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DTGAN: Dual Attention Generative Adversarial Networks for Text-to-Image
Generation

Zhenxing Zhang and Lambert Schomaker
University of Groningen

{z.zhang,l.r.b.schomaker}@rug.nl

Abstract

Most existing text-to-image generation methods adopt a
multi-stage modular architecture which has three signifi-
cant problems: 1) Training multiple networks increases the
run time and affects the convergence and stability of the
generative model; 2) These approaches ignore the quality
of early-stage generator images; 3) Many discriminators
need to be trained. To this end, we propose the Dual Atten-
tion Generative Adversarial Network (DTGAN) which can
synthesize high-quality and semantically consistent images
only employing a single generator/discriminator pair. The
proposed model introduces channel-aware and pixel-aware
attention modules that can guide the generator to focus on
text-relevant channels and pixels based on the global sen-
tence vector and to fine-tune original feature maps using at-
tention weights. Also, Conditional Adaptive Instance-Layer
Normalization (CAdaILN) is presented to help our attention
modules flexibly control the amount of change in shape and
texture by the input natural-language description. Further-
more, a new type of visual loss is utilized to enhance the
image resolution by ensuring vivid shape and perceptually
uniform color distributions of generated images. Experi-
mental results on benchmark datasets demonstrate the su-
periority of our proposed method compared to the state-of-
the-art models with a multi-stage framework. Visualization
of the attention maps shows that the channel-aware atten-
tion module is able to localize the discriminative regions,
while the pixel-aware attention module has the ability to
capture the globally visual contents for the generation of an
image.

1. Introduction

Generating high-resolution realistic images conditioned
on given text descriptions has become an attractive and
challenging task in computer vision (CV) and natural lan-
guage processing (NLP). It has various potential appli-
cations, such as art generation, photo-editing and video
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Figure 1. The comparison between the current multi-stage archi-
tecture and our model. The multi-stage framework (a) generates
final images by training three generators and discriminators. The
proposed DTGAN (b) is able to synthesize realistic images only
using a single generator/discriminator pair. In (a), G0-G2 are gen-
erators and D0-D2 are discriminators. In (b), L0-L6 are the dual-
attention layers discussed in Section 3, G and D are our generator
and discriminator, respectively.

games. Recent work has achieved crucial improvements in
the quality of generated samples through generative adver-
sarial network (GAN) [7, 23, 24, 39], while also boosting
the semantic consistency between generated visually realis-
tic images and given natural-language descriptions.

However, most state-of-the-art approaches in text-to-
image generation [12, 18, 22, 33, 35, 37, 38, 41] are based
on a multi-stage modular architecture as shown in Fig-
ure 1(a). Specifically, the network comprises multiple gen-
erators which have corresponding discriminators. Further-
more, the generator of the next stage takes the result of the
previous stage as the input. This framework has proven to
be useful for the task of text-to-image synthesis, but there
still exist three significant problems. Firstly, training many
networks increases the computation time compared to a uni-
fied model and affects the convergence and stability of the
generative model [29]. Even worse, the final generator net-
work cannot be improved if the previous generators do not
converge to a global optimum, since the final generator loss
does not propagate back. Secondly, this framework ignores
the quality of early-stage generator images which plays a
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vital role in the resolution of finally-generated images [41].
The generator networks for precursor images are only com-
posed of up-sampling layers and convolution layers, lacking
the image integration and refinement process with the input
natural-language descriptions. Thirdly, multiple discrimi-
nators need to be trained.

