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1 Introduction

‘I think the next century will be the century of complexity.’ –Stephen Hawking, January
23, 2000. (San Jose Mercury News)

As pointed out by Stephen Hawking, over the past decades, humankind has been
experiencing systems that tend to be increasingly sophisticated and interconnected.
There are several reasons for this. One of the reasons is that due to technological
developments such as the emergence of the Internet and the growing relevance of
smart power grids [1–3], more and more engineering systems consist of millions or
even billions of subsystems. For example, the Internet integrates billions of computers
and routers. Also, in natural and social science, deeper understanding of biological
systems and society have contributed to this surge of large scale interconnected
systems [2–6]. For instance, our biological existence relies on seamless interactions
between thousands of genes and metabolites within our cells, and society requires
cooperation between billions of individuals. As a result, we are now surrounded by
systems that are inherently complex [7], which are referred to as complex systems,
see, e.g., [1, 7–10] and references therein. Given the importance and universality of
complex systems in modern society, and in science and economy, their understanding,
mathematical description, prediction, and, eventually, control is one of the most
significant intellectual and scientific challenges of the 21st century [7]. This challenge
roots in the fact that in order to understand the behavior of a complex system, we
must understand not only the action of the parts, but also how these parts act together
to form the functioning of the whole.



4 1. Introduction

1.1 Background

The I Ching (易经), one of China’s oldest philosophical books, has provided the Chinese
people with philosophical wisdom in order to deal with the complex and changing world
for thousands of years. One of the highlights in this book is the three principles of I
Ching stating the following:

I. Changes (变易): stating that everything keeps changing through various rules.

II. Simplicity (简易): stating that no matter how complex the universe and changes
that occur are, they turn out to be simple after we understand the principles
behind them.

III. Invariant (不易): stating that even though things keep changing, there exist
certain underlying patterns or functions that do not change.

In this section, we will elaborate on a modern mainstream research idea and
philosophy to deal with the challenges of complex systems. This philosophy and the
classic wisdom in the I Ching turn out to be surprisingly consistent.

1.1.1 Complex networks–a skeleton of complex systems
As we have mentioned before, the difficulty of understanding and controlling a complex
system roots in the entanglement of the nontrivial and various dynamics of its parts,
and the large-scale and complicated interconnection relations. Depending on the field,
the parts of a complex system may represent different objects or subsystems, possessing
different characteristics and dynamics. For example, the parts of friendship networks
in social science are individuals, as depicted in Figure 1.1a, those of the Internet are
computers and routers, shown in Figure 1.1b, while smart grids in Figure 1.1c consist
of many kinds of components including smart meters, smart appliances, renewable
energy resources, etc. In addition, most complex systems contain a large number of
parts (or agents in some fields), and the topology interconnecting these parts might
be irregular or even evolving in time.

In order to be able to analyze a complex system, naturally the question then
arises on how to deal with this complicated entanglement of its parts. This is a
nontrivial and challenging question, but keeping in mind that no matter how complex
the universe and its changes are, they become simple after we understand the basic
principles behind them.

Thanks to the emergence of network science [1, 3, 7, 11] in the first decade of the
21st century, researchers have found that notwithstanding the differences in form, size,
nature, age, and scope of realistic complex systems, their underlying network structure
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(a) Friendship network system.
https://www.infosystem.co.id/the-different-
types-of-friendship-networks-and-how-they-

can-influence-your-success/.

(b) The Internet.
https://askleo.com/whats-the-difference-

between-the-web-and-the-internet/.

(c) Smart grid system.
https://forum.huawei.com/enterprise/en/smart%C2%A0grid-smart%C2%A0grid-

introduction/thread/523687-100027.

Figure 1.1: Examples of complex systems from different fields.

is driven by common organizing principles [7]. A fundamental idea of network theory
is that the network scheme is the principal research object, while the living part
of the network, which is contained in the nodes, is kept as simple as possible [12].
Once we disregard the precise nature of the components and that of the interactions
between them, networks are often more similar than different from each other. This
observation enables us to study universal properties of different types of complex
systems modeled as networks, called complex networks [3], which can be represented
by directed graphs with a large number of nodes and complicated interconnections.
For example, the brain system is one of the most complicated systems in the world.
However, a brain system can be translated into a network through four steps, depicted
in Figure 1.2, and can then be analyzed using graph-theoretic tools.

Following the above idea, many insights have occurred in the understanding of
complex networks, such as, for example, the understanding that many complex systems
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display a surprising tolerance against errors [13]. Another example is the insight that
most pairs of vertices in many realistic networks are connected by paths with quite a
short length, often called the small-world effect [14]. An important observation is also
the fact that the degree distributions of most networks are power-law distributions.
Networks with this property are referred to as scale-free networks [15]. Furthermore,
inspired by the aforementioned insights as well as motivated by the ubiquity of control
problems in natural, social, and technological systems, more and more attention has
been devoted to controlling complex systems and complex networks. For a detailed
review of this research topic, we refer to [6] and the references therein.

Figure 1.2: Example of modeling brain networks by graphs.
This figure is cited from the Box 1 of [10]. Structural and functional brain networks can be

explored using graph theory through the above four steps.

1.1.2 Structural analysis for control of complex networks
This subsection aims to clarify the important role of network structure in control of
complex systems. We will illustrate this role employing the concept of controllability,
an essential notion in modern control theory that verifies the ability to steer a
dynamical system from any initial state to any desired final state in finite time [16].

The current interest in control of complex networked systems was initiated by the
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pioneering work in [17]. In this paper, the authors first demonstrated that although
most complex systems are driven by nonlinear dynamics, their controllability is
structurally similar to that of linear systems. Indeed, while many complex systems
are characterized by nonlinear interactions between the components, the first step
in many control design problems is to establish controllability of a locally linearized
system [18]. By this observation, research on controllability of complex networks
can be based on a standard linear time-invariant (LTI) system model. Moreover, to
allow zooming in on the role of the network graph, it is common to proceed with
the simplest possible dynamics at the subsystems of the network and to take the
agents in the network to be single integrators, with a one-dimensional state space.
Consequently, the overall networked system can be represented by an LTI system of
the form

ẋ = Ax+Bu, (1.1)

where x is the state vector of the whole network which consists of the states of the
n agents, and u is the control vector collecting direct external controls. The system
matrix A represents interconnections among the agents, while the matrix B specifies
the routing of the external controls to the state variables.

In the case that the values of the edge weights in the network are known precisely,
the matrices A and B are given constant matrices, where A is often taken as the
adjacency matrix of the graph [19], or the graph Laplacian matrix [20–25]. Then,
by using the Kalman rank test or the Hautus test [26], one can verify whether the
network is controllable or not. However, in many situations, the scale of the networks
is prohibitively large, and hence the above controllability tests are impracticable.
For example, in the Kalman rank test, one needs to check the rank of the so-
called controllability matrix C =

[
B AB . . . An−1B

]
, while there is no efficient

algorithm to numerically determine the rank of such controllability matrix C of large-
dimensions [17]. Similar problems arise for the other test, in which one needs to check
the rank of the matrix

[
A− λI B

]
for every eigenvalue of A, where I is an identity

matrix of appropriate dimension. In addition to the computational complexity due to
the large-scale nature, another obstacle is that, in most scenarios, the values of the
edge weights in the network are not known exactly. To tackle the above difficulties,
the authors in [17] have introduced the concept of structural controllability [27], which
allows us to check whether a controlled network is structurally controllable or not
by merely inspecting its network topology, avoiding expensive matrix operations
and precise knowledge of the edge weights. In other words, structural controllability
analysis allows us to decide a network’s controllability even if we do not know the
precise numerical values of the weights of the links among the agents. We only have
to make sure that we acquire an accurate ‘map’ of the system’s wiring diagram, i.e.,
knowledge of which components are linked and which are not.
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Up to now, two types of structural controllability have been studied, namely weak
structural controllability and strong structural controllability (SCC). A network is
called weakly structurally controllable if there is at least one choice of values for
the unknown entries in the system matrices such that the corresponding matrix pair
(A,B) is controllable. Due to the generality of controllability, if a network is weakly
structurally controllable, then for almost all choices of values for the unknown entries
in the system matrices, the corresponding matrix pair (A,B) is controllable. On the
other hand, the network is called strongly structurally controllable if for all choices
of nonzero values for the unknown entries, the matrix pair (A,B) is controllable.
Conditions for weak and strong structural controllability have been expressed entirely
in terms of the underlying network graph, using concepts like cactus graphs, maximal
matchings, and zero forcing sets, see [17,27–32]. For details on the analysis of control
principles of complex networks, see [6, 7] and the references therein.

In addition, following the seminal paper [27], many other structural control
properties have been analyzed, which has led to the field of structural control theory,
see, e.g., [33, 34] and the references therein. In [27] and also in subsequent work, the
system matrix is not a known, given, matrix, but rather a matrix with a certain
pattern, such as a zero/nonzero structure [27, 28], a sign pattern [35, 36] or mixed
matrices [37], and so on. However, in the framework of complex systems, it is of
particular interest to study the zero/nonzero structure, i.e., the elements of the system
matrices are either fixed zeros or nonzero unknown entries. This is due to the following
characteristics of the zero/nonzero structure:

1. it allows us to capture an essential part of the structural information in complex
systems, i.e., the existence and absence of relations between the subsystems.

2. many control properties of systems can be expressed in terms of an associated
directed graph and hence are often intuitive and easy to interpret physically.

3. conditions can be expressed in graph theoretic terms, and hence they can be
checked by certain efficient polynomial algorithms.

In this thesis, a family of LTI systems sharing the same zero/nonzero structure is
referred to as a linear structured system [33].

1.2 Problem statements
In this thesis, we will focus on the analysis of strong structural properties of linear
structured systems. In the existing literature up to now, the rather restrictive
assumption is usually made that for each of the entries of the system matrices, there
are only two possibilities: it is either a fixed zero or an arbitrary nonzero value
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[28,29,32,38–41]. This means that, although we do not need the information on the
exact values of the network links, the complete wiring topology is needed, i.e., we need
to know exactly which connections there exist between the components of the complex
system. However, often exact knowledge of the network graph is not available, in the
sense that it is unknown whether certain edges in the graph exist or not. This issue
of missing knowledge of the network graph appears, for example, in social networks
[42], the world wide web [43], biological networks [44, 45] and ecological systems [46].
Another cause for uncertainty about the network graph might be malicious attacks
and unintentional failures. This issue is encountered in transportation networks [47],
sensor networks [48] and gas networks [49]. Therefore, the first research problem in
this thesis is formulated as follows:

Problem 1.1. Establish a new framework that captures missing knowledge of the
wiring topology, and analyze strong structural properties of linear structured systems
in this framework.

On the other hand, in the framework of analysis of strong structural properties,
another restrictive assumption up to now has been that the indeterminate entries
in the system matrices take their values arbitrarily. However, often in realistic
network systems the strength of the interconnection links might have constraints.
These constraints can require that some of the nonzero entries have given values, see
e.g. [50], or that there are given linear dependencies between some of the nonzero
entries, see [51]. More examples can be found in [52–57] and the references therein.
This observation leads to a need for a more detailed structure, namely that of a
zero/nonzero structure with extra constraints, yielding to a subclass of the family
of systems associated with a given zero/nonzero structure. Notice that, roughly
speaking, strong structural properties can be regarded as sufficient but not necessary
conditions for their corresponding classical control properties. This implies that the
more information we use, the sharper the conditions we will obtain. Therefore, another
question is the following.

Problem 1.2. Establish a new framework allowing extra constraints on the unknown
entries, and analyze strong structural properties of linear structured systems in this
framework.

1.3 Outline and contributions of the thesis
We will now explain how this thesis is structured and state its specific contributions,
making a distinction between two parts: strong structural properties in a unifying
framework of zero/nonzero/arbitrary patterns and zero/nonzero patterns with equality
constraints.
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In Chapters 2 and 3 we present our main contributions in the context of Problem
1.1. In Chapter 2, we first introduce a new framework for structured systems, namely
structured systems with zero/nonzero/arbitrary structure, which capture the case that
some of the entries are equal to zero, some of the entries are arbitrary but nonzero,
and the remaining entries are arbitrary (zero or nonzero). We then formalize this
in terms of pattern matrices whose entries are either fixed zero, arbitrary nonzero,
or arbitrary. We establish necessary and sufficient algebraic conditions for strong
structural controllability in terms of full rank tests on certain pattern matrices. Next,
we provide a necessary and sufficient graph-theoretic condition for the full rank
property of a given pattern matrix. This graph-theoretic condition makes use of a
so-called color change rule that was introduced in [58]. Based on the above results,
we establish a necessary and sufficient graph-theoretic condition for strong structural
controllability. The material in this chapter is based on the journal paper [58].

Chapter 3 deals with the fault detection and isolation (FDI) problem for linear
structured systems in which the system matrices are given by zero/nonzero/arbitrary
pattern matrices. This chapter follows a geometric approach to verify solvability of the
FDI problem for linear structured systems. We first develop a necessary and sufficient
condition under which the FDI problem for a given particular linear time-invariant
system is solvable. Next, we establish a necessary condition for solvability of the FDI
problem for linear structured systems. In addition, we develop a sufficient algebraic
condition for solvability of the FDI problem in terms of a rank test on an associated
pattern matrix. To show that this condition is not a necessary condition, we provide
a counterexample in which the FDI problem is solvable, while the aforementioned
sufficient condition does not hold. Finally, we develop a graph-theoretic condition for
solvability of the FDI problem. The material in this chapter is based on the journal
paper [59].

In Chapters 4 and 5 we present our main contributions in the framework of
Problem 1.2. In Chapter 4, we consider strong structural controllability of leader-
follower networks. The system matrix defining the network dynamics is a pattern
matrix in which a priori given entries are equal to zero, while the remaining entries
take nonzero values. These nonzero entries correspond to edge weights in the network
topology, which is represented by a simple directed graph, a graph without multiple
edges. The novelty of the material in this chapter is that we consider the situation that
prespecified nonzero entries in the system’s pattern matrix are constrained to take
identical (nonzero) values. These constraints can be caused by many reasons, such as
symmetry properties or physical constraints on the network, and so on. Restricting
the system matrices to those satisfying these constraints yields to a new notion of
strong structural controllability. We then provide graph-theoretic conditions for this
more general property of strong structural controllability. The material in this chapter
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is based on the conference and journal papers [55,57].
Chapter 5 deals with strong structural controllability of linear structured systems

in which the system matrices are given by zero/nonzero/arbitrary pattern matrices.
Instead of assuming that the nonzero and arbitrary entries of the system matrices
can take their values completely independently, in this chapter we allow equality
constraints on these entries, in the sense that a priori given entries in the system
matrices are restricted to take arbitrary but identical values. To formalize this general
class of structured systems, we introduce the concepts of colored pattern matrices and
colored structured systems. The main contribution of this chapter is that it generalizes
both the classical results on strong structural controllability of structured systems
as well as results on controllability of systems defined on colored graphs introduced
in Chapter 4. Moreover, this chapter provides both algebraic and graph-theoretic
conditions for strong structural controllability of this more general class of structured
systems. The material in this chapter is based on the journal paper [60].

Finally, in Chapter 6 we formulate our conclusions and provide some suggestions
for future work.

1.4 List of publications

Journal articles

1. J. Jia, H.J. van Waarde, H.L. Trentelman, and M.K. Camlibel, “A unifying
framework for strong structural controllability,” To appear in IEEE Transactions
on Automatic Control, 2020, doi: 10.1109/TAC.2020.2981425. (Chapter 2)

2. J. Jia, H.L. Trentelman, W. Baar, and M.K. Camlibel, “Strong structural
controllability of systems on colored graphs,” To appear in IEEE Transactions
on Automatic Control, 2020, doi:10.1109/TAC.2019.2948425. (Chapter 4)

3. J. Jia, H.L. Trentelman, and M.K. Camlibel, “Fault detection and isolation
for linear structured systems,” IEEE Control Systems Letters, vol. 4, no. 4,
874–879, 2020. (Chapter 3)

4. J. Jia, H.L. Trentelman, N. Charalampidis, and M.K. Camlibel, “Strong struc-
tural controllability of colored structured systems,” 2020, under review. (Chap-
ter 5)

Conference papers

1. J. Jia, H.L. Trentelman, W. Baar, and M.K. Camlibel, “A sufficient condition
for colored strong structural controllability of networks,” IFAC-PapersOnLine,
vol. 51, no. 23, pp. 16–21, 2018. (Chapter 4)
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1.5 Notation
Throughout this thesis, we will use standard notation. The most commonly used
definitions and notation will be listed here, while specific notions and notation can be
found in each of the chapters.

Sets

We denote by C and R the fields of complex and real numbers, respectively. The
vector spaces of n-dimensional real and complex vectors are denoted by Rn and Cn,
respectively. Likewise, the spaces of n×m real and complex matrices are denoted by
Rn×m and Cn×m, respectively. For a given finite set S, its number of elements will
be denoted by |S|. A finite collection {S1, . . . , Sk} of subsets of S is called a partition
of S if Si ∩ Sj = ∅ for all i 6= j and S1 ∪ · · · ∪ Sk = S.

Matrices and vectors

For a given matrix A ∈ Rm×n, the entry in the ith row and jth column is denoted
by Aij . The ith column of A is denoted by Ai. For given subsets

S = {s1, . . . , sk} ⊆ {1, . . . ,m} and T = {t1, . . . , tl} ⊆ {1, . . . , n}

we define the k × l submatrix of A associated with S and T by AS,T , with

(AS,T )ij := Asitj .

Similarly, for a given n-dimensional vector x, we denote by xT the subvector of x
consisting of the entries of x corresponding to T . For a given square matrix A, we
denote its determinant by det(A). We denote by A> the transpose of A . Furthermore,
we define its image by

imA := {Ax | x ∈ Rm}

and its kernel by
kerA := {x ∈ Rn | Ax = 0}.

If S is a subspace of Rn then we define the image of S under A by

AS := {Ax | x ∈ S}.

Finally, the symbol I will denote the identity matrix of appropriate dimension.
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2 A Unifying Framework for Strong
Structural Controllability

This chapter deals with strong structural controllability of linear structured systems.
In contrast to existing work, the structured systems studied in this chapter have a
so-called zero/nonzero/arbitrary structure, which means that some of the entries are
equal to zero, some of the entries are arbitrary but nonzero, and the remaining entries
are arbitrary (zero or nonzero). We formalize this in terms of pattern matrices whose
entries are either fixed zero, arbitrary nonzero, or arbitrary. We establish necessary
and sufficient algebraic conditions for strong structural controllability in terms of
full rank tests for certain pattern matrices. We also give a necessary and sufficient
graph theoretic condition for the full rank property of a given pattern matrix. This
graph theoretic condition makes use of a new color change rule that is introduced
in this chapter. Based on these two results, we establish a necessary and sufficient
graph theoretic condition for strong structural controllability. Moreover, we relate
our results to those that exist in the literature and explain how our results generalize
previous work.

2.1 Introduction
Controllability is a fundamental concept in systems and control. For linear time-
invariant systems of the form

ẋ(t) = Ax(t) +Bu(t), (2.1)

controllability can be verified using the Kalman rank test or the Hautus test [26].
Often, the exact values of the entries in the matrices A and B are not known, but the
underlying interconnection structure between the input and state variables is known
exactly.
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In order to formalize this, Mayeda and Yamada have introduced a framework in
which, instead of a fixed pair of real matrices, only the zero/nonzero structure of A
and B is given [28]. This means that each entry of these matrices is known to be
either a fixed zero or an arbitrary nonzero real number. Given such zero/nonzero
structure, they then study controllability of the family of systems for which the state
and input matrices have this zero/nonzero structure. In this setup, this family of
systems is called strongly structurally controllable if all members of the family are
controllable in the classical sense [28].

Most of the existing literature up to now has considered strong structural con-
trollability under the above rather restrictive assumption that for each of the entries
of the system matrices there are only two possibilities: it is either a fixed zero, or
an arbitrary nonzero value [28,29,32, 38–41]. There are, however, many scenarios in
which, in addition to these two possibilities, there is a third possibility, namely, that
a given entry is not a fixed zero or nonzero, but can take any real value. In such a
scenario, it is not possible to represent the system using a zero/nonzero structure,
but a third possibility needs to be taken into account. To illustrate this, consider the
following example.

−
+

V

RIR

C1

+

−
VC1

IC1

I

L IL

C2

+ −
VC2

−+

GIC1

Figure 2.1: Example of an electrical circuit.

Example 2.1. The electrical circuit in Figure 2.1 consists of a resistor, two capacitors,
an inductor, an independent voltage source, an independent current source and a
current controlled voltage source. Assume that the parameters R,C1, C2 and L are
positive but not known exactly. We denote the current through R, L, and C1 by
IR, IL, and IC1 , respectively, and the voltage across C1 and C2 by VC1 and VC2 ,
respectively. The current controlled voltage source is represented by GIC1 with gain
G assumed to be positive. Define the state vector as x =

[
VC1 VC2 IL

]> and
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the input as u =
[
V I

]>. By Kirchhoff’s current and voltage laws, the circuit is
represented by a linear time-invariant system (2.1) with

A =

−
1

RC1
0 − 1

C1

0 0 − 1
C2

R−G
RL

1
L −GL

 , B =


1

RC1
0

0 − 1
C2

G−R
RL 0

 . (2.2)

Recall that the parameters R,C1, C2, L > 0 are not known exactly. This means
that the matrices in (2.2) are not known exactly, but we do know that they have
the following structure. Firstly, some entries are fixed zeros. Secondly, some of the
entries are always nonzero, for instance, the entry with value − 1

RC1
. The third type

of entries, those with value R−G
RL and G−R

RL , can be either zero (if R = G) or nonzero.
Since the system matrices in this example do not have a zero/nonzero structure, the
existing tests for strong structural controllability [28, 29, 32, 38–41] are not applicable.

A similar problem as in Example 2.1 appears in the context of linear networked
systems. Strong structural controllability of such systems has been well-studied
[29, 30, 32, 50, 61]. In the setup of these references, the weights on the edges of
the network graph are unknown, while the network graph itself is known. Under
the assumption that the edge weights are arbitrary but nonzero, linear networked
systems can thus be regarded as systems with a given zero/nonzero structure. This
zero/nonzero structure is determined by the network graph, in the sense that nonzero
entries in the system matrices correspond to edges in the network graph. However,
often even exact knowledge of the network graph is not available, in the sense that
it is unknown whether certain edges in the graph exist or not. This issue of missing
knowledge appears, for example, in social networks [42], the world wide web [43],
biological networks [44, 45] and ecological systems [46]. Another cause for uncertainty
about the network graph might be malicious attacks and unintentional failures. This
issue is encountered in transportation networks [47], sensor networks [48] and gas
networks [49].

Example 2.2. Consider a network of three agents with single-integrator dynamics,
represented by

ẋi(t) = vi(t)

for i = 1, 2, 3. Here xi ∈ R is the state of agent i and vi ∈ R is its input. The
communication between the agents is represented by the graph in Figure 2.2.

The links (1, 1), (2, 2), (2, 3) and (3, 1) are known to exist, while the link (1, 2) is
uncertain in the sense that it may or may not be present. This is represented by solid
and dashed edges, respectively. Agents 1 and 2 are only affected by the states of their
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neighbors, while agent 3 is also influenced by an external input u ∈ R. This means
that

v1 = w11x1 + w13x3, v2 = w21x1 + w22x2 and v3 = w32x2 + u.

Here the weights w11, w22, w32 and w13 are nonzero since they correspond to existing
edges, while the weight w21 that corresponds to the uncertain link is arbitrary (zero
or nonzero). We can write the network system in compact form (2.2) by defining

A =

w11 0 w13
w21 w22 0
0 w32 0

 and B =

0
0
1

 . (2.3)

Since w21 can be zero or nonzero, the system matrices in (2.3) do not have a
zero/nonzero structure.

1

2

3

Figure 2.2: Example of a networked system.

To conclude, both in the context of modeling physical systems, as well as in
representing networked systems, capturing the system simply by a zero/nonzero
structure is not always possible, and a more general concept of system structure is
required. The papers [30,50,52,62–64] study classes of zero/nonzero/arbitrary patterns
in the context of strong structural controllability. However, necessary and sufficient
conditions for strong structural controllability of general zero/nonzero/arbitrary
patterns have not yet been established.

The goal of this chapter is to provide such general necessary and sufficient condi-
tions. In particular, our main contributions are the following:

1. We extend the notion of zero/nonzero structure to a more general zero/non-
zero/arbitrary structure, and formalize this structure in terms of suitable pattern
matrices.

2. We establish necessary and sufficient conditions for strong structural control-
lability for families of systems with a given zero/nonzero/arbitrary structure.
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These conditions are of an algebraic nature and can be verified by a rank test
on two pattern matrices.

3. We provide a graph theoretic condition for a given pattern matrix to have full
row rank. This condition can be verified using a new color change rule, that
will be defined in this chapter.

4. We establish a graph theoretic test for strong structural controllability for the
new families of structured systems.

5. Finally, we relate our results to those existing in the literature by showing how
existing results can be recovered from those we present in this chapter. We
find that seemingly incomparable results of [32] and [30] follow from our main
results, which reveals an overarching theory. For these reasons, this chapter
can be seen as a unifying approach to strong structural controllability of linear
time-invariant systems without parameter dependencies.

We conclude this section by giving a brief account of research lines that are related
to strong structural controllability but that will not be pursued in this chapter. The
concept of weak structural controllability was introduced by Lin in [27] and has
been studied extensively, see [17, 27, 33, 65–68]. Another, more recent, line of work
focuses on structural controllability of systems for which there are dependencies among
the arbitrary entries of the system matrices [51, 57]. An important special case of
dependencies among parameters arises when the state matrix is constrained to be
symmetric, which was considered in [50,53,54]. The problem of minimal input selection
for controllability has also been well-studied, see, e.g., [69–72]. Strong structural
controllability was also studied for time-varying systems in [73], and conditions for
controllability were established both for discrete-time and continuous-time systems.
Finally, weak and strong structural targeted controllability have been investigated in
[74] and [62,75], respectively.

The outline of the rest of the chapter is as follows. In Section 2.2, we present
some preliminaries. Next, in Section 2.3, we formulate the main problem treated in
this chapter. Then, in Section 2.4 we state our main results. Section 2.5 contains a
comparison of our results with previous work. In Section 2.6 we state proofs of the
main results. Finally, in Section 2.7 we formulate our conclusions.

