diversion slows, more sediment is deposited. This 

final deposition is shown in Figure 4.52. 

 

When the diversion enters the receiving basin the velocity slows. Eddies are created which 

deposit sand along the scour channel at the mouth of the diversion and along the back levee 

system. These deposits begin to extend into the receiving basin and consists of mainly sand and 

silt.  

 

By the time the flow from the diversion reaches a monitoring stations within the domain, all of 

the suspended sand has deposited within the immediate receiving basin or is moving as bed load. 

Silt and clay still remain in suspension from the diversion and can be picked up from the erosion 

of the receiving basin. Localized sand can also be transported as bed load. Silt is deposited as 

water flow changes from narrow channels and bayous into larger bodies of water like Round 

Lake and The Pen. Silt concentrations in the water at various locations around the domain are 

shown in Table 4.1. It is noted that during the high diversion flows the silt and clay 

concentrations often exceed the concentrations in the diversion itself. 

 

Average Silt Concentration during Peak Diversion Discharge (kg/m3) 

  Normal Flow  High Flow 

Location 

50% 

Maximum 

Flow 

70% 

Maximum 

Flow 

Maximum 

Flow 

50% 

Maximum 

Flow 

70% 

Maximum 

Flow 

Maximum 

Flow 

Diversion 0.09 0.09 0.09 0.08 0.08 0.08 

North Barataria 

Waterway 0.13 0.37 0.72 0.61 0.87 1.26 

South Barataria 

Waterway 0.17 0.49 1.03 0.44 0.79 1.31 

The Pen 0.13 0.24 0.73 0.26 0.49 1.30 

Round Lake 0.02 0.03 0.11 0.03 0.08 0.21 

Grand Bayou 0.00 0.00 0.00 0.00 0.00 0.00 
Table 4.1: Average silt concentration difference at various locations around the domain during peak discharge of the 

diversion under both Mississippi River flow scenarios. 

 

Clay is transported through the diversion and more is picked up as the diversion erodes the 

receiving basin and the distributary channels. The diversion transported on average 0.07 kg/m3 of 

clay at its peak discharge during a normal Mississippi River flow year and 0.03 kg/m3 during the 

high flow year. As shown in Figure 4.52 and Figure 4.53, clay concentrations within Grand 

Bayou increases with the increase in diversion discharge but varies greatly depending on the 

river flow regime and the diversion operation.  
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Figure 4.52: Concentration of clay in Grand Bayou due to the operational strategy of the diversion during a normal 

Mississippi River discharge year. 

 

 
Figure 4.53 Clay concentration in Grand Bayou due to the operational strategy of the diversion during a high 

Mississippi River discharge year. 
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4.6 Salinity 

 

Salinity within the basin drops rapidly when the diversion is opened. Within one week of the 

diversion opening, the salinity in northern Barataria Waterway drops to near zero (Figure 4.54). 

It takes a few more days for the salinity levels in Mid-Barataria Waterway and Grand Bayou to 

drop to zero (Figure 4.55 and 4.56). This happens regardless of operation scenario or level of 

Mississippi River flood. Lake Washington still retains some salinity when the diversion is open; 

the operation of the diversion causes a decrease of 5 to 10 ppt (Figure 4.57). The only place in 

the domain that the diversion has little effect (a drop of less than 2 ppt) is in the far southwestern 

corner of the domain (Figure 4.58). The normal versus high Mississippi River flow did not 

change the results of salinity therefore only the high flow year is shown.  

 

 
Figure 4.54: Salinity levels in the North Barataria Waterway due to the operational strategy of the diversion during a 

high Mississippi River discharge year as compared to the no diversion scenario. 
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Figure 4.55: Salinity levels in the Mid-Barataria Waterway due to the operational strategy of the diversion during a 

high Mississippi River discharge year as compared to the no diversion scenario. 

 

 

 
Figure 4.56: Salinity levels in Grand Bayou due to the operational strategy of the diversion during a high Mississippi 

River discharge year as compared to the no diversion scenario. 
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Figure 4.57: Salinity levels in Lake Washington due to the operational strategy of the diversion during a high 

Mississippi River discharge year as compared to the no diversion scenario. 

 

 
Figure 4.58: Salinity levels in western Barataria Bay due to the operational strategy of the diversion during a high 

Mississippi River discharge year as compared to the no diversion scenario. 

 

  

0

5

10

15

20

25

30

35

0 25 50 75 100 125 150

S
a
lin
ity
	(
p
p
t)

Time	(Days)

Salinity	in	Lake	Washington	during	High	Flow	Year	under	
Various	Diversion	Scenarios	

50%	Maximum	Flow 70%	Maximum	Flow Maximum	Flow No	Diversion

0

5

10

15

20

25

30

35

0 25 50 75 100 125 150

S
a
lin
ity
	(
p
p
t)

Time	(Days)

Salinity	in	Western	Barataria	Bay	during	High	Flow	Year	
under	Various	Diversion	Scenarios	

50%	Maximum	Flow 70%	Maximum	Flow Maximum	Flow No	Diversion



 
 
 

77 

 

Chapter 5: Discussion 
 

5.1 Introduction 

 

The model was calibrated for water levels and salinity over the course of a month for the years 

2017 and 2018 at 6 locations representing a wide coverage of the domain. The model achieved 

acceptable water levels for the root mean square error, Pearson product-moment correlation 

coefficient, and bias error. While modeled water levels tracked closely with observed values 

there were higher errors in salinity. Salinity had to be calibrated using the daily average to filter 

out phase differences in the tidal signals with and without a diversion.  

 

In the results, all data were compared to the No Diversion scenario. All figures represent the 

changes created by the diversion unless otherwise noted. The difference between the diversion 

and no diversion scenarios should have removed the tidal signal from the results, yet some 

remained.  

 

5.2 Development of the Distributary System 

 

5.2.1 Diversion Mouth 

 

The water entering the receiving basin has the highest velocity measured in the domain because 

of the change in bed elevation from the diversion channel to the receiving basin. This change in 

elevation both increases the velocity and the water level. The high velocity of water scours a 

channel that reaches up to 8 m deep during the high flow year and the diversion operated with 

maximum flow. The normal flow year only produces a channel 6 m deep but more erosion would 

occur if the diversion was open longer. This means that the channel at the outlet of the diversion 

may not be fully formed within the first year of operation.  

 

Once the water is free from the channel it spreads into the receiving basin and slows creating two 

eddies on either side of the diversion outlet. These produce depositions comprised of sand and 

silt. This is the goal of the sediment diversion and proves that some land creation will begin 

within the first year. This land will be adjacent to the back levees along the scour channel that 

the diversion creates.  

 

Initially, flow from the diversion travels almost completely southward through the open water of 

the broken marshland. North of the diversion there is more continuous marshland than to the 

south which prevents the initial flow from moving in that direction. The slowing of water along 

this northern marsh boundary causes some deposition. Once the diversion increases to its 

maximum flow this area turns erosive as more distributary channels are needed to convey the 

increase in discharge. Overland flow erodes the marshland enhancing the channels within it and 

eroding more. 

 

The receiving basin to the south is mainly open water but the sparse areas of land will begin to 

erode almost immediately. In some areas, erosion of up to 2 m can occur but this erosion begins 

to define distributary channels for the diversion. These channels are eroded into the bed of open 
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water areas and through the existing marshland immediately adjacent to the diversion. At 

roughly 2.5 miles from the diversion, the velocity of the water slows and begins to follow 

existing flow pathways. This is where the marshland becomes more continuous and only defined 

channels exist for the water to be transported through. The water flows through these channels 

elevating water levels downstream and increasing the velocity.  

 

The highest velocity occurs southeast along the back levee through the existing open water in the 

present receiving basin. Most of this flow then makes a sharp turn to the southwest into the open 

pond in the middle of Bayou DuPont then follows the bayou south towards Round Lake. While 

the majority of the flow turns to enter Bayou DuPont, some water moves through the open water 

areas towards Grand Bayou.   

 

Ultimately the diverted flow creates three main distributary routes that are discussed in the next 

sections of this thesis. 

 

5.2.2 Southern Path 

 

5.2.2.1 Round Lake 

 

Flow from Bayou DuPont enters Round Lake (Figure 5.1), spreading out and slowing down. 

This deposits sediment contained within the water. From Round Lake most of the flow travels 

through Lake Laurier into Barataria Bay via Wilkinson Bayou. Some flow moves from Round 

Lake and into Mud Lake. This flow gradually develops as the diversion continues. Another flow 

of water happens just south of Lake Laurier towards Lake Judge Perez and down into Grand 

Bayou. This flow initially receives significant discharged but it is reduced to almost nothing even 

when the diversion is operating at capacity. This is due to the significant erosion that happens in 

the channel connecting Lake Laurier to Wilkinson Bayou, which allows more water to flow 

south to Barataria Bay. This is a much shorter flow path for the water comparted to the Grand 

Bayou outlet and therefore more optimal to receive flow due to the higher energy gradient. These 

results indicate that pre-dredging of Wilkinson Bayou or adding a structure to block flow down 

Grand Bayou could protect the people in the region from the worst of the flooding caused by the 

diversion.  
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Figure 5.1: The Southern Path flows along the back level and into the southern part of Bayou DuPont flowing into 

Round Lake. Locations are labeled in blue, observation points in red, and flow paths in yellow. 

 

5.2.2.2 Grand Bayou 

 

One of the outlets originally from the Southern Path is Grand Bayou via Lake Laurier shown in 

Figure 5.2. Grand Bayou also receives flow through the broken marsh system immediately 

adjacent to the back levee which follows the flow of the diversion. The flow coming into Grand 

Bayou from Lake Laurier, however, does not follow the diversion hydrograph.  This flow peaks 

before the diversion reaches maximum discharge and then reduces to almost nothing. That 

causes water levels in Grand Bayou peak just a few weeks after the diversion is opened before it 

reaches maximum discharge and then falls as the diversion continues to increase discharge. One 

explanation for this would be that the channels south of Lake Laurier begin to erode so they can 

receive a greater amount of water making them more hydraulically advantageous for water to 

flow south through Wilkinson Bayou instead of being diverted to the east through Grand Bayou. 

