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Abstract

Linguistic category learning has been shown to be highly sensitive to linear order, and depending on

the task, differentially sensitive to the information provided by preceding category markers (premark-
ers, e.g., gendered articles) or succeeding category markers (postmarkers, e.g., gendered suffixes).

Given that numerous systems for marking grammatical categories exist in natural languages, it follows

that a better understanding of these findings can shed light on the factors underlying this diversity. In

two discriminative learning simulations and an artificial language learning experiment, we identify two

factors that modulate linear order effects in linguistic category learning: category structure and the level

of abstraction in a category hierarchy. Regarding category structure, we find that postmarking brings an

advantage for learning category diagnostic stimulus dimensions, an effect not present when categories

are non-confusable. Regarding levels of abstraction, we find that premarking of super-ordinate cate-

gories (e.g., noun class) facilitates learning of subordinate categories (e.g., nouns). We present detailed

simulations using a plausible candidate mechanism for the observed effects, along with a comprehen-

sive analysis of linear order effects within an expectation-based account of learning. Our findings indi-

cate that linguistic category learning is differentially guided by pre- and postmarking, and that the

influence of each is modulated by the specific characteristics of a given category system.
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1. Introduction

Natural languages abound with regularities, patterns, and conventions. Indeed, philoso-

phers have long noted that to say language is ruled by convention is something of a plati-

tude (Lewis, 2008). Accordingly, in attempting to understand the conventionalized nature

of human communication, linguists have expended a great deal of effort on taxonomizing

the regularities and patterns observable in the world’s languages into various lexical and

grammatical categories (such as word class, case, gender, tense, aspect, mood, etc.) based

on their form features, or their distributional characteristics, for example their combina-

tion with grammatical markers. Interestingly, the case of grammatical markers highlights

a dimension highly important for the analysis of regularities in language: linear order. In

the case of noun gender, for example, gender markers can either precede the noun (pre-
marking, e.g., gendered articles in German: das Kind, or noun class prefixes in Swahili:

mtoto), follow the noun (postmarking, e.g., noun suffixes in Russian: kartina), or even

occupy both positions (e.g., gendered articles and relative pronouns in German: das Kind,
das hier ist). According to typological analyses, postmarking is the most frequent gram-

matical marking pattern in languages across the world (irrespective of whether the mark-

ers are bound morphemes, e.g., Hawkins & Gilligan, 1988, or free morphemes, Bybee,

Pagliuca, & Perkins, 1990). This observation has triggered a considerable debate about

whether and how the linear order in which categories are marked makes a difference to

language processing, to language production, or—as we will investigate here—to lan-

guage learning.

Previous work on marking order and learning has mainly focused on the advantage of

postmarkers for learning grammatical categories. One suggested explanation for this post-
marking advantage is that postmarkers are perceptually more salient than premarkers

(based, e.g., on the observation of final syllable lengthening in French, English, and Rus-

sian, Vaissière, 1983; and the rare omission of word-final unstressed syllables by children,

Slobin, 1973; Snow, 1998), and that this promotes learning in general. However, a recent

theoretical account suggests that premarkers and postmarkers serve different functions

regarding learning and informativity within category systems in language (Ramscar,

2013).

This proposal of separate functions of pre- and postmarking stems from the assumption

that language learning is based on a mechanism of adjusting learners’ expectations (i.e.,

that learning is expectation-based). Upon hearing the noun stem kartin- (painting) a

speaker of Russian will, for example, expect a specific postmarker, the feminine noun

ending -a. However, while words can be used to predict a following postmarker, the rela-

tion is reversed with premarkers: They predict the words following them. Upon hearing

the German neuter article das, for example, a listener will expect to hear a neuter noun,

as opposed to expecting any noun. These two examples illustrate that due to their differ-

ing linear order relations, premarkers and postmarkers stand in different predictive rela-
tions to the words that they are associated with in the grammar. From this expectation-

based learning perspective, it has thus been proposed that premarkers and postmarkers

may have different influences on language processing and learning.

2 of 43 D. B. Hoppe et al. / Cognitive Science 44 (2020)



The current study investigates how linear order interacts with the structure and level

of abstraction of categories in language learning. Although previous work has investi-

gated the different functions of premarking and postmarking, offering evidence in sup-

port of an expectation-based learning account, the vast diversity and intricate

hierarchies of categories in natural languages call for further exploration of this phe-

nomenon. Our aim here is to provide a more complete picture of the effects of linear

order on language learning by testing the generalizability of linear order effects to dif-

ferent kinds of category systems, and to clarify the kind of processes that lead to these

effects. In the remainder of this section, we begin by reviewing expectation-based

learning theory and evidence addressing how linear order affects learning categories in

language, in both first and second language learning situations, before explaining the

rationale behind the present study, which was specifically set in a second language

learning context.

1.1. An expectation-based learning explanation of the postmarking advantage

The expectation-based learning account largely accords with accounts based on sal-

ience in predicting a postmarking advantage in category learning. A crucial difference,

however, is the wider scope of the expectation-based learning account as it can poten-

tially provide an explanation for the general function of categories in language and for

the processes that underlie category learning.

From an expectation-based learning perspective, category learning is best characterized

as a discrimination problem, simply because computationally, learning from prediction is

a discriminative learning process based on prediction-error minimization (Ng & Jordan,

2002; Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010). Seen from this perspective, the

aim of category learning is to find out which item features are most relevant to discrimi-

nate one category from another rather than clustering items into categories according to

similarity. Support for this idea comes from observations showing that many common

categories cannot be defined in terms of shared definitive features, which contradicts the

idea of clustering by similarity. For example, people easily learn semantic categories such

as “fish” that include category members that do not share seemingly defining features

(e.g., mud skippers are fish that can live outside of water) and exclude items that do share

common features (e.g., dolphins are mammals but look like fish). Another observation

that mitigates against the idea of similarity within categories is that there are many cate-

gories, including those typically associated by grammatical gender, which comprise items

that do not share any features. German gender, for example, has initially been thought to

be a mere evolutionary artifact, because its structure has appeared to be so random to

many observers. Furthermore, evidence suggests that seemingly unrelated items can be

learned to be members of common categories (Ramscar, 2013). Accordingly, it has been

suggested that these various findings do not support the idea that categories cluster

together things with somehow inherently similar characteristics, but rather that categories

are sets of items that share a common label (Ramscar & Port, 2019). This view proposes

that learning to associate a set of items with a category label is not merely a process of
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recognizing similarities, but rather is a process of increasing discrimination between items

that share a given label and those that do not (see also Rescorla, 1988).

Expectation-based (or error-driven) learning models have been both influential and

widely employed in psycholinguistic research and in psychology in general (e.g., Aizen-

berg, Aizenberg, & Vandewalle, 2013; Dayan & Daw, 2008; Hannun et al., 2014;

Rescorla & Wagner, 1972; Rumelhart & McClelland, 1987). Critically, all error-driven

learning models implement discriminative learning algorithms (Ng & Jordan, 2002; Ram-

scar et al., 2010). A first, basic assumption of a discriminative account of category learn-

ing is that this kind of learning does not simply involve the tracking of contingencies

between stimuli (e.g., between animal features and a species label, or between noun fea-

tures and a gender marker) but that it estimates how much information one item or event,

a cue, can provide about another item or event, an outcome (Rescorla, 1988). The aim is

to produce an estimate of how informative a cue is for an outcome, and this is achieved

by a learning mechanism that uses the informativity of cues to gradually reduce its uncer-

tainty about the likelihood of an outcome. This process not only associates informative

cues with an outcome but it also dissociates uninformative cues from that outcome. A

second, basic assumption at the core of error-driven learning rules is that cues are com-

peting with each other for informativity, which is a demising resource as learning pro-

gresses. The interplay of association, dissociation, and cue competition yields a process

that is guided by the informativity rather than the frequency of cues. A critical function

of this mechanism is to dissociate irrelevant features which are nevertheless shared

between many items in a category, for example that fish live in water but are still not

most relevant for discriminating the category from other categories on the same level of

abstraction, for example, fish from mammals.

Third, because the discriminative form of learning implemented in expectation-based

models is ultimately determined by prediction-error, it is asymmetric. Accordingly, learn-

ing is not assumed to determine the association between cues and outcomes (↔) but

rather the association of a cue with an outcome (→). Crucially, there is evidence that the

asymmetry of learning results in a cue–outcome order effect of learning (or feature-label
order effect, Ramscar et al., 2010): Learning potentially differs whenever the order of

two items or events, for example, first seeing a fish and then hearing someone say “fish”,

is reversed. In a task in which learners had to learn the names of novel object categories,

Ramscar et al. (2010) found that learning was facilitated whenever object images pre-

ceded category labels during training, as compared to when object images were shown

after the category labels. This suggests that we need to consider two possible learning sit-

uations for a categorization task: Either the category labels follow the items1 that have to

be categorized, or the category labels precede the items.

If we transfer these expectation-based learning principles to grammatical category

learning, which is the focus of this article, we can differentiate between two kinds of

learning situations: premarking and postmarking situations. In a premarking situation, the

grammatical marker can be operationalized as cue to the features of the following word.

In a postmarking situation, the grammatical marker can be interpreted as an outcome

cued by preceding word features.
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Fig. 1 illustrates how marking order could affect learning of noun class categories

depending on their specific form and semantic features. An analysis of the contrasting

premarking and postmarking situations from a discriminative learning perspective sug-

gests that they can give rise to different learning dynamics (and learning outcomes),

although the basic mechanisms—association, dissociation, and cue competition—are

active in both marking orders. In a postmarking situation, cue sets are larger and poten-

tially overlapping, and cues and outcomes are in a convergent relation (Osgood, 1949,

see Fig. 1b). Therefore, more cues compete for an outcome which makes cue competition

more effective in postmarking. This leads to a process which is driven mainly by the

informativity of features for a category marker (e.g., Ramscar et al., 2010). In contrast, in

premarking situations cues and outcomes are usually in a divergent relation with more

outcomes than cues (see Fig. 1a). In such a situation, noun features do not compete for

the labels as cues but as outcomes. Outcome competition is more driven by frequency

than by informativity, and this leads to the learning of conditional probabilities of fea-

tures given a category marker (Hoppe, Hendriks, Ramscar, & van Rij, 2020; Ramscar,

2013).

ove
#o

#a

ira

ove

(b)

stress on 1

stress on 3

OKam

animal

plant

k

...

...

ime

ima

ima

(a)

OKam

a

#o

#a

stress on 1

stress on 3

animal

plant

k

...

