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Chapter 1

Introduction

Symmetries and the principle of relativity

The concept of symmetry has been crucial to the study of physics throughout
the centuries. We may distinguish the symmetries of objects in the physical
world from the symmetries that exist in the laws of nature. An object has a
symmetry when a transformation exists that leaves it invariant. For exam-
ple, we may rotate a sphere in any direction without changing its properties.
A symmetry in the natural laws is a different kind of transformation. It
changes the positions, velocities, etc. of all objects in the world simultane-
ously, thereby acting on a history of the world, represented in equations by
dynamical variables and coordinates. Such a transformation is a symmetry
if the newly obtained history abides by the same natural laws as the original.

In 1632, Galileo put forward the principle of relativity, which states that
the laws of nature are the same for all inertial observers, or inertial frames
of reference. Equivalently, the principle of relativity states that the laws
of nature enjoy a symmetry that takes one inertial frame of reference into
another. In an inertial frame of reference, an object with no force acting on
it will move at a constant velocity. Thus, Galileo argued, any experiment we
perform on board of a ship will yield the same results whether the ship is
anchored at port or sailing at constant velocity. The principle of relativity
was a central part of Galileo’s argument for a heliocentric model of the solar
system.

Newton and Leibnitz also understood the power and importance of sym-
metries. They both put forward a conserved quantity of motion. Leibnitz
advocated conservation of kinetic energy, defined as K = 1

2

∑
imiv

2
i where

i sums over the constituents of the system. Newton preferred conservation
of momentum, the vector quantity

∑
imi~vi. We now understand that both

momentum and energy are conserved quantities. The fact that they are

3
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conserved is a consequence of translation symmetries in the laws of nature.
Conservation of energy and momentum follows from the observation that the
same laws of physics apply at all times and at all points in space, respectively.
The general correspondence between conserved quantities and symmetries in
the laws of nature is known as Noether’s first theorem. [35]

In 1687, Newton published his three laws of motion, which together make
up the formalism of classical mechanics. Newton’s first law defines inertial
frames of reference as those in which objects maintain their velocity unless a
force acts upon them. Newton’s second and third laws take the same form
in any inertial frame of reference. Therefore, classical mechanics respects the
principle of relativity. The transformations that take one inertial frame into
another are known as Galilean transformations. Newton’s laws of motion
operate in a fixed background of space, which itself has no dynamical prop-
erties. Inertial observers may be rotated, moving, or translated with respect
to each other, but all agree on the relative positions of objects. In addition,
Newton postulated the existence of a universal notion of time, shared by all
observers.

The discovery of the laws of electromagnetism, finalized by Maxwell in
1865, led to many new insights into the role of symmetries in physics. At
first glance, Maxwell’s equations seemed to violate the principle of relativity.
For example, they admit vacuum wave solutions which propagate at a speed
c defined by the electric and magnetic constants ε0 and µ0, c = 1/

√
ε0µ0.

There are no free-space wave solutions that propagate at a different velocity.
This observation is impossible to reconcile with the principle of relativity if
inertial observers are defined by the familiar Galilean transformations. In
actual fact, Maxwell’s equations enjoy a group of symmetries - called the
Lorentz transformations - that transforms electric and magnetic fields into
each other. At the same time, they dilate the time between events and
contract the spatial coordinate along the direction of a boost, in such a way
that the velocity of electromagnetic waves is preserved. Accordingly, these
transformations look nothing like Galilean boosts.

In 1905, Einstein gave the correct interpretation of the Lorentz symme-
try in Maxwell’s equations. By making the minimal assumptions of 1) the
principle of relativity and 2) universality of the speed of light among inertial
observers, he immediately derived that Lorentz transformations provide the
correct coordinate redefinitions that map one inertial observer to another.
According to Einstein’s theory of special relativity, then, the Lorentz trans-
formations furnish the true symmetry group of space and time. Because
Lorentz transformations mix time and space coordinates, it is natural to
consider them different parts of the same beast, a space-time, rather than
completely separate concepts. This was an astonishing departure from the
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Newtonian conception of fixed space and universal time, which physicists had
adhered to since the 17th century. Einstein achieved fundamental new in-
sights into the nature of space and time by assigning a primary importance
to symmetry. The principle of relativity and the experimentally succesful
theory of electromagnetism together carry greater weight than our intuitive
preference for the fixed space/time and Galilean transformations of New-
tonian mechanics. After Einstein’s great achievements with the theories of
special and general relativity, physicists began to think of theories as defined
by their symmetries.