Discharge in Grand Bayou does reduce when the diversion reaches maximum for both the 

normal and high flow years.  
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Figure 5.2: The Grand Bayou Outlet is a flow that comes from Lake Laurier and combines with overland flow along 

the back levee to enter into Grand Bayou. Locations are labeled in blue, observation points in red, and flow paths in 

yellow. 

 

Grand Bayou itself also erodes. The erosion rates are highest two weeks after the diversion is 

opened and reaches an inflection point when velocities peak. Erosion occurs long after peak 

velocity and water levels but at a much lower rate. Depending on the river flow and the diversion 

operation scenario, Grand Bayou will erode 0.04 to 0.21 m.  

 

5.2.3 Northern Path 

 

Much of the immediate receiving basin of the diversion is open water but a few areas of marsh 

still remain. A combination of open water and overland flow comes together in Bayou DuPont 

and then turns northwest to connect with The Pen (Figure 5.3). Regardless of the flow year or 

operational strategy, flow velocity from the diversion is high enough to cause this part of 

Barataria Waterway to flow northward pushing water into Bayou Rigolettes (Figure 5.4), and 

into Lake Salvador. The flow that enters Bayou Rigolettes then travels through Little Lake into 

Barataria Basin. There is little deposition or accumulation within this part of the flow path but 

Bayou Rigolettes will have some silt deposition and the connection between this bayou and Little 

Lake will erode.  
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Figure 5.3: Bayou DuPont collects the flow through the open marshland and then it flows north into The Pen which 

is the start of the Northern Path. Locations are labeled in blue, observation points in red, and flow paths in yellow. 

 
Figure 5.4: Northern opening that connects Bayou Rigolettes to North Barataria Waterway where the northern flow 

of Barataria Waterway enters the bayou creating the second transition in the Northern Path. Locations are labeled in 

blue and observation points in red. 
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Lake Salvador helps to damp the rate of change of this flow. Water levels in the lake follow the 

diversion hydrograph closely raising around 0.4 m while the diversion is operating at maximum 

flow and dropping quickly to zero when the diversion is not in operation. This is similar to what 

happens in North Barataria Waterway but it is clear by the difference in water levels between the 

two points that some of the flow enters Bayou Rigolettes at a fairly consistent percentage of the 

diversion induced flow. 

 

5.2.4 Mid-Barataria Waterway Path 

 

This path develops from many decentralized distributary channels already present within the 

marsh shown in Figure 5.5. Over the course of the diversion opening, these open water channels 

increase in velocity, transporting more water into Barataria Waterway. As the diversion increases 

discharge, these channels erode becoming deeper and allowing more flow into the waterway. 

This is also an energy efficient pathway due to the high flow capacity of the Barataria Waterway. 

 

 
Figure 5.5: Open water distributaries that when combined increase the flow in the Barataria Waterway flowing south 

to create the Mid-Barataria Waterway diversion distributary channel. Observation points in red and flow paths in 

yellow. 

 

Erosion continues at this point until the diversion discharge ends and is one of the areas with the 

highest erosion in the domain. Velocity within the waterway stays high which not only prevents 

sediment deposition in the middle of the channel but also erodes the waterway. During the 

maximum flow operation scenario in a high flow year, up to 0.5 m of erosion can occur in the 

channel while operating the diversion at 50% Maximum Flow during a normal river flow year 

causes negligible erosion. 

 

5.3 Flood Levels 
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5.3.1 Water Level Filter 

 

Water levels showed signs of tidal variation even within the difference files; this was attributed 

to phase changes that may have occurred due to a change in the tidal prism or cross-sectional 

area that the tides move through or the interaction of the tides and currents in the tidal passes. To 

reduce this tidal variation, the data were filtered to remove any signal with a frequency below 48 

hours using a two-day moving average. For example, Figure 5.6 shows the unfiltered water 

levels difference at the southern terminus of Barataria Waterway, which is influenced by both 

tide and flow from the diversion. Differencing the diversion operation water levels with the No 

Diversion case should have removed this signal. It did not. Once the two-day moving average 

filter was applied, this signal was removed as indicated by the solid blue line in Figure 5.6. 

 

 
Figure 5.6: Water level difference at South Barataria Waterway during a high flow year when the diversion is 

operated at maximum capacity displaying raw and two-day moving averaged data. 

 

5.3.2 Receiving Basin 

 

At Bayou DuPont and Round Lake, water levels increase along with the increase in diversion 

discharge. Water levels at these sites react very quickly to the change in the diversion. When the 

diversion opens, water levels increase sharply over the first day and then follow the gradual rise 

of the increasing diversion discharge. Water levels at both locations peak early in the diversion 

discharge and begin to decrease even when the diversion is at maximum flow. This is due to the 

undeveloped distributary channels in the receiving basin including at the mouth of the diversion. 
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The mouth of the diversion is not initially deep enough to pass the amount of water released by 

the diversion without a significant increase in the water level. As this channel and the channels in 

the receiving basin begin to erode water levels no longer has to be as high to pass the discharge 

from the diversion. Once the diversion discharge is no longer changing, the erosion of the 

receiving basin continues, which reduces water levels to pass the same amount of discharge. This 

is demonstrated by the difference in peak water levels between the high and low flow year. 

During the high flow year, the diversion ramps from a flow of 500 m3/s to peak discharge in a 

shorter period of time than during the normal flow year, which allows less time for the 

distributary channels to erode. The result is increased water levels. At Bayou DuPont and Round 

Lake during the high flow year, water levels peak at 0.2 m higher than during the normal flow 

years.  

 

Water levels decrease while the diversion is at maximum discharge but then begin to decrease 

sharply as the diversion discharge is reduced. Within a day of the diversion closing, the water 

levels return to the levels of the No Diversion scenario. This is because the distributary channels 

have developed to the point of carrying the maximum discharge from the diversion. Once this is 

reduced water easily drains from this area as shown in Figure 5.7. 

 

 
Figure 5.7: Water level peak in comparison to diversion discharge during a normal Mississippi River flow year at 

Round Lake. 
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Round Lake receives most of its flow from the diversion through Bayou DuPont (to the north) as 

shown in. The high flow of water into Round Lake increases water levels causing extreme 

flooding in the marsh surrounding the lake.  

 

When the diversion is operating at capacity water levels remain over 0.5 m higher than the No 

Diversion scenario. Running the diversion at 50% Maximum Flow can reduce water levels by 

0.2 m for both the normal and high flow years. This suggests that operation of the diversion can 

reduce flooding by 20% while distributary channels are forming.  

 

During the first year, the length of time the diversion is in operation will determine the duration 

of flood levels for the receiving basin. Since there is so much open water between these points it 

makes sense that flow is minimally restricted. The operation of the diversion changes the flood 

levels by a maximum of 0.25 m based on the operational strategy used.  

 

5.3.3 Barataria Waterway 

 

There are two different flows within the Barataria Waterway. One migrating north towards 

Bayou Rigolettes and the other south to Barataria Basin. There were three observation points 

within the Barataria Waterway; The North Barataria Waterway observation point is at the 

entrance of Bayou Rigolettes; The Mid-Barataria observation point is south of the broken 

marshland that consolidates flow into the Mid-Barataria Path, and the South Barataria point is 

just before the flow enters Barataria Basin. 

 

Water levels in North Barataria Waterway remains fairly constant while the diversion is at 

maximum capacity during the high flow year except when a large storm drains Lake Salvador 

and the entire Barataria Waterway. During the normal flow year, water levels increase until they 

peak in the middle of when the diversion is operating at capacity (Figure 5.8). The constant rise 

and near constant water levels while the diversion is at maximum is because the Barataria 

Waterway is already a developed channel that can transmit the flow from the diversion. Some 

erosion does occur which reduces water levels right at the end of the maximum flow from the 

diversion. This could indicate that the channel has incised enough to allow the full flow from the 

diversion and less erosion will occur in year two. 
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Figure 5.8: Water level peak in comparison to diversion discharge during a normal Mississippi River flow year at 

Mid-Barataria Waterway. 

 

Lake Salvador water levels follow the pattern in Northern Barataria Waterway but have reduced 

values. Lake Salvador provides storage for some of the flow in the Northern Path. Once the 

diversion discharge is reduced the water level in Lake Salvador does not drop as fast as the 

Northern Barataria Waterway point. Once the diversion is close, the water level in Lake Salvador 

does not return to the No Diversion scenario. It remains slightly elevated as it slowly drains the 

stored water.  

 

The Mid-Barataria Waterway has similar water levels to the northern observation point. Water 

levels increase up to 0.4 m during the normal river flow year and 0.5 m during the high flow 

year. This will flood the landscape creating overland paths out of the waterway as well. By the 

time the flow reaches Southern Barataria Waterway, water levels have dropped but still follow 

the same pattern as the other two observation points. This drop in water level could be due to 

some flow being lost to Little Lake and Mud Lake. 

 

5.3.4 Grand Bayou 

 

On average the diversion increased water levels within Grand Bayou 0.25 m while it is in 

operation for both normal and high flow years with maximum levels of 0.45 and 0.55 m 

respectively. These elevated water levels will flood much of the marsh surrounding the bayou 
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but this water level is not static. Initially water levels in Grand Bayou increase greatly and then 

reduce remaining below 0.2 m for over half the time the diversion is in operation.  