...

cues outcomes cues outcomes

Fig. 1. Illustration of the difference between learning in (a) a premarking situation and (b) a postmarking sit-

uation. In this example, based on the materials used in the simulations and behavioral experiment (see

Table 2), a learner either needs to associate noun class markers (e.g., ima) with a noun and its form features

(e.g., stress or phones) and semantic features (e.g., animal) or the other way around. In the divergent pre-

marking situation (a), there is little cue competition (dashed black box). In the postmarking situation (b), the

relation between cues and outcomes is convergent, which leads to many cues competing with each other

(dashed black box). Moreover, the pattern of association (black dashed lines) and dissociation (red dashed

lines) is not mirrored between (a) and (b), which shows the asymmetry of the discriminative learning mecha-

nism. Note that capitals mark syllable stress.
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A number of findings in linguistics show indeed an advantage of postmarking over pre-

marking in category learning. Evidence from language acquisition suggests that children

learn suffixes faster than prefixes (Clark, 2001; Kuczaj, 1979) and in particular, that inflec-

tional systems are learned earlier when they are encoded by suffixes than when they are

encoded by preceding markers (Slobin, 1973). Further support for a postmarking advantage

is provided by a number of recent artificial language learning studies. For example, St Clair,

Monaghan, and Ramscar (2009) demonstrated that participants were significantly better at

recognizing previously trained compatible and incompatible affix–word combinations when

those affixes were suffixes rather than prefixes; Ramscar (2013) found that words that shared

a suffix were rated more similar to each other than words that shared a prefix; and Nixon

(2020) showed that English learners were better at learning to discriminate tonal syllables

from Southern Min Chinese when category markers (in this case, geometrical shapes) fol-

lowed the training syllables than when they preceded them.

Thus, in the context of an expectation-based learning account, the postmarking advan-

tage follows from the cue competition in a convergent learning situation. Next, we will

explore whether and how this postmarking advantage extends to differently structured cat-

egories and categories at different levels of abstraction in a category hierarchy, an investi-

gation which will bring us also to the function of premarking in category learning.

1.2. Category structure and the postmarking advantage

The first aim of the present study is to investigate whether the postmarking advantage

generalizes to differently structured categories. Regularities in language differ highly in

their structural characteristics, for example, how informative item features are for a cate-

gory (cue validity, Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; feature diagnos-

ticity, Minda & Smith, 2001), the ratio of within-category similarity and between-

category similarity (structural ratio, Minda & Smith, 2001), or the number of bits that are

needed to code a category (entropy, Shannon, 1948). Not surprisingly, these factors have

been found to affect how easy it is to learn a specific category system (e.g., Lafond,

Lacouture, & Mineau, 2007; Reeder, Newport, & Aslin, 2013).

We suggest that in expectation-based learning theory, the amount of overlap between

categories determines the need for postmarking in contrast to premarking: The postmark-

ing advantage for category discrimination might be reduced when categories share fewer

overlapping features. In experiments in which a postmarking advantage has been

observed, category systems showed a high amount of overlap, for example, highly fre-

quent features that are shared across categories and that are therefore uninformative for

category discrimination (Nixon, 2020; Ramscar, Dye, Gustafson, & Klein, 2013; Ram-

scar, Dye, Popick, & O’Donnell-McCarthy, 2011; Ramscar et al., 2010). In these cases,

cue competition during postmarking helps to dissociate such frequent uninformative fea-

tures. In contrast, more distinct categories elicit less cue competition and, as a conse-

quence, the dissociation of uninformative cues is reduced. In such situations, the resulting

learning relation with a marker should be more symmetric than in Fig. 1, leading to a less

pronounced asymmetry effect between marking orders.
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It is important to note here that defining the amount of overlap between categories is not

a trivial task given that categories are not inherently grounded in objective properties of the

world (Ramscar & Port, 2019). Assuming that categories are rather functional units in a

communication system, a specific category representation is more likely determined by the

whole system of category contrasts acquired by a specific learner. This can, for example, be

illustrated with the learning of new phonological categories in a second language: While to

a native speaker of a tone language phonemes differing only in tone appear completely dis-

tinct, native speakers of English can only master the discrimination of tones by relearning

acoustic cues as informative which have been unlearned under a predominant exposure to

English (as in Nixon, 2020). Indeed, direct evidence suggests that which cues learners rely

on to discriminate categories is determined by learning history (Arnon & Ramscar, 2012;

Culbertson, Gagliardi, & Smith, 2017; Ramscar et al., 2013). Hence, with “overlap”

between categories we, here, refer to the perceived amount of overlapping (i.e., confusable)

features between previously learned category representations.

From an expectation-based learning perspective, we do not expect that the postmarking

advantage generalizes to any and every type of category learning situation. In particular, we

hypothesize that the more categories overlap (such that members of different categories are

more confusable), the stronger the advantage that postmarking brings for category discrimi-

nation. As a consequence, we predict that categories already learned to be distinct will sub-

sequently not profit more from postmarking than from premarking. Concerning the

underlying learning mechanism, such a finding would corroborate the idea that category dis-

crimination is mainly a process of dissociating overlapping and therefore confusable fea-

tures in search for the features that are most informative for the discrimination.

1.3. The premarking advantage

In mastering a language, learners are not only confronted with different category struc-

tures, they are simultaneously required to learn category contrasts at various levels of

abstraction. These levels of abstraction in a category hierarchy can be characterized in

terms of their inclusiveness (meaning how many specific entities a category includes,

Rosch et al., 1976). To examine linear order effects across the full diversity of category

systems, we will further investigate how marking order affects category learning at differ-

ent levels of abstraction.

Thus far, we have seen that dissociation of features that are uninformative for a cate-

gory contrast clearly facilitates categorization. However, for other tasks, this kind of

information loss can become detrimental: For example, while in learning to discriminate

fish from mammals, living in water is not always an informative feature, it is in fact use-

ful to discriminate a sardine from a mud skipper. Note that in this example, the contrast

between the type of fish is on a lower, more fine-grained level of abstraction than the

contrast between types of species. Similarly, we might expect that the features that are

relevant to discriminate feminine from masculine German nouns (in this case, the super-
ordinate category contrast) differ from the features that are relevant to discriminate single

feminine nouns from each other (the subordinate category contrast). This suggests that
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there is a trade-off between optimally discriminating super-ordinate and subordinate cate-

gories, due to the information loss which is necessary for the discrimination process (Dye

& Ramscar, 2009).

This trade-off suggests further that knowledge gained on one level of abstraction does not

always generalize to other levels of abstraction. In particular the facilitation of postmarking

on super-ordinate category levels cannot be transferred to subordinate levels. This idea is

supported by the findings of Ramscar (2013), who performed an artificial language learning

task comparing noun learning and noun category learning. In this study, participants were

first trained to associate invented nouns with random known objects, the subordinate cate-

gory contrast. After that, they heard sentences consisting of phrases containing the noun

labels paired with different markers signaling a super-ordinate category contrast. A subse-

quent similarity test confirmed that postmarkers helped super-ordinate category discrimina-

tion: Participants rated objects to be more similar to each other when their corresponding

nouns shared a postmarker than when they shared a premarker. However, a grammaticality

judgment task showed that participants were better at learning the nouns’ meanings—here

the subordinate category contrast—when nouns were marked on the super-ordinate category
contrast by a premarker and not a postmarker during training.

Results from a study by Arnon and Ramscar (2012) suggest that this effect of improved

noun learning after a noun class premarker is indeed due to the presence of premarking and

not merely the absence of postmarking. This study investigated a different question, namely,

whether the learning of article–noun associations in a second language could be blocked by

previous learning of the nouns’ meanings, a hypothesis which their findings corroborate.

They also observed that learners were significantly better at learning to associate objects

with invented nouns when the nouns were preceded by previously learned noun class arti-

cles than when they had to learn the object–noun associations without article support.

Hence, the previous knowledge of the super-ordinate noun classes in combination with the

articles seemed to have facilitated noun meaning discrimination.

Here, we aim to investigate in detail what processes underlie this premarking advantage
that super-ordinate premarkers seem to have on learning subordinate categories. An expla-

nation for the premarking advantage put forward in Ramscar (2013) and Arnon and Ramscar

(2012) is that premarkers serve a communicative function in that they reduce uncertainty

about following words, by eliminating words that do not belong to the marked category

from the set of possibly following words (Dye, Milin, Futrell, & Ramscar, 2017). A basic

assumption of the expectation-based learning account is that communication has the general

aim of reducing uncertainty, such as for example, a listener’s uncertainty about the intention

of a speaker. Seen from this perspective, different levels of abstraction in a category hierar-

chy would coincide with different levels of uncertainty reduction: On the level of noun

classes, for example, uncertainty is reduced from all possible nouns to the subset of nouns

from one class. Learning nouns in such a reduced set seems to be advantageous as compared

to learning them in the full set of possible nouns. However, why this is the case is not clear,

yet. To investigate this question, we will therefore simulate noun learning within and across

noun classes with a discriminative learning model using error-driven learning and then seek

to confirm this effect in a behavioral experiment.
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1.4. The present study

The present study investigates how linear order interacts with the structure and level of

abstraction of categories in language learning. While there is evidence that the various

factors introduced so far—linear order, category structure, and levels of abstraction—all

influence learning of linguistic categories, thus far these effects have been studied in iso-

lation. In what follows, we will seek to examine the degree to which these factors interact

and/or complement one another in a second language learning situation.

By investigating category structure and level of abstraction, we want to link the discus-

sion about linear order effects with the discussion about the functional role of category

markers and hope to contribute also, indirectly, to a better understanding of the functional

role of categories in language. In particular, we assume that categories in language serve

their function as part of a system of communication. From this perspective, postmarkers

serve to help in the discrimination of relevant category contrasts, whereas premarkers

serve to guide the process of uncertainty reduction about an intended message and at the

same time focus the discrimination problem to subordinate levels of abstraction in a cate-

gory hierarchy.

In Section 2, we will first discuss two simulations of discriminative learning that we

implemented to examine how linear marking order affects learning categories with differ-

ent structures and at different levels of abstraction in an artificial category system. In Sec-

tion 3, we present the results of an experiment in which adult participants were trained

on the same artificial language to test the predictions of the simulations.

2. Modeling linear order effects in category learning

To examine how linear marking order affects learning categories with different struc-

tures and at different levels of abstraction, we designed an artificial language built around

a noun class system that varied in both of these factors. In this section, we present two

computational models that simulate how a language learner would acquire this noun class

system, from an expectation-based perspective using error-driven learning. The first

model simulates how premarking and postmarking of noun class affect noun class learn-

ing (the super-ordinate category contrast), whereas the second model simulates how pre-

marking and postmarking of noun class influence noun learning (the subordinate category

contrast) within the same artificial language. We will start with presenting the structure

of the artificial language.