2.2 Preliminaries
In this chapter, we will use so-called pattern matrices. By a pattern matrix we mean
a matrix with entries in the set of symbols {0, ∗, ?}. These symbols will be given a
meaning in the sequel.
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The set of all p× q pattern matrices will be denoted by {0, ∗, ?}p×q. For a given
p× q pattern matrixM, we define the pattern class ofM as

P(M) := {M ∈ Rp×q |Mij = 0 ifMij = 0, Mij 6= 0 ifMij = ∗}.

This means that for a matrix M ∈ P(M), the entry Mij is either (i) zero ifMij = 0,
(ii) nonzero ifMij = ∗, or (iii) arbitrary (zero or nonzero) ifMij = ?. To illustrate
the definition of pattern class, consider the following example.

Example 2.3. Consider the pattern matrixM

M =

∗ 0 ∗ ∗ 0
0 0 ∗ 0 ∗
? ∗ ∗ ? 0

 . (2.4)

Then, P(M) consists of all matrices of the forma1 0 a2 a3 0
0 0 a4 0 a5
b1 a6 a7 b2 0

 (2.5)

where a1, . . . , a7 are nonzero real numbers, and b1 and b2 are arbitrary (zero or
nonzero) real numbers.

2.3 Problem formulation

Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices. Consider the linear
dynamical system

ẋ(t) = Ax(t) +Bu(t) (2.6)

where the system matrix A is in P(A) and the input matrix B is in P(B), and where
x ∈ Rn is the state and u ∈ Rm is the input.

We will call the family of systems (2.6) a linear structured system. To simplify the
notation, we denote this structured system by the ordered pair of pattern matrices
(A,B).

Example 2.4. Consider the electrical circuit discussed in Example 2.1. Recall that
this was modelled as the state space system (2.2) in which the entries of the system
matrix and input matrix were either fixed zeros, strictly nonzero or undetermined.
This can be represented as a structured system (A,B) with pattern matrices

A =

∗ 0 ∗
0 0 ∗
? ∗ ∗

 and B =

∗ 0
0 ∗
? 0

 . (2.7)
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In this chapter we will study structural controllability of structured systems. In
particular, we will focus on strong structural controllability, which is defined as follows.

Definition 2.1. The system (A,B) is called strongly structurally controllable if the
pair (A,B) is controllable for all A ∈ P(A) and B ∈ P(B).

The problem that we will investigate in the this chapter is stated as follows.

Problem 2.2. Given two pattern matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m,
provide necessary and sufficient conditions under which (A,B) is strongly structurally
controllable.

In the remainder of this chapter, we will simply call the structured system (A,B)
controllable if it is strongly structurally controllable.

Remark 2.1. In addition to strong structural controllability, weak structural control-
lability has also been studied extensively. This concept was introduced by Lin in [27].
Instead of requiring all systems in a family associated with a given structured system
to be controllable, weak structural controllability only asks for the existence of at least
one controllable member of that family, see [27,33,65]. In these references, conditions
were established for weak structural controllability of structured systems in which the
pattern matrices only contain 0 or ? entries. The question then arises: is it possible
to generalize the results from [27,33,65] to structured systems in the context of this
chapter, with more general pattern matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m.
Indeed, it turns out that the results in [27,33,65] can immediately be applied to assess
weak structural controllability of our more general structured systems. To show this,
for given pattern matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m we define two new
pattern matrices A′ ∈ {0, ?}n×n and B′ ∈ {0, ?}n×m as follows:

A′ij = 0 ⇐⇒ Aij = 0 and B′ij = 0 ⇐⇒ Bij = 0.

The new structured system (A′,B′) is now a structured system of the form studied in
[27,33,65]. Using the fact that weak structural controllability is a generic property
[65], it can then be shown that weak structural controllability of (A′,B′) is equivalent
to that of (A,B). In other words, weak structural controllability of general (A,B) can
be verified using the conditions established in previous work [27,33,65].

2.4 Main results
In this section, the main results of this chapter will be stated. Firstly, we will establish
an algebraic condition for controllability of a given structured system. This condition
states that controllability of a structured system is equivalent to full rank conditions



22 2. A unifying framework for strong structural controllability

on two pattern matrices associated with the system. Secondly, a graph theoretic
condition for a given pattern matrix to have full row rank will be given in terms of
a so-called color change rule. Finally, based on the above algebraic condition and
graph theoretic condition, we will establish a graph theoretic necessary and sufficient
condition for controllability of a structured system.

Our first main result is a rank test for controllability of a structured system. In the
sequel, we say that a pattern matrixM has full row rank if every matrix M ∈ P(M)
has full row rank.

Theorem 2.3. The system (A,B) is controllable if and only if the following two
conditions hold:

1. The pattern matrix
[
A B

]
has full row rank.

2. The pattern matrix
[
Ā B

]
has full row rank where Ā is the pattern matrix

obtained from A by modifying the diagonal entries of A as follows:

Āii :=
{
∗ if Aii = 0,
? otherwise.

(2.8)

We note here that the two rank conditions in Theorem 2.3 are independent, in
the sense that one does not imply the other in general. To show that the first
rank condition does not imply the second, consider the pattern matrices A, the
corresponding Ā, and B given by

A =
[
∗ ∗
0 0

]
, Ā =

[
? ∗
0 ∗

]
and B =

[
∗
∗

]
.

It is evident that the pattern matrix
[
A B

]
has full row rank. However, for the

choice
Ā =

[
0 1
0 1

]
∈ P(Ā) and B =

[
1
1

]
∈ P(B),

the matrix
[
Ā B

]
does not have full row rank.

To show that the second condition does not imply the first one, consider the
pattern matrix A, the corresponding Ā, and B given by

A =
[
? 0
∗ 0

]
, Ā =

[
? 0
∗ ∗

]
and B =

[
∗
∗

]
.

Obviously, the pattern matrix
[
Ā B

]
has full row rank. However, for the choice

A =
[
1 0
1 0

]
∈ P(A) and B =

[
1
1

]
∈ P(B),
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we see that
[
A B

]
does not have full row rank.

Next, we discuss a noteworthy special case in which the first rank condition in
Theorem 2.3 is implied by the second one. Indeed, if none of the diagonal entries of
A is zero, it follows from (2.8) that P(A) ⊆ P(Ā). Hence, we obtain the following
corollary to Theorem 2.3.

Corollary 2.4. Suppose that none of the diagonal entries of A is zero. Let Ā be as
defined in (2.8). The system (A,B) is controllable if and only if

[
Ā B

]
has full row

rank.

Note that both
[
A B

]
and

[
Ā B

]
appearing in Theorem 2.3 are n× (n+m)

pattern matrices. Next, we will develop a graph theoretic test for checking whether
a given pattern matrix has full rank. To do so, we first need to introduce some
terminology.

Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p 6 q. We associate a directed
graph G(M) = (V,E) with M as follows. Take as node set V = {1, 2, . . . , q} and
define the edge set E ⊆ V × V such that (j, i) ∈ E if and only ifMij = ∗ orMij =?.
If (i, j) ∈ E, then we call j an out-neighbor of i. Also, in order to distinguish between
∗ and ? entries inM, we define two subsets E∗ and E? of the edge set E as follows:
(j, i) ∈ E∗ if and only if Mij = ∗ and (j, i) ∈ E? if and only if Mij =?. Then,
obviously, E = E∗ ∪ E? and E∗ ∩ E? = ∅. To visualize this, we use solid and dashed
arrows to represent edges in E∗ and E?, respectively.

Example 2.5. As an example, consider the pattern matrixM given by

M =


0 0 ∗ 0 0
0 ∗ ∗ ? ∗
∗ 0 ? 0 0
0 ∗ 0 0 ?

 .
The associated directed graph G(M) is then given in Figure 2.3.

Next, we introduce the notion of colorability for G(M):

1. Initially, color all nodes of G(M) white.

2. If a node i has exactly one white out-neighbor j and (i, j) ∈ E∗, we change the
color of j to black.

3. Repeat step 2 until no more color changes are possible.

The graph G(M) is called colorable if the nodes {1, . . . , p} are colored black following
the procedure above. Note that the remaining nodes p+ 1, . . . , q can never be colored
black since they have no incoming edges.
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1

2 3

4 5

Figure 2.3: Example of a graph associated with a given pattern matrix.

We refer to step 2 in the above procedure as the color change rule. Similar color
change rules have appeared in the literature before (see e.g. [30, 32, 76]). Unlike some
of these rules, node i in step 2 does not need to be black in order to change the color
of a neighboring node.

Example 2.6. Consider the pattern matrixM given by

M =


∗ 0 0 0 ∗ 0
0 ? 0 ∗ 0 ∗
∗ 0 0 ∗ 0 0
0 ? ∗ ∗ 0 0

 .
The directed graph G(M) associated withM is depicted in Figure 2.4a. By repeated
application of the color change rule as shown in Figure 2.4b to 2.4d, we obtain the
derived set D = {1, 2, 3, 4}. Hence, G(M) is colorable.

The following theorem now provides a necessary and sufficient graph theoretic
condition for a given pattern matrix to have full row rank.

Theorem 2.5. LetM ∈ {0, ∗, ?}p×q be a pattern matrix with p 6 q. Then,M has
full row rank if and only if G(M) is colorable.

It is clear from the definition of the color change rule that colorability of a given
graph can be checked in polynomial time.

Finally, based on the rank test in Theorem 2.3 and the result in Theorem 2.5, the
following necessary and sufficient graph theoretic condition for controllability of a
given structured system is obtained.

Theorem 2.6. Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices. Also,
let Ā be obtained from A by modifying the diagonal entries of A as follows:

Āii :=
{
∗ if Aii = 0,
? otherwise.

(2.9)
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(a) The graph G(M).
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(b) Node 5 colors 1 and 6 colors 2.
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(c) Node 1 colors 3.
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(d) Node 3 colors 4.

Figure 2.4: Example of a colorable graph.

Then, the structured system (A,B) is controllable if and only if both G(
[
A B

]
) and

G(
[
Ā B

]
) are colorable.

As an example, we study controllability of the electrical circuit discussed in
Example 2.1.

Example 2.7. According to Example 2.4, the electrical circuit depicted in Figure 2.1
can be modelled as a structured system of the form (2.6) where the pattern matrices
A and B are given by:

A =

∗ 0 ∗
0 0 ∗
? ∗ ∗

 and B =

∗ 0
0 ∗
? 0

 .
Then, we obtain

Ā =

? 0 ∗
0 ∗ ∗
? ∗ ?

 .
The graphs G(

[
A B

]
) and G(

[
Ā B

]
) are depicted in Figure 2.5a and Figure 2.5b,

respectively. Both graphs are colorable. Indeed, node 5 colors 2, node 2 colors 3,
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and finally 3 colors 1 in both graphs. Therefore, the system (A,B) is controllable by
Theorem 2.6.

1

3

24 5

(a) The graph G(
[
A B

]
).

1

3

24 5

(b) The graph G(
[
Ā B

]
).

Figure 2.5: The graphs associated with the circuit in Example 2.1.

As a second example, we apply Theorem 2.6 to verify the controllability of the
networked system in Example 2.2.

Example 2.8. The networked system in Example 2.2 can be represented as a
structured system of the form (2.6), where the pattern matrices A and B are given
by:

A =

∗ 0 ∗
? ∗ 0
0 ∗ 0

 and B =

0
0
∗

 .
Clearly,

Ā =

? 0 ∗
? ? 0
0 ∗ ∗

 .
The graphs G(

[
A B

]
) and G(

[
Ā B

]
) are depicted in Figure 2.6a and Figure 2.6b,

respectively. The graph in Figure 2.6 is colorable. Indeed, node 4 colors 3, node 2
colors 2, and finally 3 colors 1. However, the graph in Figure 2.6b is not colorable.
Therefore, the system (A,B) is not controllable. However, if we would know that the
edge (1, 2) does exist in the graph, i.e. if A21 = ∗, then it can be verified that (A,B)
is controllable.

By applying Theorem 2.6 to the special case discussed in Corollary 2.4, we obtain
the following.
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(a) The graph G(
[
A B

]
).
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4

(b) The graph G(
[
Ā B

]
).

Figure 2.6: The graphs associated with the network in Example 2.2.

Corollary 2.7. Suppose that none of the diagonal entries of A is zero. Let Ā be
defined as in (2.9). Then, the system (A,B) is controllable if and only if G(

[
Ā B

]
)

is colorable.

To conclude this section, the results we have obtained for controllability lead to
an interesting observation in the context of structural stabilizability. We say that
a structured system (A,B) is stabilizable if the pair (A,B) is stabilizable for all
A ∈ P(A) and B ∈ P(B).

For a single linear system, controllability implies stabilizability, whereas the
reverse implication does not hold in general. Interestingly, for structured systems
controllability and stabilizability do turn out to be equivalent, as stated next.

Theorem 2.8. The system (A,B) is stabilizable if and only if it is controllable.

2.5 Discussion of existing results
In this section, we compare our results with those existing in the literature. We
focus on the most relevant related work [28–30,32,38–41]. The structured systems
studied in these references are all special cases of those we study in this chapter. In
Table 2.1 we highlight the different types of pattern matrices A and B studied in
these references. We also include the type of conditions that were developed, i.e.,
either graph theoretic, algebraic or or both. Note that the references [29,30,32] study
controllability in a network context, where the pattern matrix B has a particular
structure in the sense that each column has exactly one ∗-entry, and each row has at
most one ∗-entry. Additionally, the paper [30] considers a particular class of systems
where the diagonal entries of A are all ? and none of the off-diagonal entries is ?. In
the following two subsections, we elaborate on the existing graph theoretic conditions
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Ref. A B Conditions
GTC AC

[28]

{0, ∗}n×n

{0, ∗}n×1 X −
[38] − X
[39]

{0, ∗}n×m
X −

[40] X X
[41] X X
[29]

particular {0, ∗}n×m
− X

[32] − X
[30] particular {0, ∗, ?}n×n X X

Table 2.1: A table summarizing prior work on strong structural controllability. graph
theoretic condition s are abbreviated by ‘GTC’ and algebraic conditions by ‘AC’.

and algebraic conditions, respectively. In both sections, we also compare these results
to the present work.

2.5.1 Graph theoretic conditions
The graph theoretic conditions provided in [28, Theorem 1] for the single-input case
(m = 1) and extended to the multi-input case in [39, Satz 3] are based on the
graph G = (V,E) associated with a pattern matrix

[
A B

]
where A ∈ {0, ∗}n×n and

B ∈ {0, ∗}n×m. Note that V = {1, . . . , n + m} in this case. The graph theoretic
characterization in [39, Satz 3] (or in [28, Theorem 1] if m = 1) consists of three
conditions. The first one requires checking the so-called accessibility of each node in
{1, . . . , n} from the nodes in {n+1, . . . , n+m}. The remaining two conditions require
checking certain relations for all subsets of {1, . . . , n}. As such, the computational
complexity of checking these conditions is at least exponential in n. Note that, in
contrast, the computational complexity of checking the colorability conditions of our
Theorem 2.6 is polynomial in n.

The paper [28] provides another set of graph theoretic conditions, stated, more
specifically, in [28, Theorem 2] (only for the case m = 1). As argued in [28, p. 135],
this theorem performs better than [28, Theorem 1] for sparse graphs. Essentially,
the conditions given in [28, Theorem 2] require checking the existence of a unique
serial buds cactus as well as nonexistence of certain cycles within the graph G. How
these conditions can be checked in an algorithmic manner is not clear, whereas the
colorability conditions given in Theorem 2.6 can be checked by a simple algorithm.

On top of the advantages of computational complexity, the conditions provided
in Theorem 2.6 are more attractive because of their conceptual simplicity. Indeed,
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colorability is a simpler and more intuitive notion than those appearing in the results
of [28] and [39].

Yet another graph theoretical characterization is provided in [41, Theorem 5].
In order to verify the conditions of [41, Theorem 5], one needs to check whether a
unique spanning cycle family with certain properties exists in

(
n+m
n

)
directed graphs

obtained from the pattern matrices A and B. Needless to say, checking the conditions
of Theorem 2.6 is much easier than checking these conditions.

Also in the context of networked systems, graph theoretic conditions for strong
structural controllability have been obtained (see, e.g., [29, 30, 32]). To elaborate
further on the relationship between the work on networked systems and our work, we
first need to explain the framework of the papers [29,30,32]. The starting point of
these papers is a directed graph H = (W,F ) where W = {1, . . . , n} denotes the node
set and F the edge set. The graphs considered in [29,32] are so-called loop graphs,
that are graphs which are allowed to contain self-loops, whereas [30] does not allow
self-loops. Apart from the graph H, these papers consider a subset of the node set
W , the so-called leader set, say WL = {w1, . . . , wm}. Based on the graph H and WL,
[29, 30, 32] introduce systems of the form (2.6) where the pattern matrix B is defined
by

Bij =
{
∗ if i = wj

0 otherwise
(2.10)

for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. In [29] and [32] the pattern matrix A is defined by

Aij =
{
∗ if (j, i) ∈ F
0 otherwise

(2.11)

whereas in [30] the pattern matrix A is defined by

Aij =


∗ if (j, i) ∈ F
? if i = j

0 otherwise
(2.12)

for i, j ∈ {1, . . . , n}.
In [29], the authors first define two bipartite graphs obtained from the pattern

matrices A and B. Then, they show in [29, Theorem 5] that (A,B) is strongly
structurally controllable if and only if there exist so-called constrained matchings with
certain properties in these bipartite graphs. Later, in [32, Theorem 5.4] an equivalence
between the existence of constrained matchings and so-called zero forcing sets for
loop graphs was established. To explain this in more detail, we need to introduce
the notion of zero forcing that was originally studied in the context of minimal rank
problems (see e.g. [76]).
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Let H = (W,F ) be a directed loop graph and S ⊆W . Color all nodes in S black
and the others white.

If a node i (of any color) has exactly one white out-neighbor j, we change the
color of j to black and write i → j. If all the nodes in W can be colored black by
repeated application of this color change rule, we say that S is a loopy zero forcing
set for H. Given a loopy zero forcing set, we can list the color changes in the order in
which they were performed to color all nodes black. This list is called a chronological
list of color changes.

In order to quote [32, Theorem 5.5], we need two more definitions. Define
Wloop ⊆ W to be the subset of all nodes with self-loops and let H∗ be the graph
obtained from H by placing a self-loop at every node.

Theorem 2.9. [32, Theorem 5.5] Let H be a directed loop graph and WL be a leader
set. Consider the pattern matrices defined in (2.10) and (2.11). Then, the structured
system (A,B) is controllable if and only if the following conditions hold:

1. WL is a loopy zero forcing set for H.

2. WL is a loopy zero forcing set for H∗ for which there is a chronological list
of color changes that does not contain a color change of the form i → i with
i ∈Wloop.

A result similar to this theorem was obtained in [30] for controllability of pattern
matrices defined by (2.10) and (2.12) that are obtained from a graph H without self-
loops. However, in order to deal with this class of pattern matrices, [30] introduces a
slightly different notion of zero forcing to be defined below.

Let H = (W,F ) be a directed graph without self-loops and S ⊆W . Color all nodes
in S black and the others white. If a black node i has exactly one white out-neighbor
j, we change the color of j to black. If all the nodes in W can be colored black by
repeated application of this color change rule, we say that S is a ordinary zero forcing
set for H.

We now state the graph theoretic characterization of controllability established in
[30].

Theorem 2.10. [30, Theorem IV.4] Let H be a directed graph without self-loops and
WL be a leader set. Consider the pattern matrices given by (2.10) and (2.12). Then,
the structured system (A,B) is controllable if and only if WL is an ordinary zero
forcing set for H.

Even though Theorems 2.9 and 2.10 present conditions that are similar in nature,
it is not possible to compare these results immediately as they deal with two different
and non-overlapping system classes. Indeed, the pattern matrices considered in [32]
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(given by (2.11)) do not contain any ? entries whereas those studied in [30] (given by
(2.12)) contain only ? entries on their diagonals.

Next, we will show that the conditions of Theorem 2.6 are equivalent to those of
Theorems 2.9 and 2.10 if specialized to the corresponding pattern matrices. This will
shed light on the relationship between these results based on the different zero forcing
notions.

We start with Theorem 2.9. According to our color change rule, the nodes
belonging to WL will be colored black in both G(

[
A B

]
) and G(

[
Ā B

]
) because

B is a pattern matrix with structure defined by (2.10). Since A does not contain ?
entries, G(

[
A B

]
) is colorable if and only if WL is a loopy zero forcing set for G(A).

By noting that H = G(A), we see that the first condition in Theorem 2.6 is equivalent
to that of Theorem 2.9. Now, let the pattern matrix A∗ be such that H∗ = G(A∗).
Since Wloop = {i | Āii = ?}, we see that G(

[
Ā B

]
) is colorable if and only if the

second condition of Theorem 2.9 holds. Thus, the second condition of Theorem 2.6 is
equivalent to that of Theorem 2.9.

Now, we turn attention to Theorem 2.10. It follows from (2.9) and (2.12) that
Ā = A, i.e., graphs G(

[
Ā B

]
) and G(

[
A B

]
) are the same. As in the discussion

above, the nodes belonging to WL will be colored black in G(
[
Ā B

]
) because B is a

pattern matrix with structure defined by (2.10). According to our color change rule,
a white node can never color any other white node in G(

[
Ā B

]
) since (i, i) ∈ E? for

every node i of G(Ā). This means that G(
[
Ā B

]
) is colorable if and only if WL is

an ordinary zero forcing set for G(Ā). By noting that H = G(A) = G(Ā), we see that
the conditions in Theorem 2.6 are equivalent to the single condition of Theorem 2.10.

2.5.2 Algebraic conditions

In this subsection, we will compare our rank tests for strong structural controllability
with those provided in [29,30,40]. More precisely, we will show that the rank tests
in Theorem 2.3 reduce to those in [29,30,40] for the corresponding special cases of
pattern matrices.

An algebraic condition for controllability of (A,B) was provided in [40, Theorem
2] for A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m. Later, these conditions were reformulated in
[29, Theorem 3]. These conditions rely on a matrix property that will be defined next
for pattern matrices that may also contain ? entries.

Definition 2.11. Consider a pattern matrix M ∈ {0, ∗, ?}p×q with p 6 q. The
matrixM is said to be of Form III if there exist two permutation matrices P1 and P2
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such that

P1MP2 =


⊗ · · · ⊗ ∗ 0 · · · 0
...

...
. . . . . . . . .

...
⊗ · · · ⊗ · · · ⊗ ∗ 0
⊗ · · · ⊗ · · · ⊗ ⊗ ∗

 (2.13)

where the symbol ⊗ indicates an entry that can be either 0, ∗ or ?.

The above-mentioned algebraic conditions are stated next.

Theorem 2.12. [29, Theorem 3] Let A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m be two
pattern matrices. Also, let A∗ be the pattern matrix obtained from A by replacing all
diagonal entries by ∗. The system (A,B) is controllable if and only if the following
two conditions hold:

1. The matrix
[
A B

]
is of Form III.

2. The matrix
[
A∗ B

]
is of Form III with the additional property that ∗ entries

appearing in (2.13) do not originate from diagonal elements in A that are ∗
entries.

It can be shown that our algebraic conditions in Theorem 2.3 are equivalent to
those in Theorem 2.12 for the special case of pattern matrices that only contain 0 and
∗ entries. Recall that it follows from Theorem 2.3 that (A,B) is controllable if and
only if both

[
A B

]
and

[
Ā B

]
have full row rank, where Ā is given in (2.9). To

relate our algebraic conditions with the ones in Theorem 2.12, we need the following
lemma.

Lemma 2.13. Let M ∈ {0, ∗, ?}p×q with p 6 q. Then, M has full row rank if and
only ifM is of Form III.

From Lemma 2.13 it immediately follows that
[
A B

]
has full row rank if and

only if
[
A B

]
is of Form III. Hence, the first condition of Theorem 2.3 is equivalent

to that of Theorem 2.12. We will now also show that
[
Ā B

]
has full row rank if and

only if the second condition of Theorem 2.12 holds. From Lemma 2.13, we have that[
Ā B

]
has full row rank if and only if

[
Ā B

]
is of Form III. By definition of Ā and

A∗, it follows that Āij = A∗ij for all i 6= j. If Aii = 0 then both Āii = ∗ and A∗ii = ∗.
On the other hand, if Aii = ∗ then Āii =? and A∗ii = ∗. To sum up, Āij 6= A∗ij if
and only if i = j and Aii = ∗. In other words, all entries of Ā and A∗ are the same,
except for those that correspond to the diagonal elements of A that are ∗ entries.
Hence, there exist two permutation matrices P1 and P2 such that all entries of the
matrices P1

[
Ā B

]
P2 and P1

[
A∗ B

]
P2 are the same, except those that originate
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from diagonal elements of A that are ∗ entries. This implies that
[
Ā B

]
is of Form

III if and only if
[
A∗ B

]
is of Form III with the additional property that the ∗

entries in (2.13) do not originate from diagonal elements in A that are ∗ entries. In
other words, the second conditions of Theorem 2.3 and Theorem 2.12 are equivalent.
Since also the first conditions in these theorems are equivalent, we conclude that the
algebraic conditions in Theorem 2.3 are equivalent to those in Theorem 2.12 for the
special case in which A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m.

A different algebraic condition was introduced in [30] for systems defined on simple
directed graphs. The pattern matrices of such systems can be represented by A and
B given by (2.12) and (2.10), respectively. The algebraic condition referred to above
is then stated as follows.

Theorem 2.14. [30, Lemma IV.1] Consider the pattern matrices A and B given by
(2.12) and (2.10), respectively. Then, (A,B) is controllable if and only if

[
A B

]
has

full row rank.

In order to see that this theorem follows from Corollary 2.4, note that A = Ā
since all diagonal entries of A are ?’s.

2.6 Proofs

2.6.1 Proof of Theorem 2.3
To prove the ‘only if’ part, assume that (A,B) is controllable. By the Hautus test
[26, Theorem 3.13] and the definition of strong structural controllability, it follows
that

[
A− λI B

]
has full row rank for all (A,B) ∈ P(A)× P(B) and all λ ∈ C. By

substitution of λ = 0 we conclude that condition 1 is satisfied. To prove that condition
2 also holds, suppose that x>

[
Ā B

]
= 0 for some pair (Ā, B) ∈ P(Ā)×P(B) and

x ∈ Rn. We want to prove that x = 0. Let α ∈ R be a nonzero real number such that

α 6∈ {Āii | i is such that Aii = ∗}.