 

During the high flow year, water levels reach 0.45 m and stay above 0.4 m for three weeks. This 

is due to the flow from Lake Laurier peaking around this time. During a normal flow year, water 

levels above 0.4 m occur for two weeks but happen one month after the diversion is opened as 

shown in Figure 5.9. This is because the flow of the water has less time to erode the channel of 

Grand Bayou. Water levels drop off here for two reasons. Grand Bayou erodes to a level that 

allows for the diversion flow to pass through it with minimal increases in water level and that 

discharge from Lake Laurier reduces over the course of the diversion flow. This is due to erosion 

in Wilkinson Bayou that increases discharge through that path. 

 

 
Figure 5.9: Water level peak in comparison to diversion discharge during a normal Mississippi River flow year at 

Grand Bayou. 
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signature for the maximum flow scenario during a high flow year is shown in Figure 5.10. To 

remove this a 48-hour filter was applied to the data. Any signals greater than two days will still 

show within the data. 

 

 
Figure 5.10: Velocity difference at South Barataria Waterway during a high flow year when the diversion is 

operated at maximum capacity displaying raw and two-day moving averaged data. 

 

5.4.2 Receiving Basin 

 

When the diversion is first opened the velocity, i.e. shear stress in the channel is not enough to 

keep sand entrained, so some of the sand gets deposited in the channel. As the diversion 

approaches its peak discharge, velocity through the diversion increases up to 1.8 m/s which is 

sufficient to resuspend the sand. This not only resuspends but transports sand into the receiving 

basin. Most of the deposited sand is resuspended within the channel during the rising limb. When 

the discharge of the diversion is reduced, sediment is again deposited in the channel.  

 

5.4.3 Barataria Waterway 

 

Velocities in the Northern Barataria Waterway increase by 0.2 m/s during the normal flow year 

and 0.27 m/s during a high flow year. This area has high levels of deposition (up to 1.2 m) which 

alters the velocity within the waterway. As the flow splits, some entering Bayou Rigolettes and 

some continuing north into Lake Salvador. The velocity into Bayou Rigolettes is much greater 

than the flow north into Lake Salvador. The observation point is in the slower flow. At Day 45 

during the normal flow year the deposition in North Barataria Waterway begins to differentiate. 
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This is when velocity differences reach a maximum, but soon after the velocity becomes little 

differentiated between the operation scenarios. At Day 55 during the high flow year, velocities 

actually begin to reverse patter with the 50% scenario having the highest velocities.  

 

When the diversion is operating at maximum there is more sediment within the water to be 

deposited. When the velocities of the various diversion operations are the same more sediment 

will be deposited from the maximum flow scenario because there is a greater quantity of it in 

suspension. More deposition in North Barataria Bay leads to more flow being diverted into 

Bayou Rigolettes reducing velocity in the waterway north of the turn. This leads to more 

deposition within the channel creating a feedback loop.  

 

Once the diversion is closed, the water that was stored in Lake Salvador begins to drain. This 

water must move past the section of Barataria Waterway that has filled with silt thus increasing 

the velocity to maintain discharge. Dredging the receiving basin before the diversion is opened 

for the first time could prevent much high concentrations of silt from getting into Barataria 

Waterway and being deposited when the velocity slows.  

 

Since there are no major outlets around the middle and southern observations points on Barataria 

Waterway, they do not have similar results. In Mid-Barataria Waterway the diversion can 

increase the velocity by 0.55 m/s when the diversion is operating at maximum flow during a high 

river flow year and 0.45 m/s during the normal flow year. In South Barataria Waterway the 

diversion can increase velocity by 0.45 m/s. Peaking when the diversion is operating at full 

capacity. Velocity in the channel remains elevated even after the diversion begins to decrease in 

discharge as shown in Figure 5.11. This delayed response could be from the draining of Bayou 

DuPont and Lake Salvador. By the time the diversion closes it waterway drops to near No 

Diversion levels within a day. This signifies that most of the receiving basin has been drained by 

the time the diversion is closed. Lake Salvador still has slightly elevated water levels and 

continues to drain after the diversion closes, which could explain the difference in velocity once 

the diversion is closed.  
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Figure 5.11: Velocity peak in comparison to diversion discharge during a normal Mississippi River flow year at 

Mid-Barataria Waterway. 

 

5.4.4 Grand Bayou 

 

Velocity in Grand Bayou follows the pattern of elevated water levels for normal and high flow 

years. The peak velocity during the normal flow year is 0.3 m/s and occurs one month after the 

diversion is open and just before it reaches maximum discharge as shown in Figure 5.12. The 

high flow year has a peak discharge of 0.34 m/s occurring three weeks after the diversion is 

opened. Both flow regimes increase the velocity within Grand Bayou by an average 0.2 m/s 

while the diversion is in operation. The decrease in water levels and decrease in velocity without 

a major increase in the depth of the channel shows that discharge entering Grand Bayou is 

reduced before the diversion’s flow is reduced.  

 

Once the diversion is closed. Velocity in Grand Bayou does not return to No Diversion levels. 

This is because water that traveled to Grand Bayou from the path along the back levee and from 

Lake Judge Perez is still draining.  
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Figure 5.12: Velocity peak in comparison to diversion discharge during a normal Mississippi River flow year in 

Grand Bayou. 

 

5.5 Sediment 

 

5.5.1 Receiving Basin 

 

Sediment concentration in this water varies greatly based on diversion operational scenarios. 

While higher amounts of sediment are brought into the receiving basin when the diversion is 

operated at maximum flow versus 50% the concentration remains the same in the model. What 

does change is the erosion of the receiving basin. The mouth of the diversion can erode up to 8 m 

when the diversion is operated at maximum flow in the first year increasing the sediment in the 

water.  

 

Sand settles out of the water column quickly, depositing on the sides of the channel created at the 

mouth of the diversion and along the levee system due to the eddies coming out of the diversion. 

Even the sand that is picked up while scouring the channel at the mouth of the diversion is 

quickly deposited. Outside of the mouth of the diversion, the velocity of water is not fast enough 

to keep sand in suspension. Some sand can move as bed load, however this is very small.  

 

Silt leaves the diversion at a concentration of just under 0.1 kg/m3. The souring at the mouth of 

the diversion and continued erosion of the immediate receiving basin increases the silt 

concentration. By the time the flow reaches The Pen, concentrations in the water have increased 
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by up to 1.3 kg/m3. When the flow is operated at 50% maximum flow during the high flow year, 

the silt concentration increases by 0.26 kg/m3. This means that much of the silt is entrained 

during the initial scour at the mouth of the diversion and the continued erosion of the receiving 

basin. 

 

The initial time to peak discharge also plays a role in how much silt enters The Pen. At 

maximum flow, the difference in concentration between the normal and high flow years is 

almost 0.6 kg/m3. This corresponds with a 2 m increase in the depth of the channel at the mouth 

of the diversion.  

 

Round Lake has much lower concentrations of silt. When the diversion is operated at maximum 

flow during a high flow year the average concentration of silt is 0.21 kg/m3 but run at 50% it is 

0.03 kg/m3. This is because the cannel into Round Lake is more established that the flow 

entering The Pen so less erosion occurs. Also, much of the flow entering The Pen goes through 

the northern portion of Bayou DuPont with no areas of deposition. The flow into Round Lake 

comes through the southern portion of Bayou DuPont which travels through an open water 

section slowing velocities and depositing much of the silt before it reaches Round Lake.  

 

Clay follows a similar pattern to silt however less is deposited. Once the flow picks up clay from 

the receiving basin it stays in suspension until the flow enters Barataria Bay and beyond. This is 

partially due to the fact that salinity within the basin drops to zero just days after the diversion is 

open which reduces the flocculation of the clay particles in the water.  

 

5.5.2 Barataria Waterway 

 

Velocities entering The Pen are high enough to cause erosion along the bottom half of this area. 

Some flow escapes north into the nearly still water; Velocities slow and silt is deposited. As the 

flow enters Barataria Waterway velocities continue to slow and more silt is deposited. By the 

time the flow reaches the observation point at North Barataria Waterway, some sediment has 

been lost since The Pen but silt levels are still as high as 1.26 kg/m3 during the high flow year 

which is 15 times the concentration of silt entering the through the diversion. At the turn into 

Bayou Rigolettes this silt is deposited as the velocity of the water continues to slow. This can 

deposit as much as 1.2 m of silt in the waterway, which would be a problem for transpiration in 

the channel. This sediment will have to be dredged to allow for ships to continue through the 

waterway unhindered. More research will have to be done to determine if this silt will deposit 

within the waterway every year or will this deposition slow as the distributary channels become 

more defined. If the latter is the case, the receiving basin could be dredged before the diversion is 

opened to reduce the amount of erosion that will occur in the diversions first year. 

 

Silt concentrations at the southern terminus of Barataria Waterway is the highest out of any 

observation point during the Maximum flow but is less than at North Barataria Waterway during 

reduced maximum flow scenarios. The northern and southern flow in Barataria Waterway start 

with similar concentrations. As the flow travels south down the waterway silt is deposited along 

the edges as the middle of the channel erodes. During the maximum flow scenarios, this channel 

can erode up to 0.5 m adding more silt to the water column but when the diversion is operated at 
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50% maximum flow the waterway has minimal erosion. This explains why there is much less silt 

when the diversion is operated at a reduced maximum flow. 

  

5.5.3 Grand Bayou 

 

Sand and silt that came through the diversion is deposited before the flow reaches Grand Bayou. 

Round Lake and Lake Laurier both have large silt deposits that take most of the silt out of 

suspension. Clay concentrations increased within the water range from 0.2 to 0.55 kg/m3 

depending on operational strategy. During the high flow year, the diversion had a lower 

concentration of clay than during the high flow year yet the concentration of silt in Grand Bayou 

during the high flow year had a concentration of 0.15 kg/m3 greater than that of the normal flow 

year. This is because of the erosion happening within the receiving basin during the high flow 

year with its quicker time to peak discharge.  