2.1. Artificial language

The artificial language consisted of a differentially structured and hierarchical artificial

noun class system. This system was built around two- and three-syllabic imaginary nouns

(see Table 1) describing different visualizable real-life concepts (see Tables 2 and 4).

These nouns were then systematically assigned to different noun classes which were

either all marked by a specific premarker or by a specific postmarker.
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We manipulated marking order in that a noun always followed a premarker and pre-

ceded a postmarker. Two different marking variants determined whether the premarker or

the postmarker aligned with the four noun classes or not. In the premarking variant, four
premarkers, ima, imo, ime, and imi, were consistent with their noun class and one unspeci-

fic postmarker, agi, was used for all nouns. In the postmarking variant, one premarker,

imo, appeared with all nouns and four postmarkers, ovu, ira, agi, and epo, were consistent

with their noun class. The combinations of markers and nouns were then embedded into a

context by a sentence-initial carrier phrase (ena dikanhe, which could mean “he is talking

about . . .”, or unta boltohe, which could mean “he is dreaming of . . .”).
In both variants, the last vowel of each postmarker was dependent on the carrier

phrase, for example, ovu would turn into ove for carrier phrase two. An example sentence

of the premarking variant is given in (1).

(1) Unta boltohe ima OKsham- agi.

Carrier phrase1 premarker1 “dog/dogs” unspecific postmarker

He is dreaming of dogs.

To address our first question of how category structure interacts with linear marking

order, the nouns and their associated images were manipulated on two dimensions; on

their form by assigning them to one of three syllable stress categories (form categories:
stress on first, second, or last2 syllable), and on their meaning by assigning them to one

of three different semantic categories (meaning categories: animals, plants, or random

objects). The noun oksham in Example sentence (1) from Noun class 1 was, for example,

stressed on the first syllable (capitals mark the stressed syllable) and used to refer to dogs

(the artificial language was not specific about number). Note that during the recording of

Table 1

The training nouns for the simulations and the behavioral experiment

Noun Class 1 Noun Class 2 Noun Class 3 Noun Class 4 Frequency

Premarker ima imo ime imi

Noun oksham kanjur anveal jajosan 32

luobar ennovis psondew serim 23

anhatar ruis hatrumir erkefal 16

simad lopranik kilal vimeros 11

nechran aftong repis burbad 8

kekunam palneng tokran ksoster 6

kitsogis tivitkal istefur natrul 4

magril meromer merkatim rutonak 3

Postmarker ove/ovu ira/ire agi/ago epo/epa
Note. The vowel alternation of the postmarkers was dependent on the carrier phrases unta boltohe (appear-

ing with ove, ira, agi, and epo) and ena dikanhe (appearing with ovu, ire, ago, and epa).

10 of 43 D. B. Hoppe et al. / Cognitive Science 44 (2020)



stimuli for the behavioral experiment, postmarkers were read as suffixes attached to the

nouns. For nouns from Noun class 2 and 4, stress therefore fell on the postmarker.

We assumed that the form categories were perceived as more overlapping than the

semantic categories based on the differing learning context and an adult learner’s previ-

ous knowledge about the two category types. Both the meaning and form categories we

used are contrastive—thus, already learned—categories in the L1 of the Dutch learners.3

However, the meaning features were integrated in images showing already familiar

objects in a familiar context, whereas the stress features were part of a very complex

speech stream that consisted of many unknown sound combinations. Thus, the familiar

context in the images should facilitate the transfer of the meaning category knowledge,

but the unfamiliar language context should hinder such a transfer of category knowl-

edge for the form categories. We therefore assumed that the meaning categories were

perceived as already learned and therefore distinct categories, while the form categories

still had to be formed in this new context and should be perceived as overlapping

categories.

Table 2

The four noun classes of the artificial language and their combination of meaning and form category features

Form Categories

Unambiguous Ambiguous

Stress on 1 Stress on 2 Stress on 3/4

Meaning

categories

Unambiguous Animal Noun class 1

ima X agi
or

imo X ove

— —

Plant — — Noun class 2

imo X agi
or

imo X ira

Ambiguous Random — Noun class 3

ime X agi
or

imo X agi

Noun class 4

imi X agi
or

imo X epa

Note. In the premarking variant, the unspecific postmarker agi was added to all nouns, in the postmarking

variant, the unspecific premarker imo. Moreover, ambiguous categories are shared with another noun class,

while unambiguous categories only appear in one noun class.
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The form and meaning categories were then combined pairwise to form three noun

classes. To increase the complexity of our artificial noun class paradigm and to make it

more comparable to real noun class paradigms, we induced marking ambiguity by adding

a fourth marked noun class category that shared the stress category from one and the

meaning category from another noun class. In this way, we simulated ambiguity of some

of the linguistic features, for example, as in marking syncretisms in the German case and

gender system. Overall, this yielded four noun classes with all levels of ambiguity (1:

completely unambiguous, 2: ambiguous in distinct feature set, 3: ambiguous in overlap-

ping feature set, 4: completely ambiguous) as illustrated in Table 2. In addition, the fre-

quency of nouns within each noun class followed an exponential (or strictly speaking a

geometric) distribution to provide a distribution of words within categories which matches

natural word distributions (Guo, Chen, & Wang, 2011; Kim & Park, 2005; Linke &

Ramscar, 2020; Ramscar, 2020).

To address our second question of how linear marking order interacts with different

levels of abstraction, the category system of this artificial language has two levels of

abstraction. On the noun level (subordinate category), nouns categorize specific meanings

(e.g., the set of dogs or the set of cats) and on the noun class level (super-ordinate cate-

gory), the noun classes categorize nouns. This structure allows us to compare the effects

of linear order on learning the noun classes and the specific noun meanings. Crucially,

only the order of the noun class marking was manipulated while the order of nouns and

images (meanings) was kept constant (in the behavioral experiment nouns and images

were presented at the same time). Another important point is that the meaning categories

(i.e., plants and animals) are familiar and therefore non-confusable categories for adult

learners. Therefore, we assume that noun class premarking reduces the uncertainty about

the possible meanings of a noun. For example, we assume that after hearing ima (i.e., the

premarker for the animal noun class, see Table 2), the listener will learn to expect an ani-

mal as possible outcome for the upcoming noun. Furthermore, it is important to note that

features discriminating nouns within a noun class are potentially overlapping between cat-

egories, because the nouns were pseudorandomly assigned to noun classes, leaving nouns

with similar characteristics, as, for example, identical starting sounds, distributed over the

noun classes (see Table 1).

This artificial noun class system offers two different category structures, the distinct

meaning categories and the overlapping form categories, and two levels of abstraction,

noun categories on the subordinate level and noun class categories on the super-ordinate

level. Both computational models (and later our participants in the behavioral experiment

in Section 3) were trained and tested with either noun class premarking or noun class

postmarking on the different category contrasts implemented in the artificial category sys-

tem.

2.2. Simulation 1: Linear order and category structure

We begin this investigation of order effects with a simulation of discriminative learn-

ing using an error-driven learning rule to investigate the effect of linear marking order
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and its interaction with category structure, our first main question. We implemented two

variants of the simulation, one in which noun class was marked by premarkers and one in

which it was marked by postmarkers. The task of the model was to categorize the artificial

nouns into the noun classes that were defined by the distinct meaning categories and the

overlapping form categories. During training, the respective marking variant of the model

was simultaneously presented with both noun class dimensions, form and meaning. During

testing, we separated the feature dimensions, to analyze how these features contributed to

the categorization. We hypothesized that both premarking and postmarking use the distinct

meaning features to determine the noun class, but that postmarking is more successful than

premarking at categorizing nouns using the overlapping form features.

2.2.1. Error-driven learning
The error-driven learning rule we use in our simulations is the delta rule originally

defined by Widrow and Hoff (1960; which is also a simplified version of the learning rule

by Rescorla & Wagner, 1972, see, e.g., Stone, 1987). This simple form of error-driven

learning assumes that cues and outcomes are connected in a fully connected two-layer

network. The association strength or weight from cues to outcomes is computed over dis-

crete training trials, saving a weight matrix for every point in time. The weight matrix V
between cues i and outcomes j at time t + 1 is updated as follows:

Vtþ1
ij ¼Vt

ijþΔVt
ij (1)

The weight difference ΔVt
ij at every time step t is thereby calculated depending on one of

three possible learning situations:

ΔVt
ij¼

0, cue i absent

ηð1�acttðjÞÞ, cue i and outcome j present

ηð0�acttðjÞÞ, cue i present but outcome j absent

8><
>: (2)

In this discriminative learning process, both positive and negative evidence is considered.

In the case of positive evidence (second case of Eq. 2), when a cue appears with an out-

come, the weight will be increased relative to the difference of the activation actt(j) of

outcome j given the currently present cues and the maximally possible outcome activation

of 1. The outcome activation is calculated as follows with v(i, j) determining the weight

between a cue i and outcome j at time t:

acttðjÞ¼ ∑
x∈cuesðtÞ

vtðx, jÞ (3)

In the case of negative evidence (third case of Eq. 2), when an outcome does not

appear after a cue, the outcome activation will be subtracted from 0 so that the summed

cue values in the outcome activation actt(j) will have a negative impact. For all absent
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cues, there will be no change in weight to any outcome. The learning parameter η deter-

mines the learning rate and is typically set to the value 0.01.

The characteristic behavior of discriminative learning arises in this error-driven learn-

ing network due to three factors. First, the processing of negative evidence leads to disso-

ciation of cues with a high background rate, which means that these cues occur

frequently in general, but do not reliably predict a specific outcome. Second, weights are

always updated relative to the sum of the weights of all present cues to an outcome (i.e.,

the activation actt(j)); if an outcome is already highly predicted by other cues, a new pre-

dictive cue will have more difficulties to approach a high weight and will only do so if it

proves to be more predictive over a period of time. Third, the possible increase in

weights is restricted by the maximal cue value of 1, and it is inversely related to the acti-

vation, which makes the network very flexible. For example, a set of low-frequency cues

can quickly become highly predictive, because their low activation value results in a large

increase in weight. Overall, the combination of these three factors results in cues compet-
ing for specific outcomes such that weights will approach the predictive value of a cue

for an outcome irrespective of cue frequency. Crucially, this mechanism is asymmetric

and outcomes compete differently than cues: When outcomes compete for cues, weights

will mirror the conditional probabilities of the outcomes given a cue (see Ramscar, 2013;

Ramscar et al., 2010, for empirical support of these model predictions).