Then, define a nonsingular diagonal matrix X ∈ Rn×n as

Xii =
{

1 if Āii = ?
α/Āii if Āii = ∗.

It is clear that ĀX ∈ P(Ā) and x>
[
ĀX B

]
= 0. Furthermore, by the choice of α

and X we obtain Â := ĀX − αI ∈ P(A). By assumption,
[
Â+ αI B

]
has full row

rank (by substitution of λ = −α). In other words,
[
ĀX B

]
has full row rank and

therefore x = 0. We conclude that condition 2 is satisfied.
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To prove the ‘if’ part, assume that conditions 1 and 2 are satisfied. Suppose that

zH
[
A− λI B

]
= 0

for some (A,B) ∈ P(A)× P(B) and (λ, z) ∈ C× Cn, and zH denotes the conjugate
transpose of z. We want to prove that z = 0. Note that if λ = 0, it readily follows
that z = 0 by condition 1. Therefore, it remains to be shown that z = 0 if λ 6= 0. To
this end, write z = ξ + jη, where ξ, η ∈ Rn and j denotes the imaginary unit. Next,
let α ∈ R be a nonzero real number such that

α 6∈
{
− ξi
ηi
| ηi 6= 0

}
∪
{
− (ξ>A)i

(η>A)i
| (η>A)i 6= 0

}
.

We define x := ξ + αη. Now, we claim that

(a) xi = 0 if and only if zi = 0.

(b) xi = 0 if and only if (x>A)i = 0.

Note that (a) follows directly from the definition of x and the choice of α. To prove
the ‘only if’ part of (b), suppose that xi = 0. By (a), this implies that zi = 0. Since
zHA = λzH , we see that (zHA)i = 0. Equivalently, ((ξ> − jη>)A)i = 0. Therefore,
both (ξ>A)i = 0 and (η>B)i = 0. We conclude that (x>A)i = ((ξ> + αη>)A)i = 0.

To prove the ‘if’ part of (b), suppose that (x>A)i = 0. This means that ((ξ> +
αη>)A)i = 0. Equivalently, (ξ>A)i + α(η>A)i = 0. By the choice of α, this implies
that (ξ>A)i = (η>A)i = 0. We conclude that (zHA)i = 0. Recall that zHA = λzH ,
where λ was assumed to be nonzero. This implies that zi = 0. Again, using (a) we
conclude that xi = 0. This proves (b).

Next, we define the diagonal matrix X ′ ∈ Rn×n as

X ′ii =
{

1 if xi = 0
(x>A)i
xi

otherwise.

We know that X ′ is nonsingular by (b). By definition of X ′ we have x>A = x>X ′.
Furthermore, as zHB = 0 we obtain ξ>B = η>B = 0 and therefore x>B = 0. Hence
x>
[
A−X ′ B

]
= 0. Since X ′ is nonsingular, it follows that A −X ′ ∈ P(Ā). By

condition 2, this means that x = 0. Finally, we conclude that z = 0 using (a). �

2.6.2 Proof of Theorem 2.5
To prove Theorem 2.5, we need the following auxiliary result.
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Lemma 2.15. Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p 6 q. Consider the
directed graph G(M). Suppose that each node is colored white or black. Let D ∈ Rp×p

be the diagonal matrix defined by

Dkk =
{

1 if node k is black,
0 otherwise.

Suppose further that j ∈ {1, . . . , p} is a node for which there exists a node i ∈ {1, . . . , p},
possibly identical to j, such that j is the only white out-neighbor of i and (i, j) ∈ E∗.
Then for all M ∈ P(M) we have that

[
M D

]
has full row rank if and only if[

M D + eje
>
j

]
has full row rank where ej denotes the jth column of I.

Proof. The ‘only if’ part is trivial. To prove the ‘if’ part, suppose thatM ∈ P(M) and[
M D + eje

>
j

]
has full row rank. Let z ∈ Rp be such that z>

[
M D

]
= 0. Our aim

is to show that zj = 0. Indeed, if zj is zero then z>
[
M D + eje

>
j

]
= z>

[
M D

]
= 0

and hence z must be zero. This would prove that
[
M D

]
has full row rank. We will

distinguish two cases: i = j and i 6= j. Suppose first that i = j. Let β, ω ⊆ {1, . . . , p}
be defined as the index sets

β = {k | k 6= j and k is black} and ω = {` | ` 6= j and ` is white}.

In the sequel, to simplify the notations, for a given vector z ∈ Rp and a given index
set α ⊆ {1, . . . , p}, we define

zα := {x ∈ R|α| | xi = zα(i), i ∈ {1, . . . , |α|}}

where |α| is the cardinality of α. From z>M = 0, we get

zjMjj + z>βMβj + z>ωMωj = 0. (2.14)

Since j is the only white out-neighbor of itself, we must have that Mjj is nonzero and
that Mωj is a zero vector. Moreover, it follows from z>D = 0 that zβ must a zero
vector. Therefore, (2.14) implies that zj must be zero.

Next, suppose that i 6= j. Let β, ω ⊆ {1, . . . , p} be defined as the index sets

β = {k | k 6= i, k 6= j, and k is black} and ω = {` | ` 6= i, ` 6= j, and ` is white}.

From z>M = 0, we now get

ziMii + zjMji + z>βMβi + z>ωMωi = 0. (2.15)

Since j is the only white out-neighbor of i, we must have that Mji is nonzero and
that Mωi is a zero vector. Moreover, it follows from z>D = 0 that zβ must a zero
vector. Therefore, (2.15) implies that

ziMii + zjMji = 0. (2.16)
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Now, we distinguish two cases: i is black and i is white. If i is black, then we
have that zi is zero because z>D = 0. Therefore, (2.16) implies that zj = 0 as de-
sired. Finally, if i is white, then we have that Mii = 0 for otherwise i would have two
white out-neighbors. Again, (2.16) implies that zj is zero. This completes the proof. �

Now, we can give the proof of Theorem 2.5.
Proof of Theorem 2.5. To prove the ‘if’ part, suppose that G(M) is colorable.
Let M ∈ P(M) . By repeated application of Lemma 2.15, it follows that M has full
row rank if and only if

[
M I

]
has full row rank, which is obviously true. Therefore,

we conclude that M has full row rank.
To prove the ‘only if’ part, suppose thatM has full row rank but G(M) is not

colorable. Let C be the set of nodes that are colored black by repeated application of
the color change rule until no more color changes are possible. Then, C is a strict
subset of {1, 2, . . . , p}. Thus, possibly after reordering the nodes, we can partitionM
as

M =
[
M1
M2

]
where the rows of the matrixM1 correspond to the nodes in C and the matrixM2
correspond to the remaining white nodes. Note that C = ∅ means thatM2 =M
andM1 is absent. Since no more color changes are possible, there is no column of
M2 that has exactly one ∗ entry while all other entries are 0. Therefore, for any
column ofM2, we have one of the following three cases:

a. All entries are 0.

b. There exists exactly one ? entry while all other entries are 0.

c. At least two entries belong to the set {∗, ?}.

Consequently, there exists a matrix M2 ∈ P(M2) such that its column sums are zero,
that is 1>M2 = 0, where 1 denotes the vector of ones of appropriate size. Take any
M1 ∈ P(M1). Then

M =
[
M1
M2

]
∈ P(

[
M1
M2

]
) = P(M)

satisfies [
0> 1

>] [M1
M2

]
= 0.

Hence, M does not have full row rank and we have reached a contradiction. �
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2.6.3 Proof of Theorem 2.6

By Theorem 2.3 and Theorem 2.5, we have that
[
A B

]
is controllable if and only if

if and only if G(
[
A B

]
) and G(

[
Ā B

]
) are colorable. �

2.6.4 Proof of Theorem 2.8
The ‘if’ part is evident. Therefore, it is enough to prove the ‘only if’ part. Suppose
that the system (A,B) is stabilizable. Let (A,B) ∈ P(A) × P(B). Then, (A,B) is
stabilizable. Note that A ∈ P(A) if and only if −A ∈ P(A). Therefore, we have both
(A,B) and (−A,B) stabilizable. It follows from the Hautus test for stabilizability
(see e.g. [26, Theorem 3.32]) that (A,B) is controllable. Consequently, the system
(A,B) is controllable. �

2.6.5 Proof of Lemma 2.13
Since the ‘if’ part is evident, it remains to prove the ‘only if’ part. Suppose thatM
has full row rank. From Theorem 2.5, it follows that G(M) is colorable. In particular,
there exist i ∈ {1, . . . , q} and j ∈ {1, . . . , p} such thatMji = ∗ andMki = 0 for all
k 6= j. Therefore, we can find permutation matrices P ′1 and P ′2 such that

P ′1MP ′2 =

 M′
0
...
0

⊗ · · · ⊗ ∗


where the symbol ⊗ indicates an entry that can be either 0, ∗ or ?. Note that M has
full row rank for allM ∈ P(M) if and only ifM ′ has full row rank for allM ∈ P(M′).
Therefore, repeated application of the argument above results in permutation matrices
P1 and P2 such that

P1MP2 =


⊗ · · · ⊗ ∗ 0 · · · 0
...

...
. . . . . . . . .

...
⊗ · · · ⊗ · · · ⊗ ∗ 0
⊗ · · · ⊗ · · · ⊗ ⊗ ∗

 .
�
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2.7 Conclusions
In most of the existing literature on strong structural controllability of structured
systems, a zero/nonzero structure of the system matrices is assumed to be given.
However, in many physical systems or linear networked systems, apart from fixed zero
entries and nonzero entries, we need to allow a third kind of entries, namely those
that can take arbitrary (zero or nonzero) values. To deal with this, we have extended
the notion of zero/nonzero structure to what we have called zero/nonzero/arbitrary
structure. We have formalized this more general class of structured systems using
pattern matrices containing fixed zero, arbitrary nonzero, and arbitrary entries. In
this setup, we have established necessary and sufficient algebraic conditions for strong
structural controllability of these systems in terms of full rank tests on two associated
pattern matrices. Moreover, a necessary and sufficient graph theoretic condition for a
given pattern matrix to have full row rank has been provided in terms of a new color
change rule. We have then established a graph theoretic test for strong structural
controllability of the new class of structured systems. Finally, we have shown how
our results generalize previous work. We have also shown that some existing results
[30,32] that are seemingly incomparable to ours, can be put in our framework, thus
unveiling an overarching theory.

In addition to strong structural controllability, weak structural controllability and
strong structural stabilizability of structured systems with zero/nonzero/arbitrary
structures have been briefly analyzed. We have shown that weak structural controlla-
bility of our structured systems can be checked using tests that already exist in the
literature. We have also shown that a structured system with zero/nonzero/arbitrary
structure is strongly structurally stabilizable if and only if it is strongly structurally
controllable.

It would be interesting to adopt our new framework of structured systems to other
problem areas in systems and control. In the next chapter, we will study the fault
detection and isolation problem [77] for structured systems in this framework.



3 Fault Detection and Isolation for
Linear Structured Systems

In this chapter, we follow a geometric approach to verify solvability of the fault
detection and isolation (FDI) problem for linear structured systems. Firstly, we will
develop a necessary and sufficient condition under which the FDI problem for a given
particular linear time-invariant (LTI) system is solvable. Based on this condition, we
will then establish a necessary condition for solvability of the FDI problem for linear
structured systems. By assuming that this necessary condition holds, we develop a
sufficient algebraic condition for solvability of the FDI problem in terms of a rank test
on an associated pattern matrix. To illustrate that this condition is not necessary, we
provide a counterexample in which the FDI problem is solvable while the condition is
not satisfied. Finally, we develop a graph theoretic condition for the full rank property
of a given pattern matrix, which leads to a graph theoretic condition for solvability of
the FDI problem.

3.1 Introduction
This chapter is concerned with the FDI problem for LTI systems with faults. This
problem has received considerable attention within the control community in the
past decades and this has led to several approaches to FDI, see, e.g., [77–82] and
the references therein. Among these references, those closer to the results presented
in the current chapter are [79] and [77], in which FDI for LTI systems is performed
using unknown input observers that enable so-called output separability of the fault
subspaces. If such observers exist, then we say that for the given system the FDI
problem is solvable.

Although conditions for solvability of the FDI problem for a given LTI system
have been introduced in [79], their application relies on the exact knowledge of the
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dynamics of this system, meaning that precise information on the system matrices is
required. However, in many scenarios, such knowledge is unavailable, and only the
zero/nonzero/arbitrary structure can be acquired. This leads to the concept of linear
structured system introduced in [58] which represents a family of LTI systems sharing
the same structure. A large amount of literature has been devoted to analyzing system-
theoretical properties for linear structured systems. For instance, strong structural
controllability has been studied in [29, 30, 32, 58], strong targeted controllability in
[62,75], and identifiability in[83].

Roughly speaking, in the framework of linear structured systems, the research
on the FDI problem can be subdivided into two directions. The first direction aims
at providing conditions under which the FDI problem is solvable for at least one
member of a given structured system, see, e.g., [82,84,85]. The other direction aims at
establishing conditions to guarantee that the FDI problem is solvable for all members
of a given structured system, see, e.g., [77]. In the present chapter, we will pursue
the second research direction. For a given structured system, if the FDI problem for
all systems in the structured system is solvable, then we say that the FDI problem
for this structured system is solvable. To the best of our knowledge, in this direction
the only existing work is [77], which has studied a special kind of linear structured
system, named systems defined on graphs. The goal of the present chapter is to
provide conditions under which the FDI problem is solvable for a general structured
system. The main contributions of this chapter are the following:

1. We develop a necessary and sufficient condition under which the FDI problem
is solvable for a given particular LTI system.

2. For linear structured systems we first establish a necessary condition for solvabil-
ity of the FDI problem. Assuming that this necessary condition holds, we then
establish a sufficient algebraic condition for solvability of the FDI problem. This
condition is expressed in terms of a rank test on a pattern matrix associated
with the structured system. Moreover, we provide a counterexample to show
that this sufficient condition is not necessary.

3. Using the concept of colorability of a graph, we provide a graph theoretic
condition for solvability of the FDI problem for a given structured system.

3.2 Preliminaries and problem statement

3.2.1 Geometric control theory
Geometric control theory plays a fundamental role in this chapter. Therefore, in this
subsection, we will give a brief review of some basic concepts in this field. Consider
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the LTI system

ẋ = Ax+Bu

y = Cx
(3.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input and output, respectively, and
A, B and C are matrices of appropriate dimensions. A subspace S ⊆ Rn is called
(C,A)-invariant if A(S ∩ kerC) ⊆ S. This condition is equivalent to the existence of
a matrix G ∈ Rn×p such that S is (A+GC)-invariant, i.e., (A+GC)S ⊆ S. Such
a G is called a friend of S. A family {Si}ki=1 of (C,A)-invariant subspaces of Rn is
called compatible if the subspaces Si have a common friend. Given the system (3.1),
a family of subspaces {Si}ki=1 is called output separable if for i = 1, . . . , k

CSi ∩ (
∑
j 6=i

CSj) = {0}.

Any output separable family of (C,A)-invariant subspaces is compatible [79, Lemma
2]. Moreover, if it also satisfies the condition that CSi 6= {0} for i = 1, . . . , k, we say
that the family {CSi}ki=1 is independent.

For a given subspace D ⊆ Rn, there exists a smallest (C,A)-invariant subspace
containing D, denoted by S∗. Such a minimal subspace can be computed by the
following subspace algorithm (see, e.g., the conditioned invariant subspace algorithm
p.111 of [26]):

S0 = D
Sk = D +A(Sk−1 ∩ kerC) for k = 1, 2, . . . .

(3.2)

Denote the dimension of D by dimD. It follows from Theorem 5.8 of [26] that there
exists k 6 n− dimD such that Sk = Sk+1, and hence S∗ = Sk.

3.2.2 The geometric approach to the FDI problem for LTI
systems

In this subsection, we will review the geometric approach to the FDI problem for LTI
systems. Consider the LTI system

ẋ = Ax+ Lf

y = Cx
(3.3)

where x ∈ Rn, f ∈ Rq and y ∈ Rp are the state, fault and output, respectively, and
A, L and C are matrices of appropriate dimensions. We denote the system (3.3) by
(A,L,C). We say that the ith fault occurs if fi 6= 0 (i.e., not identically equal to 0),



42 3. Fault detection and isolation for linear structured systems

where fi is the ith component of f . In existing literature, the general question has
been studied how to detect whether faults occur or not, and if so then isolate which
fault fi occurs. This problem is refereed to as the fault detection and isolation (FDI)
problem. Following the approach proposed in [79], the FDI problem for (3.3) amounts
to finding G ∈ Rn×p such that the family of subspaces {CVi}qi=1 is independent,
where Vi is the smallest (A + GC)-invariant subspace containing imLi. Here, Li
denotes the ith column of L. If such G exists, then we say that the FDI problem is
solvable. In what follows, we will briefly explain this approach. Suppose that we have
found a G satisfying the above constraints. Consider the state observer

˙̂x = (A+GC)x̂−Gy. (3.4)

Define the innovation as
r := Cx̂− y

and error
e := x̂− x.

By interconnecting (3.3) and (3.4), we obtain

ė = (A+GC)e− Lf
r = Ce.

(3.5)

Note that in this chapter, we do not consider any stability requirement on the observer,
which means that we do not require e(t)→ 0, and we assume that e(0) = 0. Under
this assumption, for any fault f , the resulting error trajectory e(t) lies in the reachable
subspace of (A+GC,L), which is clearly equal to V1 + · · ·+Vq. For the corresponding
innovation trajectory r(t) we then have

r(t) ∈ CV1 + · · ·+ CVq.

If the family {CVi}qi=1 is independent, then this is a direct sum, and r(t) can be
written uniquely as

r(t) = r1(t) + · · ·+ rq(t) (3.6)

with ri(t) ∈ CVi for all t. The unique representation (3.6) can be used to determine
whether the ith fault occurs. Indeed in (3.6) ri 6= 0 (i.e., not identically equal to 0)
only if fi 6= 0. To see this, note that fi(t) = 0 for all t implies e(t) ∈

∑
j 6=i Vj , so

r(t) ∈
∑
j 6=i CVj , equivalently, ri(t) = 0 for all t.

Let S∗i be the smallest (C,A)-invariant subspace containing imLi. In [79] it has
been shown that the FDI problem for the system (3.3) is solvable if and only if the
family {CS∗i }

q
i=1 is independent, i.e., the family {S∗i }

q
i=1 is output separable and

CS∗i 6= {0} for i = 1, . . . , q.
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3.2.3 Linear structured systems and problem formulation

Again, consider the LTI system (3.3). In many scenarios, the exact values of the
entries in the system matrices are not known, but some entries are known to be always
zero, some are nonzero, and the remaining entries are arbitrary real numbers. To
describe such kind of matrices, the authors in [58] have introduced the definition of
pattern matrix as follows.

A pattern matrix is a matrix with entries in the set of symbols {0, ∗, ?}. The set of
all r × s pattern matrices is denoted by {0, ∗, ?}r×s. For a given r × s pattern matrix
M, we define the pattern class ofM as

P(M) := {M ∈ Rr×s |Mij = 0 ifMij = 0,
Mij 6= 0 ifMij = ∗}.

This means that for a matrix M ∈ P(M), the entry Mij is either (i) zero ifMij = 0,
(ii) nonzero ifMij = ∗, or (iii) arbitrary (zero or nonzero) ifMij = ?.

Let A ∈ {0, ∗, ?}n×n, L ∈ {0, ∗, ?}n×q and C ∈ {0, ∗, ?}n×p. The family of systems
(A,L,C) with A ∈ P(A), L ∈ P(L) and C ∈ P(C) is called the linear structured
system associated with A, L, and C. Throughout this chapter, we use (A,L, C) to
represent this structured system, and we write (A,L,C) ∈ (A,L, C) if A ∈ P(A),
L ∈ P(L) and C ∈ P(C). Based on these notions and notations, we define the
FDI problem for (A,L, C) to be solvable if the FDI problem is solvable for every
(A,L,C) ∈ (A,L, C). The research problem of this chapter is then formally stated as
follows.

Problem 3.1. Given (A,L, C), find conditions under which the FDI problem is
solvable for (A,L, C).

3.3 Conditions for solvability of the FDI problem
for (A, L, C)

In this section, we will establish a necessary and sufficient condition under which the
FDI problem is solvable for a given LTI system (A,L,C) of the form (3.3). Recall
that solvability of the FDI problem for (A,L,C) is equivalent to the independence of
the family {CS∗i }

q
i=1, where S∗i is the smallest (C,A)-invariant subspace containing

imLi (i = 1, . . . , q). Therefore, we will first provide a characterization of S∗i . Let di
be a positive integer such that

CAjLi = 0 for j = 0, 1, . . . , di − 2 and CAdi−1Li 6= 0.
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Here and in the sequel, we define A0 := I. It is obvious from the Cayley-Hamilton
theorem that either di 6 n or di does not exist. If this di exists, we then call it the
index of (A,Li, C).

We are now ready to state a characterization of CS∗i in the following lemma.

Lemma 3.2. Consider the system (A,L,C) of the form (3.3). Let i ∈ {1, . . . , q}.
Denote by S∗i the smallest (C,A)-invariant subspace containing imLi. Then, we have
that

CS∗i =
{

imCAdi−1Li if the index di of (A,Li, C) exists,
{0} otherwise.

Proof. In this proof, we will employ the recurrence relation (3.2) to prove the
statement. Let S`i be the sequence of subspaces given by

S0
i = imLi,

S`i = imLi +A(S`−1
i ∩ kerC) for ` = 1, 2, . . . .

(3.7)

We then distinguish two cases: (i) di exists, and (ii) di does not exist. In case (i), we
have that

CAkLi = 0 for k = 0, 1, . . . , di − 2 (3.8)

and
CAdi−1Li 6= 0. (3.9)

By combining (3.7) and (3.8), it can be verified directly that

Ski = im
[
Li ALi . . . AkLi

]
for k = 0, 1, . . . , di − 1. (3.10)

Now, we claim that:

(a) Sdi−1
i = Sdii ,

(b) the dimension of Sdi−1
i is strictly larger than that of Sdi−2

i .

If both claims (a) and (b) are true, then

S∗i = Sdi−1
i = im

[
Li ALi . . . Adi−1Li

]
,

and hence CS∗i = imCAdi−1Li. Note that (a) follows immediately from (3.9) and
(3.10):

Sdi−1
i

(3.10)= im
[
Li ALi . . . Adi−1Li

]
Sdii = imLi +A(Sdi−1

i ∩ kerC) (3.9)= im
[
Li ALi . . . Adi−1Li

]
.
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To prove (b), we assume that (b) is not true, i.e.,

Sdi−1
i = Sdi−2

i = im
[
Li ALi . . . Adi−2Li

]
.

This implies
Adi−1Li ∈ im

[
Li ALi . . . Adi−2Li

]
⊆ kerC,

which contradicts (3.9), and hence (b) is proved. For case (ii), we have

CAkLi = 0 for k = 0, 1, . . . , n− 1. (3.11)

By combining (3.7) and (3.11), we obtain

Sn−1
i = im

[
Li ALi · · · An−1Li

]
⊆ kerC

Sni = im
[
Li ALi · · · An−1Li AnLi

] .
It then follows from the Cayley-Hamilton theorem that

AnLi ∈ Sn−1
i .

This means that Sn−1
i = Sni , and hence S∗i = Sn−1 ⊆ kerC. Therefore, we have

CS∗i = {0}. This completes the proof. �

By the above lemma, the family {CS∗i }
q
i=1 of subspaces is independent if and

only if the index di exist for i = 1, . . . , q, and the vectors {CAdi−1Li}qi=1 are linearly
independent. Thus we arrive at the main result of this section which provides a
necessary and sufficient condition under which the FDI problem for (A,L,C) is
solvable.

Theorem 3.3. Consider the system (A,L,C) of the form (3.3). The FDI problem
for (A,L,C) is solvable if and only if the index di exists for i = 1, . . . , q, and the
matrix R has full column rank, where R is defined by

R :=
[
CAd1−1L1 · · · CAdq−1Lq

]
. (3.12)

Proof. The proof follows immediately from Lemma 3.2 and is hence omitted. �

3.4 Algebraic conditions for solvability of the FDI
problem for (A,L, C)

In this section, we will establish a necessary condition and a sufficient condition that
enables the FDI problem for a given structured system (A,L, C) to be solvable. Before
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presenting the results of this section, we first provide some background on operations
on pattern matrices. More details can be found in [86]. Addition and multiplication
within the set {0, ∗, ?} are defined in Table 3.1 below.

Table 3.1: Addition and multiplication within the set {0, ∗, ?}.

+ 0 ∗ ?
0 0 ∗ ?
∗ ∗ ? ?
? ? ? ?

· 0 ∗ ?
0 0 0 0
∗ 0 ∗ ?
? 0 ? ?

Based on the operations in Table 3.1, multiplication of pattern matrices is then
defined as follows.

Definition 3.4. LetM∈ {0, ∗, ?}r×s and N ∈ {0, ∗, ?}s×t. The product ofM and
N is defined asMN ∈ {0, ∗, ?}r×t given by

(MN )ij :=
q∑

k=1
(Mik ·Nkj) i = 1, . . . , r, j = 1, . . . , t. (3.13)

It is easily seen that MN ∈ P(MN ) for every pair of matrices M ∈ P(M) and
N ∈ P(N ). If r = s, we callM a square pattern matrix. For any given non-negative
integer k, we define the kth powerMk recursively by

M0 = I, Mi =Mi−1M, i = 1, . . . , k

where I represents a square pattern matrix of appropriate dimensions with all diagonal
entries equal to ∗ and all off-diagonal equal to 0. In the sequel, let O denote any
pattern matrix of appropriate dimensions with all entries equal to 0.

Next, consider the system (A,L, C). Let Li represent the ith column of L for
i = 1, . . . , q. Let ηi be a positive integer such that

CAjLi = O for j = 0, 1, . . . , ηi − 2 and CAηi−1Li 6= O.