 

Clay has little impact on the geomorphology of Grand Bayou because the velocities within the 

bayou are too high for the clay to settle out and there is limited flocculation while the salinity is 

at zero. However, the increased turbidity of the water reduces the light available for 

photosynthesis, which alters oxygen levels within the water. Increased turbidity can harm fish 

spawning and increase pollution levels in the area so working to reduce this concentration would 

be beneficial.  

 

5.6 Salinity 

 

The diversion causes salinity levels to drop to zero over much of the domain. The area around 

Bayou DuPont, Round Lake, and Barataria Waterway become fresh just days after the diversion 

is open and recovery is slow once the diversion is closed. In North Barataria Waterway, salinity 

rebound is negligible but could change if the silt restricting some of the flow is dredged. Then it 

would probably similar to the salinity in Mid-Barataria Waterway which shows modest recovery 

after the diversion is closed. If that rate of recovery were to continue, it would take over a month 

for salinity levels to return to normal.  

 

The salinity within Grand Bayou falls to 0 ppt within the first two weeks of the diversion 

opening. This prevents flocculation of sediment. The bayou remains purely fresh water until the 

diversion is closed. Then it slowly begins to increase in salinity levels. This recovery is not 

nearly as rapid as the decline and will take months to return to normal levels if the rate stays the 

same.  

 

Lake Washington has salinity levels as low as 5 ppt when the diversion is operated at maximum 

flow. This area is far south of the diversion but is fed by Grand Bayou. When the diversion is 

open it has fresh water entering from the north and salt water coming in from Bay Long to the 

south. This large tidal influence is why Lake Washington retains some salinity while the 

diversion is in operation.  The area west of Lake Washington is the central Barataria Bay which 

receives a large influx of fresh water from Barataria Waterway but gets salt water from inlets 

near Grand Isle and Grand Terre Islands. For that reason, the eastern part of the bay has similar 

responses to the diversion. Once the diversion closes salinity levels rebound to near No 

Diversion levels however freshwater drainage from the rest of the basin could be slowing the 



 
 
 

94 

complete return to these levels. Even salinity changes of this much could affect a lot of species 

that require higher salinity levels to survive.  

 

The western part of Barataria Bay has even less direct fresh water input. The closest flow path 

created by the diversion is the Northern Path that enters Barataria Bay through Little Lake which 

is to the east of the Western Barataria Bay observation point. Due to mixing of the bay some of 

this water coming from the northern path reduces the salinity that is present during the No 

Diversion scenario but this was minimal when the diversion is at peak discharge and there is no 

difference after the diversion begins to decrease discharge.   

 

5.7 Model Sensitivity 

 

There are multiple sources of error that could occur within the model. One source is that there 

are a range of values determined by previous studies that could be used in the model. Precedence 

from previous models was used to determine these values. When that was not immediately 

available a best approximation was used to determine model values based on literature analysis. 

In addition to value ranges between students, many are spatially variable as well. Simplifications 

were made to reduce the number of spatially varying possibilities. 

 

The critical shear stress of the bed was modeled as 0.1 Pa, which is on the lower side of critical 

shears stresses tested in Barataria Basin. This value was chosen because this is the critical shear 

stress of newly deposited sediment within the basin. The sediment deposited by the diversion 

would likely have an initial critical shear stress less than this value but sediment that was in the 

basin prior to the diversion construction would have a larger value. Studies have shown that the 

critical shear stress increases to 0.2 Pa within 6 months of sediment deposition in the basin. 

Vegetation also increases the critical shear stress of soil yet no vegetation was modeled in this 

study. A higher average critical shear stress in the marsh areas of the basin would lead to reduced 

marsh erosion and increased incising of the open water pathways.  

 

Critical shear stress is not the only value that determines erosion in the model. The velocity and, 

in turn, the shear stress of the flow is determined based on the Manning’s roughness. Three 

different Manning’s roughness were used in the model increasing from the center of the channel, 

to the marsh edge and center. The higher roughness in the middle of the marsh was used to 

approximate the roughness due to vegetation that reduces the velocity and shear stress caused by 

the flow. This roughness dampens erosion in the basin. These values were determining through 

literature and the model calibration. However, any under estimate in these values would also lead 

to an over prediction of erosion.  

 

The sediment composition of the bed determines how easy it is eroded. There were five layers of 

the bed each chosen to be 2 m deep. The sand percentage ranged from 5 – 20% through the 

layers from top to bottom. This was chosen based on literature values. These layers were 

assumed to be constant throughout the domain and were only differentiated between the marsh 

(elevation 0 m and above) and the channels (elevation below 0 m) in layer thickness. In reality, 

sediment fractions in the basin would vary. However, this would cost computational time so the 

simplification was made. More sand in these layers would make the bed harder to erode reducing 

the erosion determined by the model. The critical shear for sand is based on the Shields Curve. 
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The final parameter that determines erosion and deposition is settling velocity. For sand, the 

settling velocity was determined using the van Rijn equations based on an average sediment 

diameter determined from literature. For silt and clay, both the settling velocity and average 

particle size were determined from literature. Any under estimation in settling velocity would 

increase the net erosion values especially in the immediate receiving basin since slow settling 

velocities would cause particles to remain in suspension longer moving away from the diversion. 

 

5.8 Recommendations 

 

The results show that dredging a channel at the mouth of the diversion is needed to reduce 

increased turbidity in the water and silt deposition in Round Lake, The Pen, and Barataria 

Waterway. Dredging of the three major distributary pathways within the receiving basin could 

further reduce erosion and prevent high concentrations of sediment in the water. This would also 

result in a more control evolution of the distributary system and would help reduce the maximum 

flood levels. The depth and duration of marsh flooding may also be reduced by pre-dredging the 

main distributary channels. 

 

Grand Bayou could be protected through the addition of a flood diverting structure or pre-

dredging of Wilkinson Bayou. This bayou eventually erodes enough to receive the majority of 

the flow from the Southern Path but it takes time of this channel to develop. Pre-dredging this 

path would immediately reduce the flood waters in Grand Bayou protecting the native 

populations along its banks.  

 

A combination of pre-dredged channels, slowly ramping the diversion up to peak discharge, and 

operating the diversion at reduced flow in the initial years could prevent flooding within the 

basin while still developing the distributary pathway needed to move the full diversion flow. 

Also, timing of the diversion opening is critical. If the diversion is only operated off of the 

Mississippi River hydrograph, the diversion could cause much of the basin to be completely 

fresh water late into June when the peak discharge is late for example in the modeled normal 

river flow scenario. Some years the maximum sediment building capacity will need to be 

balanced against the salinity needs of oyster and other fisheries that cannot handle the fresh 

water during warm water periods in the spring and summer months.  
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Chapter 6: Conclusions 
 

The Barataria Basin model was successfully developed, calibrated, and applied to simulate tides, 

diversion flow, wind forcing, sediment, and salinity. As the diversion enters the receiving basin 

the mouth of the diversion is scoured creating a deep channel with sediment depositing on either 

side in a natural levee building process. However, the majority of the immediate receiving basin 

experiences erosion with large amounts of silt and clay being resuspended with a consequent 

increase in the sediment concentration in the water.  

 

Three major pathways were created by the diversion out of the immediate receiving basin. The 

southern path through Round Lake that initially pushes flow through Grand Bayou until 

Wilkinson Bayou erodes enough to take a large portion of the flow. The Mid-Barataria 

Waterway path that enters Barataria Waterway through the broken mashes west of Bayou 

DuPont. Finally, the Northern Path that moves water north through Barataria Waterway into 

Bayou Rigolettes. These pathways distribute fresh water that reduces salinity levels to near zero 

and floods the marshes around them. When the velocity slows in large bodies of water like The 

Pen and Round Lake silt deposits are built. This also occurs in the area of nearly stagnate water 

between the northern and southern flow of water in Barataria Waterway. Pre-dredging of the 

receiving basin will reduce the amount of silt resuspension and subsequent deposition and reduce 

the turbidity of the water. If Wilkinson Bayou is dredged before the diversion is operated, Grand 

Bayou could be spared the worst of the flooding.  

 

The operation of the diversion will determine the impact that the diversion has on the landscape. 

The diversion should have a slow ramp up to peak discharge to allow channel development. The 

length of time that the diversion is open is directly proportional to the length of time water levels 

are elevated, so even if pre-dredging is utilized, peak discharge should be shortened during the 

first year to reduce the duration of major flooding while channels are developing to their full 

capacity. Finally, timing of the diversion opening cannot be solely based on the Mississippi 

River hydrograph. The model showed that during the simulated normal flow year much of the 

basin would be fresh water into June possibly damaging the oyster harvest for the year.  

 

More research needs to be done to test the effectiveness of some of the recommendations in 

Chapter 5. The model could be run again using the final bathymetry generated during this one 

season scenario to see if the channels have fully developed during the first year or if more 

erosion should be expected in year two and possibly beyond. The model could also be used to 

text how much pre-dredging of the channels before the diversion is opened would needed to 

achieve the optimum benefits such as reducing excessive erosion, high silt concentrations and 

subsequent deposition in Barataria Waterway. Further model work could be done to determine 

the best way to operate the diversion in subsequent years to maximize land building and 

minimize erosion while reducing other impacts on the receiving basin.  

   



 
 
 

97 

References 
 

Allison, M. A., Demas, C., Ebersole, B., Kleiss, B., Little, C., Meselhe, E., Powell, J., Pratt, T., 

& Vosburg, B. (2012). A Water and Sediment Budget for the Lower Mississippi–Atchafalaya 

River in Flood Years 2008–2010: Implications for Sediment Discharge to the Oceans and 

Coastal Restoration in Louisiana. Journal of Hydrology, 432–433, 84–97. 