Both simulations employ a version of the learning rule specified in Eqs. 1–3 imple-

mented in R (R Core Team, 2019) using the edl package (van Rij & Hoppe, 2020) and the

ndl package (Arppe et al., 2018). The scripts are available in the Supporting Information.4

2.2.2. Training
The premarking and postmarking models were both trained on the same representa-

tions, which were created to capture all of the features of the artificial language. The rep-

resentations consisted of the artificial nouns (see Table 1) to which we added

representations of the meaning and form features as well as the specific noun meanings.

Given that in the behavioral experiment (presented in Section 3), nouns were presented

acoustically, the nouns were split up into uniphones that were marked for word beginning

and ending (e.g., #o, k, ∫, a, m#). Our assumption was that the meaning categories

would be perceived as distinct. Therefore, we represented the meaning features as three

distinct feature sets consisting of a single feature each (D1meaning, D2meaning,
D3meaning) which corresponded to the three semantic categories in the artificial lan-

guage (animal, plant, or random). On the other hand, we assumed the form features to be

perceived as overlapping. Therefore, we represented these as three partly overlapping fea-
ture sets, consisting each of one category-distinct feature (D1form, D2form, D3-
form) and two features that were shared with one of the other categories (O1form,
O2form, O3form) as shown in Table 3. Although these features were abstract repre-

sentations, the category-distinct features could be interpreted to correspond to the position

of the stressed syllable in a stress pattern and the non-distinct features to the positions of

the unstressed syllables, which are partly shared between different stress patterns. For

example, the abstract form feature set {D1form, O1form, O2form} of noun class 1
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then corresponds to the features {1st syllable stressed, 2nd syllable unstressed, 3rd sylla-
ble unstressed}. Note that this translation of abstract features into stress features of the

artificial language does not consider the variation in word stem length (i.e., that stems

could have two or three syllables) in the artificial language but only considers the short

two-syllable word stems with a postmarker suffix. Every noun instance was then defined

by a combination of a distinct meaning feature set, a partly overlapping form feature set,

noun uniphones, and noun meaning (e.g., {D1meaning, D1form, O1form, O2-
form, #o, k, ∫, a, m#, dog}).

The two models were then trained on these feature sets in combination with a noun

class marker (marker1, marker2, marker3) according to the noun category para-

digm of the artificial language.5 In the premarking model, noun class markers were given

as cues to the model and the noun features were given as outcomes such that the model’s

task was to predict a noun from a marker, for example:

{marker1, constant} → {D1meaning, D1form, O1form, O2form, #o,
k, ∫, a, m#, dog}

In the postmarking model, noun features were given as cues to the model and noun

class markers as outcomes such that the model’s task was to predict a marker from a

noun, for example:

Table 3

The category system of Simulations 1 and 2 and its combination of distinct feature sets (meaning categories)

and partly overlapping feature sets (form categories)

Partly Overlapping Feature Sets

Unambiguous Ambiguous

{D1form,
O1form,
O2form }

{D2form,
O2form,
O3form}

{D3form,
O1form,
O3form}

Distinct

Feature

Sets

Unambiguous {D1meaning} Noun class 1

marker1 X
or

X marker1

— —

{D2meaning} — — Noun class 2

marker2 X
or

X marker2

Ambiguous {D3meaning} — Noun class 3

marker3 X
or

X marker3

Noun class 4

marker4 X
or

X marker4
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{D1meaning, D1form, O1form, O2form, #o, k, ∫, a, m#, dog, con-
stant} → {marker1}

We, furthermore, added a constant cue (constant) to every training trial, which

accounts for additional constant background information that, for example, a learner

brings to a learning situation. Typically, weights in an error-driven learning model

asymptote at a level that minimizes the sum-of-squares prediction error for a set of out-

comes over a set of observed cue sets. The presence of the constant cue serves a function

that can be linked to that of the intercept term in a regression model, in that it serves to

ensure that the mean of these errors is zero. In addition, this cue ensures a minimal

amount of cue competition in the premarking condition, as learning situations entirely

lacking cue competition are highly unrealistic.

2.2.3. Model evaluation
First, we inspected the weight development over time to get a closer understanding of

the dynamics during premarking and postmarking learning. After the model had been

trained to asymptote, we inspected the model’s ability to discriminate between the cate-

gories based only on the distinct or the overlapping dimensions, depending on whether it

had been trained with premarking or postmarking.

Second, to be able to make predictions about the categorization performance of a lear-

ner after premarking and postmarking training, we calculated the probability with which

the model would predict the correct postmarker from a feature set or the correct feature

set from a premarker. Probability of making a correct choice was calculated based on the

models’ outcome activations (see Eq. 3).

One problematic point in comparing categorization performance after premarking and

after postmarking is in our case that the choice baselines differ between the training con-

ditions. While in the premarking model, the premarker cue makes predictions about three

possible outcomes (noun feature sets), resulting in a baseline of 1/3, in the postmarking

model, a cue set consisting of the noun features makes predictions about four possible

outcomes (postmarkers), resulting in a baseline of 1/4. To circumvent this issue, we cal-

culated the probabilities of choosing the correct outcome set in the premarking and the

postmarking model compared to each of the other possible outcome sets and then defined

the accuracy of choosing this outcome set as the mean over the probabilities of these bin-

ary choices. This resulted in a baseline of 1/2 over all conditions. Probabilities were then

calculated according to Luce’s choice axiom (Luce, 1959) after applying a rectified linear

activation unit (ReLU) to the activation data which set all negative activations to zero. In

sum, the probability Pc of choosing the correct outcome (set) x in a set of choice alterna-

tives O, including competitor outcomes y ∈ C ⊂ O, was calculated as follows:

PcðxÞ ¼ mean ∑
y∈C

ReLUðactðxÞÞ
ReLUðactðxÞÞþReLUðactðyÞÞ

 !
(4)
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For postmarking predictions, the probability of a correct choice was calculated over

the activations of a postmarker given a feature set and the constant cue. As due to the

ambiguity manipulation, some feature sets correctly predicted two postmarkers (e.g., the

overlapping feature set {D3form, O1form, O3form} appeared in category 2 and cat-

egory 4), we excluded these binary choices from the choice probability calculation. For

premarking predictions, the probability of a correct choice was calculated over the

summed activations of all features from a feature set given a premarker and the constant

cue.

2.2.4. Results and discussion
The results of our simulation suggest that linear order of marking affects only cate-

gories that share overlapping features. Fig. 2 summarizes the probabilities of correct cate-

gorization for all categories and by premarking and postmarking training. Categorization

performance for overlapping feature sets (e.g., for Noun class 1, {D1form, O1form,
O2form}) was higher after postmarking than after premarking (Fig. 2b). In turn, for dis-

tinct feature sets (i.e., for Noun class 1, {D1meaning}), we observed a small premark-

ing advantage (Fig. 2a).

An inspection of the learned weights of both models offers insight into the learning

processes leading to these results. Weight development clearly differed between premark-

ing and postmarking training (see Fig. 3) and shows that while postmarking seems to rely

mainly on informativity, premarking seems to rely more on frequency. Before reaching

asymptote, the premarking weights are ordered by frequency, with the least frequent,
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Fig. 2. Probabilities of correct categorization (a) on the distinct dimension and (b) on the partly overlapping

dimension after premarking training and after postmarking training to asymptote (1,600 trials) in Simulation

1. Blue bars show the probability of correctly choosing a feature set given a premarker and the constant cue.

Orange bars show the probability of correctly choosing a postmarker given a feature set and the constant cue.

Baseline performance, which assumes a completely naive model making a random choice, is marked by the

horizontal line. The dashed lines show probabilities of correct choice after the same amount of training trials

as in the behavioral experiment (412 trials). See Table 3 for all possible feature combinations.
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distinct features being learned slowest, the lower-frequency overlapping features (that

appear in less categories) being learned at medium speed, and the higher-frequency over-

lapping features (that appear in more categories) being learned fastest (see Fig. 3a). This

is in line with the idea that learning in a divergent learning relation is mainly driven by

frequency (Ramscar, 2013). In our premarking model, the noun features compete with

each other as outcomes for the small set of marker cues and learning does indeed seem to

be driven by the frequency of the noun features. During postmarking training, the weights

are arranged in the reverse order, with the least frequent but most informative distinct

features being learned fastest (see Fig. 3b). In this case, the noun features are competing

as cues for the marker outcomes in a convergent learning relation. Cue competition is

therefore helping to dissociate the less informative overlapping features and concentrate

on the more informative distinct features. As a consequence, less misclassification of fea-

ture sets with overlapping features (e.g., {D3form, O1form, O3form}) occurred in

the postmarking model as compared to the premarking model, which was advantageous

in the partly overlapping dimension but not in the distinct dimension (e.g., feature set

{D1meaning}).
Note that the prominent difference in overall magnitude of premarking and postmark-

ing weights emerges due to the restriction of the possible outcome activation in the learn-

ing algorithm to 1. As the outcome activation equals the summed weights of cues in a set

to an outcome and as cue sets are larger in postmarking (e.g., {D1meaning, D1form,
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Fig. 3. Learned weights of Noun class 1 in Simulation 1 (a) between premarkers (i.e., marker 1) and item features

(i.e., {D1form, O1form, O2form, D1meaning}) and (b) item features and postmarkers (i.e., also

marker 1). Orange lines show the weight between a distinct feature (i.e., D1form or D1meaning) and a

marker, blue lines the weight between a low-frequency (LF) overlapping feature (i.e., O2form; LF because

occurring in two noun classes) and a marker, and violet lines the weight between a high-frequency (HF) overlap-

ping feature (i.e., O1form; HF because occurring in three noun classes) and a marker. Solid lines mark the cor-

rect features and dotted lines the features of the wrong Noun class 2. The vertical dashed lines show 412 training

trials, as administered in the behavioral experiment.
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O1form, O2form, #o, k, ∫, a, m#, dog, constant}) than in premarking (e.g.,

{marker1, constant}), single weights in postmarking are much lower.

To be able to observe the complete learning process over time, we trained the models

until weights between markers and noun features had reached asymptote. Clearly, in sim-

ple models like these, simulated learning time cannot be taken to predict actual learning

in our participants. However, since the learning rates were held constant in the models,

these training times can still play an informative role for the purpose of model compari-

son. Accordingly, we inspected the models’ performance at an earlier stage in which the

number of simulated training trials equaled the number of empirical training trials in the

behavioral experiment. This revealed that the probabilities of correct choice in both mod-

els and both category dimensions were already relatively constant at this earlier stage of

training (see Figs. 2 and 3).

Finally, the ambiguity manipulation did almost have no effect on the models’ catego-

rization performance. While premarking was not at all affected, the postmarking models

showed a very small effect with a slightly higher probability to choose the correct post-

marker for items of ambiguous categories. This effect probably originates in the higher

frequency of ambiguous features, which therefore get dissociated more strongly from

competing category markers.