Electromagnetism, field theory, and symmetries

Maxwell’s equations led to yet more discoveries about the role of symmetry
in physics. Einstein’s special relativity suggests that Maxwell’s electric and
magnetic fields - described by the 3-dimensional spatial vectors ~E and ~B are
really different aspects of the same underlying force. In fact, they (or rather
their scalar and vector potentials) are unified by the space-time 4-vector Aµ,
called the gauge potential. The object Aµ transforms into itself under the
relativistic symmetries of Maxwell’s theory. In other words, the gauge po-
tential furnishes a representation of the Lorentz group. In the Lagrangian
field theory formalism, the relativistic symmetry of Maxwell’s equations then
becomes manifest when we switch from ~E and ~B to Aµ. There is a new sub-
tlety in this formulation of electromagnetism, however. Maxwell’s equations
depend on Aµ only through the combination Fµν = ∂µAν − ∂νAµ, called the
gauge field strength. Therefore, Maxwell’s equations are symmetric under
the transformation Aµ(x)→ Aµ(x) + ∂µα(x), where α(x) is some function of
the coordinates x. Such a symmetry, which depends on an arbitrary func-
tion of space-time, is known as a gauge symmetry. In modern practice, we
think of Maxwell’s theory of electromagnetism as defined by its U(1) gauge
symmetry.

A similar symmetry defines the theory of General Relativity (GR), pub-
lished by Einstein in 1915. In GR, the Lorentz symmetry from the special
theory, which connects inertial observers using the same coordinate system,
is generalized to diffeomorphism invariance. This ensures that all observers,
inertial or not, apply the same laws of physics, which take the same form in
any coordinate system. This is known as the principle of general coordinate
invariance.

The U(1) gauge symmetry of Maxwell’s equations and the diffeomorphism
invariance of GR are fundamentally different from the other symmetries we
have encountered. 1 Gauge transformations do not map different physical

1To be precise, the part of the gauge redundancies that truly depends on an arbitrary
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states into each other. Rather, field configurations that are mapped into
each other under a gauge transformations describe the same physical state.
We can understand this fact by appealing to Noether’s second theorem [35],
which states that gauge symmetries are in one-to-one correspondence with
differential relations among the equations of motion. Such a relation implies
that the equations of motion are underdetermined: boundary and initial
conditions do not determine a solution uniquely, but only up to a gauge
transformation. Therefore, gauge-equivalent configurations must correspond
to the same physical state.

For this reason, gauge symmetries are often referred to instead as gauge
redundancies. They are an artifact of the (Lagrangian) field theory formalism
used to describe the physical system. By describing the electromagnetic field
as a Lagrangian field theory and with the gauge potential Aµ, we have accom-
plished to make the Lorentzian symmetries of Maxwell’s equations manifest,
but it has come at the cost of introducing a degree of redundancy. This is our
first encounter with the complicated relationship between Lagrangian field
theory and symmetries. For much of this thesis, we will be concerned with
how one navigates the space of possible symmetry groups while avoiding the
redundancies of ordinary classical and quantum field theory.

The Standard Model and Effective Field Theory

The concept of defining a theory by means of its symmetry group really
took root later on in the 20th century. Yang and Mills generalized the U(1)
gauge theory of Maxwell to the non-Abelian groups SU(N). [37] Thanks
to a spectacular model-building effort [56–61], we now understand that all
the interactions seen at colliders are well-described by a Yang-Mills gauge
theory of SU(3) × SU(2) × U(1). Each of these factor groups introduces a
vector field Aaµ for each of its generators Ta. Furthermore, there are fermionic
particles called quarks and leptons, which are charged under (some of) the
gauge groups. The pure Yang-Mills theory of SU(3) × SU(2) × U(1) does
a spectacular job of describing, for example, gauge boson self-interaction
and the SU(3) multiplet structure of the hadrons [60], but it has a peculiar
property which seems to conflict with experiment. Yang-Mills theory does
not allow the gauge potentials Aaµ to obtain a mass. Additionally, the non-
Abelian groups SU(3)× SU(2) forbid a mass for the quarks and leptons.