Allison, M. A., Ramirez, M. T., & Meselhe, E. A. (2014). Diversion of Mississippi River water 

downstream of New Orleans, Louisiana, USA to maximize sediment capture and ameliorate 

coastal land loss. Water resources management, 28(12), 4113-4126. 

Allison, M. A., & Meselhe, E. A. (2010). The use of large water and sediment diversions in the 

lower Mississippi River (Louisiana) for coastal restoration. Journal of Hydrology, 387(3-4), 346-

360. 

 

Amer, R., Kolker, A. S., & Muscietta, A. (2017). Propensity for erosion and deposition in a 

deltaic wetland complex: Implications for river management and coastal restoration. Remote 

Sensing of Environment, 199, 39-50. 

 

Amini, Sina (2014) Hydrodynamics and Salinity of Pontchartrain Estuary during Hurricanes, 

Master of Science Thesis, Civil and Environmental Engineering, University of New Orleans, 

New Orleans, LA.  

Adrus, T. M., & Bentley, S. J. (2007). Sediment flux and fate in the Mississippi River Diversion 

at West Bay: Observation study. Coastal Sediments, 07, 722-735. 

Barras, J., Beville, S., Britsch, D., Hartley, S., Hawes, S., Johnston, J., Kemp, P., Kinler, Q., 

Martucci, A., Porthouse, J., Reed, D., Roy, K., Sapkota, S., & Suhayda, J. (2003). Historical and 

projected coastal Louisiana land changes: 1978-2050. USGS Open File Report 03-334, 39. 

Barras, J. A. (2006). Land area change in coastal Louisiana after the 2005 hurricanes—a series of 

three maps. U.S. Geological Survey Open-File Report 06-1274. 

Barras, J. A., Padgett, W. C., & Sanders, C. B. (2009). Aerial and Bathymetric Spatial Change 

Analysis of the West Bay Sediment Diversion Receiving Area, Louisiana for US Army Engineer 

District, New Orleans (MVN) Report. US Army Eng. Res. Dev. Cent., Environ. Lab, Baton 

Rouge, La. 

Barras, J. A. (2010). Hurricane-induced failure of low salinity wetlands. Proceedings of the 

National Academy of Sciences, 107(32), 14014 LP-14019.  

Batker D., Mack S., Sklar F., Nuttle W., Kelly M., Freeman A. (2014) The Importance of 

Mississippi Delta Restoration on the Local and National Economies. In: Day J., Kemp G., 

Freeman A., Muth D. (eds) Perspectives on the Restoration of the Mississippi Delta. Estuaries of 

the World. Springer, Dordrecht 



 
 
 

98 

Baker, A., Henkel, T., Lopez, J. & Boyd, E. (2011). A Project of the Lake Pontchartrain Basin 

Foundation and the Coalition to Restore Coastal Louisiana. Lake Pontchartrain Basin 

Foundation. 

Bauman, R. H., Day, J. W., & Miller, C. A. (1984). Mississippi Deltaic Wetland Survival: 

Sedimentation Versus Coastal Submergence. Science, 224(4653), 1093 LP-1095.  

Bevington, A. E., & Twilley, R. R. (2018). Island edge morphodynamics along a 

chronosequence in a prograding deltaic floodplain wetland. Journal of Coastal Research, 34(4), 

806-817. 

Bianchi, T. S., & Allison, M. A. (2009). Large-river delta-front estuaries as natural “recorders” 

of global environmental change. Proceedings of the National Academy of Sciences, 106(20), 

8085-8092 

Blankespoor, B., Dasgupta, S., & Laplante, B. (2012). Sea-level rise and coastal wetlands. Policy 

Research Working Paper (WPS6277), World Bank. 

Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient 

sediment supply and global sea-level rise. Nature Geoscience, 2, 488.  

Boesch, D., Josselyn, M., Mehta, A., Morris, J., Nuttle, W., Simenstad, C., & Swift, D. (1994). 

Scientific Assessment of Coastal Wetland Loss, Restoration and Management in Louisiana. 

Journal of Coastal Research, I-103. 

Britsch, L. D., & Kemp III, E. B. (1990). Land loss rates: Mississippi River deltaic plain (No. 

WES/TR/GL-90-2). Army Engineer Waterways Experiment Station, Vicksburg, MS. 

Brown, S., Couvillion, B., Conzelmann, C., de Mutsert, K., Fischbach, J., Hunnicutt, C., 

McKelvy, M., Quibodeaux, P., Roberts, H., Rodrigue, M., Schindler, J., Suir, K., Thomson, G., 

Visser, J., & White, E. (2017). 2017 Coastal Master Plan: Appendix C: Modeling Chapter 3 -

Modeling Components and Overview. Version Final. (p. 72). Baton Rouge, Louisiana: Coastal 

Protection and Restoration Authority 

Brown, G., McAlpin, J., Pevey, K., Loung, P., Price, C., & Kleiss, B. (2019). Mississippi River 

Hydrodynamic and Delta Management Study: Delta Management Modeling. US Army Corps of 

Engineers Coastal and Hydraulics Laboratory. TR-19-2. 

Buttles, J., Mohrig, D., Nittrouer, J., McElroy, B., Baitis, E., Allison, M., & Kim, W. (2007). 

Partitioning of water discharge by distributary channels in the prograding, Wax Lake Delta, 

coastal Louisiana, USA. AGU. 

Cahoon, D. R., & Reed, D. J. (1995). Relationships among marsh surface topography, 

hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. Journal of Coastal 

Research, 357-369. 

https://doi.org/10.1126/science.224.4653.1093


 
 
 

99 

Cao, S., & Knight, D.W. (2002) Review of regime theory of alluvial channels. Journal of 

Hydrodynamics, 3, 1–3. 

Carle, M. V., Sasser, C. E., & Roberts, H. H. (2015). Accretion and vegetation community 

change in the Wax Lake Delta following the historic 2011 Mississippi River flood. Journal of 

Coastal Research, 31(3), 569-587. 

Carle, M. V., & Sasser, C. E. (2016). Productivity and resilience: long-term trends and storm-

driven fluctuations in the plant community of the accreting Wax Lake Delta. Estuaries and 

coasts, 39(2), 406-422. 

Coastal Protection and Restoration Authority of Louisiana. (2012). Louisiana’s Coastal Master 

Plan for a Sustainable Coast; Coastal Protection and Restoration Authority of Louisiana: Baton 

Rouge, LA, USA. 

Coastal Protection and Restoration Authority of Louisiana. (2017) Louisiana’s Coastal Master 

Plan for a Sustainable Coast; Coastal Protection and Restoration Authority of Louisiana: Baton 

Rouge, LA, USA. 

Coleman, J.M., Roberts, H., & Stone, G. (1998) Mississippi River Delta: an Overview. Journal 

of Coastal Research, 14(3), 698-716. 

Conner, W., Nuttle, W. K., Brinson, M. M., Cahoon, D., Callaway, J. C., Christian, R. R., & 

Lynch, C. (1997). Conserving Coastal Wetlands Despite Sea Level Rise. Eos, Transactions, 

American Geophysical Union. 

Couvillion, B. R., Beck, H., Schoolmaster, D., & Fischer, M. (2017). Land area change in 

coastal Louisiana (1932 to 2016) (No. 3381). US Geological Survey. 

Das, A., Justic, D., Inoue, M., Hoda, A., Huang, H., & Park, D. (2012). Impacts of Mississippi 

River diversions on salinity gradients in a deltaic Louisiana estuary: Ecological and management 

implications. Estuarine, Coastal and Shelf Science, 111, 17-26. 

Day Jr, J. W., Martin, J. F., Cardoch, L., & Templet, P. H. (1997). System functioning as a basis 

for sustainable management of deltaic ecosystems. Coastal Management, 25(2), 115-153. 

Day, J. W., Britsch, L. D., Hawes, S. R., Shaffer, G. P., Reed, D. J., & Cahoon, D. (2000). 

Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of 

wetland habitat change. Estuaries, 23(4), 425-438. 

Day Jr, J. W., Barras, J., Clairain, E., Johnston, J., Justic, D., Kemp, G. P., & Templet, P. (2005). 

Implications of global climatic change and energy cost and availability for the restoration of the 

Mississippi delta. Ecological Engineering, 24(4), 253-265. 

Day, J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., & Whigham, 

D. F. (2007). Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. 

Science, 315(5819), 1679-1684. 



 
 
 

100 

Day, J. W., Christian, R. R., Boesch, D. M., Yáñez-Arancibia, A., Morris, J., Twilley, R. R., & 

Schaffner, L. (2008). Consequences of climate change on the ecogeomorphology of coastal 

wetlands. Estuaries and Coasts, 31(3), 477-491. 

Day, J. W., Cable, J. E., Cowan Jr, J. H., DeLaune, R., De Mutsert, K., Fry, B., & Rick, J. 

(2009). The impacts of pulsed reintroduction of river water on a Mississippi Delta coastal basin. 

Journal of Coastal Research, 225-243. 

Day, J.W., Christian, R.R., & Boesch, D.M. (2012). Consequences of Climate Change on the 

Ecogeomorphology of Coastal Wetlands. Climatic Change, 110, 297. 

Day, J., Lane, R., Moerschbaecher, M., DeLaune, R., Mendelssohn, I., Baustian, J., & Twilley, 

R. (2013). Vegetation and soil dynamics of a Louisiana estuary receiving pulsed Mississippi 

River water following Hurricane Katrina. Estuaries and coasts, 36(4), 665-682. 

Day, J. W., Cable, J. E., Lane, R. R., & Kemp, G. P. (2016). Sediment deposition at the 

Caernarvon crevasse during the great Mississippi flood of 1927: implications for coastal 

restoration. Water, 8(2), 38. 

DeLaune, R. D., Baumann, R. H., & Gosselink, J. G. (1983). Relationships among vertical 

accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh. Journal of 

Sedimentary Research, 53(1), 147-157. 