To assess the significance of the observed results, we performed two randomization

tests comparing mean differences between the premarking and postmarking models in the

reported simulation and in 1,000 random baseline simulations (see, e.g., Edgington &

Onghena, 2007, and Appendix A). The first randomization test performed on the overlap-

ping category evaluation showed that the difference between the means of the postmark-

ing and premarking model significantly differed between the reported simulation and the

random baseline simulations, with a postmarking advantage only appearing in the

reported simulation but not in the random simulations (0.226 vs. −0.019, p = .001). The

second randomization test performed on the distinct category evaluation showed that the

result of the reported simulation was not significantly different from the baseline models,

confirming the absence of a difference between premarking and postmarking regarding

the evaluation of distinct category learning (−0.019 vs. −0.040, p < .192).

In sum, on top of a postmarking advantage in line with previous findings (Nixon,

2020; Ramscar, 2013; Ramscar et al., 2010; St Clair et al., 2009), this simulation suggests

an interaction effect with category structure: Whenever frequency and informativity coin-

cide, such as in learning of the distinct feature sets, premarking and postmarking training

lead to similar categorization performance; only if informativity does not parallel fre-

quency, postmarking training leads to an advantage for categorization supported by the

mechanism of cue competition. The outcome of our simulation supports our first hypothe-

sis that the postmarking advantage for learning categories does not generalize to cate-

gories which are perceived as distinct from each other. Besides this direct influence of

linear marking order on discriminating the marked categories (noun class), we assume

that it also has an indirect influence on learning subordinate category contrasts (noun

meaning), which we explore in the following, second simulation.
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2.3. Simulation 2: Linear order and levels of abstraction

Simulation 2 investigates the influence that linear marking order has beyond the

directly marked level, in this case, noun class. In particular, it simulates the way that lin-

ear order at a super-ordinate level (noun class) influences learning of subordinate cate-

gories (noun meanings).

Learning categories at different levels of abstraction, in this case, noun class and noun

meaning, are clearly distinct tasks: While noun class learning involves associating a

grammatical marker with a noun and its associated features, noun meaning learning

involves associating a noun with items or events in the world. Although noun class mark-

ers are hence not directly involved in noun meaning learning, super-ordinate category

markers may have an indirect influence on subordinate category learning via their hierar-

chical connection. Specifically, premarkers, such as gendered articles, might lead to a

facilitation of subordinate category discrimination by reducing uncertainty about items

that follow them, such as nouns (Arnon & Ramscar, 2012; Ramscar, 2013) and their

associated features. Accordingly, the noun class markers in our artificial language can be

expected to serve to reduce uncertainty about the nouns and noun meaning pictures that

will follow them in the behavioral experiment (see Section 3) in the same way, a process

that this simulation seeks to model explicitly.

Technically, uncertainty reduction can be seen as a gradual reduction of the size of a

set of expected outcomes that progresses as new information is received, with the set of

expected outcomes itself being a function of prior learning. Accordingly, learners that

have already acquired some form of hierarchical category structure might already expect

a specific noun class—and thus a specific subset of nouns and noun meanings—after

hearing a noun class premarker. This (implicit) set size reduction is important for the dis-

crimination process because the updating mechanism of the error-driven learning rule

considers positive and negative evidence: After every learning event not only weights to

present outcomes are adjusted but also weights to absent outcomes (third case of Eq. 2 in

Section 2.2.1). This mechanism can therefore differentiate between cues that appear only

with specific outcomes—informative cues—and cues that appear with many different out-

comes—less informative cues. As the size of learning networks increases, it becomes

more likely that cues occur with many different outcomes. Therefore, in larger networks,

individual cues are less likely to be informative about specific outcomes. The size of the

set in which the discrimination problem needs to be solved can thus be expected to

directly influence how cue sets are associated with outcomes.

Accordingly, if noun discrimination was only performed within and not across noun

classes in our artificial language, the discrimination process would not be influenced by

the nouns from other noun classes. The example in Fig. 4 illustrates this idea. In our arti-

ficial category system, nouns with similar features occur in different noun classes. For

example, some animal and plant nouns start with the sound l or k.6 When trying to solve

the noun discrimination problem across noun classes (i.e., in the set of all nouns of all

noun classes), features that discriminate nouns within a noun class would be dissociated

as cues to specific objects of one noun class, when these features are shared with nouns
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(a)

(b)

(c)

Fig. 4. Illustration of the difference between learning to discriminate subordinate categories, here artificial

nouns, with (b) postmarking or (c) premarking. (a) shows example nouns from two noun classes, with their

associated premarkers and postmarkers (see Table 2). In postmarking (b) discrimination is performed across
noun classes, which can lead to dissociation (red dashed line in black dashed box) of features relevant for the

noun discrimination but overlapping between classes, for example, the first sound of a noun #l. Noun class

premarkers (c) can reduce uncertainty about following items such that discrimination sis performed within a

noun class.
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from other noun classes, as depicted in Fig. 4b. However, if the set size is reduced (e.g.,

by premarking), as shown in Fig. 4c, also features that might be shared with other noun

classes will be informative for the noun discrimination within a noun class and will not

be dissociated.

The second simulation thus modeled the learning of noun–object associations in two

ways: (a) the postmarking model was trained on the full set of nouns in one run and (b)

the premarking model was trained separately on each noun class including only the

respective subset of nouns; after training, we then merged the results of the separate pre-

marking runs. This manipulation was based on the assumption that the perceived set size

on the subordinate level is only reduced in the premarking condition but not in the post-

marking condition.

After training, both models were tested on how well they could discriminate nouns

within noun classes. Crucially, besides the set size difference during training, all other

variables were kept the same between the premarking and the postmarking models: the

number of noun–object events, the employed cue and outcome representations, and the

linear order of noun and object representations. Regarding linear order of the noun and

object representations, we considered the perceived order in the behavioral experiment

(see Section 3). There, nouns and images of objects were presented at the same time (i.e.,

both follow immediately after the premarker, see Fig. 6). However, under the assumption

that acoustic noun processing generally precedes visual object processing (e.g., Jaśkowski,

Jaroszyk, & Hojan-Jezierska, 1990), we coded noun features as cues and noun meanings

as outcomes in both models.

2.3.1. Training
The noun stimuli used in this simulation were the same as used in the category learn-

ing simulation (Simulation 1, see Table 1). Both the premarking and the postmarking

models were trained with noun form features as cues and objects as outcomes, for exam-

ple:

{D1form, O1form, O2form, #o, k, ∫, a, m#, constant} → dog

While the postmarking model was trained on all nouns at the same time, the premark-

ing model was trained separately on the nouns of every noun class, assuming that only a

premarker can reduce uncertainty about possibly following nouns and objects. However,

during the first quarter of training also the premarking model was trained on the full set

of nouns because we assumed that premarker–object and premarker–noun associations

first had to be learned to perform uncertainty reduction.

Note that we assume in this simulation that premarkers reduce the size of the set of

nouns and objects associated with their meaning, thus cues and outcomes in the noun

learning task. However, theoretically, only the reduction of the outcome set, thus of the

objects, matters for the learning process because the discriminative learning algorithm in

Eq. 2 updates weights to absent outcomes but not weights from absent cues.
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Finally, as defined in the artificial language, also in this simulation noun frequencies

within every noun class followed an exponential distribution. Learning parameters were

set equally to the category learning simulation, and also here, a constant cue was added

to every cue set.

2.3.2. Model evaluation
To test the noun learning performance of the premarking and postmarking model, a

noun feature set was shown to the model and the activation of the target object and com-

petitor objects was calculated after the model had been trained to asymptote. In the post-

marking model, all other objects were counted as competitors and in the premarking

model only competitors within a noun class were considered. These activations were then

normalized first with a rectified linear unit to correct for negative activations and then

with the Luce choice rule to estimate the probability of a correct choice as in the cate-

gory learning simulation. In the noun learning simulation, there was no problem of differ-

ing baselines between the premarking and postmarking models. Therefore, the probability

Pc of choosing the correct outcome x was calculated directly over the whole set of choice

alternatives O and was not averaged over all possible pairs of target and competitors:

PcðxÞ¼ ReLUðactðxÞÞ
∑y∈0ðReLUðactðyÞÞ

(5)

2.3.3. Results and discussion
In the noun learning simulation, nouns in the premarking model were associated stron-

ger to their target object than in the postmarking model, as illustrated in Fig. 5. This sug-

gests that optimization within smaller sets of nouns performs better than optimization in

larger sets, which seems reasonable as in larger sets more random variation will lead to

more noise during the learning process.

To reach asymptote, these models needed to be trained longer than in Simulation 1,

due to the larger number of outcomes in this simulation. For the same reason, the pre-

marking advantage also took longer to arise than the postmarking advantage in Simula-

tion 1. We also inspected learning after the same number of trials as in the behavioral

experiment. At this earlier point in training, the premarking advantage was still absent

and overall the probability of correct choice was significantly lower in both the premark-

ing and postmarking models.

To assess the significance of the observed premarking advantage, we performed a ran-

domization test comparing mean differences between the premarking and postmarking

models in the reported simulation and 1,000 random baseline simulations in which the

outcomes in the training data were randomly shuffled (see Appendix A). The results of

this randomization test indicated that the premarking advantage was significantly higher

than in the baseline simulations with randomized outcomes (0.088 vs. −0.001; p < .001).
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This suggests that our reported simulation results were not due to random associations

between single cues and outcomes.

Simulations 1 and 2 explored the generalizability of the postmarking advantage for

learning categories using an error-driven, discriminative learning mechanism. Simulation

1 showed that the postmarking advantage may not generalize to distinctly structured cate-

gories, and Simulation 2 showed that the postmarking advantage may not generalize to

levels of abstraction subordinate to the marked category contrast. In addition, Simulation

2 suggests that premarking can facilitate discrimination by focusing the optimization

problem on a smaller set of items. Regarding the underlying mechanisms, we found that

cue competition determines when postmarking has an advantage in the marked domain

(when item features overlap), and the global nature of the error-driven learning process

results in an advantage of super-ordinate premarking for subordinate categories (because

premarking can reduce the set size for the discrimination process). These findings form

concrete and testable predictions for human learners when presented with the same artifi-

cial language. In the following section, we present the results of an artificial language

learning study which tested these predictions on human learners.