These facts can be reconciled with experiment by introducing a scalar
field multiplet and adding cubic interactions with the quarks and leptons
of the type φψ̄ψ, while maintaining gauge invariance. [58, 61] The fermions

function of space-time, rather than a (possibly infinite) series of constant coefficients. The
former are proper gauge redundancies, the latter make up the large gauge transformations.
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then obtain an effective mass when φ has a vacuum expectation value. A
non-trivial vev is possible only if the scalar multiplet φ has a potential with
a minimum away from the field space origin. The multiplet is charged under
SU(2)× U(1), however. Therefore, the symmetries dictate that there exists
a continuum of degenerate solutions with non-trivial vacuum expectation
value, which transform into each other under the gauge group. Any one
point along this continuum is not invariant under SU(2)×U(1) so the vacuum
solution does not share all the symmetries of the Standard Model (recall that
symmetries of objects (i.e. physical states) are defined as invariances). This
is known as spontaneous symmetry breaking. [58, 61,62]

Given a vev v, we can parametrize the multiplet φ in terms of fluctuations
around v. We can distinguish fluctuations along the field space direction of
the continuum of degenerate vacuum solutions and orthogonal fluctuations.
We will refer to the former type of fluctuations as Goldstone modes. [65, 87]
It is very important that the SU(2)×U(1) transformations are realized non-
linearly on the Goldstone modes. This must be the case because none of the
degenerate solutions are invariant. Naively, we can easily see that fluctuat-
ing in the Goldstone directions costs no energy. Therefore, those fluctuations
should be associated with a massless degree of freedom. In fact, Goldstone,
Salam and Weinberg [63] proved rigorously that broken global internal sym-
metry generators correspond to massless particles, called Goldstone modes.
For spontaneously broken gauge symmetries, the interpretation is rather dif-
ferent. It is possible to redefine the vector fields Aaµ such that the Goldstone
mode ga - associated to the broken generator T a - becomes the longitudinal
mode of a new massive vector field. Schematically, we define: Ãaµ = Aaµ+∂µg

a.
Thus, it is often said that the vector Aaµ ”eats” the would-be Goldstone mode
for T a. This is how the Higgs mechanism allows us to account also for the ob-
served masses of force carrying bosons for the electroweak interaction.2 The

2We can give a different interpretation of the Higgs mechanism. Owing to the fact that
(proper) gauge transformations are redundancies rather than symmetries, we can often
introduce them to a theory without changing any of its physical predictions. We can then
arrive at the Higgs mechanism by applying the following (post-hoc) line of reasoning: we
can describe the interactions of the Standard Model perfectly well at low energies with
an effective theory of massive vectors with a global SU(2) × U(1) symmetry. We can
restore gauge invariance by means of the Stueckelberg trick [64]: we define new vector
fields Ãaµ according to Aaµ = Ãaµ + ∂µg

a, where Ãµ is a massless gauge potential. This
is the inverse of the field redefinition considered above: we now absorb the longitudinal
mode of the massive vector by means of a scalar field. This theory works perfectly well
at low energies, but in the UV the interactions of ga become non-unitary. The easiest
way to restore unitarity at high energies is to couple ga to a massive scalar field. We
have then effectively rediscovered the Higgs mechanism, which now has a more natural
interpretation: the Higgs boson exists to unitarize the effective theory of massive vectors
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remaining scalar excitation modes in φ are massive and remain as observable
particles. In 2012, the massive Higgs boson was discovered by CERN, with
a mass of 126 GeV. [67]

Although reasoning based on symmetry was instrumental in the discov-
ery of the Standard Model, it was not the only criterion on the minds of
physicists at the time. When calculating amplitudes in a generic pertur-
bative quantum field theory, one encounters non-convergent integrals when
calculating the contribution of loop diagrams. There exists several proce-
dures to regularize these infinities, such as introducing a finite cut-off Λ in
momentum space. Scattering amplitudes then depend on the cut-off, but
the dependence on Λ may be absorbed either by a redefinition of coupling
constants already assumed to exist or by introducing suitable counterterms
into the Lagrangian. A renormalizable theory is one where the process of
regularizing and introducing counterterms truncates, so that the theory may
be completely defined by fixing a finite number of coupling constants to ex-
periment. At the time, renormalizability was seen as a necessary condition
to make sense of a quantum field theory. Therefore, physicists favored the
Yang-Mills theory of SU(3) × SU(2) × U(1) specifically for its renormaliz-
ability. [68, 69]