DeLaune, R. D., Jugsujinda, A., Peterson, G. W., & Patrick Jr, W. H. (2003). Impact of 

Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a 

Louisiana estuary. Estuarine, Coastal and Shelf Science, 58(3), 653-662. 

DeLaune, R. D., & White, J. R. (2012). Will coastal wetlands continue to sequester carbon in 

response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi 

river deltaic plain. Climatic Change, 110(1-2), 297-314. 

DeLaune, R. D., Kongchum, M., White, J. R., & Jugsujinda, A. (2013). Freshwater diversions as 

an ecosystem management tool for maintaining soil organic matter accretion in coastal marshes. 

Catena, 107, 139-144.  

 

Deltares. (2013) Ch. 11: Sediment transport and morphology. In: Delft3D-FLOW – Simulation 

of multi-dimensional hydrodynamic flows and transport phenomena, including sediments – User 

Manual – Hydro-Morphodynamics, version 3.15.30059.  

Dokka, R. K. (2006). Modern-day tectonic subsidence in coastal Louisiana. Geology, 34(4), 

281–284.  

Donnelly, J. P., Hawkes, A. D., Lane, P., MacDonald, D., Shuman, B. N., Toomey, M. R., & 

Woodruff, J. D. (2015). Climate forcing of unprecedented intense‐hurricane activity in the last 

2000 years. Earth's Future, 3(2), 49-65.  



 
 
 

101 

Esposito, C. R., Georgiou, I. Y., & Kolker, A. S. (2013). Hydrodynamic and geomorphic 

controls on mouth bar evolution. Geophysical Research Letters, 40(8), 1540-1545. 

 

Falloon, P. D., & Betts, R. A. (2006). The impact of climate change on global river flow in 

HadGEM1 simulations. Atmospheric Science Letters, 7(3), 62-68. 

Fisk, H. N. (1944). Geological investigations of the alluvial valley of the lower Mississippi 

River: US Army Corps of Engineers. Mississippi River Commission, Vicksburg, Mississippi. 

Fisk, H. N. (1952). Geological investigation of the Atchafalaya Basin and the problem of 

Mississippi River diversion, Vol. 1. US Corps of Engineers Waterways Experiment Station, 

Vicksburg, Mississippi. 

Gagliano, S.M., Culley, P., Earle, D.W., Jr., King, P., Latiolas, C., Light, P., & Rowland, A. 

(1973). Environmental Atlas and Multiuse Management Plan for South Central Louisiana. 

Louisiana State University: Baton Rouge, LA, USA, 

Gagliano, S. M., Kwon, H. J., & Van Beek, J. L. (1970). Deterioration and restoration of coastal 

wetlands. Coastal Engineering, 1767-1781. 

Gagliano, S. M., Meyer-Arendt, K. J., & Wicker, K. M. (1981). Land loss in the Mississippi 

River deltaic plain. Gulf Coast Association of Geological Societies Transactions, 31, 295-300. 

Gaweesh, A., & Meselhe, E. (2016). Evaluation of sediment diversion design attributes and their 

impact on the capture efficiency. Journal of Hydraulic Engineering, 142(5) 

Georgiou, I.Y, McCorquodale, J.A., Neupani, J., Howes, N., Hughes, Z., FitzGerald, D.M., 

Schindler, J.K. (2010) Modeling the Hydrodynamics of diversion into Barataria Basin, Final 

report submitted to the Lake Pontchartrain Basin Foundation, Pontchartrain Institute for 

Environmental Sciences, University of New Orleans, New Orleans, LA, 102 pp.  

Ghose Hajra, M., McCorquodale, A., Mattson, G., Jerolleman, D., and Filostrat, J. (2014). 

“Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear- 

stress for erosion of fine grained sediments used in wetland restoration projects,” Proceedings, 

Sediment Dynamics from the Summit to the Sea, ICCE/IAHS International Symposium, 

December 11-14, 2014, New Orleans, LA  

Hiatt, M., & Passalacqua, P. (2015). Hydrological connectivity in river deltas: The first‐order 

importance of channel‐island exchange. Water Resources Research, 51(4), 2264-2282. 

Hiatt, M., & Passalacqua, P. (2017). What controls the transition from confined to unconfined 

flow? Analysis of hydraulics in a coastal river delta (Doctoral dissertation, American Society of 

Civil Engineers). 

Horowitz, A. J. (2010). A quarter century of declining suspended sediment fluxes in the 

Mississippi River and the effect of the 1993 flood. Hydrological Processes: An International 

Journal, 24(1), 13-34. 



 
 
 

102 

Horton, B. P., Rahmstorf, S., Engelhart, S. E., & Kemp, A. C. (2014). Expert assessment of sea-

level rise by AD 2100 and AD 2300. Quaternary Science Reviews, 84, 1-6. 

Howes, N. C., FitzGerald, D. M., Hughes, Z. J., Georgiou, I. Y., Kulp, M. A., Miner, M. D., ... & 

Barras, J. A. (2010). Hurricane-induced failure of low salinity wetlands. Proceedings of the 

National Academy of Sciences, 107(32), 14014-14019.  

 

Kearney, M. S., Riter, J. A., & Turner, R. E. (2011). Freshwater river diversions for marsh 

restoration in Louisiana: Twenty‐six years of changing vegetative cover and marsh area. 

Geophysical Research Letters, 38(16). 

Keogh, M. E., Kolker, A. S., Snedden, G. A., & Renfro, A. A. (2019). Hydrodynamic controls on 

sediment retention in an emerging diversion-fed delta. Geomorphology, 332, 100-111. 

Kesel, R. H. (1988). The decline in the suspended load of the lower Mississippi River and its 

influence on adjacent wetlands. Environmental Geology and Water Sciences, 11(3), 271-281. 

Khan, N. S., Horton, B. P., McKee, K. L., Jerolmack, D., Falcini, F., Enache, M. D., & Vane, C. 

H. (2013). Tracking sedimentation from the historic AD 2011 Mississippi River flood in the 

deltaic wetlands of Louisiana, USA. Geology, 41(4), 391-394.         

Kim, W., Mohrig, D., Twilley, R., Paola, C., & Parker, G. (2009). Is it feasible to build new land 

in the Mississippi River Delta?. Eos, Transactions American Geophysical Union, 90(42), 373-

374.  

 

Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., & Sugi, M. 

(2010). Tropical cyclones and climate change. Nature geoscience, 3(3), 157-163. 

 

Kolb, C. R., & Van Lopik, J. R. (1966). Depositional environments of the Mississippi River 

deltaic plain—southeastern Louisiana. Deltas in Their Geologic Framework, 17-61. 

 

Kolker, A. S., Miner, M. D., & Weathers, H. D. (2012). Depositional dynamics in a river 

diversion receiving basin: The case of the West Bay Mississippi River Diversion. Estuarine, 

Coastal and Shelf Science, 106, 1-12. 

 

Lake Pontchartrain Basin Foundation. (2018). Hydrocoast Map – Salinity. Saveourlake.org. 

Lane, R. R., Day, J. W., & Day, J. N. (2006). Wetland surface elevation, vertical accretion, and 

subsidence at three Louisiana estuaries receiving diverted Mississippi River water. Wetlands, 

26(4), 1130-1142. 

Lane, R. R., Day Jr, J. W., Marx, B. D., Reyes, E., Hyfield, E., & Day, J. N. (2007). The effects 

of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a 

Mississippi delta estuary measured using a flow-through system. Estuarine, Coastal and Shelf 

Science, 74(1-2), 145-154. 



 
 
 

103 

Lacey, G. (1930). Stable Channels in Alluvium Minutes of the Proceedings of the Institution of 

Civil Engineers (Vol. 229, No. 1930, pp. 259-292). Thomas Telford-ICE Virtual Library.  

 

Legates, D.R., & McCabe, G.J., Jr. (1999). Evaluating the use of “goodness-of-fit” measures in 

hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241  

Leonardi, N., Defne, Z., Ganju, N. K., & Fagherazzi, S. (2016). Salt marsh erosion rates and 

boundary features in a shallow Bay. Journal of Geophysical Research: Earth Surface, 121(10), 

1861-1875. 

 

Lezina, B., & Barth, B. (2019, December). Mid-Barataria Sediment Diversion Modeling Data. 

Coastal Protection and Restoration Authority Board Meeting. Baton Rouge, LA. 

Lopez, J.; Henkel, T.; Moshogianis, A.; Baker, A.; Boyd, E.; Hillman, E.; Batker, D. (2014a) 

Evolution of Mardi Grad Pass within the Bohemia Spillway of the Mississippi Delta in Southeast 

Louisiana: March 2012 through December 2013; Lake Pontchartrain Basin Foundation: New 

Orleans, LA, USA. 

Lopez, J. & Henkel, T. & Moshogianis, A. & Baker, A. & Boyd, E. & Hillmann, Eva & Connor, 

P. & Baker, D.B.. (2014b). Examination of deltaic processes of Mississippi River outlets-

Caernarvon Delta and Bohemia Spillway in Southeast Louisiana. Gulf Coast Assoc. Geol. Sci. 

Trans, 64, 707-708. 

Louisiana Coastal Wetlands Conservation and Restoration Task Force and the Wetlands 

Conservation and Restoration Authority (LCWCRTF). (1998). Coast 2050: Toward a 

Sustainable Coastal Louisiana; Louisiana Department of Natural Resources: Baton Rouge, LA, 

USA. 

McCorquodale, A., Couvillion, B., Dortch, Freeman, A., M., Meselhe, E., Reed, D., Roth, B., 

Shelden, J., Snedden, G., Wang, H., & White, E. (2017). 2017 Coastal Master Plan: Attachment 

C3-1: Sediment Distribution. Version Final. (pp. 1-56). Baton Rouge, Louisiana: Coastal 

Protection and Restoration Authority. 