To address the issues mentioned above, we propose
a novel Dual Attention Generative Adversarial Network
(DTGAN) which can fine-tune the feature maps for each
scale according to the given text descriptions, and syn-
thesize high-quality images only using a single genera-
tor/discriminator pair. The overall architecture of the DT-
GAN is illustrated in Figure 1(b). Our DTGAN consists
of four new components, including two new types of at-
tention modules, a new normalization layer, and a new
type of visual loss. The first two components in the DT-
GAN are our designed channel-aware and pixel-aware at-
tention modules which can guide the generator network to
focus more on important channels and pixels, and to ignore
text-irrelevant channels and pixels by computing attention
weights between the global sentence vector and two afore-
mentioned factors. Different from earlier attention mod-
els [12, 33], we apply the attention scores to fine-tune orig-
inal feature maps rather than adopt the weighted sum of
converted word features as new feature maps. We expect
that our proposed attention method will significantly im-
prove the semantic consistency of generated images. In the
third ingredient, inspired by Adaptive Layer-Instance Nor-
malization (AdaLIN) [9], we present Conditional Adaptive
Instance-Layer Normalization (CAdaILN), where the ratio
between Instance Normalization [30] and Layer Normaliza-
tion [2] is adaptively learned during training and the global
sentence vector is employed to scale and shift the normal-
ized result. The CAdaILN function is complementary to the
attention modules and helps with controlling the amount of
change in shape and texture. As a result, armed with the
attention modules and CAdaILN, our network can gener-
ate photo-realistic images only exploiting a single genera-
tor/discriminator pair. The last proposed component is a
new variant for computing visual loss. It is introduced to
ensure that generated images and real images have similar
color distributions and shape. We expect that the choice of
this novel visual loss has a considerable impact on the qual-
ity of generated results.

We perform extensive experiments on the CUB bird [32]
and MS COCO [17] datasets to evaluate the effectiveness
of our proposed DTGAN. Both qualitative and quantitative
results demonstrate that our approach outperforms existing
state-of-the-art models. In addition, visualization of the at-
tention maps shows that the channel-aware attention mod-
ule is able to localize the important parts of an image, while
the channel-aware attention module has the ability to cap-
ture the globally visual contents. The contributions of our

work can be summarized as follows:
• To the best of our knowledge, we are the first to

propose the fine-tuning on each scale of feature maps us-
ing the attention modules and the conditional normaliza-
tion function, in order to generate high-quality and seman-
tically consistent images only employing a single genera-
tor/discriminator pair.
•We design two new types of attention modules to guide

the generator to focus on text-relevant channels and pixels,
and to refine the feature maps for each scale.
• CAdaILN is presented to help attention modules flexi-

bly control the amount of change in shape and texture.
• We are the first to introduce the visual loss in text-to-

image synthesis to enhance the image quality.

2. Related Work
Text-to-Image Generation. In recent years, the task of
text-to-image synthesis has attracted rapidly growing atten-
tion from both CV and NLP communities. Thanks to the
significant improvements in image generation approaches
especially GAN, researchers have achieved inspiring ad-
vances in the task of text-to-image generation. The con-
ditional GAN [23] was first presented by Reed et al. [24] to
generate plausible images from detailed text descriptions.
The problem of text-to-image generation was decomposed
by Zhang et al. [37, 38] into multiple stages. Each stage ac-
complished the corresponding task by using different gen-
erators and discriminators.We aim to generate high-quality
images with photo-realistic details just employing a pair of
generator and discriminator. Qiao et al. [22] introduced the
image caption model to regenerate the text description from
the generated image, in order to enhance the semantic rele-
vancy between the text description and visual content. Zhu
et al. [41] applied a dynamic memory module to refine the
image quality of the initial stage.
Attention. Attention mechanisms play a vital role in
bridging the semantic gap between vision and language.
They have been extensively explored in the interdisciplinary
fields, such as image captioning [3, 20], visual question an-
swering [1, 10, 13] and visual dialog [4, 19] . Over the past
few years, there have been some attention methods for the
task of text-to-image generation. Xu et al. [33] utilized a
word-level spatial attention mechanism to obtain the rela-
tionship between the subregions of the generated image and
the words in the input text. The most relevant subregions to
the words were very focused. Li et al. [12] designed a word-
level channel-wise attention mechanism on the basis of Xu
et al. [33], simultaneously taking spatial and channel infor-
mation into account. However, the aforementioned atten-
tion works adopt the weighted sum of converted word fea-
tures as the new feature map which is largely different from
the original feature map. We propose to fine-tune the orig-
inal feature map using the channel-aware attention weights
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Figure 2. The architecture of the proposed DTGAN. In (a), F is a fully-connected layer, CAM is a channel-aware attention module
discussed in Section 3.1, PAM is a pixel-aware attention module discussed in Section 3.2 and CAdaILN is Conditional Adaptive Instance-
Layer Normalization discussed in Section 3.3. In (b), MA-GP loss is a Matching-Aware zero-centered Gradient Penalty loss introduced in
Section 3.5.

and the pixel-aware attention weights.