At the same time, however, Nambu, Weinberg and others [41–47] achieved
great results in describing hadron-hadron interactions by means of a non-
renormalizable theory of pions. This theory is based on the observation that
the vacuum expectation values of the quadratic operators 〈ψ̄aψb〉 do not
vanish. This introduces a second form of spontaneous symmetry breaking in
the Standard Model, which naively should come with a multiplet of Gold-
stone bosons. However, because the chiral symmetry is only an approximate
symmetry in the Standard Model, the pseudo-Goldstone bosons can attain
a small mass. Additionally, they are not fundamental particles but rather
bound states of the strong interaction, called pions. Weinberg’s theory is
based on the assumption that the chiral symmetry is non-linearly realized
on the pions. He then proceeded to write down interactions, up to suitable
order in the fields and derivatives, consistent with the non-linear symmetry
transformations. This leaves a number of coupling constants, to be fixed by
experiments.

This procedure perfectly follows the modern paradigm of Effective Field
Theory (EFT). [128] In EFT, a theory is assumed to be valid only in a given
energy scale. The infinities of loop diagrams are assumed to be an artifact of
assuming validity up to arbitrary energies. One defines a theory by selecting
relevant degrees of freedom and a set of (linear and non-linear) symmetries.

in the most simple way possible.
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Then, one assumes that all interactions consistent with those symmetries
exist, renormalizable or not. One can truncate the Lagrangian at a finite
order, because all coupling constants are assumed to take order unity values
in units defined by the energy scale at which the theory ceases to be valid.
This is why an EFT does not need to be renormalizable: counterterms at
higher order are assumed suppressed by the cut-off scale. Effective Field
Theory represents the height of reasoning based on symmetry principles.

The ideas behind Weinberg’s theory of pions were generalized by Callan,
Coleman, Wess, and Zumino (CCWZ). [49, 50] They developed a general
recipe for deriving the non-linear transformation laws associated with break-
ing a symmetry group G to a subgroup H. For much of this thesis, we will
concern ourselves with the question of what sort of broken symmetry groups
are compatible with an assumed set of degrees of freedom, according to the
theory of CCWZ.

Navigating the space of symmetry groups

There is something special about the symmetry groups that define the Stan-
dard Model and Weinberg’s theory: they are all internal symmetries, i.e. they
commute with the symmetries of space-time. It is not immediately obvious
why this should be the case. The full symmetry group of nature could be,
a priori, a hybrid symmetry which combines non-trivially with the Poincaré
group. In fact, in the years preceding the formulation of the full Standard
Model, many such exotic symmetries were proposed to explain the spectrum
of particles seen at colliders. [40] The (Lagrangian) field theory formalism is
perfectly compatible with such symmetries at the classical level. It seemed
there was no way to exhaust the space of possible symmetry groups, until
the work of Coleman and Mandula. [38]

Coleman and Mandula discovered that, under rather general assumptions,
theories with a hybrid symmetry lead to physically undesirable scattering
amplitudes. A hybrid symmetry for instance leads to 2→ 2 amplitudes which
vanish for values of momentum transfer that make up a continuous region in
momentum space, rather than merely at a discrete set of points. [40] Such
scattering behavior is not seen in experiments. The work of Coleman and
Mandula put an end to much, but not all, of the search for physically realistic
models with hybrid symmetry. It is possible to invalidate the assumptions
behind the Coleman-Mandula theorem, but one has to consider symmetries
which are quite different from what had been seen before.

One possibility is to consider that the symmetries of nature do not make
up an ordinary Lie group, but a supergroup. A supergroup is infinitesimally
characterized by a superalgebra, which consists of ordinary bosonic or even



10 CHAPTER 1. INTRODUCTION

elements - which obey commutation relations similar to an ordinary Lie alge-
bra - and fermionic or odd elements which follow anti-commutation relations.
Haag, Lopuszanski, and Sohnius (HLS) extended the work of Coleman and
Mandula to superalgebras. [39] They found that all possible superalgebras
belong to the class of supersymmetry, which add to the Poincaré algebra
a number of odd elements Qi

α and Q̄i
α̇, which are Weyl spinors under the

Lorentz group. The odd elements satisfy the following characteristic anti-
commutation relation:

{Qi
α, Q̄

j
α̇} = 2δij(σµ)αα̇Pµ . (1.1)

Supersymmetric theories have many phenomenologically interesting proper-
ties. Each bosonic (fermionic) particle is assigned by supersymmetry to a
partner fermionic (bosonic) particle. Together, the particle and all of its
superpartners make up a representation of supersymmetry, called a super-
multiplet. If supersymmetry is unbroken, all particles in a supermultiplet
have the same mass. [122,123] The particles observed in colliders do not or-
ganize into equal-mass supermultiplets. Thus, if supersymmetry is realized
in nature, it must be (explicitly or spontaneously) broken.