Meade, R. H., & Moody, J. A. (2010). Causes for the decline of suspended‐sediment discharge in 

the Mississippi River system, 1940–2007. Hydrological Processes: An International Journal, 

24(1), 35-49. 

Melillo, J.M.; Richmond, T.C.; Yohe, G.W. (2014). Climate Change Impacts in the United 

States: The Third National Climate Assessment. U.S. Glob. Chang. Res. Program, 841 

Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The impact of climate 

change on global tropical cyclone damage. Nature Climate Change, 2, 205.  

Meselhe, E. A., Georgiou, I., Allison, M. A., & McCorquodale, J. A. (2012). Numerical 

modeling of hydrodynamics and sediment transport in lower Mississippi at a proposed delta 

building diversion. Journal of Hydrology, 472, 340-354.  



 
 
 

104 

 

Meselhe E. A., & Rodrigue, M.D. (2013). Models Performance Assessment Metrics and 

Uncertainty Analysis. Final Report. Prepared for the Louisiana Coastal Protection and 

Restoration Authority. 

Meselhe, E.A., Baustian, M.M., Allison, M.A. (2015). Basin-wide model development for the 

Louisiana Coastal Area Mississippi River hydrodynamic and delta management study. The 

Water Institute of the Gulf, Baton Rouge, Louisiana. 

Meselhe, E. A., Sadid, K. M., & Allison, M. A. (2016). Riverside morphological response to 

pulsed sediment diversions. Geomorphology, 270, 184-202. 

Michener, W. K., Blood, E. R., Bildstein, K. L., Brinson, M. M. & Gardner, L. R. (1997), 

Climate Change, Hurricanes and Tropical Storms, and Rising Sea Level in Coastal Wetlands. 

Ecological Applications, 7, 770-801.  

Mikeš, D., and Manning, A. (2010). Assessment of Flocculation Kinetics of Cohesive Sediments 

from the Seine and Gironde Estuaries, France, through Laboratory and Field Studies. Journal of 

Waterway, Port, Coastal and Ocean Engineering, 136(6), 306-318.  

Morton, R. A., Buster, N. A., & Krohn, M. D. (2002). Subsidence controls on historical 

subsidence rates and associated wetland loss in southcentral Louisiana, Gulf Coast Association of 

Geological Societies Transactions, 52, 767-778 

Morton, R., & Asbury H. Sallenger Jr. (2003). Morphological Impacts of Extreme Storms on 

Sandy Beaches and Barriers. Journal of Coastal Research, 19(3), 560-573.  

Morton, R. A., Bernier, J. C., & Barras, J. A. (2006). Evidence of regional subsidence and 

associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. 

Environmental Geology, 50(2), 261.  

Mossa, J., & Roberts, H. H. (1990). Synergism of riverine and winter storm-related sediment 

transport processes in Louisiana's coastal wetlands. Transactions of the Gulf Coast Association 

of Geological Societies, 40, 635-642. 

Nakaegawa, T., Kitoh, A., & Hosaka, M. (2013). Discharge of major global rivers in the late 21st 

century climate projected with the high horizontal resolution MRI‐AGCMs. Hydrological 

Processes, 27(23), 3301-3318.  

Nicholls, R. J., Hoozemans, F. M., & Marchand, M. (1999). Increasing flood risk and wetland 

losses due to global sea-level rise: regional and global analyses. Global Environmental Change, 

9, S69-S87. 

Nittrouer, J. A., Best, J. L., Brantley, C., Cash, R. W., Czapiga, M., Kumar, P., & Parker, G. 

(2012). Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River 

sand. Nature Geoscience, 5(8), 534-537. 



 
 
 

105 

Nyman, J. A., DeLaune, R. D., & Patrick Jr, W. H. (1990). Wetland soil formation in the rapidly 

subsiding Mississippi River deltaic plain: Mineral and organic matter relationships. Estuarine, 

Coastal and Shelf Science, 31(1), 57-69. 

Nyman, J., DeLaune, R., Roberts, H., & Patrick, W. (1993). Relationship between vegetation and 

soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series, 96(3), 

269-279.  

Pandoe, W. W., and Edge, B. L. (2008). Case Study for a Cohesive Sediment Transport Model 

for Matagorda Bay, Texas, with Coupled ADCIRC 2D-Transport and SWAN Wave Models. 

Journal of Hydraulic Engineering, 134(3), 303-314.  

Paola, C., Twilley, R. R., Edmonds, D. A., Kim, W., Mohrig, D., Parker, G., & Voller, V. R. 

(2011). Natural processes in delta restoration: Application to the Mississippi Delta. Annual 

review of marine science, 3, 67-91. 

Parker, G., & Sequeiros, O. (2006). Large scale river morphodynamics: Application to the 

Mississippi Delta. In River Flow 2006: Proceedings of the International Conference on Fluvial 

Hydraulics (pp. 3-11). London: Taylor and Francis. 

Penland, S., Boyd, R., & Suter, J. R. (1988). Transgressive depositional systems of the 

Mississippi Delta plain; a model for barrier shoreline and shelf sand development. Journal of 

Sedimentary Research, 58(6), 932-949. 

Penland, S., Connor, P., Beall, A., Fearnley, S., & Williams, S. (2005). Changes in Louisiana's 

Shoreline: 1855–2002. Journal of Coastal Research, 7-39.  

Penland, S., & Ramsey, K. E. (1990). Relative sea-level rise in Louisiana and the Gulf of 

Mexico: 1908-1988. Journal of Coastal Research, 323-342.  

Peyronnin, N., Caffey, R., Cowan, J., Justic, D., Kolker, A., Laska, S., & Visser, J. (2017). 

Optimizing sediment diversion operations: working group recommendations for integrating 

complex ecological and social landscape interactions. Water, 9(6), 368. 

Plitsch, E. (2017). 2016 Operations, Maintenance, and Monitoring Report for West Bay 

Sediment Diversion (MR-03), Coastal Protection and Restoration Authority of Louisiana, New 

Orleans, Louisiana. 

Ramirez, M. T., & Allison, M. A. (2013). Suspension of bed material over sand bars in the 

Lower Mississippi River and its implications for Mississippi delta environmental restoration. 

Journal of Geophysical Research: Earth Surface, 118(2), 1085-1104. 

Reed, D. J. (2002). Sea-level rise and coastal marsh sustainability: geological and ecological 

factors in the Mississippi delta plain. Geomorphology, 48(1-3), 233-243. 

Rivera-Monroy, V. H., Branoff, B., Meselhe, E., McCorquodale, A., Dortch, M., Steyer, G. D., 

& Wang, H. (2013). Landscape-level estimation of nitrogen removal in coastal Louisiana 



 
 
 

106 

wetlands: Potential sinks under different restoration scenarios. Journal of Coastal Research, 

67(sp1), 75-87. 

Roberts, H. H., Adams, R. D., & Cunningham, R. H. W. (1980). Evolution of sand-dominant 

subaerial phase, Atchafalaya Delta, Louisiana. AAPG Bulletin, 64(2), 264-279. 

Roberts, H. H. (1997). Dynamic changes of the Holocene Mississippi River delta plain: the delta 

cycle. Journal of Coastal Research, 605-627.  

Roberts, H. H. (1998). Delta switching: early responses to the Atchafalaya River diversion. 

Journal of Coastal Research, 14(3). 

Russell, R. J. (1936). Physiography of lower Mississippi River delta. Louisiana Geological 

Survey 

Russell, R. J. (1939). Louisiana stream patterns. AAPG Bulletin, 23(8), 1199-1227. 

Russell, R. J. (1940). Quaternary history of Louisiana. Bulletin of the Geological Society of 

America, 51(8), 1199-1233. 

Sadid, K., Messina, F., Jung, H., Yuill, B., & Meselhe, E. (2018). TO51: Basinwide Model 

Version 3 - Basinwide Model for Mid-Breton Sediment Diversion Modeling. Baton Rouge, LA: 

The Water Institute of the Gulf. Funded by the Coastal Protection and Restoration Authority 

under Task Orders 51.  

Sha, X., Xu, K., Bentley, S. J., & Robichaux, P. A. (2018). Characterization and modeling of 

sediment settling, consolidation, and suspension to optimize coastal Louisiana restoration. 

Estuarine, Coastal and Shelf Science, 203, 137-147. 

Shaw, J. B., Mohrig, D., & Whitman, S. K. (2013). The morphology and evolution of channels 

on the Wax Lake Delta, Louisiana, USA. Journal of Geophysical Research: Earth Surface, 

118(3), 1562-1584.  

 

Shaw, J. B., & Mohrig, D. (2014). The importance of erosion in distributary channel network 

growth, Wax Lake Delta, Louisiana, USA. Geology, 42(1), 31-34. 

Shaw, J. B., Mohrig, D., & Wagner, R. W. (2016). Flow patterns and morphology of a 

prograding river delta. Journal of Geophysical Research: Earth Surface, 121(2), 372-391. 

Simas, T., Nunes, J. P., & Ferreira, J. G. (2001). Effects of global climate change on coastal salt 

marshes. Ecological Modelling, 139(1), 1-15. 

Smith, J. E., Bentley, S. J., Snedden, G. A., & White, C. (2015). What role do hurricanes play in 

sediment delivery to subsiding river deltas?. Scientific reports, 5(1), 1-8.  

Snedden, G. A., Cable, J. E., Swarzenski, C., & Swenson, E. (2007). Sediment discharge into a 

subsiding Louisiana deltaic estuary through a Mississippi River diversion. Estuarine, Coastal 

and Shelf Science, 71(1-2), 181-193. 



 
 
 

107 

 Snedden, G. A., & Steyer, G. D. (2013). Predictive occurrence models for coastal wetland plant 

communities: Delineating hydrologic response surfaces with multinomial logistic regression. 

Estuarine, Coastal and Shelf Science, 118, 11-23. 