If ηi exists, then we call it the index of (A,Li, C). In the sequel, we will write
(A,Li, C) ∈ (A,Li, C) if A ∈ P(A), Li ∈ P(Li) and C ∈ P(C). Before continuing to
explore conditions for solvability of the FDI problem for (A,L, C), we first provide
the following lemma which states the relationship between the index of (A,Li, C) and
that of (A,Li, C) ∈ (A,Li, C).

Lemma 3.5. Consider the pattern matrix triple (A,Li, C). Then the following holds:



3.4. Algebraic conditions for solvability of the FDI problem for (A,L, C) 47

i. Let (A,Li, C) ∈ (A,Li, C). If both the index ηi of (A,Li, C) and the index di of
(A,Li, C) exist, then di > ηi.

ii. Suppose that the index ηi of (A,Li, C) exists, and suppose further that at least
one entry of CAηi−1Li is equal to ∗. Let (A,Li, C) ∈ (A,Li, C). Then, the index
di of (A,Li, C) exists and di = ηi.

iii. If the index of (A,Li, C) does not exist, then the index of (A,Li, C) does not
exist for any (A,Li, C) ∈ (A,Li, C).

Proof. By Definition 3.4, it follows that the vector CA`Li ∈ P(CA`Li) for i = 0, 1, . . .
and for all (A,Li, C) ∈ (A,Li, C). In order to prove (i), suppose that both the index
ηi of (A,Li, C) and the index di of (A,Li, C) exist. By the definition of ηi we have
that CA`Li = O for ` = 0, 1, . . . , ηi − 2, and by the definition of di it follows that
CAdi−1Li 6= 0. Therefore, we obtain di > ηi. Next, to prove (ii), we assume that
CAηi−1Li contains at least one ∗ entry, which implies that all the vectors in the
pattern class P(CAηi−1Li) are unequal to 0. Let (A,Li, C) ∈ (A,Li, C). Clearly, the
vector CAηi−1Li ∈ P(CAηi−1Li), and hence CAηi−1Li 6= 0. By definition, the index
di of (A,Li, C) must exist and di 6 ηi. Recalling (i), we conclude that di = ηi. The
proof of (iii) is trivial. Indeed, suppose that the index of (A,Li, C) does not exist. It
then follows that

CA`Li = O for ` = 0, 1, . . .

which implies that CA`Li is equal to 0 for every (A,Li, C) ∈ (A,Li, C). That is, the
index of (A,Li, C) does not exist for any (A,Li, C) ∈ (A,Li, C). �

To illustrate the above lemma, we now provide an example.

Example 3.1. Consider the system (A,L, C) with

A =

0 0 0
∗ 0 0
0 0 0

 , L =

∗ 0 0
0 ∗ 0
0 ∗ ∗

 , C =
[
? ∗ 0
0 ∗ 0

]
. (3.14)

Let L1, L2 and L3 denote the first, second and third column of L. For L1 and L2 we
compute

CL1 =
[
?
0

]
6= O and CL2 =

[
∗
∗

]
6= O.

This implies that η1 = η2 = 1, where ηi is the index of (A,Li, C) for i = 1, 2. In
addition, for L3 we compute

CA`L3 = O for ` = 0, 1, . . .
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which implies that the index of (A,L3, C) does not exists. Next, we will show that
for some (A,L1, C) ∈ (A,L2, C) the index d1 of (A,L1, C) is larger than η1, for every
(A,L2, C) ∈ (A,L2, C) its index d2 is equal to η2, and for every (A,L3, C) ∈ (A,L3, C)
its index does not exists,. Indeed, for A ∈ P(A), L ∈ P(L) and C ∈ P(C) we have

A =

 0 0 0
c1 0 0
0 0 0

 , L =

c2 0 0
0 c3 0
0 c4 c5

 , C =
[
λ1 c6 0
0 c7 0

]
(3.15)

where c1, . . . , c7 are arbitrary nonzero real numbers, and λ1 is an arbitrary real number.
Next, we compute[

CL1 CL2
]

=
[
λ1c2 c3c6

0 c3c9

]
and CAL1 =

[
c1c2c6
c1c2c7

]
. (3.16)

Thus, for all choices of c1, . . . , c7 and λ1 we have

d2 = 1 = η2

while if λ1 = 0 then d1 = 2 > η1 and otherwise d1 = 1 = η1. In addition, it is obvious
that for all choices of c1, . . . , c7 and λ1 we have

CA`L3 = 0 for ` = 0, 1, . . .

and hence the index of (A,L3, C) does not exist.

Lemma 3.5 immediately yields a necessary condition for solvability of the FDI
problem for (A,L, C).

Theorem 3.6. Consider the system (A,L, C). Suppose that the FDI problem for
(A,L, C) is solvable. Then, the index ηi of (A,Li, C) exists for all i = 1, . . . q.

Proof. Since the FDI problem for (A,L, C) is solvable, the FDI problem is solvable for
all (A,L,C) ∈ (A,L, C). Assume that for some i ∈ {1, . . . , q} the index ηi of (A,Li, C)
does not exist. By statement iii of Lemma 3.5, it follows that the index di of (A,Li, C)
does not exist for any (A,Li, C) ∈ (A,Li, C). It then follows from Theorem 3.3 that
the FDI problem for (A,L,C) is not solvable for any (A,L,C) ∈ (A,L, C). Therefore,
we reach a contradiction and complete the proof. �

By the above theorem, in the sequel we will assume that for all i = 1, . . . q the
indices ηi exist. Based on this assumption, we will continue to explore sufficient
conditions for solvability of the FDI problem for (A,L, C). To do so, we first define
the following pattern matrix associated with (A,L, C):

R :=
[
CAη1−1L1 · · · CAηq−1Lq

]
(3.17)
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where ηi is the index of (A,Li, C). We say that R has full column rank if all the
matrices in the pattern class P(R) have full column rank. We are now ready to
establish a sufficient condition for solvability of the FDI problem for (A,L, C).

Theorem 3.7. Consider the system (A,L, C). Let R be the pattern matrix given by
(3.17). The FDI problem for (A,L, C) is solvable if R has full column rank.

Proof. Since R has full column rank, each column of R contains at least one ∗ entry.
Let (A,L,C) ∈ (A,L, C). By (ii) of Lemma 3.5 it follows that di = ηi, where di is the
index of (A,Li, C) for i = 1, 2, . . . , q. This implies that the matrix R given by (3.12)
is in P(R), and hence R has full column rank. It then follows from Theorem 3.3 that
the FDI problem is solvable. Since (A,L,C) is an arbitrary system in (A,L, C), we
conclude that the FDI problem for (A,L, C) is solvable and complete the proof. �

Note that the condition given in Theorem 3.7 is sufficient but not necessary. To
show this, we provide the following counterexample.

Example 3.2. Consider the system (A,L, C) with

A =
[
0 0
0 0

]
, L =

[
∗ ∗
0 ∗

]
, C =

[
∗ ∗
∗ 0

]
.

Let L1 and L2 be the first and second column of L. We compute

CL1 =
[
∗
∗

]
and CL2 =

[
?
∗

]
and, by (3.17),

R =
[
∗ ?
∗ ∗

]
.

It then follows from [
1 1
1 1

]
∈ P(R)

that R does not have full column rank. Next, we will show that, however, the FDI
problem for (A,L, C) is solvable. Due to Theorem 3.3, it suffices to show that for each
(A,L,C) ∈ (A,L, C) the associated matrix R has full column rank. Clearly, every
(A,L,C) ∈ (A,L, C) has the form

A =
[
0 0
0 0

]
, L =

[
c1 c2
0 c3

]
, C =

[
c4 c5
c6 0

]
where c1, . . . , c6 are arbitrary nonzero real numbers. By (3.12), we obtain

R = CL =
[
c1c4 c2c4 + c3c5
c1c6 c2c6

]
.
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It turns out that R has full column rank. Indeed, the determinant of R is equal
to −c1c3c5c6 which is always nonzero. Consequently, the FDI problem for (A,L, C)
is solvable. This provides a counterexample for the necessity of the condition in
Theorem 3.7.

3.5 A graph theoretic condition for solvability of
the FDI problem

So far, we have provided a sufficient condition for solvability of the FDI problem
for (A,L, C) in terms of the full column rank property of its associated matrix R.
However, given such a matrix R, it is not clear how to check its full column rank
property. Hence, in this section, we will provide a graph theoretic condition under
which a given pattern matrix R has full column rank. Clearly, by Theorem 3.7 this
will immediately lead to a graph theoretic condition for solvability of the FDI problem
for (A,L, C).

We will now first review the concept of graph associated with a given pattern
matrix, and the color change rule that acts on this graph. For more details, see Section
2.4. For a given pattern matrixM∈ {0, ∗, ?}r×s with r 6 s, the graph G(M) = (V,E)
associated withM is defined as follows. Take as node set V = {1, . . . , r} and define
the edge set E ⊆ V × V such that (j, i) ∈ E if and only ifMij = ∗ orMij =?. Also,
in order to distinguish between ∗ and ? entries inM, we define two subsets E∗ and E?
of the edge set E as follows: (j, i) ∈ E∗ if and only ifMij = ∗ and (j, i) ∈ E? if and
only ifMij =?. Then, obviously, E = E∗ ∪ E? and E∗ ∩ E? = ∅. To visualize this,
solid and dashed arrows are used to represent edges in E∗ and E?, respectively. We
say thatM has full row rank if the matrix M has full row rank for all M ∈ P(M).
Next, we introduce a so-called color change rule which is defined as follows.

1. Initially, color all nodes in G(M) white.

2. If a node i has exactly one white out-neighbor j and (i, j) ∈ E∗, change the
color of j to black.

3. Repeat step 2 until no more nodes can be colored black.

The graph G(M) is called colorable if the nodes 1, . . . , r are colored black following
the procedure above. Note that the remaining nodes r+ 1, . . . , s can never be colored
black since they have no incoming edges.

Define the transpose of R as the pattern matrix

R> ∈ {0, ∗, ?}s×r with (R>)ij = Rji
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for i = 1, . . . , s and j = 1, . . . , r. Recalling the criterion for the full row rank property
ofM given by Theorem 2.5, we then obtain the following obvious fact:

Lemma 3.8. Consider the system (A,L, C). Let R be the pattern matrix given by
(3.17) and R> be its transpose. Then R has full column rank if and only if G(R>) is
colorable.

This then immediately yields the main result of this section which provides a
graph theoretic condition under which the FDI problem for (A,L, C) is solvable.

Theorem 3.9. Consider the system (A,L, C). Suppose that the indices ηi exists for
i = 1, . . . , q. Let R be the pattern matrix given by (3.17). Then, the FDI problem for
(A,L, C) is solvable if G(R>) is colorable.

Proof. The proof follows immediately from Theorem 3.7 and Lemma 3.8. �

To conclude this section, we will provide an example to illustrate the application
of Theorem 3.9.

Example 3.3. Consider the system (A,L, C) with

A =


∗ 0 0 0 0
∗ ? 0 ? 0
0 ∗ ∗ ? 0
∗ 0 0 ? ∗
0 0 ∗ 0 ∗

 , L =


∗ 0
? ∗
0 0
0 0
0 0

 and C =

0 0 0 ∗ 0
0 0 0 ? ?
0 0 0 ∗ ∗

 .

By multiplying the pattern matrices, we obtain that

[
CL1 CAL1

]
=

0 ∗
0 ?
0 ∗

 and
[
CL2 CAL2 CA2L2

]
=

0 0 0
0 0 ?
0 0 ∗


where Li is the ith column of L. By (3.17), it follows that the associated matrix R
and its transpose R> are given by

R =
[
CAL1 CA2L2

]
=

∗ 0
? ?
∗ ∗

 and R> =
[
∗ ? ∗
0 ? ∗

]
.

As depicted in Figure 3.1 G(R>) is colorable. Indeed, initially let all nodes in G(R>)
be colored white as shown in Figure 3.1(a). Node 1 then colors itself black as depicted
in Figure 3.1(b), and finally node 3 colors 2 to black as in Figure 3.1(c). Therefore,
by Theorem 3.9, the FDI problem for (A,L, C) is solvable.
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1 2

3

(a) The initial graph.

1 2

3

(b) Node 1 colors 1.

1 2

3

(c) Node 3 colors 2.

Figure 3.1: Example of a linear structured system for which FDI is solvable.

3.6 Conclusions
In this chapter, we have studied the FDI problem for linear structured systems. We
have established a necessary and sufficient condition for solvability of the FDI problem
for a given particular LTI system. Based on this, we have established a necessary
condition under which the FDI problem for structured systems is solvable. Moreover,
we have developed a sufficient condition for solvability of the FDI problem in terms of
a rank test on a pattern matrix associated with the structured system. Next, we have
provided a counterexample to show that this condition is not necessary. Finally, we
have developed a graph theoretic condition for solvability of the FDI problem using
the concept of colorability of a graph.
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4 Strong Structural Controllability of
Systems Defined on Colored Graphs

This chapter deals with strong structural controllability of leader/follower networks.
The system matrix defining the network dynamics is a pattern matrix in which a priori
given entries are equal to zero, while the remaining entries take nonzero values. These
nonzero entries correspond to edges in the network graph. We say that the network is
strongly structurally controllable if the system is controllable in the classical sense for
all choices of real values for the nonzero entries in the pattern matrix. The novelty
of the material in this chapter is that we consider the situation that prespecified
nonzero entries in the system’s pattern matrix are constrained to take identical
(nonzero) values. These constraints can be caused by symmetry properties or physical
constraints on the network. Restricting the system matrices to those satisfying these
constraints yields a new notion of strong structural controllability. This chapter
aims to establish graph theoretic conditions for this more general property of strong
structural controllability.

4.1 Introduction
The past two decades have shown an increasing research effort in networked dynamical
systems. To a large extent this increase has been caused by technological developments
such as the emergence of the Internet and the growing relevance of smart power grids.
The spreading interest in social networks and biological systems have also contributed
to this surge [2–4,6].

A fundamental issue in networked systems is that of controllability. This issue
deals with the question whether all parts of the global network can be adequately
influenced or manipulated by applying control inputs only locally to the network. A
vast amount of literature has been devoted to several variations on this issue, see
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[17,20–22,62,87] and the references therein. In most of the literature, a networked
system is a collection of input-state-output systems, called agents, together with an
interconnection structure between them. Some of these systems can also receive input
from outside the network and are called leaders. The remaining systems are called
followers. At a higher level of abstraction, a networked system can be described
by a directed graph, called the network graph, where the vertices represent the
input-state-output systems and the edges represent the interactions between them.
Controllability of the networked system then deals with the question whether the
states of all agents can be steered from any initial state to any final state in finite
time by applying suitable input signals to the network through the leaders.

Based on the observation that the underlying graph plays an essential role in
the controllability properties of the networked system [22], an increasing amount
of literature has been devoted to uncovering this connection, see [88–90] and the
references therein. In order to allow zooming in on the role of the network graph,
it is common to proceed with the simplest possible dynamics at the vertices of the
graph, and to take the agents to be single integrators, with a one-dimensional state
space. These single integrators are interconnected through the network graph, and
the interconnection strengths are given by the weights on the edges. Based on this,
the overall networked system can be represented by a linear input-state system of the
form

ẋ = Ax+Bu,

where the system matrix A ∈ Rn×n represents the network structure with the given
edge weights, and the matrix B ∈ Rn×m encodes which m vertices are the leaders.
The n-dimensional state vector x consists of the states of the n agents, and the
m-dimensional vector u collects the input signals to the m leader vertices.

Roughly speaking, the research on network controllability based on the above
model can be subdivided into three directions. The first direction deals with the
situation that the values of the edge weights in the network are known exactly. In this
case the matrix A is a given constant matrix, and specific dynamics are considered for
the network. For example, the system matrix can be defined as the adjacency matrix
of the graph [19], or the graph Laplacian matrix [20–25]. Furthermore, a framework
for controllability was also introduced in [91], offering tools to treat controllability of
complex networks with arbitrary structure and edge weights. Related results can be
found in [92,93]. We also refer to [94,95].

A second research direction deals with the situation where the exact values of
the edge weights are not known, but only information on whether these weights are
zero or nonzero is available. In this case, the system matrix is not a known, given,
matrix, but rather a matrix with a certain zero/nonzero pattern: some of the entries
are known to be equal to zero, the other entries are unknown. This framework deals
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with the concept of structural controllability. Up to now, two types of structural
controllability have been studied, namely weak structural controllability and strong
structural controllability. A networked system of the form above is called weakly
structurally controllable if there exists at least one choice of values for the nonzero
unknown entries in the system matrices such that the corresponding matrix pair (A,B)
is controllable. The networked system is called strongly structurally controllable if,
roughly speaking, for all choices of nonzero values for the unknown entries the matrix
pair (A,B) is controllable. Conditions for weak and strong structural controllability
have been expressed entirely in terms of the underlying network graph, using concepts
like cactus graphs, maximal matchings, and zero forcing sets, see [17,27–32].

A third, more recent, research direction again deals with weak and strong structural
controllability. However, the nonzero entries in the pattern matrices defining the
networked system can no longer take arbitrary nonzero real values, independently
of each other. Instead, this framework considers the situation that there are certain
constraints on some of the nonzero entries. These constraints can require that some
of the nonzero entries have given values, see e.g. [50], or that there are given linear
dependencies between some of the nonzero entries, see [51]. In both cases, these
constraints lead to a subclass of the family of systems dealt with in the second research
direction mentioned above. A networked system with such constraints is called weakly
(strongly) structurally controllable if almost all (all) members in the corresponding
subclass are controllable. In [51] necessary and sufficient conditions for weak structural
controllability were established in terms of multi-colored subgraphs. Later on, [50]
studied weak and strong structural controllability of undirected networks. In addition,
[54] studied weak structural controllability of networks with symmetric weights. In
the present chapter, we will focus on a special constraint in which the values of certain
a priori specified nonzero entries in the system matrix are constrained to be identical.
In order to formalize this, the corresponding network structure is represented by
so-called colored graphs, where edges with identical weights have identical colors.

Indeed, it is a typical situation that certain edge weights are equal, either by
symmetry considerations or by the physics of the underlying problem. One application
domain is provided by real world networks modeled as homogeneous multi-agent
systems, such as those used in formation control. In such networks, agents can be
considered as identical subnetworks of smaller order, which lead to identical edge
weights in the overal network. Such situation can be considered as a so-called network-
of-networks [96], which are obtained by taking the Cartesian product of smaller
factor networks. For each factor network, the internal edge weights are independent.
However, by applying the Cartesian product, some edge weights in the overall network
will become identical.

Another application domain consists of physical networks such as power grids,
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traffic networks and water distribution networks. For example, in power networks
certain physical components typically appear multiple times, leading to identical edge
weights in the network models. The same holds for water distribution networks. As
for traffic networks, two-directional traffic flow sharing the same channel leads to
symmetry properties of the network models. An example is also provided by real
world networks modeled as undirected networks [50, 51, 54], in which the network
graph has to be symmetric.

In this chapter, strong structural controllability of networked systems defined on
such colored graphs will be called colored strong structural controllability. This version
of strong structural controllability has not been studied in the literature before. The
aim of the present chapter is to establish graph theoretic tests for this property of
networked systems.

The main contributions of this chapter are the following:

1. We introduce a new color change rule and define the corresponding notion of
zero forcing set. To do this, we consider colored bipartite graphs and establish
a necessary and sufficient graph theoretic condition for nonsingularity of the
pattern class associated with this bipartite graph.

2. We provide a sufficient graph theoretic condition for our new notion of strong
structural controllability in terms of zero forcing sets.

3. We introduce so-called elementary edge operations that can be applied to the
original network graph and that preserve the property of strong structural
controllability.

4. A sufficient graph theoretic condition for strong structural controllability is
developed based on the notion of edge-operations-color-change derived set which
is obtained by applying elementary edge operations and the color change rule
iteratively.

The organization of this chapter is as follows. In Section 4.2, some preliminaries
are presented. In Section 4.3, we give a formal definition of the main problem treated
in this chapter in terms of systems defined on colored graphs. In Section 4.4, we
establish our main result, which gives a sufficient graph theoretic condition for strong
structural controllability of systems defined on colored graphs. Section 4.5 provides
two additional sufficient graph theoretic conditions. For this, we introduce the concept
of elementary edge operations and the associated notion of edge-operations-color-
change derived set. This set is obtained from the initial coloring set by succesively
applying elementary edge operations and the color change rule. Finally, Section 4.6
formulates the conclusions of this chapter.
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4.2 Preliminaries

4.2.1 Elements of graph theory
Let G = (V,E) be a directed graph, with vertex set V = {1, . . . , n}, and the edge set
E a subset of V × V . In this chapter, we will only consider simple graphs, that is,
the edge set E does not contain edges of the form (i, i). In this chapter, the phrase
‘directed graph’ will always refer to a simple directed graph. We call vertex j an
out-neighbor of vertex i if (i, j) ∈ E. We denote the set of all out-neighbors of i by

N(i) := {j ∈ V | (i, j) ∈ E}.

Given a subset S of the vertex set V and a subset X ⊆ S, we denote by

NV \S(X) = {j ∈ V \ S | ∃ i ∈ X such that (i, j) ∈ E},

the set of all vertices outside S, but an out-neighbor of some vertex in X. A directed
graph G1 = (V1, E1) is called a subgraph of G if V1 ⊆ V and E1 ⊆ E.

Associated with a given directed graph G = (V,E) we consider the set of matrices

W(G) := {W ∈ Rn×n |Wij 6= 0 iff (j, i) ∈ E}.

For any such W and (j, i) ∈ E, the entry Wij is called the weight of the edge (j, i)
and W is called a weighted adjacency matrix of the graph. For a given directed graph
G = (V,E), we denote the associated graph with weighted adjacency matrix W by
G(W ) = (V,E,W ). This is then called the weighted graph associated with the graph
G = (V,E) and weighted adjacency matrixW . Finally, we define the graph G = (V,E)
to be an undirected graph if (i, j) ∈ E whenever (j, i) ∈ E. In that case the order of i
and j in (i, j) does not matter and we interpret the edge set E as the set of unordered
pairs {i, j} where (i, j) ∈ E.

An undirected graph G = (V,E) is called bipartite if there exist nonempty disjoint
subsets X and Y of V such that X ∪ Y = V and {i, j} ∈ E only if i ∈ X and j ∈ Y .
Such bipartite graph is denoted by G = (X,Y,EXY ) where we denote the edge set by
EXY to stress that it contains edges {i, j} with i ∈ X and j ∈ Y . In this chapter we
will use the symbol G for arbitrary directed graphs and G for bipartite graphs.

A set of t edges m ⊆ EXY is called a t-matching in G, if no two distinct edges in
m share a vertex. In the special case that |X| = |Y | = t, such a t-matching is called a
perfect matching. For a bipartite graph G = (X,Y,EXY ), with vertex sets X and Y
given by X = {x1, . . . , xs} and Y = {y1, . . . , yt}, we define the pattern class of G by

P(G) = {M ∈ Ct×s |Mji 6= 0 iff {xi, yj} ∈ EXY }.

Note that, in the context of pattern classes for undirected bipartite graphs, we allow
complex matrices.
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4.2.2 Controllability of systems defined on graphs
For a directed graph G = (V,E) with vertex set V = {1, 2, . . . , n}, the qualitative
class of G is defined as the family of matrices

Q(G) = {A ∈ Rn×n | for i 6= j : Aij 6= 0 iff (j, i) ∈ E}.

Note that the diagonal entries of A ∈ Q(G) do not depend on the structure of G and
can take arbitrary real values.

Next, we specify a subset VL = {v1, v2, . . . , vm} of V , called the the leader set,
and consider the following family of leader/follower systems defined on the graph G
with dynamics

ẋ = Ax+Bu, (4.1)
where x ∈ Rn is the state and u ∈ Rm is the input. The systems (4.1) have the
distinguishing feature that the matrix A belongs to Q(G) and B = B(V ;VL) is defined
as the n×m matrix given by

Bij =
{

1 if i = vj
0 otherwise. (4.2)

An important notion associated with systems defined on a graph G as in (4.1) is
the notion of strong structural controllability.

Definition 4.1. Let Q′ ⊆ Q(G). The system defined on the directed graph G = (V,E)
with dynamics (4.1) and leader set VL ⊆ V is called strongly structurally controllable
with respect to Q′ if the pair (A,B) is controllable for all A ∈ Q′. In that case we
will simply say that (G;VL) is controllable with respect to Q′.

One special case of the above notion is that (G;VL) is controllable with respect to
Q(G). In that case, we will simply say that (G;VL) is controllable. Another special
case is that (G;VL) is controllable with respect to Q′ where, for a given weighted
adjacency matrix W ∈ W(G), Q′ is the subclass of Q(G) defined by

QW (G) = {A ∈ Q(G) | for i 6= j : Aij = Wij}.

This subclass is called the weighted qualitative class associated with W . Note that
the off-diagonal elements of A ∈ QW (G) are fixed by those of the given adjacency
matrix, while, again, the diagonal entries of A ∈ QW (G) can take arbitrary real values.
Obviously

Q(G) =
⋃

W∈W(G)

QW (G).

Since there is a unique weighted graph G(W ) = (V,E,W ) associated with the graph
G = (V,E) and weighted adjacency matrix W , we will simply say that (G(W );VL) is
controllable if (G;VL) is controllable with respect to QW (G).
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4.2.3 Zero forcing set and controllability of (G; VL)

Let G = (V,E) be a directed graph with vertices colored either black or white. We
now review the concept of color change rule [97]: if v is a black vertex in G with
exactly one white out-neighbor u, then we change the color of u to black, and write
v
c−→ u. Such a color change is called a force. A subset C of V is called a coloring set if

the vertices in C are initially colored black and those in V \ C initially colored white.
Given a coloring set C ⊆ V , the derived set D(C) is the set of black vertices obtained
after repeated application of the color change rule, until no more changes are possible.
It was shown in [97] that the derived set is indeed uniquely defined, in the sense that
it does not depend on the order in which the color changes are applied to the original
coloring set C. A coloring set C ⊆ V is called a zero forcing set for G if D(C) = V .

It was shown in [30] that controllability of (G;VL) can be characterized in terms
of zero forcing sets.

Proposition 4.2. Let G = (V,E) be a directed graph and VL ⊆ V be the leader set.
Then, (G;VL) is controllable if and only if VL is a zero forcing set.