There are other kinds of symmetries that are not ruled out by Cole-
man and Mandula’s theorem. For example, the theorem does not apply to
dynamical symmetries. These are symmetries that do not lead to an alge-
braic constraint on the S-matrix operator. They are outside the scope of
Coleman and Mandula, because they explicitly assume the existence of a
quantum charge operator that implements the algebraic condition. Sponta-
neously broken symmetries or non-linearly realizations live within the class
of dynamical symmetries, because the existence of Goldstone modes prevents
Noether currents from integrating to a quantum charge. [109,137]

In Chapters 4 and 5, we will attempt to extend the work of Coleman-
Mandula and HLS into the realm of the non-linearly realized symmetries.
Like Coleman and Mandula, we will not make direct use of (Lagrangian)
field theory, but address the question using algebraic methods and the CCWZ
theory of non-linear realizations. We will explain how others have tackled
the same issue using the structure of scattering amplitudes, also avoiding the
complication of redundancies and field redefinitions that arise in Lagrangian
field theory.

Symmetry and simplicity

The existence of a symmetry can lead to simplification in calculating physical
quantities. In some cases, symmetries are so powerful that one can obtain
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exact results that are impossible to produce in generic quantum field theo-
ries. For example, in two- or three-dimensional conformal field theories, one
can use the conformal symmetry to constrain, or sometimes exactly calculate,
n-point correlation functions. This procedure is known as the conformal boot-
strap. [70–73] Furthermore, it is possible to exactly calculate the Euclidean
partition function (and expectation values of supersymmetric operators) in
certain supersymmetric theories defined on compact manifolds. This is pos-
sible because supersymmetry sometimes allows one to reduce a path integral,
which sums over the infinite-dimensional space of field configurations, to an
ordinary integral. This is known as supersymmetric localization. [74] As a
last example, there exist special theories that enjoy an infinite set of mutu-
ally commuting sequence and thus an infinite set of conserved charges. If
these continue to exist at the quantum level, they can lead to a factorization
of the full S-matrix in terms 2 → 2 scattering processes. Theories with an
infinite set of commuting symmetries are known as integrable systems.

In other cases, a symmetry allows one to maintain control over calcula-
tions against, for example, quantum corrections. This is due to the simple
fact that all corrections due to loop diagrams must also respect the sym-
metries of the theory. The protection of a symmetry against quantum cor-
rections is usually maintained even when the symmetry is spontaneously
or (weakly) explicitly broken. In the latter case, quantum corrections are
naturally proportional to the small symmetry breaking parameter. These
protections are particularly needed in theories that make use of scalar fields,
such as the Higgs mechanism or the theory of inflation. Supersymmetry is
often invoked to explain the small value of the Higgs boson mass. [89] In the
absence of a symmetry to protect it, quantum corrections naturally generate
a Higgs mass at the energy scale of new physics, rather than the observed
mH = 126 GeV. [67] In the theory of inflation, one requires a scalar field to
exist with a very flat potential, which is easily spoiled by quantum correc-
tions. Many kinds of symmetry are often employed to protect the inflationary
potential against such corrections, such as: simple shift symmetries, isome-
tries of non-linear sigma models, or supersymmetry. [88] In the scenarios of
DBI- and ambient inflation, the scalar field receives protection from a non-
linearly realized space-time symmetry. In the former case, the symmetry is
powerful enough to allow investigation of the theory at large time variation
of the scalar field, a region of parameter space that is normally plagued by
quantum corrections. We will come back to the case of the DBI scalar and
its symmetries many times throughout this thesis.