Syvitski, J. P., Kettner, A. J., Correggiari, A., & Nelson, B. W. (2005). Distributary channels and 

their impact on sediment dispersal. Marine Geology, 222, 75-94. 

  

Tao, B., Tian, H., Ren, W., Yang, J., Yang, Q., He, R., & Lohrenz, S. (2014). Increasing 

Mississippi river discharge throughout the 21st century influenced by changes in climate, land 

use, and atmospheric CO2. Geophysical Research Letters, 41(14), 4978-4986. 

Teal, J. M., Best, R., Caffrey, J., Hopkinson, C. S., McKee, K. L., Morris, J. T., & Orem, B. 

(2012). Mississippi River freshwater diversions in Southern Louisiana: effects on wetland 

vegetation, soils, and elevation. Final report to the state of Louisiana and the US army corps of 

engineers through the Louisiana coastal area science & technology program. 

Ian L. Turner, Bruce P. Coates, & R. Ian Acworth. (1997). Tides, Waves and the Super-elevation 

of Groundwater at the Coast. Journal of Coastal Research, 13(1), 46-60. 

Turner, R. E. (1997). Wetland loss in the northern Gulf of Mexico: multiple working hypotheses. 

Estuaries, 20(1), 1-13. 

Turner, R. E., Swenson, E. M., & Milan, C. S. (2002). Organic and inorganic contributions to 

vertical accretion in salt marsh sediments. Concepts and controversies in tidal marsh ecology 

583-595. 

 

Turner, R. E., Layne, M., Mo, Y., & Swenson, E. M. (2019). Net land gain or loss for two 

Mississippi River diversions: Caernarvon and Davis Pond. Restoration Ecology, 27(6), 1231-

1240. 

Van Wijnen, H. J., & Bakker, J. P. (2001). Long-term surface elevation change in salt marshes: a 

prediction of marsh response to future sea-level rise. Estuarine, Coastal and Shelf Science, 52(3), 

381-390. 

Viparelli, E., Shaw, J., Bevington, A., Meselhe, E., Holm, G. O., Mohrig, D., & Parker, G. 

(2011). Inundation model as an aid for predicting ecological succession on newly-created deltaic 

land associated with Mississippi River diversions: Application to the Wax Lake delta. World 

Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability. 

2340-2349. 

Visser, J. M. (1989). The impact of vertebrate herbivores on primary production of Sagittaria 

marshes in the Wax Lake Delta, Atchafalaya Bay, Louisiana. LSU Historical Dissertations and 

Theses. 4816. 

Visser, J. M., & Sandy, E. R. (2009). The effects of flooding on four common Louisiana marsh 

plants. Gulf of Mexico Science, 27(1), 3.  

 



 
 
 

108 

Vörösmarty, C. J., & Meybeck, M. (2004). Responses of continental aquatic systems at the 

global scale: new paradigms, new methods. Vegetation, water, humans and the climate, 375-413. 

Walker, H. J., Coleman, J. M., Roberts, H. H., & Tye, R. S. (1987). Wetland loss in Louisiana. 

Geografiska Annaler: Series A, Physical Geography, 69(1), 189-200. 

Wang, H., Steyer, G. D., Couvillion, B. R., Rybczyk, J. M., Beck, H. J., Sleavin, W. J., & 

Rivera-Monroy, V. H. (2014). Forecasting landscape effects of Mississippi River diversions on 

elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty 

scenarios. Estuarine, Coastal and Shelf Science, 138, 57-68. 

Wellner, R., Beaubouef, R., Van Wagoner, J., Roberts, H., & Sun, T. (2005). Jet-plume 

depositional bodies—the primary building blocks of Wax Lake Delta. Gulf Coast Assoc. Geol. 

Soc. Trans., 55, 867–909. 

Wells, J. T., & Coleman, J. M. (1987). Wetland loss and the subdelta life cycle. Estuarine, 

Coastal and Shelf Science, 25(1), 111-125. 

Wilson, C. A., & Allison, M. A. (2008). An equilibrium profile model for retreating marsh 

shorelines in southeast Louisiana. Estuarine, Coastal and Shelf Science, 80(4), 483-494.  

Wolanski, E., & Gibbs, R. J. (1995). Flocculation of suspended sediment in the Fly River 

estuary, Papua New Guinea. Journal of Coastal Research, 754-762. 

Wright, L. D. (1977). Sediment transport and deposition at river mouths: a synthesis. Geological 

Society of America Bulletin, 88(6), 857-868.  

Xu, K., Bentley, S. J., Robichaux, P., Sha, X., & Yang, H. (2016). Implications of texture and 

erodibility for sediment retention in receiving basins of coastal Louisiana diversions. Water, 

8(1), 26. 

Young, B. M., & Harvey, E. L. (1996). A spatial analysis of the relationship between mangrove 

(Avicennia marinavar. australasica) physiognomy and sediment accretion in the Hauraki Plains, 

New Zealand. Estuarine, Coastal and Shelf Science, 42(2), 231-246. 

Yuill, B. T., Khadka, A. K., Pereira, J., Allison, M. A., & Meselhe, E. A. (2016). 

Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river 

sediment diversion function. Geomorphology, 259, 12-29. 

Zwiers F.W. et al. (2013) Climate Extremes: Challenges in Estimating and Understanding 

Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. In: 

Asrar G., Hurrell J. (eds) Climate Science for Serving Society. Springer, Dordrecht 

 



 
 
 

109 

Appendix A 

 
MDF File Example  

 

Ident  = #Delft3D-FLOW 3.56.29165# 

Commnt =                   

Runtxt = #2018 River Operation# 

Filcco = #nola_30m_extendedgrid.grd# 

Anglat =  2.9000000e+001 

Grdang =  0.0000000e+000 

Filgrd = #nola_30m.enc# 

MNKmax = 562 902 1 

Thick  =  1.0000000e+002 

Commnt =                   

Fildep = #nola latest_30m resolutiondiversion_onecell_SalvadorAdd.dep# 

Commnt =                   

Commnt =                 no. dry points: 0 

Commnt =                 no. thin dams: 2 

Filtd  = #Diversion.thd# 

Commnt =                   

Itdate = #2018-02-01# 

Tunit  = #M# 

Tstart =  0.0000000e+000 

Tstop  =  2.1594000e+005 

Dt     = 1 

Tzone  = 0 

Commnt =                   

Sub1   = #S W # 

Sub2   = # C # 

Namc1  = #SedimentSand        # 

Namc2  = #SedimentSilt        # 

Namc3  = #SedimentClay        # 

Commnt =                   

Wnsvwp = #N# 

Filwnd = #Wind2018.wnd# 

Wndint = #Y# 

Commnt =                   

Commnt =                 initial conditions from initial conditions file 

Filic  = #initialwithsed2018.ini# 

Commnt =                   

Commnt =                 no. open boundaries: 2 

Filbnd = #DiversionOpen.bnd# 

FilbcT = #Diversion2018.bct# 

FilbcC = #Final.bcc# 

Rettis =  0.0000000e+000 
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          0.0000000e+000 

Rettib =  0.0000000e+000 

          0.0000000e+000 

Commnt =                   

Ag     =  9.8100000e+000 

Rhow   =  1.0000000e+003 

Tempw  =  1.5000000e+001 

Salw   =  3.1000000e+001 

Wstres =  6.3000000e-004  0.0000000e+000  7.2300000e-003  1.0000000e+002  7.2300000e-

003  1.0000000e+002 

Rhoa   =  1.0000000e+000 

Betac  =  5.0000000e-001 

Equili = #N# 

Ktemp  = 0 

Fclou  =  0.0000000e+000 

Sarea  =  0.0000000e+000 

Temint = #Y# 

Commnt =                   

Roumet = #M# 

Filrgh = #roughness_marsh_edge_bed2.rgh# 

Xlo    =  0.0000000e+000 

Vicouv =  1.0000000e+000 

Dicouv =  6.0000000e+001 

Htur2d = #N# 

Irov   = 0 

Filsed = #testingsand.sed# 

Filmor = #InitialMor.mor# 

Commnt =                   

Iter   =      2 

Dryflp = #YES# 

Dpsopt = #MAX# 

Dpuopt = #MOR# 

Dryflc =  1.0000000e-001 

Dco    = -9.9900000e+002 

Tlfsmo =  6.0000000e+001 

ThetQH =  0.0000000e+000 

Forfuv = #Y# 

Forfww = #Y# 

Sigcor = #N# 

Trasol = #Cyclic-method# 

Momsol = #Cyclic# 

Commnt =                   

Commnt =                 no. discharges: 0 

Commnt =                 no. observation points: 11 

Filsta = #Calibrationpoints.obs# 

Commnt =                 no. drogues: 0 
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Commnt =                   

Commnt =                   

Commnt =                 no. cross sections: 0 

Commnt =                   

SMhydr = #YYYYY#      

SMderv = #YYYYYY#     

SMproc = #YYYYYYYYYY# 

PMhydr = #YYYYYY#     

PMderv = #YYY#        

PMproc = #YYYYYYYYYY# 

SHhydr = #YYYY#       

SHderv = #YYYYY#      

SHproc = #YYYYYYYYYY# 

SHflux = #YYYY#       

PHhydr = #YYYYYY#     

PHderv = #YYY#        

PHproc = #YYYYYYYYYY# 

PHflux = #YYYY#       

Flmap  =  0.0000000e+000 1440  2.1594000e+005 

Flhis  =  0.0000000e+000 60  2.1594000e+005 

Flpp   =  0.0000000e+000 60  2.1594000e+005 

Flrst  = 1440 

Commnt =                   

Online = #N# 

BdfMor = #Y# 

BdfH   = #vanrijn84# 

BdfEps = 1 

BdfL   = #vanrijn84# 

BdfRou = #vanrijn84# 

BdfOut = #Y# 

Commnt =                    
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