4.2.4 Balancing set and controllability of (G(W ); VL)

Consider the weighted graph G(W ) = (V,E,W ) associated with the directed graph
G = (V,E) and weighted adjacency matrix W ∈ W(G). For i = 1, . . . , n, let xi be a
variable assigned to vertex i. For a given subset of vertices C ⊆ V we put xj = 0
for all j ∈ C. We call C the set of zero vertices. The values of the other vertices of
G(W ) are initially undetermined. To every vertex j ∈ C, we assign a so called balance
equation: ∑

k∈NV \C({j})

xkWkj = 0. (4.3)

Note that for weighted undirected graphs, in which case W = W>, the balance
equation (4.3) coincides with the one introduced in [50]. If for a given subset X of
the set of zero vertices C, the system of |X| balance equations corresponding to the
vertices in X implies that xk = 0 for all k ∈ Y with C ∩ Y = ∅, we say that zeros
extend from X to Y . We denote this by X z−→ Y . The updated set of zero vertices is
now defined as C ′ = C ∪ Y .

This one step procedure of making the values of possibly additional vertices equal
to zero is called the zero extension rule. We define the derived set Dz(C) to be the
set of zero vertices obtained after repeated application of the zero extension rule until
no more zero vertices appear. Although not explicitly stated in [50], it can be shown
that the derived set is uniquely defined, in the sense that it does not depend on the
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particular zero extensions that are applied to the original set of zero vertices C. An
initial zero vertex set C ⊆ V is called a balancing set if the derived set Dz(C) is V .

A necessary and sufficient condition for strong structural controllability with
respect to QW (G) for the special case that W = WT was given in [50]:

Proposition 4.3. Let G be a simple undirected graph, VL ⊆ V be the leader set and
W ∈ W(G) be a weighted adjacency matrix with W = W>. Then (G(W );VL) is
controllable if and only if VL is a balancing set.

4.3 Problem formulation
In this section we will introduce the main problem to be considered in this chapter.
At the end of the section, we will also formulate two preliminary results that will be
needed in the sequel. In order to proceed, we will now first formalize the constraint
that the weights of a priori given edges in the network graph are equal. This is
equivalent to saying that given off-diagonal entries in the matrices belonging to the
qualitative class Q(G) are equal. To do this, we introduce a partition

π = {E1, . . . , Ek}

of the edge set E into disjoint subsets Er whose union is the entire edge set E. The
edges in a given cell Er are constrained to have identical weights. We then define the
colored qualitative class associated with π by

Qπ(G) = {A ∈ Q(G) | Aij = Akl if (j, i), (l, k) ∈ Er for some r}.

In order to visualize the partition π of the edge set in the graph, two edges in
the same cell Er are said to have the same color. The colors will be denoted by the
symbols c1, c2, . . . , ck and the edges in cell Er are said to have color cr. This leads
to the notion of colored graph. A colored graph is a directed graph together with a
partition π of the edge set, which is denoted by G(π) = (V,E, π).

In the sequel, sometimes the symbols ci will also be used to denote independent
nonzero variables. A set of real values obtained by assigning to each of these variables
ci a particular real value is called a realization of the color set.

Example 4.1. Consider the colored graph G(π) = (V,E, π) associated with the
directed graph G = (V,E) and edge partition π = {E1, E2, E3}, where E1 =
{(1, 4), (1, 6)}, E2 = {(2, 4), (2, 5)} and E3 = {(3, 5), (3, 6)} as depicted in Figure 4.1.
Edges having the same color means that the weight of these edges are constrained to
be equal. In this example, the edges in E1 have color c1 (blue), those in E2 have color
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c2 (green), and those in E3 have color c3 (red). The corresponding colored qualitative
class consists of all matrices of the form

λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
c1 c2 0 λ4 0 0
0 c2 c3 c1 λ5 c3
c1 0 c3 0 0 λ6


where λi is an arbitrary real number for i = 1, . . . , 6 and ci is an arbitrary nonzero
real number for i = 1, 2, 3.

1

2 3

4 5 6

c2 c2 c3 c3

c1c1

c1 c3

Figure 4.1: Example of a colored directed graph with its leader set.

Given a colored directed graph G(π) = (V,E, π) with edge partition π = {E1, . . . , Ek},
we define the corresponding family of weighted adjacency matrices

Wπ(G) :={W ∈ W(G) |Wij = Wkl if (j, i), (l, k) ∈ Er for some r}.

Note that any weighted adjacency matrix W ∈ Wπ(G) is associated with a unique
realization of the color set. Obviously, the colored qualitative class Qπ(G) is equal to
the union of all the subclasses QW (G) with W ∈ Wπ(G), i.e,

Qπ(G) =
⋃

W∈Wπ(G)

QW (G). (4.4)

If (G;VL) is controllable with respect to Q′ = Qπ(G) (see Definition 4.1) we will
simply say that (G(π);VL) is controllable. In that case, we call the system colored
strongly structurally controllable. For example, the system with graph depicted in
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Figure 4.1 is colored strongly structurally controllable as will be shown later in this
chapter.

The aim of this chapter is to establish graph theoretic tests for colored strong
structural controllability of a given graph. In order to obtain these, we now first make
the observation that conditions for strong structural controllability can be expressed in
terms of balancing sets. Generalizing Proposition 4.3 to the case of weighted directed
graphs, we have the following lemma:

Lemma 4.4. Let G = (V,E) be a directed graph with leader set VL and let W ∈ W(G).
Then (G(W );VL) is controllable if and only if VL is a balancing set.

Proof. By the Hautus test [98], (G(W );VL) is controllable if and only if
[
A− λI B

]
has full row rank for all A ∈ QW (G) and all λ ∈ C with B = B(V ;VL) given by (4.2).
Let V = {1, . . . , n}.

We first prove the ‘if’ part. Suppose that VL is a balancing set for G(W ). Without
loss of generality, we may assume that there is a chronological list of zero extensions

(C1
z−→ Y1, . . . , Cs

z−→ Ys),

where, for r = 1, . . . , s, Cr represents the current set of zero vertices before the rth
zero extension and Yr ⊆ V \ Cr, and Cs ∪ Ys = V . Assign variables x1, . . . , xn to
every vertex in V , with xi = 0 if i ∈ Cr and xi undetermined otherwise. To every
vertex j ∈ Cr, we then assign a balance equation given by (4.3). By definition of the
zero extension rule, we have the following implications

x>V \CiWV \Ci,Ci = 0 ⇒ x>Yi = 0 for i = 1, . . . , s. (4.5)

For any A ∈ QW (G) and λ ∈ C, there exists a diagonal matrix D ∈ Cn×n such that
A− λI = W +D. It then follows immediately that

(A− λI)V \Ci,Ci = WV \Ci,Ci for i = 1, . . . , s.

Recalling (4.5), we have that

x>V \Ci(A− λI)V \Ci,Ci = 0 ⇒ x>Yi = 0 for i = 1, . . . , s.

Since x>B = 0 ⇒ x>VL = 0 and VL ∪ (
⋃s
j=1 Yj) = V , we then have that

x>
[
A− λI B

]
= 0 ⇒ x> = 0

which implies that
[
A− λI B

]
has full row rank. Since the A and λ are arbitrary,

(G(W );VL) is controllable. Thus we have proved the ‘if’ part.
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To prove the converse, suppose that (G(W );VL) is controllable while VL is not
a balancing set. It follows immediately that

[
A− λI B

]
has full row rank for all

A ∈ QW (G) and all λ ∈ C, with B = B(V ;VL) given by (4.2), and the derived set
D = Dz(VL) is not equal to V . Again assign variables xi to the vertices i ∈ V such
that xi = 0 if i ∈ D and xi is undetermined otherwise. Let D′ = V \D. By definition
of the zero extension rule, we conclude that there exists a vector x such that xD = 0,
xD′ 6= 0 and x>W = 0, where xD and xD′ are the sub-vectors corresponding to
the components in D and D′, respectively. Recalling that VL ⊆ D , it follows that
x>
[
W B

]
= 0. This implies that the matrix [W B] does not have full row rank.

Thus we have reached a contradiction and the proof is completed. �
The following lemma follows immediately from Lemma 4.4 by noting that (4.4) holds.

Lemma 4.5. Let G = (V,E) be a directed graph with leader set VL and let π be
a partition of the edge set. Then (G(π);VL) is controllable if and only if VL is a
balancing set for all weighted graphs G(W ) = (V,E,W ) with W ∈ Wπ(G).

Obviously, the necessary and sufficient conditions presented in Lemma 4.5 cannot
be verified easily, as the set Wπ(G) contains infinitely many elements. Therefore, we
aim at establishing graph theoretic conditions under which (G(π);VL) is controllable.

4.4 Zero forcing sets for colored graphs
In order to provide a graph theoretic condition for colored strong structural controlla-
bility, in this section we introduce a new color change rule and define the corresponding
notion of zero forcing set. To do this, we first consider colored bipartite graphs and
establish a necessary and sufficient graph theoretic condition for nonsingularity of the
associated pattern class.

4.4.1 Colored bipartite graphs
Consider the bipartite graph G = (X,Y,EXY ), where the vertex sets X and Y are
given by X = {x1, . . . , xs} and Y = {y1, . . . , yt}. We will now introduce the notion
of colored bipartite graph. Let πXY = {E1

XY , . . . , E
`
XY } be a partition of the edge set

EXY with associated colors c1, . . . , c`. This partition is used to formalize that certain
entries in the pattern class P(G) are constrained to take identical values. Again, the
edges in a given cell ErXY are said to have the same color. The pattern class of the
colored bipartite graph G(π) = (X,Y,EXY , πXY ) is then defined as the following set
of complex t× s matrices

Pπ(G) =
{
M ∈ P(G) |Mji = Mhg if {xi, yj}, {xg, yh} ∈ ErXY for some r

}
.
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Assume now that |X| = |Y | and let t = |X|. Suppose that p is a perfect matching
of G(π). The spectrum of p is defined to be the set of colors (counting multiplic-
ity) of the edges in p. More specifically, if the perfect matching p is given by
p =

{
{x1, yγ(1)}, . . . , {xt, yγ(t)}

}
, where γ denotes a permutation of (1, . . . , t), and

ci1 , . . . , cit are the respective colors of the edges in p, then the spectrum of p is
{ci1 , . . . , cit} where the same color can appear multiple times.

In addition, we define the sign of the perfect matching p as sign(p) = (−1)m, where
m is the number of swaps needed to obtain (γ(1), . . . , γ(t)) from (1, . . . , t). Since
every perfect matching is associated with a unique permutation, with a slight abuse
of notation, we sometimes use the perfect matching p to represent its corresponding
permutation.

Two perfect matchings are called equivalent if they have the same spectrum.
Obviously this yields a partition of the set of all perfect matchings of G(π) into
equivalence classes of perfect matchings. We denote these equivalence classes of
perfect matchings by P1, . . . ,Pl, where perfect matchings in the same class Pi are
equivalent. Clearly, Pi ∩ Pj = ∅ for i 6= j. Correspondingly, we then define the
spectrum of the equivalence class Pi to be the (common) spectrum of the perfect
matchings in this class, and denote it by spec(Pi). Finally, we define the signature
of the equivalence class Pi to be the sum of the signs of all perfect matchings in this
class, which is given by

sgn(Pi) =
∑
p∈Pi

sign(p).

Example 4.2. Consider the colored bipartite graph G(π) depicted in Figure 4.2a. It
contains three perfect matchings, p1, p2 and p3, respectively, depicted in Figures 4.2b-
4.2d. Clearly, p1 and p3 are equivalent. The equivalence classes of perfect matchings
are then P1 = {p1, p3} and P2 = {p2}. Clearly, sgn(P1) = 0 and sgn(P2) = −1.

We are now ready to state a necessary and sufficient condition for nonsingularity
of all matrices in the colored pattern class Pπ(G).

Theorem 4.6. Let G(π) = (X,Y,EXY , πXY ) be a colored bipartite graph and |X| =
|Y |. Then, all matrices in Pπ(G) are nonsingular if and only if there exists at least one
perfect matching and exactly one equivalence class of perfect matchings has nonzero
signature.

Proof. Denote the cardinality of X and Y by t. Let A ∈ Pπ(G). By the Leibniz
Formula for the determinant, we have

det(A) =
∑
γ

sign(γ)
t∏
i=1

Aiγ(i),
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(a) Colored bipartite graph G(π).
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(b) Perfect matching p1 with sign(p1) = 1.
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(c) Perfect matching p2 with sign(p2) = −1.
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(d) Perfect matching p3 with sign(p3) = −1.

Figure 4.2: Example of a colored bipartite graph and its perfect matchings.

where the sum ranges over all permutations γ of (1, . . . , t) and where sign(γ) = (−1)m
with m the number of swaps needed to obtain (γ(1), . . . , γ(t)) from (1, . . . , t). Note
that

∏t
i=1 Aiγ(i) 6= 0 if and only if there exists at least one perfect matching p =

{{x1, yγ(1)}, . . . , {x|X|, yγ(t)}} in G(π). In that case, we have

det(A) =
∑
p

sign(p)
t∏
i=1

Aip(i),

where p ranges over all perfect matchings and sign(p) denotes the sign of the perfect
matching (we now identify perfect matchings with their permutations). Suppose now
there are l equivalence classes of perfect matchings P1, . . . ,Pl. Then we obtain

det(A) =
l∑

j=1

(
sgn(Pj)

t∏
i=1

Aip(i)

)
, (4.6)

where, for j = 1, 2, . . . l, in the product appearing in the jth term, p is an arbitrary
matching in Pj . We will now prove the ‘if’ part. Assume that there exists at least
one perfect matching, and exactly one equivalence class of perfect matchings has
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nonzero signature. Without loss of generality, assume that the equivalence class P1
has nonzero signature. Obviously, for every A ∈ Pπ(G), we then have

det(A) = sgn(P1)
t∏
i=1

Aip(i) 6= 0,

where p ∈ P1 is arbitrary, in other words, every A ∈ Pπ(G) is nonsingular.
Next, we prove the ‘only if’ part. For this, assume that all A ∈ Pπ(G) are

nonsingular, but one of the following holds:

(i) There does not exist any perfect matching.

(ii) No equivalence class of perfect matchings with nonzero signature exists.

(iii) There exist at least two equivalence classes of perfect matchings with nonzero
signature.

We will show that all these cases lead to a contradiction.
In case (i), we must obviously have det(A) = 0 for any A ∈ Pπ(G) which gives a

contradiction. For case (ii), it follows from (4.6) that det(A) = 0 since all equivalence
classes have zero signature. Therefore, we reach a contradiction again. Finally, consider
case (iii). Without loss of generality, assume P1 and P2 have nonzero signature. The
signatures of the remaining equivalence classes can be either zero or nonzero. In the
sequel we associate the colors c1, . . . , c` of the cells E1

XY , . . . E
`
XY with independent,

nonzero, variables c1, . . . , c` that can take values in C. The spectrum of an equivalence
class Pj then uniquely determines a monomial ci11 c

i2
2 . . . ci`` , where the powers i1, . . . ik

correspond to the multiplicities of the colors c1, . . . , c` in the perfect matchings in Pj .
We also identify each entry of a matrix A in Pπ(G) with the color of its corresponding
edge. In particular, for such A we have

Aij =
{
cr if (j, i) ∈ Er for some r
0 otherwise.

From the expression (4.6) for the determinant of A it can be seen that the perfect
matchings in the equivalence class Pj yield a contribution sgn(Pj)ci11 c

i2
2 . . . ci`` , where

the degrees correspond to the multiplicities of the colors of the perfect matchings in
Pj . By assumption we have that spec(P1) and spec(P2) are not equal. Without loss of
generality, we assume that the multiplicity of c1 as an element of spec(P1) is unequal
to the multiplicity of c1 as an element of spec(P2). Denote these multiplicities by j1
and j2, respectively, with j1 6= j2. Then for all values of c2, . . . , c`, the determinant of
A has the form

det(A) = sgn(P1)a1c
j1
1 + sgn(P2)a2c

j2
1 + f(c1), (4.7)
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where a1 and a2 depend on c2, . . . , ck and f(c1) is a polynomial in c1. The polynomial
f(c1) corresponds to the remaining equivalence classes. It can happen that some of
these equivalence classes also contain the color c1 in their spectrum with multiplicity
j1 or j2. By moving the corresponding monomials to the first two terms in (4.7) we
obtain

det(A) = b1c
j1
1 + b2c

j2
1 + f ′(c1), (4.8)

with b1 and b2 depending on c2, . . . , ck. Note that the first term in (4.8) corresponds
to the equivalence classes containing c1 in their spectrum with multiplicity j1, and
likewise the second term with multiplicity j2. The remaining polynomial f ′(c1) does
not contain monomials with cj1

1 and cj2
1 . It is now easily verified that nonzero c2, . . . , c`

can be chosen such that b1 6= 0 and b2 6= 0. By the fundamental theorem of algebra
we then have that the polynomial equation b1c

j1
1 + b2c

j2
1 + f ′(c1) = 0 has at least one

nonzero root, since both b1 and b2 are nonzero. This implies that for some choice
of nonzero complex values c1, . . . , c` we have det(A) = 0. In other words, not all
A ∈ Pπ(G) are nonsingular. This is a contradiction. �

Example 4.3. Revisit the colored bipartite graph in Figure 4.2a. The corresponding
pattern class consists of all matrices of the formc2 c2 c2

c2 c1 0
c3 0 c3


where c1, c2 and c3 are arbitrary nonzero complex numbers. In Example 4.2 we saw
that there is exactly one equivalence class of perfect matchings with nonzero signature.
By Theorem 8 we thus conclude that all these matrices are nonsingular.

4.4.2 Color change rule and zero forcing sets

In this subsection, we will introduce a tailor-made zero forcing notion for colored
graphs. Let G(π) = (V,E, π) be a colored directed graph with π = {E1, . . . , Ek} the
partition of E. For given disjoint subsets X = {x1, . . . , xs} and Y = {y1, . . . , yt} of V ,
we define an associated colored bipartite graph G(π) = (X,Y,EXY , πXY ) as follows:

EXY := {{xi, yj} | (xi, yj) ∈ E, xi ∈ X, yj ∈ Y }.

Obviously, the partition π induces a partition πXY of EXY by defining

ErXY := {{xi, yj} ∈ EXY | (xi, yj) ∈ Er} r = 1, . . . , k.
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Note that for some r, this set might be empty. Removing these, we get a partition

πXY = {Ei1XY , . . . , E
i`
XY }

of EXY , with associated colors ci1 , . . . , ci` , with ` 6 k. Without loss of generality we
renumber ci1 , . . . , ci` as c1, . . . , c` and the edges in cell ErXY are said to have color cr.

As before, a subset C of V is called a coloring set if the vertices in C are initially
colored black and those in V \C initially colored white. We will now define the notion
of color-perfect white neighbor.

Definition 4.7. Let X ⊆ C and Y ⊆ V with |Y | = |X|. We call Y a color-perfect
white neighbor of X if

1. Y = NV \C(X), i.e. Y is equal to the set of white out-neighbors of X, and

2. in the associated colored bipartite graph G = (X,Y,EXY , πXY ) there exists a
perfect matching and exactly one equivalence class of perfect matchings has
nonzero signature.

Based on the notion of color-perfect white neighbor, we now introduce the following
color change rule: if X ⊆ C and Y is a color-perfect white neighbor of X, then we
change the color of all vertices in Y to black, and write X c−→Y . Such a color change
is called a force. We define a derived set Dc(C) as a set of black vertices obtained
after repeated application of the color change rule, until no more changes are possible.
In contrast with the original color change rule (see Section 4.2.3), under our new
color change rule derived sets will no longer be uniquely defined, and may depend
on the particular list of forces that is applied to the original coloring set C. This is
illustrated by the following example.

Example 4.4. Consider the colored graph G(π) = (V,E, π) depicted in Figure 4.3a.
Take as coloring set C = {1, 2, 3, 4, 5}. Consider the colored bipartite graph G =
(X,Y,EXY , πXY ) associated with X = {1, 2, 3, 4} and Y = {6, 7, 8, 9} as is depicted
in Figure 4.3b. It can be shown that there exists exactly one equivalence class of
perfect matchings in G with nonzero signature. Since X ⊂ C and Y = NV \C(X), we
have that X c−→ Y . After applying this force we arrive at the derived set D1(C) = V .

On the other hand, obviously X1
c−→ Y1, with X1 = {5} and Y1 = {6}. After

applying this force, no other forces are possible. Indeed, it can be verified that there
does not exist a subset of {1, 2, 3, 4, 5, 6} that forces any subset of {7, 8, 9}. In this
way we arrive at the derived set D2(C) = {1, . . . , 6}.

We conclude that there exist two different derived sets in G(π) with coloring set
C. Thus we have found an example for the non-uniqueness of derived sets for a given
colored graph and coloring set.
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(b) Colored bipartite graph G.

Figure 4.3: Example of non-uniqueness of derived sets.

A coloring set C ⊆ V is called a zero forcing set for G(π) if there exits a derived
set Dc(C) such that Dc(C) = V .

Before illustrating the new color change rule, we remark on its relation to the one
defined earlier.

Remark 4.1. Given a directed graph G = (V,E), one can obtain a colored graph
G(π) = (V,E, π) by assigning to every edge a different color, i.e., |π| = |E|. Clearly,
the colored qualitative class Qπ(G) coincides with the qualitative class Q(G). In
addition, the original color change rule for G introduced in Section 4.2.3 can be seen
to be a special case of the new one for G(π). This observation in mind, we will use
the same terminology for these two color change rules and it will be clear from the
context which one is employed.

We now illustrate the new color change rule by means of an example.

Example 4.5. Figure 4.4 illustrates the repeated application of zero forcing in the
context of colored graphs. In Figure 4.4a, initially, vertices {1, 2, 3} are black and the
remaining vertices are white. As shown in Example 4.2, {4, 5, 6} is a color-perfect white
neighbor of {1, 2, 3}. Therefore, we have {1, 2, 3} c−→ {4, 5, 6} as shown in Figure 4.4b.
Next, observe that the colored bipartite graph associated with X = {4, 5, 6} and
Y = {7, 8, 9} has two perfect matchings, with identical spectrum and the same sign 1.
Hence the single equivalence class has signature 2. As such, {7, 8, 9} is a color-perfect
white neighbor of {4, 5, 6}. Therefore, we have {4, 5, 6} c−→ {7, 8, 9} as shown in
Figure 4.4c. Consequently, we conclude that the vertex set {1, 2, 3} is a zero forcing
set for G(π).

Next, we explore the relationship between zero forcing sets and controllability of
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(b) {1, 2, 3} c−→ {4, 5, 6}.
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(c) {4, 5, 6} c−→ {7, 8, 9}..

Figure 4.4: Example of a zero forcing set of a given colored graph.

(G(π);VL). First we show that color changes do not affect the property of controllability.
This is stated in the following theorem.

Theorem 4.8. Let G(π) be a colored directed graph and let C ⊆ V be a coloring set.
Suppose that X c−→ Y with X ⊆ C and Y ⊆ V \ C. Then, (G(π);C) is controllable if
and only if (G(π);C ∪ Y ) is controllable.

Proof. Due to Lemma 4.5, it suffices to show that Dz(C) = V if and only if



4.4. Zero forcing sets for colored graphs 73

Dz(C ∪ Y ) = V for all weighted graphs G(W ) = (V,E,W ) with W ∈ Wπ(G). Here,
C and C ∪ Y are taken as zero vertex sets.

Let W ∈ Wπ(G) and G(W ) = (V,E,W ). By definition of the color change
rule, X c−→ Y means that Y = NV \C(X) and there exists exactly one equivalence
class of perfect matchings with nonzero signature in the colored bipartite graph
G = (X,Y,EXY , πXY ). By applying Theorem 4.6 we then find that all matrices in
the pattern class of G are nonsingular. Now, let x1, . . . , xn be variables assigned to
the vertices in V , with xj = 0 for j ∈ C and xj undetermined for the remaining
vertices. For the vertices j ∈ C, consider the balance equations (4.3). By the fact
that Wkj = 0 for all k ∈ V \ C with k /∈ NV \C({j}), the system of balance equations
(4.3) for the vertices j ∈ X can be written as

x>YWY,X = 0. (4.9)

We now observe that the submatrix WY,X of W belongs to the pattern class of G.
Using the fact that all matrices in this pattern class are nonsingular, we obtain that
x>Y = 0. By the definition of the zero extension rule, we have that X z−→ Y for G(W )
with the set of zero vertices C. It then follows immediately that C ∪ Y ⊆ Dz(C) and
thus Dz(C ∪ Y ) = Dz(C). As a consequence, C is a balancing set for G(W ) if and
only if C ∪ Y is a balancing set for G(W ). Since this holds for arbitary choice of W
in Wπ(G), the result follows immediately from Lemma 6.

�

By Theorem 4.8, colored strong structural controllability is invariant under appli-
cation of the color change rule. We then obtain the following corollary.

Corollary 4.9. Let G(π) be a colored directed graph, let VL ⊆ V be a leader set and let
Dc(VL) be a derived set. Then (G(π);VL) is controllable if and only if (G(π);Dc(VL))
is controllable.

As an immediate consequence of Corollary 4.9 we arrive at the main result of
this section which provides sufficient graph theoretic condition for controllability of
(G(π);VL).

Theorem 4.10. Let G(π) = (V,E, π) be a colored directed graph with leader set
VL ⊆ V . If VL is a zero forcing set, then (G(π);VL) is controllable.

Proof. The proof follows immediately from Corollary 4.9 and the fact that, trivially,
(G(π);V ) is controllable. �

To conclude this section, we will provide a counter example to show that the
condition in Theorem 4.10 is not a necessary condition.
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Example 4.6. Consider the colored graph G(π) depicted in Figure 4.5 with leader
set VL = {1, 2}. It will turn out that (G(π);VL) is controllable because VL is a
balancing set for all weighted graphs G(W ) = (V,E,W ) with W ∈ Wπ(G) Yet, VL
is not a zero forcing set. Clearly, since none of the subsets {1, 2}, {1} and {2} have
color-perfect white neighbors, there does not exist a derived set Dc(VL) that equals
V . Hence VL is not a zero forcing set. We will show that, however, (G(π);VL) is
controllable. Due to Lemma 4.5, it is sufficient to show that VL is a balancing set for
all weighted graphs G(W ) with W ∈ Wπ(G). To do this, let W ∈ Wπ(G) correspond
to a realization {c1, c2} of the color set, with c1 and c2 nonzero real numbers. Assign
variables x1, . . . , x5 to the vertices in V . Let x1 = x2 = 0 and let x3, x4 and x5 be
undetermined. The system of balance equations (4.3) for the vertices 1 and 2 in VL is
then given by

c1x3 + c1x4 = 0,
c2x3 + c2x4 + c1x5 = 0.