3. DTGAN for Text-to-Image Generation

In this section, we elaborate on our proposed DTGAN
which is shown in Figure 2. Unlike prior works [12, 18, 22,
33,35,37,38,41], our goal is to generate a high-quality and
visually realistic image which semantically aligns with a
given natural-language description only employing a single
generator/discriminator pair. To this end, we present four
significant components: a channel-aware attention mod-
ule, a pixel-aware attention module, Conditional Adaptive
Instance-Layer Normalization (CAdaILN) and a new type
of visual loss. Each of them will be discussed in detail after
briefly describing the overall framework of our model.

As shown in Figure 2, our architecture is composed of a
text encoder and a generator/discriminator pair. For text en-
coder, we adopt a bidirectional Long Short-Term Memory
(LSTM) network [27] to learn the semantic representation
of a given text description. Specifically, in the bidirectional
LSTM layer, two hidden states are employed to capture the
semantic meaning of a word and the last hidden states are
utilized to represent the sentence features.

The generator network of the DTGAN takes a global
sentence vector and a noise vector as the input and con-
sists of seven dual-attention layers which are responsible for

different scales of feature maps. Each dual-attention layer
comprises two convolution layers, two CAdaILN layers, a
channel-aware attention module and a pixel-aware attention
module. Mathematically,

h0 = F0(z) (1)

h1 = FDual
1 (h0, s) (2)

hi = FDual
i (hi−1 ↑, s) for i = 2, 3, ..., 7 (3)

o = Gc(h7) (4)

where z is a noise vector from the normal distribution, F0

is a fully-connected layer, FDual
i is our proposed dual-

attention layer, Gc is the last convolution layer, h0 is the
output of the first fully-connected layer, h1-h7 are the out-
puts of dual-attention layers and o is the generated image.

In order to take into account both channel information
and spatial pixels, we present the channel-aware and pixel-
aware attention modules. Different from AttnGAN [33] and
ControlGAN [12], we attend to fine-tune original feature
maps for each scale using attention modules, rather than
adopt the weighted sum of converted word features as the
new feature maps. The experiments conducted on bench-
mark datasets show the superiority of our proposed atten-
tion modules compared to AttnGAN and ControlGAN.
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Figure 3. Overview of the proposed channel-aware attention mod-
ule. GAP and GMP denote global average pooling and global max
pooling, respectively.

3.1. Channel-aware Attention Module

The feature map of each channel at the convolution layer
plays different roles in generating the image which seman-
tically aligns with the given text description. Without fine-
tuning the channel maps at the generative stage according
the text description, the generated result can lack the se-
mantic relevancy to the given text description. Thus, we in-
troduce a channel-aware attention module to guide the gen-
erator to focus on text-relevant channels and ignore minor
channels.

The process of the channel-aware attention module is
shown in Figure 3. The channel-aware attention module
takes two inputs: the feature map h and the global sentence
vector s . Firstly, we perform global average pooling and
global max pooling on h to extract the channel features:
xa ∈ RC×1×1 and xm ∈ RC×1×1. Global average pool-
ing is to obtain the information of the whole feature map,
while global max pooling focuses on the most discrimina-
tive part [40]. Mathematically,

xa = GAP(h) (5)
xm = GMP(h) (6)

where GAP denotes global average pooling, GMP is global
max pooling.

Then, we adopt a query, key and value setting to capture
the semantic relevancy between channels and the input text,
where xa and xm are used as the query and s is selected as
the key and the value. It is defined as:

qac =Wqaxa, qmc =Wqmxm (7)
kc =Wkcs, vc =Wvcs (8)

whereWqa,Wqm,Wkc andWvc are the projection matrixes
which are implemented as 1×1 convolutions.

Assuming that the dot products between the sentence-
level key kTc and the average-pooling query qac, the max-
pooling query qmc can capture meaningful features, the at-
tention scores of channel maps are achieved through the fol-

lowing attention mechanism [31]:

α̃c
a = qac · kTc , α̃c

m = qmc · kTc (9)
αc
a = softmax(α̃c

a · vc) (10)
αc
m = softmax(α̃c

m · vc) (11)

where α̃c
a and α̃c

m represent the semantic similarity between
channel maps and the global sentence vector, αc

a ∈ RC×1×1

and αc
m ∈ RC×1×1 denote the final attention weights of

channels for global average pooling and global max pool-
ing, respectively, α̃c

a, α̃c
m, αc

a and αc
m are all computed by

dot products.
After acquiring the attention weights of channels, we

multiply them and the original feature maps to update the
feature maps. It is denoted as:

oac = αc
a � h (12)

omc = αc
m � h (13)

where � is the element-wise multiplication. By doing so,
the network will focus on the channels which are more se-
mantically related to the given text description.