In the examples just mentioned, symmetries are invoked as a tool to learn
more about the nature of quantum field theory or about a broad physical idea
like the theory of inflation. A symmetry can therefore have a use even if it
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not realized in nature.
Given the importance of symmetry in both phenomenology and formal

physics theory, one would like to have an understanding of all the kinds
of symmetry that can exist. A systematic exploration for the non-linearly
realized symmetries was lacking until recently. This thesis is devoted to how
one achieves such a classification using algebraic methods and the theory of
non-linear realizations.

In Chapter 2, we will give precise definitions for the notions of symmetry
in classical and quantum field theory, and introduce the concepts of algebraic
and dynamical symmetries. In Chapter 3, we present a thorough review
for the general theory of non-linear realizations for internal and space-time
(super)-symmetries. Then, in Chapters 4 and 5, we will present a classifica-
tion of exceptional EFTs using algebraic methods, comparing and contrasting
the results from the approach based on scattering amplitudes.



Chapter 2

Symmetries in Effective Field
Theory

In the Introduction, we gave a brief overview of symmetry and its application
in physics. In this Chapter, we will give the technical definitions for the many
classes of symmetries we have already encountered. We will define symme-
tries in both classical and canonical/path integral quantum field theory. Our
definitions will differ slightly in each of these formalisms, but all definitions
of symmetry fundamentally revolve around the same idea. Recall that both
theories and the physical states within a theory may enjoy symmetry. A
theory is symmetric whenever it is possible to define a mapping, satisfying
certain requirements, that takes physical states into physical states. A phys-
ical state, on the other hand, enjoys a symmetry when the same mapping
sends the state into itself. Thus, a physical state may preserve some, all, or
none of the symmetries of the underlying theory. We will in this Chapter
give the formal definitions for the mapping and for the notion of a ”physical
state”, for each of the formalisms mentioned.

In classical field theory, symmetries have an immediate consequence on
the form of the Euler-Lagrange equations. Noether discovered that each
independent global and continuous symmetry Gi corresponds to a conserved
current Jµi , which is divergence-free whenever the equations of motions are
satisfied, ∂µJ

µ
i = 0. A conserved current Jµi defines a time-independent

conserved charge Qi by integrating Jµi over a space-like hypersurface.

A continuous local symmetry, conversely, does not lead to a non-trivial
conserved current. Instead, it implies a differential relation among the Euler-
Lagrange equations. This means that the E-L equations are underdetermined
whenever they admit a local symmetry. Its solutions are determined by the
equations of motion and the boundary conditions only modulo the local sym-
metry transformation. Therefore, one should consider configurations linked

13
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by local symmetry transformations as physically equivalent.

Not all symmetries of a classical theory will survive in its ”quantized”
counterpart. A classical symmetry may be destroyed entirely by quantiza-
tion, for instance when the path integral measure does not share a symmetry
of the Lagrangian. Such a symmetry is called anomalous. However, even
among the symmetries that survive in the quantum theory we can distinguish
two important classes with very different physical implications. The first are
those symmetries whose conserved chargeQi promotes to a well-defined quan-
tum operator. Such symmetries become symmetries of the S-matrix. We will
refer to these as algebraic symmetries. The algebraic symmetries classify the
single-particle states of the theory. An important example of an algebraic
symmetry is the Poincaré group of relativistic field theories. Particle states
are defined as representations of the Poincaré group.

The remaining symmetries (those whose current does not integrate into
a well-defined quantum charge) play a very different role. They cannot be
used to define the free single-particle states and do not become symmetries of
the S-matrix. However, they still have dynamical consequences because they
restrict the form that the interactions can take. We will call such symmetries
dynamical symmetries. Understanding the distinction between algebraic and
dynamical symmetries, and the very different consequences they have on the
behavior of a theory, will be the focus of this Chapter.

2.1 Classical symmetries and redundancies

2.1.1 Symmetry transformations

We will first turn our attention to symmetry in classical Lagrangian field
theory. In this context, a symmetry transformation is a bijective mapping
from the space JEL of solutions of the equations of motion onto JEL itself.
Consider a set of fields and coordinates (x, φ). The coordinates x parametrize
the space-time manifold M and the fields φ(x) are functions that map M to
the field space manifold U , φ : M → U . Then, the space-time derivatives
of φ, φ(n) = ∂nφ parametrize the spaces U (n). Together, the space-time
manifold, the fields, and their derivatives up to n-th order define the jet
space Jn = M × U × U (1) × . . . U (n). [133–135]1