3. Behavioral experiment

In an artificial language learning task using the same artificial language as in the simu-

lations, we tested also linear order effects in differently structured categories and at dif-

ferent levels of abstraction. Participants were asked to listen to sentences in an artificial

language, which was the same as the one presented in Section 2.1. In the sentences, the
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Fig. 5. Median probability of choosing the target object in the noun learning simulation (Simulation 2) after

weights of frequent noun features to objects have reached asymptote. Error bars show the interquartile ranges

(i.e., 25%−75% of data). Dashed lines show median probability of choosing the target after the same amount

of training trials as in the behavioral experiment (412 trials).
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type of noun class marking was manipulated, a participant was either presented with only

the premarking or only the postmarking variant of the artificial language. After the train-

ing phase, we tested to what extent participants had implicitly learned to categorize nouns

into different noun classes along two dimensions (one distinct and one overlapping) and

to associate nouns with object images. In this way, we could address both of our main

questions in the behavioral experiment: First, we could test how category structure and

linear order interact in learning by comparing the effect of linear order in learning the

overlapping and distinct noun categories (which were combined to form four noun

classes, see Table 2). Second, we could test the interaction of linear order with level of

abstraction by investigating how marking order affected the learning of the noun mean-

ings, a learning process which is subordinate to the noun class categorization.

The behavioral experiment was designed as a multi-modal artificial language learning

task in which we tested participants’ ability to generalize implicitly learned category

knowledge to new items (as in, e.g., Mirković & Gaskell, 2016). Participants were trained

by listening to sentences while seeing corresponding images on the screen. To ensure that

participants watched the screen, we tracked their gaze during the whole experiment. A

training and test trial would only start when the participant had fixated the fixation cross

for 500 ms without interruption.

We expected to observe an effect of linear marking order on how well noun classes

were learned, in line with previous studies (e.g., Ramscar, 2013; St Clair et al., 2009).

Moreover, based on our two simulations, we expected two interaction effects: First, a

postmarking advantage is only for the overlapping form categories, but not for the distinct

meaning categories; second, a premarking advantage is for noun learning, because the

discriminability of subordinate categories (noun meanings) will increase by premarking of

super-ordinate categories (noun class).

3.1. Participants

After excluding two participants because their gaze behavior indicated that they did

not look at the pictures on the screen, we analyzed data of 30 participants from the

Groningen area (22 females and 10 males) who had participated for 8 Euro in this 1-hr

experiment (Mage: 22.5, range: 18−28). All participants were Dutch native speakers. Eight

of the participants were raised bilingually: six with Frisian, one with German, and one

with Spanish.

3.2. Training stimuli

For training, the 32 imaginary nouns (50% two-syllabic and 50% three-syllabic) sum-

marized in Table 1 were used. They were built into sentences according to the rules of

the artificial language and recorded by a female speaker, who read them according to

German orthographic rules and following the stress patterns specified for each noun class.

A participant was either trained on the premarking or on the postmarking variant. The

presentation frequency was modulated across items in each noun class fitting an exponen-

tial distribution (frequencies: 32, 23, 16, 11, 8, 6, 4, and 3).
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For every presentation instance of a noun, a different photograph of the denoted object

was shown (farm animals, flower plants, or random objects), integrated in a context

image matching the carrier phrase (see Fig. 6). The images were chosen to produce high

variation in background, color, image section, and number of items. Two context images

matching the two carrier phrases (one version shown in Fig. 6) were combined evenly

with instances of every noun and frequency subcategory. To eliminate bias for objects or

categories, a different mapping between images and nouns was used for half of the partic-

ipants. This yielded four experimental conditions: premarking Version 1, premarking Ver-
sion 2, postmarking Version 1, and postmarking Version 2.

The order of the sentence stimuli was pseudo-randomized: To assure that low-fre-

quency items would not appear too early, at first, 28 items were randomly picked from

the four higher-frequency categories of every noun class (112 items in total) and shuffled.

The remaining 300 items were then randomized and appended. This order of sentences

was maintained for all participants and conditions.

3.3. Test stimuli

We tested learning of the distinct and overlapping categories as well as learning of the

noun items in three two-alternative forced-choice tasks with two auditorily presented full

sentences as choice alternatives. Fig. 7 illustrates the three tasks. The participants were

instructed to make a grammaticality judgment on these two alternatives by deciding

which of the sentences sounded more correct. All test items were presented in the same

randomized order in all four conditions. The three types of stimulus sets are presented

below.

carrier phrase premarker noun postmarker

400 ms

Fig. 6. Sample training trial of the behavioral experiment. The image on the left depicts the sentence context

matching the carrier phrase (he is dreaming of . . .), and the image on the right shows the context image with

the noun meaning (apples) included.
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3.3.1. Noun Test
All stimuli from training (see Tables 1 and 4) were presented with 50% old images

and 50% new images (depicting an unseen token of the trained referent, e.g., an unseen

dog species), which yielded 32 trials. Answer options were either a training sentence that

matched the depicted referent or a training sentence that referred to another item within

the same noun class (e.g., a cat instead of a dog). Note that the stress pattern was the

same in both choice alternatives conforming to the specific noun class.

Noun 
Test

Form 
Category 
Test

Meaning
Category
Test

amUnta boltohe ima OKam-agi 

Unta boltohe ima NEran-agi

HEFlasUnta boltohe ima HEFlas-agi 

Unta boltohe imo HEFlas-agi

arUnta boltohe ima DOar-agi 

Unta boltohe ime doAr-agiUnta boltohe ime doAr-agi

Fig. 7. Sample test trials for the Noun, Form Category, and Meaning Category Test in the premarking vari-
ant (i.e., premarker varying with noun class and unspecific postmarker agi). Syllable stress is marked by capi-

tals. The green boxes signal the correct answer options.

Table 4

The training objects of the behavioral experiment

Animals Plants Random 1 Random 2 Frequency

Dog Rose Car Airplane 32

Cat Sunflower Chair Shelf 23

Chicken Tulip Banana Apple 16

Horse Orchid Lake Mountain 11

Pig Dandelion Sewing machine Flat iron 8

Mouse Poppy Kite Ball 6

Sheep Daisy Fence Umbrella 4

Rabbit Forgetmenot Foot Ear 3
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3.3.2. Form Category Test
We created eight new nouns for every noun class (see Table B1) and incorporated

them into two kinds of sentences presented as answer options (yielding in total 32 trials);

in correct answer options, marking matched the stress pattern of the noun and in wrong

answer options, markers of another stress pattern were presented. Importantly, all images

were replaced by a loudspeaker icon, so that participants would only base their grammati-

cal judgment on acoustic cues.

3.3.3. Meaning Category Test
For each of the two semantically consistent noun classes, images of six new objects

(farm animals or flower plants as in the training set) and six related new objects (safari

animals or flowerless plants) were presented with new nouns embedded into sentences. In

correct answer options, marking and stress were consistent with the class of the noun,

and in wrong options, marking and stress were consistent with another noun class. For

the two semantically random noun classes, six new objects and nouns were presented in a

similar way. This yielded 36 trials in total (see Tables B1 and B2).

3.4. Procedure

The participants were trained and tested in a quiet room in which they listened to the

recorded sentences with headphones, seated in front of a computer screen. To limit eye

strain, all images appeared on a gray background. Participants were instructed in written

form that they would learn a language from a fictive planet and that they should just lis-

ten to the playback sentences and watch the images on the screen attentively. They were

kept naive regarding any information about the language and sentence structure and

regarding details about the tests following the training. The training block was split into

four blocks of 103 trials.

In training trials, first, the empty context image appeared, followed by the carrier

phrase after 400 ms (see Fig. 6). The frame in the context image stayed empty for the

length of the carrier phrase and the premarker and was then filled at onset of the noun.

The mean length of a sentence recording was 2,487 ms (range: 2,247–2,953 ms), the

mean length of a trial was therefore 2,887 ms. After every trial, a blank screen was

shown for 100 ms, followed by a central fixation cross for 500 ms. Although the noun

and object image were shown at the same time, to make sure that semantic and form cat-

egories could be premarked and postmarked, we assumed that the object image was pro-

cessed slightly before the noun, based on evidence that visual stimuli are processed faster

than acoustic stimuli (e.g., Jaśkowski et al., 1990). This matters for our assumption that

during premarking the possible number of objects as referents for a noun is reduced to

the members of the noun class, as depicted in Fig. 4.

The test block started with the Noun Test, followed by the Form Category Test and

then the Meaning Category Test. Between every test type, participants had the opportu-

nity to take a self-paced break.
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In forced-choice trials, context and object image were presented simultaneously and

two answer options were played after each other. The participants had to press one of the

two keys on a keyboard to indicate which sentence sounded more correct. To make the

mapping between the presented answer options and the two keys for the answer options

more clear, an icon on the lower left of the screen lighted up during the presentation of

the first sentence and an icon on the lower right when the second sentence was presented.

In half of the trials, the correct sentence was played first and in the other half, the incor-

rect sentence. After both sentences had been presented (again around 2,487 ms per sen-

tence), the participant could press one of the two answer buttons in a time window of

2,000 ms. In the Form Category Test, the context and object image were replaced with a

loudspeaker icon.

3.5. Results

Fig. 8 shows the result of the Noun Test, the Form Category Test, and the Meaning

Category Test in the behavioral experiment. In the Noun Test, higher accuracies were

observed after premarking training, but in the Form Category Test higher accuracies were

observed after postmarking training. No accuracy difference was found in the Meaning

Category Test. These observations are all in line with the predictions of our simulations.

Fig. 8. Model estimates (excluding random effects, CI � 1 SE, inverse logit transformed; using R package

itsadug) of accuracy in the Noun Test, Form Category Test, and Meaning Category Test for correct answer
options preceding wrong answer options in the forced-choice task (see results for wrong answer options pre-

ceding correct answer options in Fig. C1). Dots represent the actual data, namely mean accuracies by partici-

pant.
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The accuracy data of the forced choice tests were analyzed with generalized additive

mixed-effects regression modeling (Wood, 2011, 2017), which is a nonlinear regression

method that allows us to include nonlinear effects of frequency and nonlinear random

effects. We built two models predicting accuracy, one comparing the form and meaning

tests and one investigating the noun test (see Supporting Information for code and out-

put). The models had been constructed in an iterative backward fitting procedure using

model comparison with χ2 tests and evaluation of Akaike’s information criterion (AIC;

Akaike, 2011), implemented in the R package “itsadug” (van Rij, Wieling, Baayen, &

van Rijn, 2017). We did not analyze reaction time data as the auditory forced-choice task

resulted in a forced delay of participants’ reactions.

The first model investigated the hypothesis about how linear marking order interacts

with category structure by contrasting the data from the Form and Meaning Category Test

including the predictors Marking (premarking/postmarking), Task (form/meaning), and

Target Position in the forced-choice tasks (correct sentence played first/second). The ran-

dom effects structure included a random intercept for items (pairing of target sentence

and picture) and participants, and random slopes for Task and Target Position by partici-

pants.