Meanwhile, the results of global average pooling and
global max pooling are fused through concatenation.
Specifically,

oc = σ(Wc[oac; omc]) (14)

where Wc is implemented as 1×1 convolution, σ is a non-
linear function, such as ReLU.

We further apply an adaptive residual connection [36] to
generate the final result. It is defined as follows:

yc = γc ∗ oc + h (15)

where γc is a learnable parameter which is initialized as 0.
As can be seen from above, our designed channel-aware

attention model is a fine-tuning module based on channel in-
formation and text features. Moreover, it is applied on each
scale of feature maps to improve the semantic consistency
of generated samples at the generative stage.

3.2. Pixel-aware Attention Module

An image is composed of correlated pixels which are
of central importance for the quality and semantic consis-
tency of synthesized images. Thus, we propose a pixel-
aware attention module to effectively model the relation-
ships between spatial pixels and the given natural-language
description, and to make the important pixels receive more
attentions from the generator.

The framework of the pixel-aware attention module is
illustrated in Figure 4. Given the feature map ĥ and the
global sentence vector s, we first exploit average pooling
and max pooling to process ĥ. Specifically,

ea = SAP(ĥ) (16)

em = SMP(ĥ) (17)
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Figure 4. Overview of the proposed pixel-aware attention module.
SAP and SMP denote average pooling and max pooling in the spa-
tial dimension, respectively.

where SAP and SMP represent average pooling and max
pooling in the spatial dimension, respectively. ea ∈
R1×H×W and em ∈ R1×H×W are the new feature maps.

Then, s is adopted as the key and the value:

kp =Wkps, vp =Wvps (18)

where Wkp and Wvp are the learnable matrixes which are
implemented as 1×1 convolutions.

After that, we compute the dot products of the new fea-
ture maps and the key to get the semantic similarity α̃p

a and
α̃p
m between spatial pixels and the global sentence vector.

Furthermore, the attention weights are calculated through a
softmax function on the dot products of the semantic simi-
larity and the value. It is defined as:

α̃p
a = ea · kTp , α̃p

m = em · kTp (19)

αp
a = softmax(α̃p

a · vp) (20)
αp
m = softmax(α̃p

m · vp) (21)

where αp
a and αp

m represent the final attention weights of
spatial pixels for average pooling and max pooling, respec-
tively.

Next, same as the channel-aware attention module,
we perform a matrix multiplication between the attention
weights and the original feature maps to derive the new fea-
tures oap and omp:

oap = αp
a � ĥ (22)

omp = αp
m � ĥ (23)

In addition, we concatenate oap and omp, and apply a
nonlinear function σ to compute the result op. Finally, an
adaptive residual connection [36] is utilized to combine ĥ
and op. This process is denoted as:

op = σ(Wp[oap; omp]) (24)

yp = γp ∗ op + ĥ (25)

where Wp is implemented as 1×1 convolution, σ is a non-
linear function, such as ReLU, γp is a learnable parameter
which is initialized as 0.

3.3. Conditional Adaptive Instance-Layer Normal-
ization (CAdaILN)

In order to stabilize the training of GAN [5], most exist-
ing text-to-image generation models [12,22,33,34,41] em-
ploy Batch Normalization (BN) [8] which applies the nor-
malization to a whole batch of generated images instead for
single ones. However, the convergence of BN heavily de-
pends on the size of a batch [15]. Furthermore, the advan-
tage of BN is not obvious for text-to-image generation since
each generated image is more pertinent to the given text de-
scription and the feature map itself. To this end, CAdaILN,
inspired by U-GAT-IT [9], is designed to perform the nor-
malization in the layer and channel on the feature map and
its parameters γ and β are computed by a fully-connected
layer from the global sentence vector. CAdaILN is able to
help with controlling the amount of change in shape and
texture based on the input natural-language text. Mathe-
matically,

âI =
a− µI√
σ2
I + ε

, âL =
a− µL√
σ2
L + ε

(26)

γ =W1s, β =W2s (27)
â = γ � (ρ� âI + (1− ρ)� âL) + β (28)

where a is the processed feature map, µI , µL and σI , σL
respectively denote the mean and standard deviation in the
channel and layer on the feature map, âI and âL represent
the output of Instance Normalization (IN) and Layer Nor-
malization (LN) respectively, γ and β are determined by the
global sentence vector s, W1 and W2 are fully-connected
layers, â is the output of CAdaILN. The ratio of IN and
LN is dependent on a learnable parameter ρ, whose value is
constrained to the range of [0, 1]. Moreover, ρ is updated
together with generator parameters.