(4.10)

Since c1 6= 0 and c2 6= 0, the homogeneous system (4.10) is equivalent to the system

c1x3 + c1x4 = 0,
c1x5 = 0,

(4.11)

which yields x5 = 0. By the definition of the zero extension rule, we therefore have
{1, 2} z−→ {5}. Repeated application of the zero extension rule yields that VL is a
balancing set. Since the matrix W ∈ Wπ(G) was taken arbitrary, we conclude that
VL is a balancing set for all weighted graphs G(W ) with W ∈ Wπ(G). Thus we have
found a counter example for the necessity of the condition in Theorem 4.10.

1 2

3 4 5

c2

c1

c1c2

c2
c1

c1c1

Figure 4.5: Example to show that the condition in Theorem 4.10 is not necessary.

Remark 4.2. In this remark we provide some intuition on why the colored graph of
Example 4.6 leads to a controllable system, while VL = {1, 2} is not a zero forcing set
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for G(π). The main observation is that the balance equations (4.10) are equivalent
to the equations (4.11), which correspond to a new colored graph G′(π) in which
the edges (2, 3) and (2, 4) have been removed. In other words, we see that VL is a
balancing set for all weighted graphs associated with G(π) if and only if the same
holds for G′(π). Since VL is a zero forcing set for the new graph G′(π), we have that
(G′(π), VL) is controllable, so also (G(π), VL) is controllable. In fact, we will generalize
this idea in the next section.

4.5 Elementary edge operations and derived col-
ored graphs

In the previous section, in Theorem 4.10, we have established a sufficient condition
for colored strong structural controllability. In the present section we will establish
another sufficient graph theoretic condition. This new condition is based on the
so-called elementary edge operations. These are operations that can be performed on
the original colored graph, and that preserve colored strong structural controllability.
These edge operations on the graph are motivated by the observation that elementary
operations on the systems of balance equations appearing in the zero extension rule do
not modify the set of solutions to these linear equations. Indeed, in Example 4.6, we
have verified that {1, 2} z−→ {5} for all weighted graphs G(W ) with W ∈ Wπ(G). As
explained in Remark 4.2, this is due to the fact that the system of balance equations
(4.10) is equivalent to (4.11), implying that x5 = 0 for all nonzero values c1 and c2. To
generalize and visualize this idea on the level of the colored graph, we now introduce
the following two types of elementary edge operations.

Let C ⊆ V be a coloring set, i.e., the set of vertices initially colored black. The
complement V \C is the set of white vertices. For two vertices u, v ∈ C (where u and
v can be the same vertex), we define

Eu(v) := {(v, j) ∈ E | j ∈ NV \C(u)}

as the subset of all edges between v and white out-neighbors of u. We now introduce
the following two elementary edge operations:

1. (Turn color) If all edges in Eu(u) have the same color, say ci, then change the
color of these edges to any other color in the color set.

2. (Remove edges) Assume NV \C(u) ⊆ NV \C(v). If for any k ∈ NV \C(u), the two
edges (u, k) and (v, k) have the same color, then remove all edges in Eu(v).

The above elementary edge operations can be applied sequentially and, obviously,
will not introduce new colors or add new edges. In the sequel, we will denote an
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edge operation by the symbol o. Applying the edge operation o to G(π), we obtain a
new colored graph G′(π′) = (V,E′, π′). We then call G′(π′) a derived graph of G(π)
associated with C and o. We denote such derived graph by G(π,C, o). An application
of a sequence of elementary edge operations is illustrated in the following example.

Example 4.7. For the colored graph G(π) = (V,E, π) depicted in Figure 4.6a, let
C = {1, 2} be the coloring set. For the vertex 1 ∈ C, we have E1(1) = {(1, 3), (1, 4)} in
which both edges have the same color c1. We apply the turn color operation to change
the colors of (1, 3) and (1, 4) to c2. Denote this operation by o1. We then obtain the
derived colored graph G(π,C, o1) of G(π) with respect to C and o1, which is denoted
by G1(π1) and shown in Figure 4.6b. In addition, for the vertices 1 and 2 in G1(π1),
we have NV \C(1) ⊆ NV \C(2), where NV \C(1) = {3, 4} and NV \C(2) = {3, 4, 5}.
Besides, for any k ∈ NV \C(1), the two edges (1, k) and (2, k) have the same color.
Performing the edge removal operation denoted by o2, we then remove all the edges
in E1(2) = {(2, 3), (2, 4)}. Thus we obtain the derived colored graph G1(π1, C, o2)
of G1(π1) with respect to C and o2, which is denoted by G2(π2) and depicted in
Figure 4.6c.

Each elementary edge operation o corresponds to a single vertex u ∈ C or a pair
of vertices u, v ∈ C. In the sequel we will denote this subset of C corresponding to
o by C(o). Thus, C(o) is either a singleton containing one vertex or a subset of V
consisting of two vertices.

Next, we study the relationship between elementary edge operations and control-
lability of (G(π);VL). We first show that elementary edge operations preserve zero
extension. This issue is addressed in the following lemma.

Lemma 4.11. Let G(π) be a colored directed graph and C be a coloring set. Let o
represent an edge operation and let G′(π′) = G(π,C, o) be a derived graph with respect
to C and o. Let W ∈ Wπ(G) be a weighted adjacency matrix and let W ′ ∈ Wπ′(G′)
be the corresponding matrix associated with the same realization of the colors. Let
X ⊆ C \ C(o) and define X ′ := C(o) ∪X. Then, interpreting C as the set of zero
vertices, for any Y ⊆ V we have X ′ z−→ Y in the weighted graph G(W ) if and only if
X ′

z−→ Y in the weighted graph G′(W ′).

Proof. By suitably relabeling the vertices, we may assume that W has the form

W =

W1,1 . . . W1,6
...

. . .
...

W6,1 . . . W6,6

 ,
where the first row block corresponds to the vertices indexed by C(o), the second
row block corresponds to the vertices indexed by X, the third row block corresponds
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(a) Initial colored graph G(π) = (V,E, π).
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(b) Derived colored graph G1(π1) = G(π,C, o1) where o1 represents
‘turning the colors of (1, 3) and (1, 4) to c2’.
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(c) Derived colored graph G2(π2) = G1(π1, C, o2) where o2 represents
‘removing all the edges in E1(2) = {(2, 3), (2, 4)}’.

Figure 4.6: Example of performing elementary edge operations.

to the vertices indexed by C \X ′, the fourth row block corresponds to the vertices
indexed by NV \C(C(o)), the fifth row block corresponds to the vertices indexed by
NV \C(X ′) \NV \C(C(o)) and the last row block corresponds to the remaining white
vertices. The column blocks of W result from the same labeling. Correspondingly,
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the matrix W ′ must then be equal to

W ′ =



W1,1 W1,2 . . . W1,6
W2,1 W2,2 . . . W2,6
W3,1 W3,2 . . . W3,6
W ′4,1 W4,2 . . . W4,6
W5,1 W5,2 . . . W5,6
W6,1 W6,2 . . . W6,6


.

for some matrix W ′4,1. Since the fourth and fifth row blocks correspond to the vertices
indexed by NV \C(C(o)) and NV \C(X ′) \NV \C(C(o)), respectively, it follows easily
that

W5,1 = 0, W6,1 = 0 and W6,2 = 0

Consider the submatrices

WNV \C(X′),X′ =
[
W4,1 W4,2

0 W5,2

]
and W ′NV \C(X′),X′ =

[
W ′4,1 W4,2

0 W5,2

]
of W and W ′, respectively. We then distinguish two cases:

(1) Suppose the edge operation o represents a color turn operation. In that case,
C(o) only contains one vertex, in other words, both W4,1 and W ′4,1 consist of
only one column. Hence, it follows that W ′4,1 = αW4,1 for a suitable nonzero
real number α.

(2) Suppose the edge operation o represents an edge removal operation. In that
case C(o) contains two vertices, say u and v, and both W4,1 and W ′4,1 consist of
two columns. We may assume that u and v correspond to the first and second
column of these matrices, respectively, and the edges in Eu(v) are removed. This
implies that

W ′4,1 = W4,1

[
1 −1
0 1

]
.

Clearly, WNV \C(X′),X′ and W ′NV \C(X′),X′ are column equivalent. Next, again assign
variables x1, . . . , xn to every vertex in V , where xi is equal to 0 if i ∈ C and otherwise
undetermined. For the vertex j ∈ C we consider the balance equation (4.3). By the
fact that Wkj = 0 for all k ∈ V \C with k /∈ NV \C({j}) and NV \C({j}) ⊆ NV \C(X ′),
the balance equation (4.3) is equivalent to∑

k∈NV \C(X′)

xkWkj = 0. (4.12)
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Again using the notation for the submatrix WNV \C(X′),X′ and subvector xNV \C(X′),
we can rewrite the system of balance equations (4.12) for j ∈ X ′ as

x>NV \C(X′)WNV \C(X′),X′ = 0. (4.13)

Similarly, for the graph G′(W ′), we obtain the following system of balance equations
for j ∈ X ′:

x>NV \C(X′)W
′
NV \C(X′),X′ = 0. (4.14)

Since W ′NV \C(X′),X′ and WNV \C(X′),X′ are column equivalent, the solution sets of
(4.13) and (4.14) coincide. By definition of the zero extension rule we therefore have
that, for any vertex set Y , X ′ z−→ Y in G(W ) if and only if X ′ z−→ Y in G′(W ′). This
completes the proof. �

It follows from the previous that colored strong structural controllability is pre-
served under elementary edge operations. Indeed, we have

Theorem 4.12. Let G(π) be a colored directed graph, VL ⊆ V be a leader set, and o
an elementary edge operation. Let G′(π′) = G(π, VL, o) be a derived colored graph of
G(π) with respect to VL and o. Then we have that (G(π);VL) is controllable if and
only if (G′(π′);VL) is controllable.

Proof. The proof follows from Lemma 4.5 and Lemma 4.11. �

As an immediate consequence of Theorem 4.12 and Theorem 4.10 we see that
if the leader set VL of the original colored graph G(π) is a zero forcing set for the
derived graph G′(π′) = G(π, VL, o), then (G(π);VL) is controllable. Obviously, this
result can be readily extended to derived graphs obtained by applying not only one,
but a finite sequence of edge operations.

This immediately leads to the following sufficient graph theoretic condition for
controllability of (G(π);VL).

Corollary 4.13. Let G(π) be a colored directed graph and let VL be a leader set.
Let G′(π′) be a colored graph obtained by applying finitely many elementary edge
operations. Then (G(π), VL) is controllable if VL is a zero forcing set for G′(π′).

Example 4.8. We now apply Corollary 4.13 to the colored graph depicted in Fig-
ure 4.5. We already saw that VL = {1, 2} is not a zero forcing set, but we showed
that we do have strong structural controllability for this colored graph. This can now
also be shown graph theoretically by means of Corollary 4.13: the leader set VL is a
zero forcing set for the derived graph in Figure 4.6c, so the original colored graph in
Figure 4.6a yields a controllable system.
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By combining Theorem 4.12 and Corollary 4.9 we are now in the position to
establish yet another procedure for checking controllability of a given colored graph
(G(π);VL). First, distinguish the following two steps:

1. As the first step, apply the color change operation to compute a derived set
Dc(VL). If this derived set is equal to V we have controllability. If not, we can
not yet decide whether we have controllability or not.

2. As a next step, then, apply an edge operation o to G(π) to obtain G1(π1), where
G1(π1) = G(π,Dc(VL), o) is a derived graph of G(π) with coloring set Dc(VL)
and edge operation o.

By Theorem 4.12 and Corollary 4.9, it is straightforward to verify that (G(π);VL) is
controllable if and only if (G1(π1);Dc(VL)) is controllable.

We can now repeat steps 1 and 2, applying them to G1(π1). Successive and
alternating application of these two steps transforms the original leader set VL using
several color change operations associated with the several derived graphs appearing
in the process. After finitely many iterations we thus arrive at a so called edge-
operations-color-change derived set of VL, that will be denoted by Dec(C). This set
will remain unchanged in case we again apply step 1 or step 2. Since controllability
is preserved, we arrive at the following theorem which gives yet another sufficient
condition for colored strong structural controllability.

Theorem 4.14. Let G(π) be a colored directed graph and let VL ⊆ V be a leader set.
Let Dec(VL) be an edge-operations-color-change derived set of VL. We then have that
(G(π);VL) is controllable if Dec(VL) = V .

Remark 4.3. Obviously, a derived set Dc(VL) of VL in G(π) is always contained
in an edge-operations-color-change derived set Dec(VL) of VL. Hence the condition
in Theorem 4.14 is weaker than the conditions in Theorem 4.10 and Corollary 4.13.
However, note that Dec(VL) equal to V is still not necessary for controllability of
(G(π);VL).

We conclude this section by two examples. In the first one, we provide a coun-
terexample in which (G(π);VL) is strongly structurally controllable but Dc(VL) is not
equal to V . In the second example, we illustrate the application of Theorem 4.14 to
check controllability of a given colored graph and leader set.

Example 4.9. Consider the colored graph G(π) = (V,E, π) depicted in Figure 4.7
with VL = {1, 2, 3, 4, 5} the leader set. It will turn out that (G(π);VL) is controllable
because VL is a balancing set for all weighted graphs G(W ) = (V,E,W ) with W ∈
Wπ(G). Yet, it can be checked that Dec(VL) is equal to VL, since no subset of VL
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have color-perfect white neighbors, and no elementary edge operations are possible.
Next, we will show that, however, (G(π);VL) is controllable. Due to Lemma 4.5, it
is sufficient to show that VL is a balancing set for all weighted graphs G(W ) with
W ∈ Wπ(G). To do this, let W ∈ Wπ(G) correspond to a realization {c1, c2, c3} of
the color set, with c1, c2 and c3 nonzero real numbers. Assign variables x1, . . . , x10 to
the vertices in V . Let x1 = · · · = x5 = 0 and let x6, . . . , x10 be undetermined. The
system of balance equations (4.3) for the vertices 1, 2 in VL is then given by

c1x6 + c2x7 = 0,
c3x6 + c2x7 = 0,

(4.15)

and that for the vertices 1, 2 in VL is given by

c1x8 + c2x10 = 0,
c1x8 + c1x9 = 0,
c3x9 + c2x10 = 0.

(4.16)

We then distinguish two cases: c1 6= c3 and c1 = c3. In the case that c1 6= c3, the
solution of system (4.15) is x6 = x7 = 0. By definition of the zero extension rule,
we therefore have {1, 2} z−→ {6, 7}. Subsequently, one can verify that {7} z−→ {9},
{9} z−→ {10} and {3} z−→ {8}. Therefore, VL is a balancing set when c1 6= c3. On the
other hand, consider the case if c1 = c3. The homogeneous system (4.16) is equivalent
to the system [

x8 x9 x10
] c1 c1 0

0 c1 c1
c2 0 c2

 = 0. (4.17)

Since the determinant of the matrix

c1 c1 0
0 c1 c1
c2 0 c2

 is equal to 2c2
1c2, c1 6= 0 and c2 6= 0,

we have that x8 = x9 = x10 = 0. This implies that {3, 4, 5} z−→ {8, 9, 10}. Moreover, it
is obvious that {8} z−→ {7} and {1} z−→ {6}. Hence, the leader set VL is a balancing set
if c1 = c3. As a consequence, we conclude that VL is a balancing set for all weighted
graphs G(W ) with W ∈ Wπ(G), i.e.,(G(π);VL) is controllable.

Example 4.10. Consider the colored graph G(π) = (V,E, π) depicted in Fig-
ure 4.8a with VL = {1, 2, 3} the leader set. To start with, we compute a derived
set Dc(VL) = {1, 2, 3, 4, 5, 6} of VL in G(π) as depicted in Figure 4.8b, and denote it
by D0. For the vertices 5, 4 ∈ D0, in G(π) we have NV \D0(6) = {8, 9} ⊆ NV \D0(4).
Since the edges (6, 8) and (6, 9) have the same color c1, their color can be changed to
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Figure 4.7: A counterexample in which (G(π);VL) is strongly structurally
controllable but Dec(VL) is not equal to V .

any arbitrary color. Here, we change the colors of (6, 8) and (6, 9) to c3. Then, for
any k ∈ NV \D0(4), the two edges (4, k) and (6, k) have the the same color c3. Thus
we remove the edges in E4(6) = {(4, 8), (4, 9)}, and we denote the above two edge
operations by o0. In this way we obtain a derived colored graph G1(π1) = G(π,D0, o0)
of G(π) with respect to D0 and o0, that is depicted in Figure 4.8c. We proceed to
compute a derived set Dc(D0) = {1, 2, 3, 4, 5, 6, 7, 8, 9} of D0 in G1(π1) as shown in
Figure 4.8d and denote this derived set by D1. Since D1 6= V and D1 6= D0, the
procedure will continue. For the vertices 7, 8 ∈ D1 in the graph G1(π1), we have
NV \D1(7) ⊆ NV \D1(8), and for any k ∈ NV \D1(7), the two edges (7, k) and (8, k)
have the same color. Thus we remove the edges in E7(8) = {(8, 10), (8, 11)} and
denote this operation by o1. We then obtain a derived colored graph G2(π2) =
G1(π1,D1, o1) of G1(π1) with respect to D1 and o1, which is depicted in Figure
4.8e. Finally, we compute a derived set Dc(D1) of D1 in G2(π2) as shown in
Figure 4.8f. This derived set is denoted by D2 and turns out to be equal to the
original vertex set V . Thus we obtain that an edge-operations-color-change derived
set Dec(VL) is equal to V , and conclude that (G(π);VL) is controllable.
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4.6 Conclusions
In this chapter, we have studied strong structural controllability of leader/follower
networks. In contrast to existing work, in which the nonzero off-diagonal entries
of matrices in the qualitative class are completely independent, in this chapter, we
have studied the general case that there are equality constraints among these entries,
in the sense that a priori given entries in the system matrix are restricted to take
arbitrary but identical nonzero values. This has been formalized using the concept
of colored graph and by introducing the new concept of colored strong structural
controllability. In order to obtain conditions for colored strong structural controllability
of leader/follower networks, we have introduced a new color change rule and a new
concept of zero forcing set. These have been used to formulate a sufficient condition
for controllability of the colored graph with a given leader set. We have shown that
this condition is not necessary, by giving an example of a colored strong structurally
controllable colored graph and leader set for which our sufficient condition is not
satisfied.

Motivated by this example, we have established the concept of elementary edge
operations on colored graphs. It has been shown that these edge operations preserve
colored strong structural controllability. Based on these elementary edge operations
and the color change rule, a second sufficient graph theoretic condition for colored
strong structural controllability has been provided.

Finally, we have established a condition for colored strong structural controllability
in terms of the new notion of edge-operations-color-change derived set. This derived
set is obtained from the original leader set by applying edge operations and the color
change rule sequentially in an alternating manner. This iterative procedure has been
illustrated through an example.
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(a) Initial colored graph
G(π) = (V,E, π) with coloring set
VL = {1, 2, 3}. Let G0(π0) = G(π).
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(b) Compute a derived set
Dc(VL) = {1, . . . , 6} of VL in G0(π0)

and set D0 = Dc(VL).
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(c) Derived colored graph
G1(π1) = G0(π0,D0, o0) with

D0 = {1, . . . , 6} and o0 representing
‘turning colors of edges (6, 8) and (6, 9)

to c3 and removing edges
(4, 8) and (4, 9)’.
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(d) Compute a derived set
D1 = {1, . . . , 9} of D0 in the colored

graph G1(π1).
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(e) Derived colored graph
G2(π2) = G1(π1,D1, o1) with

D1 = {1, . . . , 9} and o1 representing
‘removing edges (8, 10) and (8, 11)’.
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(f) Compute a derived set D2 = V of
D1 in the colored graph G2(π2). Return

that (G(π);VL) is controllable.

Figure 4.8: Example of application of Theorem 4.14



5 Strong Structural Controllability of
Colored Structured Systems

This chapter deals with strong structural controllability of linear structured systems
in which the system matrices are given by zero/nonzero/arbitrary pattern matrices.
Instead of assuming that the nonzero and arbitrary entries of the system matrices can
take their values completely independently, we allow equality constraints on these
entries, in the sense that a priori given entries in the system matrices are restricted
to take arbitrary but identical values. To formalize this general class of structured
systems, we introduce the concepts of colored pattern matrices and colored structured
systems. These results generalize both the results in Chapter 2 and those in Chapter 4.
In this chapter we will establish both algebraic and graph theoretic conditions for
strong structural controllability of this more general class of structured systems.

5.1 Introduction
For LTI systems of the form

ẋ = Ax+Bu

controllability can be verified using the Kalman rank test or the Hautus test [26].
Often, the exact values of the entries in the matrices A and B are not known, but
only the underlying interconnection structure between the input and state variables is
known exactly. In order to formalize this, Mayeda and Yamada [28] have introduced
a framework in which, instead of a fixed pair of real matrices, only the so-called
zero/nonzero structure of A and B is given. This means that each entry of these
matrices is known to be either a fixed zero or an arbitrary nonzero real number. In
addition, to guarantee the controllability of all possible LTI systems with such a
given zero/nonzero structure, in [28] they introduced the concept of strong structural
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controllability. Since then, many contributions have been made on the topic of strong
structural controllability. (See [29,30,32,40,41,99] and the references therein.)

Roughly speaking, two basic assumptions prevail in the aforementioned literature:
(1) each entry of the system matrices is either a fixed zero or an arbitrary nonzero
value, and (2) the nonzero entries take their values independently. Concerning the first
of these assumptions, however, in many practical scenarios there might also be entries
that can take arbitrary zero or nonzero values. Examples can be found in [45,58,63,64]
and the references therein. In such scenarios, it is impossible to represent the system
using a zero/nonzero structure. To deal with this, recently in [58] the notion of
zero/nonzero structure has been extended to a more general zero/nonzero/arbitrary
structure, and thus a unifying framework for strong structural controllability was
established. Regarding the second of the above assumptions, we note that in physical
systems it is often not the case that the nonzero entries in the system matrices can take
their values independently. Indeed, some of the nonzero entries in the system matrices
might have dependencies. (See [52–57] and the references therein.) In particular,
in [55] and [57], the situation was considered that prescribed nonzero entries in the
system matrices are constrained to take identical (nonzero) values. These constraints
can be caused by symmetry properties ([52, 53]) or by physical constraints on the
system [56].

In this chapter, we will explore the strong structural controllability of systems
in which neither of the above two basic assumptions is satisfied. More explicitly,
the present chapter will extend the approach taken in [55] and [57] using the newly
introduced unifying framework from [58]. That is, we will study strong structural
controllability of systems in which the zero/nonzero/arbitrary structure of the system
matrices is given, and moreover, in which some of the entries in the system matrices
are constrained to take identical values. Following the naming convention in [55], [57]
and [58], we will call such kind of systems colored structured systems.

The main contributions of this chapter are the following:

1. We establish sufficient algebraic conditions for the strong structural controlla-
bility of a given colored structured system in terms of a full row rank test on
two so-called colored pattern matrices.

2. We establish a test for the full row rank property of a given colored pattern
matrix in terms of a new color change rule and colorability of the graph associated
with the pattern matrix. In order to introduce this color change rule, we also
establish a necessary and sufficient condition under which a given square colored
pattern matrix is nonsingular.

3. Based on the above results, we establish sufficient graph theoretic conditions
for strong structural controllability of colored structured systems.
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The outline of the chapter is as follows. Section 5.2 presents some preliminaries. In
Section 5.3, we formulate the problem treated in this chapter in terms of colored
structured systems. In Section 5.4, we establish sufficient algebraic conditions for
controllability of colored structured systems. We also provide a counterexample to
show that these conditions are not necessary. Section 5.5 presents a necessary and
sufficient graph theoretic condition under which a given square colored pattern matrix
is nonsingular. In Section 5.6, we introduce a new color change rule and the concept
of colorability of the graph associated with a given colored pattern matrix. Based
on these concepts, we establish a graph theoretic condition under which a given
colored pattern matrix has full row rank, and thus we obtain sufficient graph theoretic
conditions for strong structural controllability of colored structured systems. Finally,
in Section 5.7, we provide our conclusions.

5.2 Preliminaries
Here, we briefly review terminologies of graph theory and concepts of linear structured
systems which will be used in this chapter. More details can be found in Section 2.2
and 4.2.

5.2.1 Elements of graph theory
Here, we briefly review notions of graph theory which will be used in this chapter.
More details can be found in Section 4.2. We denote by G = (V,E) a directed graph
with vertex set V = {1, . . . , n} and edge set E ⊆ V × V . We define the graph
G = (V,E) to be undirected if (i, j) ∈ E whenever (j, i) ∈ E. In that case, the order
of i and j does not matter, and we interpret the edge set E as the set of unordered
pairs {i, j}, where (i, j) ∈ E. Moreover, an undirected graph G = (V,E) is called
a bipartite graph if there exist nonempty disjoint subsets X and Y of V such that
X ∪Y = V and {i, j} ∈ E only if i ∈ X and j ∈ Y . Such a bipartite graph is denoted
by G = (X,Y,EXY ), where we denote the edge set by EXY to stress that it contains
edges {i, j} with i ∈ X and j ∈ Y . In this chapter, we will use the symbol G for
directed graphs and G for bipartite graphs. A set of t edges m ⊆ EXY is called a
t-matching in G, if no two distinct edges in m share the same vertex. In the special
case that |X| = |Y | = t, such a t-matching is called a perfect matching.

5.2.2 Pattern matrices and structured systems
By a pattern matrix, we mean a matrix with entries in the set of symbols {0, ∗, ?}.
The set of all p× q pattern matrices will be denoted by {0, ∗, ?}p×q. For a given p× q
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pattern matrixM, we define the pattern class ofM as

P(M) := {M ∈ Rp×q |Mij = 0 ifMij = 0 and Mij 6= 0 ifMij = ∗}.