The best-fitting model comparing the form and meaning task included a significant

three-way interaction of Marking, Task, and Target Position (χ2(1) = 2.213, p = .035;

AIC difference: −1.78). We found a significant postmarking advantage for learning the

form categories. In the Form Category Test, accuracy after premarking training was lower

than after postmarking training (βPremarking = −0.73, SE = 0.36, z-value = −2.00,
p = .045; see Fig. 8). After postmarking training, accuracy was significantly above

chance level (βIntercept = 1.05, SE = 0.27, z-value = 3.91, p < .001). However, this post-

marking advantage was not present when correct answer options were presented second

(β2nd = −0.95, SE = 0.30, z-value = −3.14, p = .002; see Fig. C1). Also, the Meaning

Category Test did not show a postmarking advantage, with accuracy after premarking

training being higher than in the Form Category Test (βPremarking:Meaning = 0.98, SE =
0.44, z-value = 2.22, p = .026), but not the accuracy after postmarking training

(βMeaning = −0.43, SE = 0.32, z-value = −1.35).
To test the second question about how linear marking order interacts with levels of

abstraction, we ran a separate model on the noun learning accuracy data. This allowed us

to include predictors unique to the Noun Test. We tested the predictors Marking, Target

Position, Stress (on first/second/third syllable), Frequency (3, 4, 6, 8, 11, 16, 23, and 32)

of nouns during training, and whether a picture in the test was new (New, levels: new/
old). We included random intercepts for participants and items as well as a random slope

for Target Position. The best-fitting model showed main effects of the predictors Marking

(χ2(1) = 3.761, p = .006; AIC difference: −0.83), Target Position (χ2(1) = 3.902,

p = .005; AIC difference: −1.31), Stress (χ2(4) = 13.690, p < .001; AIC difference:

−9.21), and Frequency (χ2(4) = 13.964, p < .001; AIC difference: −5.07). The predictor

Marking showed a premarking advantage for the Noun Learning Test: After premarking

training, accuracy was significantly higher than after postmarking training (βPremarking =
0.92, SE = 0.34, z-value = 2.75, p = .006). Moreover, when correct answer options were
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presented second in the forced-choice task, accuracy was significantly lower than when

correct answer options were presented first (β2nd = −0.96, SE = 0.33, z-value = −2.88,
p = .004). For Stress, we observed that when nouns were stressed on the third syllable,

they were learned less accurately than compared to nouns stressed on the second syllable

(βStress3 = −0.96, SE = 0.29, z-value = 3.27, p = 0.001). Furthermore, accuracy increased

linearly with increasing Frequency (χ2Frequencyð1Þ¼ 18:702, p<:001).
Note that in both regression models, we did not find any difference in accuracy

between the four noun classes and their ambiguity status, as also predicted in Simulation

1 (see Section 2.2.4).

3.6. Discussion

In the behavioral experiment, we found that, overall, learners were able to generalize

learned category knowledge to new items exhibiting the features that were informative

about the trained categories. Concerning our two hypotheses, we found evidence for inter-

actions of linear order with both category structure and levels of abstraction. First, as in

Simulation 1, we observed that linear marking order interacts with category structure.

Postmarking facilitated learning the overlapping form categories more than premarkers

(in line with Ramscar, 2013; St Clair et al., 2009) but, crucially, no facilitatory effect of

postmarking was visible for learning the distinct meaning categories. While for discrimi-

nating noun classes by stress pattern, postmarking was advantageous, premarking and

postmarking training led to a similar performance for discriminating noun classes by the

meaning features. This suggests that although the postmarking advantage is an effect fre-

quently found and cited in the literature, it does not generalize to every kind of category

structure.

Second, our behavioral results show that this postmarking advantage does not general-

ize to categories at levels of abstraction subordinate to the postmarked category contrast.

While we found that postmarking facilitates learning the super-ordinate noun class cate-

gories, we found that premarking facilitates learning the subordinate noun categories. This

effect is in line with the hypothesis based on Simulation 2 and previous evidence that

premarking of super-ordinate categories brings an advantage in learning subordinate cate-

gories. In Simulation 2, we assumed that learners could use the premarkers to reduce the

discrimination process to a single noun class, which enhanced noun learning. As our

learners already had category representations for the semantic categories prior to the

experiment and probably quickly learned to associate premarkers with a semantic cate-

gory, they could use premarkers to predict a subset of objects, for example animals. Sub-
sequently, associating an unknown noun with an object within a noun class (e.g., a noun

with a dog within the animal category) was then easier for the learners than across all

noun classes, as suggested in Simulation 2.

Regarding the premarking advantage for noun learning, a next step could be to further

investigate in what situations premarkers can reduce uncertainty about following informa-

tion. In our behavioral study, premarkers were presumably used to reduce uncertainty

about following information, in our case noun semantics in the object images, although
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this association was not separately trained before. Also Arnon and Ramscar’s (2012) find-

ings suggest that in an immersive learning situation it is possible to associate premarkers

with familiar noun semantics fairly quickly such that they can be directly used to enhance

learning artificial nouns’ meanings in the same training session. This quick association

was probably facilitated by previous knowledge of the learners about the objects and

semantic categories in the experiment. In contrast, it might be more difficult to learn to

associate premarkers with unknown objects, resulting in less uncertainty reduction and,

thus, less facilitation for learning to associate nouns with these objects. A positive effect

of premarking as we observe it here might therefore be restricted to specific learning situ-

ations, such as second language learning, or might take more time to emerge for com-

pletely naive learners.

Further predictors we found to influence learning of the noun meanings, here the sub-

ordinate category contrast, were noun frequency and stress. The facilitative effect of noun

frequency shows that frequency of occurrence of a cue–outcome pair can lead to faster

learning of an association, also when this factor should not be regarded on its own irre-

spective of other factors, as for example informativity (cf. Rescorla, 1988). Regarding the

different stress patterns of the nouns, we observed that nouns with stress on the second

syllable, a frequent stress pattern in Dutch, were learned better than nouns that were

stressed on the first or last syllable, which are less common in Dutch. It seems that it was

easier for our learners to link this familiar stress feature to a new word meaning than an

unfamiliar stress pattern. This suggests that frequency of presentation during training can

positively influence learning and that features that are infrequent in a native language

might be harder to integrate into a new language system.

For form category learning and noun item learning, we furthermore found an effect of

the order in which the answer options appeared in the forced-choice task. We suspect that

using a forced-choice task with auditory instead of visual stimuli imposes a processing

order and at the same time a processing limit without allowing for regressions. As a con-

sequence, if the gap in time between two answer options is not big enough, the first

answer option might still be processed when the second answer option is presented. In

our study, we found that when correct answer options preceded wrong answer options in

the test, accuracies were higher and therefore differences between the conditions were

also more pronounced (compare results for correct answer option coming first in Fig. 8

and results for wrong answer option coming first in Fig. C1). In the Form Category Test

and Noun Test, we therefore found a clear difference between marking conditions, with

either postmarking (in the Form Category Test) or premarking (in the Noun Test) show-

ing accuracies significantly above chance, when the correct answer option was presented

first. When the wrong answer option was presented first, we found that accuracies in both

marking conditions were overall lower (for noun recognition) or even at chance level (for

form categories). We presume that wrong answer options are processed more slowly than

correct answer options, given that learners had more exposure to the correct patterns dur-

ing the training phase. Therefore, while for the correct answer options the short process-

ing window of the first answer option might have been sufficient, it probably was not

long enough for the wrong answer options. In turn, the resulting lack of processing of
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one answer option presumably impeded the comparison of the two answer options. We

are not aware of many studies applying this kind of acoustic forced-choice task, except

for the related testing procedure of Arnon and Ramscar (2012). They did not report such

an effect of answer option order; however, given that their task was overall easier than

our task, we assume that the limited amount of processing for the first answer option did

not lead to an effect in their study. While they tested the nouns presented during the

training phase, we tested novel nouns and, in addition, our learners were exposed to a

more complex category system with more feature dimensions. Overall, we suggest that

the effect of the order of answer options in our study reflects an increased task difficulty

which causes problems when wrong answer options are presented first in a restricted time

window. Importantly, this pattern of results does not seem to suggest a general bias, as

neither the first nor the second answer was preferred more over the other option.

Thus, to summarize, the interactions of marking order with category structure and

levels of abstraction we observe in the behavioral experiment suggest that linear order

effects such as the prominent postmarking advantage for category learning do not gener-

alize to distinctly structured categories and to subordinate categories. Furthermore, we

confirmed the previous finding of a premarking advantage for learning subordinate cate-

gories.

4. General discussion

This study sought to investigate the effects of premarking and postmarking on learning

linguistic categories of different structures and at different levels of abstraction. In addition

to offering a formal account of these effects, the findings of our investigation also offer

insights into the functions that premarking and postmarking have in category learning.

Our manipulation of category structure in the behavioral study showed that the often

cited postmarking advantage (e.g., Clark, 2001; Kuczaj, 1979; Ramscar, 2013; Ramscar

et al., 2010; Slobin, 1973; St Clair et al., 2009) for learning categories does not general-

ize to distinctly structured categories. Only when categories are perceived to have over-

lapping/confusable features, they were more easily associated with postmarkers than with

premarkers. Simulation 1 showed a similar effect and suggests that the convergent learn-

ing relation present during postmarking is particularly suitable to dissociate non-discrimi-

nating features from a postmarker according to their informativity for the category

contrast. In a divergent learning relation usually found during premarking, learning is

more dependent on the frequency of markers and features, and less on the informativity

of features for a marker and the connected category contrast. Whenever dissociation of

uninformative features is not needed, as in the case of categories which are already per-

ceived as distinct because they have already been formed, postmarking does not show this

advantage. In that case, learning of the category contrast will proceed comparably in pre-

and postmarking.

We conclude from these findings that postmarking has a functional role in learning to

form new categories by providing distributional information in the linguistic input which
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can be directly used to build discriminative category representations as opposed to proba-

bilistic category representations that are built from premarking (which is in line with pre-

vious evidence; see Ramscar, 2013; Ramscar et al., 2010).

As a second main finding, we found that while during postmarking training, categoriza-

tion of the marked noun class categories was facilitated, categorization of the subordinate

noun categories was inhibited. This corroborates the assumption that categories at differ-

ent levels of abstraction stand in a trade-off relation with each other as, depending on the

task, contrasts at different levels might be relevant (Dye & Ramscar, 2009). Our second

discriminative learning simulation shows how premarking can facilitate learning of subor-

dinate categories. We assumed that premarkers can reduce uncertainty about following

information when they are trained to predict, for example, following words or their mean-

ings. Given this assumption, premarking probably leads to discrimination in a smaller set

of nouns than postmarking, and Simulation 2 shows how discrimination in a smaller set

can be more effective than in a larger set. Hence, premarking seems to have an important

role in discriminative processing (i.e., uncertainty reduction), which, in turn, can facilitate

learning by restricting the discrimination process to a specific set of cues and outcomes.