3.4. Visual Loss

To ensure that generated images and real images have
similar color distributions and shape, we propose a new
type of visual loss for the generator which is illustrated in
Figure 2. The visual loss plays a vital role in improving
the quality and resolution of finally-generated images. It
is based on the image features of the real image I and the
generated sample Î , and defined as:

Lvis =
∣∣∣f(I)− f(Î)∣∣∣

1
(29)

where f(I) and f(Î) denote the image features of the real
image and the the fake image which are extracted by the
discriminator. We impose a L1 loss to minimize the dis-
tance between these two image features. To the best of our
knowledge, we are the first to present this type of visual loss
and apply it in the task of text-to-image generation.

5



3.5. Objective Function

Adversarial Loss. An adversarial loss is employed to
match generated samples to the input text. Inspired by
[16, 29, 36], we utilize the hinge objective [16] for stable
training instead of the vanilla GAN objective. The adver-
sarial loss for the discriminator is formulated as:

LD
adv =Ex∼pdata [max(0, 1−D(x, s))]

+
1

2
Ex∼pG

[max(0, 1 +D(x̂, s))]

+
1

2
Ex∼pdata [max(0, 1 +D(x, ŝ))]

(30)

where s is a given text description, ŝ is a mismatched
natural-language description.

The corresponding generator loss is:

LG
adv = Ex∼pG

[D(x, s)] (31)

Matching-Aware zero-centered Gradient Penalty (MA-
GP) Loss. To enhance the quality and semantic consistency
of generated images, we adopt the MA-GP loss [29] for the
discriminator. The MA-GP loss applies gradient penalty to
real images and given text descriptions. It is as follows:

LM = Ex∼pdata [(‖∇xD(x, s)‖2 + ‖∇sD(x, s)‖2)
p] (32)

Generator Objective. The generator loss comprises an ad-
versarial loss LG

adv and a visual loss Lvis:

LG = LG
adv + λ1Lvis (33)

Discriminator Objective. The final objective function of
the discriminator is defined as follows:

LD = LD
adv + λ2LM (34)

4. Experiments
In this section, we carry out a set of experiments on

the CUB bird [32] and MS COCO [17] datasets, in or-
der to quantitatively and qualitatively evaluate the effec-
tiveness of the proposed DTGAN. The previous state-of-
the-art GAN models in text-to-image synthesis, GAN-INT-
CLS [24], GAWWN [25], StackGAN++ [38], AttnGAN
[33] and ControlGAN [12], are first compared with our ap-
proach. Then, we analyze the significant components of our
designed architecture.

4.1. Datasets

Two popular datasets in text-to-image generation, CUB
bird and MS COCO datasets, are employed to test our
method. The CUB dataset encompasses 11,788 images
which are split into 8,855 training images and 2,933 test
images. The MS COCO dataset contains 123,287 images

which are split into 82,783 training images and 40,504 val-
idation images. Each image in the CUB dataset and MS
COCO dataset has ten corresponding text descriptions and
five corresponding text descriptions, respectively. We pre-
process the CUB dataset using the method in StackGAN
[37].

4.2. Evaluation metric

Inception score (IS) [26] and Fréchet inception distance
(FID) [28] score are extensively employed in the assessment
of text-to-image generation. We adopt theses two indexes
as the quantitative evaluation measure and generate 30000
images from unseen text descriptions for each metric.
IS. The IS is to evaluate the visual quality of the generated
images via the KL divergence between the conditional class
distribution and the marginal class distribution. It’s defined
as:

I = exp(Ex[DKL(p(y|x) ‖ p(y))]) (35)

where x is a generated sample and y is the corresponding
label obtained by a pre-trained Inception v3 network [28].
The generated samples are meant to be diverse and mean-
ingful if the IS is large.
FID. Same as the IS, the FID is also to assess the qual-
ity of generated samples by computing the Fréchet distance
between the generated image distribution and the real im-
age distribution. We use a pre-trained Inception v3 network
to achieve the FID. A lower FID means that the generated
samples are closer to the corresponding real images.