This means that for a matrix M ∈ P(M), the entry Mij is either (i) zero ifMij = 0,
(ii) nonzero ifMij = ∗, or (iii) arbitrary (zero or nonzero) ifMij = ?.

Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be two pattern matrices. Consider the
linear dynamical system

ẋ(t) = Ax(t) +Bu(t), (5.1)

where x ∈ Rn is the state, and u ∈ Rm is the input. We will call the family of systems
(5.1) with A ∈ P(A) and B ∈ P(B) a structured system. We denote this structured
system by the ordered pair of pattern matrices (A,B), and we denote by (A,B) a
particular system of the form (5.1). Thus,

(A,B) = {(A,B) |
[
A B

]
∈ P(

[
A B

]
)}.

5.3 Problem formulation
In this section, we will introduce the problem to be considered in this chapter. Let
(A,B) be the structured system associated with A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m.
The structured system (A,B) is called strongly structurally controllable if each (A,B)
in this family is controllable. In Chapter 2 necessary and sufficient conditions for
strong structural controllability were established. Note that in the set-up of Chapter 2,
all ∗ and ?-entries in A and B take their values independently. In the present chapter
we will extend the results of Chapter 2 and impose constraints on the ∗ and ?-entries.
In particular, instead of considering the entire family (A,B), we will zoom in on a
subclass of (A,B) containing those systems (A,B) that satisfy the condition that a
prior given entries in

[
A B

]
are equal. We will now formalize this equality constraints

on the ∗ and ?-entries.
To do so, consider a pattern matrixM∈ {0, ∗, ?}p×q. Define the sets of locations

of ∗ and ?-entries inM as

IM(∗) := {(i, j) ∈ {1, . . . , p} × {1, . . . , q} | Mij = ∗}

and
IM(?) := {(i, j) ∈ {1, . . . , p} × {1, . . . , q} | Mij =?}.

Let π∗ := {I∗1 , . . . , I∗k} and π? := {I?
1 , . . . , I?

l } be partitions of IM(∗) and IM(?),
respectively. We then call π := π∗ ∪ π? a coloring of the pattern matrixM and the
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pair (M, π) a colored pattern matrix. Next, we define the so-called colored pattern
class associated with (M, π) as

P(M, π) := {M ∈ P(M) |Mij = Mkl if ∃ r ∈ {1, . . . , k} or s ∈ {1, . . . , l}
such that (i, j), (k, l) ∈ I∗r or I?

s}.

In order to visualize the coloring π, two ∗-entries in the same subset I∗r are said to
have the same color, which will be denoted by the symbol cr. Likewise, two ?-entries
in the subset I?

s are said to have the same color, and this color will be denoted by
the symbol gs. In this chapter, we will always use symbols cr (r = 1, . . . , k) for colors
associated with ∗-entries, and gs (s = 1, . . . , `) for colors associated with ?-entries.
With a slight abuse of notation, sometimes we will also use the symbols ci and gi to
denote nonzero or arbitrary real variables.

Example 5.1. Consider the colored pattern matrix (M, π) with

M =


0 0 ∗ 0 0 ∗ 0
0 ? 0 ∗ ? ∗ ∗
∗ 0 ? 0 0 0 0
? ? ∗ ∗ 0 0 0
∗ ∗ 0 0 0 0 0

 and π = {I∗1 , I∗2 , I?
1 , I?

2} (5.2)

where
I∗1 = {(1, 3), (1, 6), (2, 7), (3, 1), (4, 3), (4, 4)},
I∗2 = {(2, 4), (2, 6), (5, 1), (5, 2)},
I?

1 = {(4, 1), (4, 2), (2, 5)},
I?

2 = {(2, 2), (3, 3)}.

In this example, the ∗-entries with locations in I∗1 have color c1, and those with
locations in I∗2 have color c2. Besides, the ?-entries with locations in I?

1 have color g1
and those with locations in I?

2 have color g2.
Thus, (M, π) can be visualized by

0 0 c1 0 0 c1 0
0 g2 0 c2 g1 c2 c1
c1 0 g2 0 0 0 0
g1 g1 c1 c1 0 0 0
c2 c2 0 0 0 0 0

 .
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The corresponding colored pattern class consists of all real matrices of the form
0 0 c1 0 0 c1 0
0 g2 0 c2 g1 c2 c1
c1 0 g2 0 0 0 0
g1 g1 c1 c1 0 0 0
c2 c2 0 0 0 0 0

 , (5.3)

where the gi are arbitrary real numbers, and the ci are arbitrary nonzero real numbers.

A colored pattern matrix (M, π) is said to have full row rank if every matrix
M ∈ P(M, π) has full row rank.

Consider now the colored pattern matrix (
[
A B

]
, π) associated with the pattern

matrices A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m and the coloring

π = {I∗1 , . . . , I∗k , I?
1 , . . . , I?

` }.

We then define the colored structured system associated with (
[
A B

]
, π) as

(A,B, π) := {(A,B) |
[
A B

]
∈ P(

[
A B

]
, π)}.

We say that this colored structured system is strongly structurally controllable if (A,B)
is controllable for all

[
A B

]
∈ P(

[
A B

]
, π). We will then simply say that (A,B, π)

is controllable. For example, the colored structured system (A,B, π) with
[
A B

]
and π given by (5.2) is controllable, as will be shown later on in this chapter. The
problem that we will investigate in this chapter can now be stated as follows.

Problem 5.1. Given a colored structured system (A,B, π), find conditions under
which it is controllable.

Remark 5.1. There is a strong relation between the work in this chapter and that
in [55] and [57] on controllability of systems on colored graphs. Stated in terms of
pattern matrices, the work in [55] and [57] deals with the very special case of colored
structured systems (A,B, π) in which

1. all diagonal entries of A are ?,

2. all off-diagonal entries of A are ∗ or 0,

3. in B, each column contains exactly one ∗ and each row contains at most one ∗,

4. the coloring π? = {(1, 1), . . . , (n, n)} of the ?-entries is given, i.e., the ?-entries
have distinct colors.

In Chapter 4, conditions were obtained for controllability of this special class of
systems. In the present chapter these results will be generalized to general colored
structured systems.
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5.4 Algebraic conditions for controllability
In this section, we will provide a sufficient algebraic condition for controllability. The
condition states that a colored structured system is controllable if two particular
colored pattern matrices associated with this system have full row rank.

Let (A,B, π) be a colored structured system with

A ∈ {0, ∗, ?}n×n, B ∈ {0, ∗, ?}n×m and π = {I∗1 , . . . , I∗k , I?
1 , . . . , I?

` }.

In order to state our first result, for the given (A,B, π) we define an associated new
colored pattern matrix (

[
Ā B

]
, π̄) as follows.

Definition 5.2. We define Ā to be the pattern matrix obtained from A by modifying
the diagonal entries of A as follows

Āii :=
{
∗ if Aii = 0,
? otherwise.

The matrix B remains unchanged. Next, for r = 1, . . . , k and s = 1, . . . , l we remove
the diagonal locations from I∗r and I?

s by defining

Ī∗r := {(i, j) ∈ I∗r | i 6= j}

and
Ī?
s := {(i, j) ∈ I?

s | i 6= j}.

Note that some of the Ī∗r or Ī?
s might be empty. Next, we partition the set of diagonal

locations into n subsets. More explicitly, if i1, . . . , iw ∈ {1, . . . , n} are the indices such
that Āijij = ∗, then for j = 1, . . . , w we define

Ī∗k+j := {(ij , ij)}.

Furthermore, if t1, . . . , tn−w ∈ {1, . . . , n} are the indices such that Ātjtj =? for
j = 1, . . . , n− w, then we define

Ī?
l+j := {(tj , tj)} for j = 1, . . . , n− w.

Thus we obtain a partition

π̄ := {Ī∗1 , . . . , Ī∗k+w, Ī?
1 , . . . , Ī?

l+n−w}

of the sets I[Ā B
](∗) and I[Ā B

](?) and define this to be the new coloring π̄.

We are now ready to state our first result.
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Theorem 5.3. Let (A,B, π) be a colored structured system, and let (
[
Ā B

]
, π̄) be

the colored pattern matrix obtained from (
[
A B

]
, π) as in Definition 5.2. Then,

(A,B, π) is controllable if both (
[
A B

]
, π) and (

[
Ā B

]
, π̄) have full row rank.

Proof. The proof of this theorem can be given by slightly adapting that of the
sufficient condition in Theorem 2.3 and is hence omitted. �

We will now illustrate Theorem 5.3 by an example.

Example 5.2. Consider (A,B, π) with
[
A B

]
and π given by (5.2) in Example 5.1.

Using Definition 5.2, we obtain the colored pattern matrix (
[
Ā B

]
, π̄) with

[
Ā B

]
=


∗ 0 ∗ 0 0 ∗ 0
0 ? 0 ∗ ? ∗ ∗
∗ 0 ? 0 0 0 0
? ? ∗ ? 0 0 0
∗ ∗ 0 0 ∗ 0 0

 and π̄ = {Ī∗1 , Ī∗2 , Ī∗3 , Ī∗4 , Ī?
1 , I?

2 , I?
3 , I?

4 , I?
5},

(5.4)
where

Ī∗1 = {(1, 3), (1, 6), (2, 7), (3, 1), (4, 3)},
Ī∗2 = {(2, 4), (2, 6), (5, 1), (5, 2)}, Ī∗3 = {(1, 1)}, Ī∗4 = {(5, 5)},
Ī?

1 = {(4, 1), (4, 2), (2, 5)}, Ī?
2 = ∅, Ī?

3 = {(2, 2)},
Ī?

4 = {(3, 3)}, Ī?
5 = {(4, 4)}.

It turns out that both (
[
A B

]
, π) and (

[
Ā B

]
, π̄) have full row rank. Indeed, letM

be a matrix in (
[
A B

]
, π). Then, M is of the form (5.3). Let M ′ be the submatrix

of M obtained by removing the fourth and fifth column from M . It is easily seen that
det(M ′) = −c4

1c2, which is nonzero for c1 and c2. Hence, all matrices M given by
(5.2) have full row rank, so all (

[
A B

]
, π) has full row rank. Similarly, one can verify

that (
[
Ā B

]
, π̄) has full row rank, so, by Theorem 5.3, we conclude that (A,B, π) is

controllable.

Remark 5.2. In Chapter 2, necessary and sufficient conditions for controllability of
structured systems (A,B) without a coloring were established, also in terms of two
rank tests. We note that Theorem 5.3 generalizes this result to colored systems. The
conditions obtained in the present chapter are however only sufficient. To illustrate
that the conditions in Theorem 5.3 are not necessary for controllability, we will provide
a counterexample of a colored structured system that is controllable while one of the
conditions does not hold.
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Figure 5.1: Example of a perfect matching associated with a colored bipartite graph.
(a) Colored bipartite graph G(X,Y,EXY , πXY ) associated with X = {6, 7} and
Y = {1, 2}. (b) Perfect matching p1 with spectrum {c1, c1} and sign(p1) = 1.

Example 5.3. Consider (A,B, π) with[
A B

]
=
[
∗ ∗ ∗
∗ 0 ∗

]
and π = {I∗1 , I∗2}

where I∗1 = {(1, 1), (1, 2), (2, 1)} and I∗2 = {(1, 3), (2, 3)}. The corresponding colored
pattern class consists of all matrices of the form[

c1 c1 c2
c1 0 c2

]
where c1, c2 are nonzero real numbers. The matrix

[
B AB

]
is equal to[

c2 2c1c2
c2 c1c2

]
which has full row rank for every choice of c1 and c2. By the Kalman rank test, we
conclude that (A,B) is controllable for all

[
A B

]
∈ P(

[
A B

]
, π), i.e., (A,B, π) is

controllable.
Next, we will show that the second condition in Theorem 5.3 is not satisfied. Let

(
[
Ā B

]
, π̄) be the colored pattern matrix obtained from (

[
A B

]
, π) as in Definition

5.2 with [
Ā B

]
=
[
? ∗ ∗
∗ ∗ ∗

]
, π̄ = {Ī∗1 , Ī∗2 , Ī∗3 , Ī?

1},

where Ī∗1 = {(1, 2), (2, 1)}, Ī∗2 = {(1, 3), (2, 3)}, Ī∗3 = {(2, 2)} and Ī?
1 = {(1, 1)}. Now,

consider the matrix
M =

[
1 1 1
1 1 1

]
.
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Clearly, M ∈ P(
[
Ā B

]
, π̄) while it does not have full row rank. Hence, we conclude

that the second condition in Theorem 5.3 is not satisfied.

Checking whether a colored pattern matrix has full row rank is in general not
an easy task. Therefore, in the sequel we will develop a test for this in terms of a
so-called color change rule on the graph associated with the colored pattern matrix. In
order to do this, in the next section, we will consider square colored pattern matrices
and establish graph theoretic conditions under which all matrices in the associated
pattern class are nonsingular.

5.5 Conditions for nonsingularity of square colored
pattern matrices

Let N ∈ {0, ∗, ?}t×t be a square pattern matrix. We define the pattern class of N as

P(N ) := {N ∈ Ct×t | Nij = 0 if Nij = 0, Nij 6= 0 if Nij = ∗}.

Note that here and in the sequel, in the context of pattern classes for square pattern
matrices, we will allow complex matrices. Let π = {I∗1 , . . . , I∗k , I?

1 , . . . , I?
l } be a

coloring of N . Again, two ∗-entries in the same subset I∗r are said to have the same
color, visualized by a symbol cr, and two ?-entries in the same subset I?

s are said to
have the same color, visualized by a symbol gs. As before, (N , π) denotes the colored
pattern matrix associated with N and π. The corresponding pattern class of (N , π)
is given by

P(N , π) = {N ∈ P(N ) | Nij = Nmn if ∃ r ∈ {1, . . . , k} or s ∈ {1, . . . , l}
such that (i, j), (m,n) ∈ I∗r or I?

s}.

We say that (N , π) is nonsingular if all matrices in P(N , π) are nonsingular. In this
section, we will establish necessary and sufficient conditions for nonsingularity in
terms of bipartite graphs.

We define the bipartite graph G = (X,Y,EXY ) associated with the t× t pattern
matrix N as follows. Take as vertex sets X = {x1, . . . , xt} and Y = {y1, . . . , yt}. An
edge {xi, yj} belongs to the edge set EXY if Nji = ∗ or ?. To distinguish the edges
corresponding to entries equal to ? and ∗, we introduce the two subsets

E∗XY := {{xi, yj} ∈ EXY | Nji = ∗}

and
E?
XY := {{xi, yj} ∈ EXY | Nji =?}.
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To visualize these different kinds of edges, we use solid lines to represent the edges
in E∗XY and dashed lines to represent the edges in E?

XY . In addition, the coloring π
induces a partition of the edge set EXY :

πXY := {E∗1XY , . . . , E∗kXY , E?1
XY , . . . , E

?l
XY }

in which for r = 1, . . . , k

E∗rXY := {{xi, yj} ∈ E∗XY | (j, i) ∈ I∗r },

and for s = 1, . . . , l

E?s
XY := {{xi, yj} ∈ E?

XY | (j, i) ∈ I?
s}.

The partition πXY is a coloring of the edge set EXY . The edges in the same subset
E∗rXY inherit the color cr corresponding to I∗r . Similarly, the edges in the subset E?s

XY

inherit the color gs corresponding to I?
s . Thus we define the colored bipartite graph

associated with (N , π) as G(N , π) = (X,Y,EXY , πXY ).

1

2

3

1

2

3

X Y

c1

c1

c2

c2

g1

g1

g2

Figure 5.2: Example of a colored bipartite graph.

Example 5.4. Consider the square colored pattern matrix (N , π) with

N =

∗ 0 ?
? ? ∗
∗ ∗ 0

 , π = {I∗1 , I∗2 , I?
1 , I?

2}

where I∗1 = {(1, 1), (2, 3)}, I∗2 = {(3, 1), (3, 2)}, I?
1 = {(2, 1), (2, 2)} and I?

2 = {(1, 3)}.
The associated colored bipartite graph G(N , π) is depicted in Figure 5.2.

In order to proceed, we will now review some concepts associated with perfect
matchings in bipartite graphs. (See also Chapter 4.) Let p be a perfect matching in
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G(N , π). The spectrum of p is defined as the set of colors of the edges in p. More
explicitly, if the perfect matching p is given by

p = {{x1, yγ(1)}, . . . , {xt, yγ(t)}}, (5.5)

where γ denotes a permutation of (1, . . . , t), and

ci1 , . . . , cij , gij+1 , . . . , git with j 6 t

are the respective colors of the edges in p, then the spectrum of p is defined as

{ci1 , . . . , cij , gij+1 , . . . , git},

where the same color can appear multiple times. We say that two perfect matchings
are equivalent if they have the same spectrum. Obviously, this leads to a partition of
the set of all perfect matchings of G(N , π) into equivalence classes. We denote these
equivalence classes of perfect matchings by P1, . . . ,Pr in which perfect matchings in
the same class Pi are equivalent. Define the spectrum of the equivalence class Pi to
be the (common) spectrum of the perfect matchings in this class and denote it by
spec(Pi). Clearly, for i 6= j, we have Pi ∩ Pj = ∅ and spec(Pi) 6= spec(Pj). The sign
of the perfect matching p given by (5.5) is defined as

sign(p) := (−1)m

where m is the number of swaps required to permute (1, . . . , t) to (γ(1), . . . , γ(t)).
Finally, we define the signature of Pi as

sgn(Pi) :=
∑
p∈Pi

sign(p).

In other words, the signature of the equivalence class Pi is equal to the sum of the signs
of the perfect matchings contained in Pi. In order to illustrate the above definitions,
we now give an example.

Example 5.5. Revisit the colored bipartite graph G(N , π) = (X,Y,EXY , πXY )
depicted in Figure 5.2. It has three perfect matchings p1, p2 and p3 in G(N , π),
which are depicted in Figures 5.3a, 5.3b and 5.3c, respectively. Clearly, p2 and p3
are equivalent. Thus, the equivalence classes are P1 = {p1} and P2 = {p2, p3} with
signature sgn(P2) = sign(p2) + sign(p3) = 0 and sgn(P1) = −1.

We are now ready to state a necessary and sufficient condition for a square colored
pattern matrix to be nonsingular.



5.5. Conditions for nonsingularity of square colored pattern matrices 97

1

2

3

1

2

3
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c2

g1
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Figure 5.3: Example of perfect matchings associated with a colored bipartite graph.
(a) Perfect matching p1 with spectrum {c1, c1, c2} and sign(p1) = −1. (b) Perfect
matching p2 with spectrum {g2, c2, g1} and sign(p2) = 1. (c) Perfect matching p3

with spectrum {g2, c2, g1} and sign(p3) = −1.

Theorem 5.4. Let (N , π) be a square colored pattern matrix and G(N , π) = (X,Y,EXY , πXY )
its associated bipartite graph. Then, (N , π) is nonsingular if and only if in G(N , π)
the following three conditions hold:

(1) There exists at least one perfect matching.

(2) Exactly one equivalence class of perfect matchings has a nonzero signature.

(3) The spectrum of this equivalence class contains only colors corresponding to
edges in E∗XY , i.e., solid edges.

Proof. Denote the dimension of (N , π) by t. Let N ∈ P(N , π). From the well-known
Leibniz formula for the determinant, we have

det(N) =
∑
γ

(
sign(γ)

t∏
i=1

Nγ(i)i

)

where the sum ranges over all permutations γ of (1, . . . , t), and sign(γ) = (−1)m with
m the number of swaps necessary to permute (1, . . . , t) to (γ(1), . . . , γ(t)). Clearly,

t∏
i=1

Nγ(i)i 6= 0

only if there exists at least one perfect matching

p = {{1, γ(1)}, . . . , {t, γ(t)}}
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in G(N , π). Therefore, we rewrite the Leibniz formula as

det(N) =
∑
p

(
sign(p)

t∏
i=1

Np(i)i

)
,

where p ranges over all perfect matchings in G(N , π) and sign(p) is the sign of the
perfect matching p (We now identify perfect matchings with their permutations).
Suppose that there exist r equivalence classes of perfect matchings P1, . . . ,Pr. Then,
we have that

det(N) =
r∑
ρ=1

(
sgn(Pρ)

t∏
i=1

Np(i)i

)
(5.6)

where, for ρ = 1, . . . , r, in the product appearing in the ρ-th term, the p is an arbitrary
matching in Pρ.

We now move to prove the ‘if’ part. Suppose that there exists at least one perfect
matching, exactly one equivalence class of perfect matchings with a nonzero signature,
and the spectrum of this equivalence class contains only colors corresponding to solid
edges. Without loss of generality, we denote that equivalence class by P1. Clearly, for
every N ∈ P(N , π), we then have

det(N) = sgn(P1)
t∏
i=1

Np(i)i 6= 0 (5.7)

where p ∈ P1 is arbitrary. Since the spectrum of p ∈ P1 only contains colors associated
with solid edges (whose symbols correspond to nonzero values), this implies that
(N , π) is nonsingular. Thus, we have proved the ‘if’ part.

Next, we prove the ‘only if’ part. To do so, suppose that (N , π) is nonsingular
and, for G(N , π), at least one of the following statements holds:

(i) There does not exist any perfect matching in G(N , π).

(ii) There does not exist an equivalence class of perfect matchings with a nonzero
signature.

(iii) There exist at least two equivalence classes of perfect matchings with nonzero
signature.

(iv) There exists exactly one equivalence class of perfect matchings with a nonzero
signature, but its spectrum contains at least one color corresponding to a dashed
edge.

Clearly, both in case (i) and (ii), it is obvious that detN = 0 for all N ∈ P(N , π).
This leads to a contradiction. Consider case (iii). Without loss of generality, suppose
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P1 and P2 have nonzero signature. The signatures of the remaining equivalence classes
can be either zero or nonzero. Suppose c1, . . . , ck, g1, . . . , g` are the colors associated
with the partition πXY . Introduce matrices N ∈ Ct×t as follows:

Nij :=


ar if (j, i) has color cr for some r,
ak+r if (j, i) has color gr for some r,
0 otherwise,

where a1, . . . , ak+l are independent, nonzero, variables that can take values in C.
Clearly, for all choices of the complex values a1, . . . , ak+l, we have N ∈ P(N , π).
From formula (5.6) for the determinant of N , it is clear that the perfect matchings in
the equivalence class Pρ give a contribution

sgn(Pρ)aj1
1 a

j2
2 · · · a

jk+`
k+` ,

where the degrees correspond to the multiplicities of the colors of the perfect matchings
in Pρ. By construction, we have spec(P1) 6= spec(P2). Without loss of generality,
assume that the multiplicity ε1 of c1 in P1 is different from that in P2, which is
denoted by ε2. Then, det(N) can be expressed as

det(N) = sgn(P1)φ1a
ε1
1 + sgn(P2)φ2a

ε2
1 + f(a1), (5.8)

where φ1 and φ2 are determined by a2, . . . , ak+`, and the polynomial f(a1) corresponds
to the remaining equivalence classes. It may happen that some monomials in f(a1)
contain a1 with multiplicity ε1 or ε2. By taking common factors in (5.8), we then
have

sgn(P1)ψ1a
ε1
1 + sgn(P2)ψ2a

ε2
1 + f ′(a1) = 0, (5.9)

where ψ1 and ψ2 depend on a2, . . . , ak+t. In addition, the polynomial f ′(a1) does
not contain the monomials with aε1

1 and aε2
1 . Clearly, the variables a2, . . . , ak+` can

be chosen such that ψ1 6= 0 and ψ2 6= 0. By the fundamental theorem of algebra,
we conclude that the polynomial equation (5.9) has at least one nonzero complex
solution. This implies that for some choice of nonzero complex values a1, . . . , ak+`,
we have that detN = 0, and hence we reach a contradiction.

Finally, consider the case (iv). Suppose that exact one equivalence class of
perfect matchings has a nonzero signature, and its spectrum contains at least one
color corresponding to some dashed edge. Let p = {{1, γ(1)}, . . . , {t, γ(t)}} be a
perfect matching in P1, where γ denotes a permutation on (1, . . . , t). Without loss of
generality, assume that the edge {1, γ(1)} is a dashed edge with color gr for some r.
The remaining edges in p can be either solid or dashed. This implies that

det(N) = sgn(P1)
t∏
i=1

Nγ(i)i = sgn(P1) · gr ·
t∏
i=2

Nγ(i)i,
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where gr represents an arbitrary complex value. It is obvious that det(N) = 0 if gr is
chosen as zero. Again, we reach a contradiction. This completes the proof. �
Theorem 5.4 is a generalization of Theorem 4.6 which provides a necessary and sufficient
condition for the special case of square colored pattern matrices only containing 0
and ∗-entries.

Example 5.6. Reconsider the square colored pattern matrix (N , π) given in Example
5.4 and its associated graph G(N , π) depicted in Figure 5.2. In Example 5.5, it has
already been shown that G(N , π) admits exactly one equivalence class, P1 = {p1},
with nonzero signature. Moreover, spec(P1) = {c1, c1, c2}, which only contains colors
associated with solid edges. Therefore, by Theorem 5.4, we conclude that (N , π) is
nonsingular.

5.6 Color change rule and graph theoretic condi-
tions

In this section, we will establish a graph theoretic test for checking whether a colored
pattern matrix has full row rank. This test will be in terms of a so-called color change
rule on the associated graph. Color change rules for checking the rank of a pattern
matrix have been studied before, see e.g., [97],[30],[32],[58], [57]. Here, we will start
off with introducing a new color change rule tailored for our purpose.

Let (M, π) be the colored pattern matrix associated withM∈ {0, ∗, ?}p×q (p 6 q)
and π = {I∗1 , . . . , I∗k , I?

1 , . . . , I?
` }. Define a directed graph G(M, π) = (V,E) associated

with (M, π) as follows. Take the vertex set V equal to {1, . . . , q}. Define the edge set
E ⊆ V × V as

E := {(i, j) | Mji = ∗ orMji =?}.

The coloring π gives the following partition of the edge set E:

πE := {E∗1 , . . . , E∗k , E?
1 , . . . , E

?
`}

in which for r = 1, . . . , k

E∗r := {(i, j) ∈ E | (j, i) ∈ I∗r },

and for s = 1, . . . , `
E?
s := {(i, j) ∈ E | (j, i) ∈ I?

s}.