More generally, our findings contribute to a growing body of evidence that discrimina-

tive learning is not only influenced by how frequently a cue and an outcome co-occur.

While we do find a facilitatory effect of frequency for noun learning, we observed three

crucial additional factors. First, learning can be influenced by the ratio between cues and

outcomes. Second, when there are more cues than outcomes, learning might also strongly

depend on the informativity of single cues for outcomes. Third, Simulation 2 suggests

that learning success can be determined by the size of the set in which the discrimination

problem needs to be solved.

4.1. Generalization to natural languages

Working with artificial languages always raises the question how they are representa-

tive of natural languages. Our noun class system partly resembles natural languages but

is partly also too simplified. In natural languages, noun class can align with form features

(e.g., as Hohlfeld, 2006, suggests, in German gender) or semantic features (e.g., noun

classes in Swahili) as in our artificial language. However, categories in natural language

often do not align directly with other perceptional or conceptual categories. German gen-

der, for example, partly aligns with semantic features but partly also violates these rules.

While the partial alignment in features does facilitate learning in general, the highly fre-

quent outliers (e.g., fork, knive, and spoon have three different genders in German) are

better learned in a process of discrimination. Thus, in natural languages, it becomes even

more apparent that categories are not merely a taxonomic but a discriminative system

which probably requires mechanisms of clustering by both similarity and discrimination.

We should, however, sound a note of caution when it comes to directly generalizing

the results from a restricted experimental setup to the full complexity of natural language

learning. As our results show, linear order is of importance only when categories show

overlap that leads to a confusion of item features that are highly frequent with item
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features that are informative about a category. Other factors that might influence effects

of linear order in natural languages are, for example, the distance between a word and its

category marker (as, e.g., in longer agreement dependencies7) or the within-category item

distribution. Given the complexity of natural languages, it follows that we clearly need

variations of this experiment to better understand exactly which category characteristics

apart from linear order influence learning, and how they influence it. For example, tests

of other modalities, of different relations of category contrasts, and a comparison of chil-

dren and adults could all be informative in this regard.

4.2. Linear order in natural language learning situations

To generalize our findings in an artificial language learning situation, it is also impor-

tant to consider how linear order of stimuli can be established in natural language learn-

ing situations. In our case, the order of markers and noun features was set artificially to

exactly lead to a pre- and postmarking situation for auditory and visual features. In the

domain of auditorily presented speech, this order comes naturally, but in the domain of

visually presented semantics, we had to force this order. While objects are usually con-

stantly present in a visual scene, our object images appeared only after the premarker had

been auditorily presented. It is, however, possible that in a natural language learning situ-

ation, for example, when a child learns the names of toys, real premarking might be

rather rare, even in premarking languages, because, for example, the child has the possi-

bility to play and see the objects before any speech is uttered by a parent. On the other

hand, there might be several factors which modulate the operationalization of sequence in

a natural learning situation, for example, mechanisms such as joint attention or task

effects. Also note that we restrict our reasoning here to the learning of concrete nouns

with directly accessible semantics and do not consider abstract noun learning. Crucially,

the temporal dynamics of a natural learning situation are probably dependent on multiple

temporal cues beyond word order.

4.3. Generalization to language acquisition

Lastly, we would like to shortly discuss how our findings can be generalized to second

and first language acquisition. Our manipulation of category structure assumed that gen-

eral semantic categories, such as animals or plants, have already been learned by our

adult participants who would therefore perceive them as distinct. We observed that the

participants in our behavioral experiment could readily associate these categories with a

new category marker, irrespective of whether it was a premarker or a postmarker. We

suggest that this situation occurs frequently in second language learning when category

systems of the first and second language are aligned. For example, an adult native Eng-

lish learner of French has already learned to discriminate dogs from other animals, and

therefore just has to learn a new word form (“chien”) and map it to the already existing

category representation. As no further dissociation of uninformative features is needed,

postmarking will probably not bring an advantage for learning this new French category

label. In turn, this also suggests that if we had tested infants on our artificial language,
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we might have found a postmarking advantage also for learning, for adults, the distinct

semantic categories.

However, categories between different languages do not always align neatly. Much

more often category systems differ significantly and many difficulties in second language

learning stem from these differences. Frequently, second language learners have to learn

new category contrast, which means that existing categories need to be split up into a

more discriminative category system. This can be the case at different levels of abstrac-

tion, for example, when learning new sound contrasts such as tone (Nixon, 2020), when

learning new grammatical contrasts such as noun class, or when learning new semantic

contrasts such as new verb dimensions (Gullberg, 2009). In addition, category boundaries

often need to be shifted to accommodate to a new category system of the new language

(e.g., Boersma & Escudero, 2008). As opposed to situations in which previously learned

categories can be reused, these situations require relearning of categories. We suspect that

postmarking might facilitate this process. This would mean that we have to take linear

order into account not only when it comes to newly building categorical perception, such

as when infants learn their first language, but also when learned categorization prefer-

ences need to be overcome and restructured, such as when adults learn a new language

with different category contrasts.

5. Conclusion

We have presented a unified account of linear order effects in different kinds of cat-

egory systems that provides more insight in the role of categories and category marking

systems in language. Given the present evidence and our interpretation within an expec-

tation-based learning account, we conclude that whenever category-relevant features are

in competition with irrelevant features, postmarking facilitates category formation. We

suggest that this could be whenever categories have to be formed from a completely

naive point of view, for example, in first language acquisition, or when category sys-

tems need to be reshaped, as often necessary in second language learning. When it

comes to learning of subordinate categories, premarking shows its advantages, as it

does not abstract away from features that are important for discrimination of more fine-

grained category contrasts, as it focuses the discrimination process on these subordinate

category contrasts.

Our findings connect previous evidence about different characteristics of the learner

input influencing the learning of linguistic categories within an expectation-based theory

of language learning. The interactions of linear order that we found with category struc-

ture and with levels of abstraction illustrate how linguistic categories need to be studied

as part of a complex system of contrasts. These contrasts arise out of a need for dis-

crimination, and depending on the situation, their importance shifts within and between

levels of abstraction. We suggest that grammatical markers have an important role in

balancing this system and guiding a learner to the contrasts that are relevant within a

specific context.
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Notes

1. Henceforth, “item” is used to contrast the term “category.” However, on a poten-

tial lower level of abstraction, items can also form categories.

2. Depending on the length of the word stem, the last syllable could be the third or

fourth syllable.

3. Stress can alter word meaning in Dutch: beDELen versus BEdelen.

4. The supplementary materials are available at https://git.lwp.rug.nl/p251653/linear-

order-and-category-structure.

5. Note that the carrier phrases were not included in the simulations but were only

used in the behavioral experiment to evoke a more natural learning situation with

full sentences.

6. This kind of category structure can often be found among natural linguistic cate-

gory systems. For example, in the German gender system, semantic features

widely overlap between genders, such that, for instance, furniture items can be

masculine (der Stuhl—the chair), feminine (die Lampe—the lamp), or neuter (das

Sofa—the sofa).

7. For example, when gender postmarking appears on word n + 2, as in the following

French example, where the gendered adjective “belles” marking gender on the noun

“fleurs” appears after the verb “sont”: les fleurs sont belles (the flowers are beautiful).
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Appendix A: Randomization tests performed for model evaluation

To assess the significance of the simulation results, we performed randomization tests

(cf., e.g., Edgington & Onghena, 2007). Significance levels were computed by comparing

mean differences of the probability of choosing the correct outcome between premarking

and postmarking models in the reported target simulation meanDifft and n competitor

simulations meanDiffc. For overlapping categories in Simulation 1 and in Simulation 2,

competitor runs had to produce larger mean differences to challenge the target run:

p¼ count meanDiffc≥meanDifftð Þ
n

(A1)

For distinct categories in Simulation 1, competitor runs were counted when the mean dif-

ferences were closer to zero than in the target run:

p¼ count meanDiffcj j≤ meanDifftj jð Þ
n

(A2)

Appendix B: Items used in the behavioral experiment

Table B1

The test nouns of the artificial language in the behavioral experiment

Noun

Class 1

Noun

Class 2

Noun

Class 3

Noun

Class 4

Form Category Test egadan issater vosshartin meatok

later borlaw nirmal klertash

tseglar kambral sormanir senhar

rishtar atpos biskrot tunalig

heflas noemen loer resham

seniter impras sutkar naelis

kurken harmenat elemor liens

doar bukes trame rombad

(continued)
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Table B1. (continued)

Noun

Class 1

Noun

Class 2

Noun

Class 3

Noun

Class 4

Meaning Category Test Close heflas wodnim

netad tenglarol

ragun bukes

bearel sagav

seniter fegon

ferutam noemen

Far kurken kalmen

igaral impras

eivomal eanor

doar daspal

ustiged ograg

tamrog harmenat

Random loer resham

sutkar naelis

elemor liens

porfenet grimnes

trame rombad

guskar lakafer

Note. In the Noun Test, all training nouns (see Table 1) were used as test stimuli. Note that while a few

nouns orthographically look like Dutch words, they were read according to German orthographic rules and

connected with a pre- and postmarker so that they did not sound like Dutch words.
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Table B2

The test images of the behavioral experiment

Animals Plants Random 1 Random 2

Meaning Category Test Close cow snowlily

goat lily

duck crocus

donkey daffodil

goose hibiskus

hedgehog buttercup

Far elephant fir

tiger cactus

antelope reed

giraffe beech

zebra grass

crocodile boxwood

Random cross circle

fire water

sun snow

drum violin

hat gloves

hammer saw

Note. For the Noun Test, all training images were used as test stimuli. In all trials of the Form Category

Test, a loudspeaker icon was shown instead of a picture. In the Meaning Category Test, test nouns either

referred to a close or far category member, or to a random object for the two random noun classes.
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Appendix C: Forced-choice accuracy estimates for wrong answer options preceding
correct answer options

Fig. C1. Model estimates (excluding random effects, CI � 1 SE, inverse logit transformed; using R package

itsadug) of accuracy in the Noun Test, Form Category Test, and Meaning Category Test models for wrong

answer options preceding correct answer options in the forced choice task. Dots represent the actual data,

namely mean accuracies by participant. The only significant difference between premarking and postmarking

was an advantage of premarking for noun learning.
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