However, it is important to note that the IS on the COCO
dataset fails to evaluate the image quality and can be satu-
rated, even over-fitted, which is observed by ObjGAN [14]
and DFGAN [29]. Therefore, we do not utilize the IS as
the evaluation metric on the COCO dataset. We further find
that R-precision [6], presented by AttnGAN [33], can not
reflect the semantic relation between generated images and
given text descriptions, since experimental results show that
the R-precision of real images is only 22.22%. Thus, R-
precision is not applied on the validation of our model.

4.3. Implementation details

For text encoder, the dimension D is set to 256 and the
length of words is set to 18. We implement our model using
PyTorch [21]. In the experiments, the network is trained us-
ing Adam optimizer [11] with β1 = 0.0 and β2 = 0.9. We
follow the two timescale update rule (TTUR) [6] and set
the learning rate of the generator and the discriminator to
0.0001 and 0.0004. The batch size is set to 24. The hyper-
parameters p , λ1 and λ2 are set to 6, 0.1 and 2, respectively.

4.4. Comparison with State of the Art

Quantitative Results. We compare our model with prior
state-of-the-art GAN approaches in text-to-image synthesis
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Figure 5. Qualitative comparison of three approaches conditioned on the text descriptions on the CUB and COCO datasets.

Methods IS ↑
GAN-INT-CLS [24] 2.88±0.04

GAWWN [25] 3.62±0.07
StackGAN++ [38] 4.04±0.05

AttnGAN [33] 4.36±0.03
ControlGAN [12] 4.58±0.09

Ours 4.88± 0.03

Table 1. The IS of state-of-the-art approaches and our model on
the CUB dataset. The best score is in bold

Datasets StackGAN++ [38] AttnGAN [33] Ours
CUB 26.07 23.98 16.35

COCO 51.62 35.49 23.61

Table 2. The FID of StackGAN++, AttnGAN and our model on
the CUB and COCO datasets. The best results are in bold.

on the CUB and MS COCO datasets. Table 1 reports the IS
of our proposed DTGAN and other compared methods on
the CUB dataset. We can observe that our model has the
best score, significantly improving the IS from 4.58 to 4.88
on the CUB dataset. The experimental results demonstrate
that our DTGAN can generate visually realistic images with
higher quality and better diversity than state-of-the-art mod-
els.

The comparison between our method, StackGAN++ [38]
and AttnGAN [33] with respect to FID on the CUB and
COCO datasets is shown in Table 2. We can see that our
DTGAN achieves a remarkably lower FID than compared
approaches on both datasets, which indicates that our gen-
erated data distribution is closer to the real data distribution.
Specifically, we impressively reduce the FID from 35.49 to
23.61 on the challenging COCO dataset and from 23.98 to

16.35 on the CUB dataset.

Qualitative Results. In addition to quantitative exper-
iments, we perform qualitative comparison with Stack-
GAN++ [38] and AttnGAN [33] on both datasets, which
is illustrated in Figure 5. It can be observed that the details
of birds generated by StackGAN++ and AttnGAN are lost
(2th, 3th and 4th column), the shape is strange (1th, 2th

and 3th column) and the colors are even wrong (3th col-
umn). Furthermore, the samples synthesized by these two
approaches lack text-relevant objects (5th, 6th and 7th col-
umn), the backgrounds are unclear and inconsistent with the
given text descriptions (5th and 7th column), and the colors
are rough (8th column) on the challenging COCO dataset.
However, our DTGAN generates more clear and visually
plausible images than StackGAN++ and AttnGAN, verify-
ing the superiority of our DTGAN. For instance, as shown
in the 1th column, owing to the successful application of
the visual loss, a long-wingspan bird with vivid shape is
produced by the DTGAN, whereas it is too hard for Stack-
GAN++ and AttnGAN to generate this kind of bird. In the
meantime, the birds generated by the DTGAN have more
details and richer color distributions compared to Stack-
GAN++ and AttnGAN in the 2th, 3th and 4th column, since
the DTGAN armed with channel-aware and pixel-aware at-
tention modules is able to generate high-resolution images
which semantically align with given descriptions. More im-
portantly, our method also yields high-quality and visually
realistic results on the challenging COCO dataset. For ex-
ample, the number of the skiers and surfers is correct, the
backgrounds are reasonable and people in the images are
clear in the 5th and 6th column. Moreover, the beach and
the sea are very beautiful in the 7th column and the pizza
looks delicious in the 8th column. Generally, these qualita-
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A colorful <color> bird has wings with dark stripes and small eyes.