We call the partition πE a coloring of the edge set E. To visualize the coloring πE , for
r = 1, . . . , k we represent the edges in E∗r by solid arrows with color cr (inherited from
I∗r ). For s = 1, . . . , ` we represent the edges in E?

s by dashed arrows with color gs



5.6. Color change rule and graph theoretic conditions 101

(inherited from I?
s ). Thus, we obtain a colored graph G(M, π) = (V,E, πE) associated

with (M, π). Colored graphs were studied before in Chapter 4. In order to illustrate
the above, we provide an example.

Example 5.7. Consider the colored pattern matrix (M, π) of Example 5.1. The
associated graph G(M, π) is depicted in Figure 5.4.

1

2 3

4

5

6

7

g2 g2

c1

c1

c1

c1

c1

c1

c2

c2

c2
c2

g1

g1

g1

Figure 5.4: Example of a graph associated with a given colored pattern matrix.

We will now introduce a color change rule for G(M, π). In this graph, initially
all vertices are colored “white.” The color change rule will prescribe under what
conditions vertices will change their color to “black.” In earlier work, color change
rules usually deal with conditions under which a single vertex colors a single white
neighboring vertex black. (See [30], [32], [58] and the references therein.) In the
present chapter we will deal with sets of vertices that color sets of vertices black. (See
also [57].) We will now describe this rule. Let X and Y be two nonempty subsets of
the vertex set V , containing the same number of vertices, i.e., |X| = |Y |. Define an
associated colored bipartite graph G(π) = (X,Y,EXY , πXY ) as follows:

EXY := {{xi, yj} | xi ∈ X, yj ∈ Y, (xi, yj) ∈ E}.

Obviously, the partition πE of E induces a partition

πXY = {E∗1XY , . . . , E∗kXY , E?1
XY , . . . , E

?`
XY }

of EXY by defining for r = 1, . . . , k

E∗rXY := {{xi, yj} ∈ EXY | (xi, yj) ∈ E∗r},
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and for s = 1, . . . , `

E?s
XY := {{xi, yj} ∈ EXY | (xi, yj) ∈ E?

s}.

Note that some of these sets might be empty. Removing all the empty sets, we then
obtain a partition

πXY = {E∗i1XY , . . . , E
∗iw
XY , E

?j1
XY , . . . , E

?jv
XY }

of EXY with w 6 k and v 6 `. The edges in E∗irXY have color cir , and the edges in
E?jr
XY have color gjr . Without loss of generality, we renumber ci1 , . . . , ciw as c1, . . . , cw

and gj1 , . . . , gjv as g1, . . . , gv.
Next, return to the colored graph G(M, π) = (V,E). Suppose that all vertices

in V are colored either black or white. Take two nonempty subsets X and Y of the
vertex set V . We say that Y is a color-perfect white neighbor of X if:

• Y and X contain the same number of vertices, i.e., |Y | = |X|;

• Y is equal to the set of white out-neighbors of X, i.e.,

Y = {yj ∈ V | yj is white and (xi, yj) ∈ E for some xi ∈ X};

• in the associated bipartite graph G(X,Y,EXY , πXY ), there exists a perfect
matching, exactly one equivalence class of perfect matchings has a nonzero
signature, and the spectrum of this equivalence class only contains colors
corresponding to edges in E∗XY , i.e., solid edges in G(X,Y,EXY , πXY ).

Based on the notion of color-perfect white neighbor, we now introduce a color change
procedure as follows.

1 Initially, all vertices in V are colored white.

2 If there exist two vertex sets Y ⊆ {1, . . . , p} and X ⊆ {1, . . . , q} such that Y is
a color-perfect white neighbor of X, then change the color of all vertices in Y
to black.

3 Repeat step 2 until no further color changes are possible.

We define a derived set D as a set of black vertices in V obtained by following the
procedure above. Note that derived sets are not unique but may depend on the
subsequent choices of Y and X in the second step above. An illustrative example
can be found in Example 4.4. The graph G(M, π) is called colorable if there exists a
derived set D such that D = {1, . . . , p}. Of course, the remaining vertices {p+1, . . . , q}
can never be colored black, since they have no incoming edges.
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Example 5.8. Consider (M, π) given by (5.2) and its associated graph G(M, π)
depicted in Figure 5.4. Initially, color all vertices white. First, let X = {6, 7} and
Y = {1, 2}. It turns out that Y is a color-perfect white neighbor of X. Indeed,
in the associated colored bipartite graph G = (X,Y,EXY , πXY ) depicted in Figure
5.1, there exists exactly one equivalence class P1 = {p1} with nonzero signature and
spec(P1) = {c1, c1}. Consequently, we change the color of vertices 1 and 2 to black.
Next, let X ′ = {1, 2, 3} and Y ′ = {3, 4, 5}. Then Y ′ is a color-perfect white neighbor
of X ′. Indeed, the associated colored bipartite graph G = (X ′, Y ′, EX′Y ′ , πX′Y ′)
is depicted in Figure 5.2. In Example 5.5, we have shown that in the bipartite
graph G = (X ′, Y ′, EX′Y ′ , πX′Y ′) there exists exactly one equivalence class of perfect
matchings with nonzero signature and the spectrum of this equivalence class contains
only colors corresponding to solid edges. Therefore, vertices 3, 4, 5 are colored black,
and we conclude that G(M, π) is colorable.

We now arrive at the main result of this section.

Theorem 5.5. Let (M, π) be the colored pattern matrix associated with M ∈
{0, ∗, ?}p×q (p 6 q) and

π = {I∗1 , . . . , I∗k , I?
1 , . . . , I?

` }.

Then, (M, π) has full row rank if its associated graph G(M, π) is colorable.

In order to prove this theorem, we need the following instrumental result.

Lemma 5.6. Let (M, π) be a colored pattern matrix and G(M, π) its associated
colored graph. Suppose that the vertices 1, . . . , p are black or white, and those in
p+ 1, . . . , q are white. Define the diagonal matrix D ∈ Rp×p by

Dii :=
{

1 if the vertex i is black,
0 otherwise.

Suppose further that Y = {y1, . . . , yr} ⊆ {1, . . . , p} is a color-perfect white neighbor
of X = {x1, . . . , xr} ⊆ {1, . . . , q}. Define the diagonal matrix ∆ ∈ Rp×p by

∆ :=
r∑
i=1

eyie
>
yi ,

where eyi denotes the yi-th column of the p × p identity matrix I. Then for every
M ∈ P(M, π) we have that

[
M D

]
has full row rank if and only if

[
M D + ∆

]
has full row rank.
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Proof. The ‘only if’ part is trivial and is hence omitted. To prove the ‘if’ part,
suppose that, for all M ∈ P(M, π) the matrix

[
M D + ∆

]
has full row rank. Let

z ∈ Rp be such that z>
[
M D

]
= 0. In the sequel, for a given vector z ∈ Rp and a

given index set α = {α1, . . . , αr} ⊆ {1, . . . , p} we define the vector

zα := (zα1 , . . . , zαr )>.

Analogously, for a given matrix M ∈ Rp×q and two given index sets

α = {α1, . . . , αr} ⊆ {1, . . . , p} and β = {β1, . . . , βs} ⊆ {1, . . . , q}

we define the matrix Mαβ by (Mαβ)ij := Mαiβj . In what follows, we aim to show
that zY = 0. Indeed, if zY = 0 then

z>
[
M D + ∆

]
= z>

[
M D

]
= 0,

which would prove that z = 0. So,
[
M D

]
has full row rank. To show that, indeed,

zY = 0, let α be the set of black vertices. Clearly, it holds that

α ⊆ {1, . . . , p} and α ∩ Y = ∅.

Since z>
[
M D

]
= 0, we then obtain

z>YMY X + z>αMαX + z>βMβX = 0 and zα = 0,

where β = {1, . . . , p} \ (Y ∪ α). Since Y is a color-perfect white neighbor of X, by
Theorem 5.4 we have that MY X is nonsingular and MβX = 0. This implies that zY
must be equal to 0. This completes the proof. �

We are now ready to prove Theorem 5.5.
Proof of Theorem 5.5. Suppose that G(M, π) is colorable. Let M ∈ P(M, π).
By repeatedly applying Lemma 5.6, it follows that M has full row rank if and only if[
M I

]
has full row rank, which is obviously true. Therefore, we conclude that M

has full row rank, which completes the proof. �
To show that the condition in Theorem 5.5 is not a necessary condition, we provide
the following counterexample.

Example 5.9. Consider the colored pattern matrix (M, π) with

M =

∗ ∗ ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ ∗

 , π = {I∗1 , I∗2 , I∗3}
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where I∗1 = {(1, 1), (3, 1)}, I∗2 = {(1, 2), (2, 2), (2, 4), (3, 3)} and I∗3 = {(1, 3), (3, 4)}.
It will turn out that the associated graph G(M, π) depicted in Figure 5.5 is not
colorable, while (M, π) has full row rank. Indeed, one can verify that none of the
subsets of {1, 2, 3, 4} has a color-perfect white neighbor. Hence, the graph G(M, π) is
not colorable. However, all matrices of the formc1 c2 c3 0

0 c2 0 c2
c1 0 c2 c3

 with ci 6= 0 for i = 1, 2, 3

have full row rank. Indeed, by taking

P =

 1 0 0
0 1 0
−1 1 1

 and Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


we obtain

PMQ =

c1 c2 c3 0
0 c2 0 c2
0 0 2c2 c2 + c3

 ,
which clearly has full row rank for all choices of ci 6= 0. This provides a counterexample
as claimed.

Finally, based on the rank tests in Theorem 5.3 and the result in Theorem 5.5, we
obtain the following sufficient graph theoretic condition for controllability of colored
structured systems.

Theorem 5.7. Consider the colored structured system (A,B, π). Let (
[
Ā B

]
, π̄) be

the colored pattern matrix associated with (A,B, π) given by Definition 5.2. Then,
(A,B, π) is controllable if both graphs G(

[
A B

]
, π) and G(

[
Ā B

]
, π̄) are colorable.

To conclude this section, we illustrate the above theorem by an example.

Example 5.10. Consider the colored structured system (A,B, π) given in Exam-
ple 5.2. Denote by G(

[
A B

]
, π) and G(

[
Ā B

]
, π̄) the colored graphs associated

with (
[
A B

]
, π) and (

[
Ā B

]
, π̄). In Example 5.8, we have already shown that

G(
[
A B

]
, π) depicted in Figure 5.4 is colorable. It remains to show that the graph

G(
[
Ā B

]
, π̄), depicted in Figure 5.6, is also colorable. Clearly, the set {1, 2} is a

color-perfect white neighbor of {6, 7}. Hence, we color vertices 1 and 2 black. Subse-
quently, {3, 4, 5} is a color-perfect white neighbor of {1, 2, 3}. This means that the
vertices 3, 4 and 5 are also colored black. Therefore, we find that G(

[
Ā B

]
, π̄) is

colorable. By Theorem 5.7, we conclude that (A,B, π) is controllable.
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Figure 5.5: Example to show that the conditions in Theorem 5.5 are not a necessary
condition.
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Figure 5.6: Example of a graph associated with a given (
[
Ā B

]
, π̄).

Remark 5.3. Theorem 5.7 can of course be applied to the special case described in
Remark 5.1. Indeed, if the colored system (A,B, π) satisfies the conditions 1 to 4 in
Remark 5.1, then it is easily verified that Ā = A and the new coloring π̄ coincides
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with the original coloring π. Thus we find that (A,B, π) is controllable if the single
colored pattern matrix (

[
A B

]
, π) is colorable.

5.7 Conclusions
In this chapter, we have studied strong structural controllability of linear structured
systems in which the structure of the system matrices is assumed to be given by
zero/nonzero/arbitrary pattern matrices. In contrast to the work in Chapter 2
in which the nonzero and arbitrary entries of the system matrices are completely
independent, in the present chapter we have studied the more general case that certain
equality constraints among these entries are given, in the sense that a priori given
entries in the system matrices are restricted to take arbitrary but identical values. We
have formalized this general class of structured systems by introducing the concepts
of colored pattern matrices and colored structured systems. In this setup, we have
established sufficient algebraic conditions for strong structural controllability of a given
colored structured system. These conditions are in terms of a rank test on two colored
pattern matrices associated with this system. We have shown that these conditions
are not necessary by providing an example in which a colored structured system is
controllable while the conditions are not satisfied. Next, we established a necessary
and sufficient graph theoretic condition for the nonsingularity of a given square colored
pattern matrix. Based on the above condition, we obtained a graph theoretic condition
for a given colored pattern matrix to have full row rank, which involves a new color
change rule and the concept of colorability of the graph associated with this pattern
matrix. Finally, we have established sufficient graph theoretic conditions under which
a given colored structured system is strongly structurally controllable.





6 Conclusions and Outlook

In this thesis, we have considered structural analysis of control of complex and
networked systems. More explicitly, this thesis focuses on the analysis of so-called
linear structured systems, which, as argued in Chapter 1, are very important in
understanding properties of complex and networked systems related to control design
such as, for example, controllability and observability. In this chapter, we summarize
the main contributions and results that have been obtained in this thesis. Finally, we
provide an outlook on some potential research directions.

6.1 Conclusions
The past few decades have witnessed the emergence of complex and networked systems
in many fields, from natural to social science and from economy to engineering.
Although it would be challenging to understand and control complex systems fully,
the analysis and control of such systems can be partially realized only after applying
some reasonable simplifications. In particular, for the analysis of certain control
properties, such as controllability, a complex system can be simplified to a linear
structured system capturing an essential part of the structural information in that
system, such as the existence or absence of relations between components of the
system. This thesis has studied the effect of the interconnection structure of complex
systems on their control properties following a structural analysis approach. More
explicitly, we have analyzed strong structural properties of complex systems. The
main contributions have been split into two parts corresponding to Problem 1.1 and
Problem 1.2 as formulated in Chapter 1.

In Part I, we have introduced a new framework for linear structured systems
in which the relations between the components of the systems are allowed to be
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unknown. This kind of systems has been formalized in terms of pattern matrices
whose entries are either fixed zero, arbitrary nonzero, or arbitrary. Then, on the
one hand, in Chapter 2, we have dealt with strong structural controllability of this
kind of linear structured systems. More explicitly, Chapter 2 has first provided
necessary and sufficient algebraic conditions under which a given structured system is
controllable. Secondly, in Chapter 2, we have established a necessary and sufficient
graph theoretic condition for the full rank property of a given pattern matrix, which
yielded to a necessary and sufficient graph theoretic condition for strong structural
controllability. On the other hand, in Chapter 3, we have studied the solvability of
the FDI problem for linear structured systems in which the system matrices are given
by zero/nonzero/arbitrary pattern matrices. We have provided both algebraic and
graph theoretic conditions for solvability of the FDI problem.

In Part II, we have introduced a new framework for structured systems in which
a priori given entries in the system matrices are restricted to take arbitrary but
identical values. As initial work, Chapter 4 considered strong structural controllability
of systems defined on colored graphs, which can be regarded as a special kind of
linear structured systems. In Chapter 4, several sufficient graph theoretic conditions
were established under which the systems are strongly structurally controllable.
Generalizing the results in Chapter 2 and Chapter 4, Chapter 5 has studied the
controllability of so-called colored linear structured systems in which the system
matrices are given by zero/nonzero/arbitrary pattern matrices and where a priori
given entries in the system matrices are restricted to take arbitrary but identical
values. Finally, in Chapter 5, we have provided both algebraic and graph theoretic
conditions for strong structural controllability of this more general class of structured
systems.

6.2 Outlook
In this outlook, we will suggest some future research problems concerning the analysis
of strong structural properties of complex systems. These suggestions for future
research can be divided into three directions.

A first possible direction is to make a further analysis within the framework
proposed in this thesis. For instance, in Chapter 3, we have provided a necessary
condition as well as a sufficient criterion for solvability of the FDI problem, so to find
both necessary and sufficient conditions is still a possible future research problem.
Similarly, in Chapter 4 and Chapter 5, for controllability of colored linear structured
systems, we have provided certain sufficient but not necessary conditions, and therefore
finding conditions that are both necessary and sufficient is still an open problem.
Also, in this thesis, we have established theoretical conditions under which a given
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structured system is controllable or the FDI problem is solvable. Algorithms to verify
these conditions still need to be studied further. Lastly, analyzing other system
properties, such as targeted controllability [62, 75], and identifiability [83] within the
framework of this thesis is also a possible future research problem.

As a second direction, this thesis has focused on zero/nonzero structures. The
advantages of this type of pattern are apparent. It allows us, for example, to capture
an essential part of the structural information of complex systems, and conditions can
be expressed in graph theoretic terms. However, it has some unavoidable drawbacks.
For example, only having zero/nonzero information on the entries of the system
matrices does not provide any information on, for example, the signs of these entries,
or the location of eigenvalues. Thus certain significant system properties, such as
stability [33], cannot be analyzed. Therefore, introducing some new framework for
linear structured systems that allows analyzing properties like stability is yet another
open problem.

Finally, in this thesis and other related literature [17,29,30,32], after modeling a
complex system as a complex network, in order to zoom in on the role of the network
topology the dynamics of the components of the complex systems are simplified as
much as possible. Indeed, the components are in general modeled as single integrators.
However, in many scenarios, the dynamics of these subsystems can be much more
complicated and will affect the system properties dramatically, see, e.g., [12, 68,100]
and the references therein. For example, if the network nodes contain self-loops, strong
structural controllability properties of the network will change significantly. Besides,
the impact of higher-dimensional subsystem dynamics on the controllability of complex
systems will be more difficult to analyze. Therefore, for future research, setting up a
new structured system framework that allows more complicated subsystem dynamics
is an important open problem.
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Summary

This thesis studies structural properties of complex and networked systems. By a
high level of abstraction, this kind of systems can be regarded as standard linear
time-invariant (LTI) systems of very high dimensions. However, in many cases, it is
impossible to obtain the exact values of all entries in the system matrices of these
LTI systems. To deal with this problem, instead of particular LTI systems, this thesis
focuses on so-called structured systems which consist of a family of LTI systems in
which the system matrices contain entries that depend on the existence or the absence
of information about the interconnections between the system components. We will
now give a summary of the contributions and results discussed in this thesis. These
can be divided into two parts.

Firstly, note that in many scenarios, complete information on the existence or
absence of interconnections between components is unavailable. By that, we mean
that for some components we do not know whether there exist interconnections
between them or not. To deal with this problem, we introduce a new framework of
structured systems in which the system matrices can contain three kind of entries:
zero, arbitrary nonzero, and arbitrary. In this framework, the ‘zero’ entry in the
system matrices represents that the interconnection between the corresponding system
components is absent. On the other hand, the ‘arbitrary nonzero’ entry represents
that the interconnection between the corresponding system components must exist.
Finally, the ‘arbitrary’ entry means that it is uncertain whether the interconnection
between the corresponding system components exists. In this thesis, for this new
kind of structured systems, we analyze two control properties, namely controllability
and solvability of the fault detection and isolation (FDI) problem. With respect to
controllability, we first establish algebraic necessary and sufficient conditions under
which a given structured system is strongly structurally controllable. As another
contribution, we provide a necessary and sufficient graph theoretic condition for the
full rank property of a given pattern matrix. This condition is expressed in terms
of a so-called color change rule. Based on these results, we obtain a necessary and
sufficient graph theoretic condition for strong structural controllability. With respect
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to solvability of the FDI problem, we first provide a necessary condition for solvability
of the FDI problem for linear structured systems. Assuming that this necessary
condition holds, we then develop a sufficient algebraic condition for solvability of the
FDI problem in terms of a rank test on an associated pattern matrix. Recalling the
graph theoretic condition for the full rank property of a given pattern matrix, we
then obtain a graph theoretic condition for solvability of the FDI problem.

Secondly, in many realistic complex and networked systems, the strength of the
interconnections between some components might have dependencies rather than
being independent of each other. In particular, some interconnection links might be
constrained to take identical weights either by symmetry considerations or by the
physics of the underlying problem. Motivated by this observation, we introduce another
kind of structured system, in which a priori given entries in the system matrices are
restricted to take arbitrary but identical values. To begin with, we first consider strong
structural controllability of a special case of the systems mentioned above, which are
called systems defined on colored graphs. In this kind of systems, the system matrices
are zero/nonzero/arbitrary pattern matrices in which all entries on the diagonal are
arbitrary, while the remaining entries can only be zero or arbitrary nonzero. In
addition, we consider the situation that prespecified arbitrary nonzero entries in the
system’s pattern matrix are constrained to take identical (nonzero) values. Then, we
establish graph theoretic conditions for strong structural controllability of this kind
of systems. Finally, we deal with strong structural controllability of linear structured
systems in which the system matrices are given by zero/nonzero/arbitrary pattern
matrices while, in addition, a priori given entries of these matrices are restricted
to take arbitrary but identical values. To formalize this general class of structured
systems, we introduce the concepts of colored pattern matrices and colored structured
systems. Based on these concepts, we provide both algebraic and graph theoretic
conditions for strong structural controllability of this more general class of structured
systems.



Samenvatting

In dit proefschrift worden structurele eigenschappen van complexe systemen en
netwerksystemen onderzocht. In een hoog abstractieniveau kunnen dit soort systemen
worden beschouwd als standaard LTI-systemen met erg hoge dimensies. In veel
gevallen is het echter onmogelijk om de exacte waarden van alle elementen van de
systeemmatrices van deze LTI-systemen te achterhalen. Om dit probleem te kunnen
oplossen, focussen wij in dit proefschrift niet op LTI-systemen an sich, maar op
zogenaamde gestructureerde systemen die bestaan uit een familie van LTI-systemen,
waarin de systeemmatrices elementen bevatten die afhankelijk zijn van de aan- of
afwezigheid van informatie over de verbindingen tussen de componenten van het
systeem. We zullen nu een samenvatting geven van de bijdragen en resultaten in dit
proefschrift. Deze kunnen worden onderscheiden in twee delen.

In de eerste plaats is het goed om op te merken dat in veel scenario’s com-
plete informatie over de aan- of afwezigheid van verbindingen tussen componenten
niet beschikbaar is. Daarmee bedoelen we dat we voor sommige componenten niet
weten of er verbindingen tussen bestaan of niet. Om dit probleem te kunnen aan-
pakken, introduceren we een nieuw framework van gestructureerde systemen waarin
de systeemmatrices drie soorten elementen kunnen bevatten: nul, willekeurig niet-
nul, en willekeurig. Binnen dit framework betekent het ‘nul’-element dat er geen
verbindingen tussen de corresponderende systeemcomponenten zijn. Het ‘willekeurig
niet-nul’-element betekent dat er een verbinding tussen de corresponderende systeem-
componenten moet bestaan. Ten slotte betekent het ‘willekeurige’ element dat het
onzeker is of er verbindingen bestaan tussen de corresponderende systeemcompo-
nenten. In dit proefschrift analyseren we voor deze nieuwe soort gestructureerde
systemen twee systeemeigenschappen, namelijk regelbaarheid en oplosbaarheid van
het FDI-probleem. Met betrekking tot regelbaarheid stellen we eerst algebraïsche
noodzakelijkheid en voldoende voorwaarden vast waaronder een gegeven gestruc-
tureerd systeem sterk structureel regelbaar is. Een andere bijdrage is dat we een
noodzakelijke en voldoende graaftheoretische voorwaarde bieden voor de volle rang-
eigenschap van een gegeven pattern matrix. Deze voorwaarde is uitgedrukt in termen
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van een zogenaamde kleurveranderregel. Op basis van deze resultaten kunnen we
een noodzakelijke en voldoende graaftheoretische voorwaarde voor sterke structurele
regelbaarheid vinden. Met betrekking tot oplosbaarheid van het FDI-probleem bieden
we in de eerste plaats een noodzakelijke voorwaarde voor de oplosbaarheid van het
FDI-probleem voor lineair gestructureerde systemen. Aangenomen dat deze noodza-
kelijke voorwaarde standhoudt, ontwikkelen we vervolgens een voldoende algebraïsche
voorwaarde voor oplosbaarheid van het FDI-probleem in termen van een rangtest van
een geassocieerde pattern matrix. Teruggrijpend op de graaftheoretische voorwaarde
voor de volle rang-eigenschap van een gegeven pattern matrix, kunnen we vervolgens
een graaftheoretische conditie voor oplosbaarheid van het FDI-probleem vinden.

In de tweede plaats kunnen er in veel realistische complexe systemen en netwerksys-
temen afhankelijkheden bestaan tussen de sterktes van interconnecties tussen compo-
nenten. In het bijzonder zouden bepaalde verbindingen identieke gewichten kunnen
hebben, ofwel vanwege symmetrieën, ofwel door de fysica van het onderliggende
probleem. Door deze observatie gemotiveerd, introduceren we een ander soort gestruc-
tureerd systeem, waarin a priori gegeven elementen in de systeemmatrices beperkt
zijn tot het aannemen van willekeurige, maar identieke waarden. Om te beginnen
onderzoeken we sterk gestructureerde regelbaarheid van een specifiek geval van de
hierboven genoemde systemen, namelijk systemen die gedefinieerd zijn door gekleurde
grafen. In dit soort systemen zijn de systeemmatrices nul/niet-nul/willekeurige pat-
tern matrices waarin alle elementen op de diagonaal willekeurig zijn, terwijl de overige
elementen alleen nul of willekeurig niet-nul kunnen zijn. Daarnaast onderzoeken
we de situatie waarin van tevoren gespecificeerde willekeurige niet-nul elementen
in de pattern matrix van het systeem beperkt zijn tot het aannemen van identieke
(niet-nul) waarden. Vervolgens stellen we graaftheoretische voorwaarden vast voor
sterke gestructureerde regelbaarheid van dit soort systemen. Ten slotte behandelen we
sterke gestructureerde regelbaarheid van lineair gestructureerde systemen waarin de
systeemmatrices gegeven zijn door nul/niet-nul/willekeurige pattern matrices terwijl
daarnaast a priori gegeven elementen van deze matrices beperkt zijn tot het aannemen
van willekeurige, maar identieke waarden. Om deze algemene klasse gestructureerde
systemen te formaliseren introduceren we de concepten van gekleurde pattern ma-
trices en gekleurde gestructureerde systemen. Op basis van deze concepten bieden
we zowel algebraïsche als graaftheoretische voorwaarden voor sterke gestructureerde
regelbaarheid van deze algemenere klasse gestructureerde systemen.
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