Figure 6. Generated images of the DTGAN by changing the color
attribute value in the input text description, for four random draws.

tive results confirm the effectiveness of the DTGAN.
Furthermore, to validate the sensitivity and diversity of

our DTGAN, we generate birds by modifying just one word
in the given text description. As can be seen in Figure 6,
the generated birds are similar but have different poses and
shape for the same description. When we change the color
attributes in the natural-language descriptions, the proposed
DTGAN further produces semantically consistent birds ac-
cording to the modified text. It means that our approach has
the ability to accurately capture the modified part of the text
description and to synthesize diverse images for the same
natural-language text.

4.5. Component Analysis

In this section, we perform an extensive ablation study
on the CUB dataset, so as to evaluate the contributions
from different components of our DTGAN. The novel com-
ponents in our model include a channel-aware attention
module (CAM), a pixel-aware attention module (PAM),
CAdaILN and a new type of visual loss (VL). We first quan-
titatively explore the effectiveness of each component by re-
moving the corresponding part in the DTGAN step by step,
i.e., 1) DTGAN, 2) DTGAN without the VL, 3) DTGAN
without CAdaILN, 4) DTGAN without the PAM, 5) DT-
GAN without the CAM, 6) DTGAN without the CAM and
PAM. All the results are reported in Table 3.

By comparing Model 1 (DTGAN) with Model 2 (remov-
ing the VL), the VL significantly improves the IS from 4.72
to 4.88 and reduces the FID by 2.88 on the CUB dataset,

ID Components IS ↑ FID ↓CAM PAM CAdaILN VL
1 X X X X 4.88± 0.03 16.35
2 X X X - 4.72± 0.04 19.23
3 X X - X 2.26± 0.02 91.53
4 X - X X 4.71± 0.05 21.69
5 - X X X 4.60± 0.07 22.95
6 - - X X 4.54± 0.04 23.72

Table 3. Ablation study of our DTGAN. CAM, PAM and VL rep-
resent the channel-aware attention module, the pixel-aware atten-
tion module and the visual loss, respectively. The best results are
in bold.

Generated 

Images

This is a grey 

bird with brown 

wings and a 

pointy orange 

beak.

Input

Channel-aware 

Attention

Pixel-aware 

Attention

This bird is black 

and yellow in 

color with a long 

skinny curved 

beak, and black 

eye rings.

This bird has 

wings that are 

brown and has 

a spotted belly.

This bird has 

wings that are 

grey and has a 

black tail.

A small bird 

with a small red 

feather covered 

head and long 

tail feathers.

Figure 7. Visualization of the channel-aware (detailed features)
and pixel-aware (global shape) attention maps.

which demonstrates the importance of adopting VL in the
DTGAN. By exploiting CAdaILN in our DTGAN, Model 1
performs better than Model 3 (removing CAdaILN) on the
IS and FID by 2.62 and 75.18, confirming the effectiveness
of the proposed CAdaILN. Both Model 4 (removing the
CAM) and Model 5 (removing the PAM) outperform Model
6 (removing the CAM and PAM), indicating that these two
new types of attention modules can help the generator pro-
duce more realistic images. Furthermore, Model 1 achieves
better results than both Model 4 and Model 5, which shows
the advantage of combining the CAM and PAM.

To better understand what has been learned by the CAM
and PAM during training, we visualize the channel-aware
and pixel-aware attention maps for different images in Fig-
ure 7. We can see that in the 2th row, the eyes, beaks, legs
and wings of birds are highlighted by the channel-aware at-
tention maps. Meanwhile, in the 3th row, the pixel-aware
attention maps highlight most important areas of images,
including the branches and the whole bodies of birds. This
suggests that the CAM helps the generator focus on the cru-
cial parts of birds, while the PAM guides the generator to
refine the globally visual contents. Then, the generator can
fine-tune the discriminative regions of images obtained by
our attention modules.
Visual Loss. To balance the trade-off between image qual-
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Figure 8. Visual comparison of the effect of our visual loss (VL) module, yielding more vivid shape and richer color distributions (bottom
row).

Parameter Values IS ↑ FID ↓

λ1

0.05 4.74± 0.05 18.15
0.10 4.88± 0.03 16.35
0.15 4.82± 0.06 16.75
0.20 4.59± 0.04 20.91
0.30 4.70± 0.06 20.28

Table 4. Evaluation of the DTGAN for different values of λ1

which is the weight of the visual loss (VL) in the generator. The
best result is in bold.

ity and semantic consistency, we investigate the hyper-
parameter λ1 by changing its value in the objective func-
tion. We test the value of λ1 among 0.05. 0.10, 0.15, 0.20
and 0.30. The results are listed in Table 4. We can observe
that the best performance is achieved on the CUB dataset if
λ1 is set to 0.1. Therefore, we use λ1 as 0.1 in the experi-
ments.

In addition, we conduct an ablation study to validate the
effectiveness of the VL. The visual comparison between the
DTGAN and our model without the VL is shown in Fig-
ure 8. We can see that, in the first two columns, the DT-
GAN without the VL fails to generate long-wingspan birds
with reasonable shape and vivid wings. In the meantime,
the proposed model without the VL synthesizes the blue
birds which have rough color distributions and lack color-
ful details in the last two columns. However, the DTGAN
produces realistic long-wingspan birds which have seman-
tically consistent shape and colors, while also yielding blue
birds with more vivid details and richer color distributions.
This indicates that the VL has the ability to potentially en-
sure the quality of the generated image, including the shape
and color distributions of objects in an image.

ID Architecture IS ↑ FID ↓
1 Baseline 2.26± 0.02 91.53
2 +BN-sent 4.67± 0.07 19.76
3 +BN-word 4.68± 0.04 19.46
4 +CAdaILN 4.88± 0.03 16.35
5 +CAdaILN-word 4.71± 0.07 19.08

Table 5. Ablation study on CAdaILN. BN-sent indicates Batch
Normalization conditioned on the global sentence vector, BN-
word indicates Batch Normalization conditioned on the word vec-
tors and CAdaILN-word indicates the CAdaILN function based on
the word vectors.

CAdaILN. To further verify the benefits of CAdaILN, we
conduct an ablation study for normalization functions. We
first design a baseline model by removing CAdaILN from
the DTGAN. Then we compare the variants of normaliza-
tion layers. Note that BN conditioned on the global sen-
tence vector (BN-sent) and BN conditioned on the word
vectors (BN-word) are based on the conditional normal-
ization methods in SDGAN [34], and CAdaILN based on
the word vectors (CAdaILN-word) is revised on the ba-
sis of CAdaILN according to the word-level normalization
method in SDGAN. The results of the ablation study are
shown in Table 5. It can be observed that by compar-
ing Model 2 with Model 4 and Model 3 with Model 5,
CAdaILN significantly outperforms the BN layer whether
using the sentence-level cues or the word-level cues. More-
over, by comparing Model 4 with Model 5, CAdaILN with
the global sentence vector performs better than CAdaILN-
word by improving the IS from 4.71 to 4.88 and reducing
the FID from 19.08 to 16.35 on the CUB dataset, since
sentence-level features are easier to be trained in our gener-

9



ator network than word-level features. The above analysis
demonstrates the effectiveness of our designed CAdaILN.

5. Conclusion
In this paper, we propose the Dual Attention Genera-

tive Adversarial Network (DTGAN), a novel framework for
text-to-image generation, to generate high-quality realistic
images which semantically align with given text descrip-
tions, only employing a single generator/discriminator pair.
DTGAN exploits two new types of attention modules: a
channel-aware attention module and a pixel-aware atten-
tion module, to guide the generator to focus more on the
text-relevant channels and pixels. In addition, to flexibly
control the amount of change in shape and texture, Condi-
tional Adaptive Instance-Layer Normalization (CAdaILN)
is adopted as a complement to the attention modules. To
further enhance the quality of generated images, we design
a new type of visual loss which computes the L1 loss be-
tween the features of generated images and real images.
DTGAN surpasses state-of-the-art results on both CUB and
COCO datasets, which confirms the superiority of our pro-
posed method. However, the improved visual quality comes
with an apparent reduction in variation of generated images.
Future work will be directed at mitigating this phenomenon
by using larger training sets.
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