Introduce an action functional S[φ] with equations of motion E(x, φ). A

1In this thesis, we will consider cases where some of the fields and coordinates are
Grassmann-odd variables. The concepts generalize in a straightforward way, however, so
we will ignore this complication for now.
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symmetry (f, h) of the system S[φ] is a mapping (f, g) : J∞ → J∞

x→ x′ = f(x, φ, ∂φ, . . .), φ→ φ′ = h(x, φ, ∂φ, . . .) , (2.1)

such that E(x, φ) = 0 if and only if E(x′, φ′) = 0. In other words, (x, φ) ∈ JEL
if and only if (x′, φ′) ∈ JEL. The symmetry transformation must be invertible.
More precisely, it should be a diffeomorphism on the infinite order jet space
J∞. Special symmetry transformations may be well-defined on jet spaces
of finite order, for example when (f, h) do not involve derivatives of the
fields. A generic transformation, however, changes the derivative order of
the equations of motion.

An important class of symmetry transformations in classical field theory
are the variational symmetries. A variational symmetry is a transformation
(x, φ)→ (x′, φ′) such that

L(x, ∂nφ) = L(x′, ∂′nφ′) +∇K , (2.2)

In other words, they are symmetries of the action functional itself, modulo
boundary terms. Clearly, a variational symmetry maps the space of solutions
of the equations of motion into itself, E(x, φ) = 0 ⇐⇒ E(x′, φ′) = 0, as a
total derivative makes no contribution to the equations of motion. Many of
the important consequences of symmetry (such as Noether’s and Goldstone’s
theorems) are applicable only to variational symmetries. However, not all
classical symmetry transformations are variational symmetries. An impor-
tant example of a symmetry that is not evident at the level of the action
functional is the electric-magnetic duality one encounters in p-form gauge
theories. For most of this thesis, we will be concerned with variational sym-
metries only. In most cases, we will work with trivial boundary conditions,
so that (2.2) implies:

S[φ] = S[φ′] . (2.3)

We have defined a symmetry as a simultaneous transformation of the co-
ordinates as well as the fields. However, every symmetry has a corresponding
active form, where the coordinates do not change at all. Given the passive
form of the transformation x → x′ = f(x, ∂nφ), φ(x) → φ′(x′) = h(x, ∂nφ),
the corresponding active transformation is:

x→ x, φ→ φ′(x) = h
(
f−1 · x, (f−1 · ∂)nφ(f−1 · x)

)
. (2.4)

where f−1 is the transformation that takes x′ to x. The active form of
a transformation law is a symmetry if and only if the passive form is a
symmetry. Therefore, the active and passive transformations are equivalent.
We will encounter both active and passive transformations in what follows.
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2.1.2 Symmetry groups, algebras and invariant forms

The set of symmetry transformations of the system S[φ] forms a group. By
definition, any transformation g · (x, φ) = (x′, φ′) has an inverse g−1 such
that g−1 · g · (x, φ) = (x, φ). Furthermore, a trivial transformation is clearly
a symmetry. Thus, the symmetry transformations satisfy the group axioms.

We can now distinguish between continuous and discrete symmetry groups.
Both of these play an important role in all areas of physics. Examples of
discrete symmetries are charge conjugation, parity, and time reversal. The
product of these three discrete transformations is a symmetry of any Lorentz-
invariant quantum field theory. The most important class of continuous
symmetries are those that form Lie groups. A Lie group G is a differentiable
manifold on which a group operation · and an inversion mapping −1 can be
defined, [136]

· : G×G→ G, (g1, g2)→ g1 · g2 ,
−1 : G→ G, g → g−1 such that g · g−1 = 1 , (2.5)

such that both the group operation and the inversion −1 (i.e. g−1 · g = 1) are
differentiable in the usual sense.

Given two elements g, a ∈ G of the Lie group G, we can define the left-
and right-translations of g by a as follows:

Rag = ga ,

Lag = ag . (2.6)

The diffeomorphisms Ra, La : G → G induce the pushforward mappings
La? : TgG → TagG and Ra? : TgG → TgaG, from elements of the tangent
space Tg at g to the tangent space of its right- or left-translation. There
is a distinguished set of vector fields on G called the left- or right-invariant
vector fields. As we will see, these vector fields make up the Lie algebra g
associated to the Lie group G. A left-invariant (LI) vector field X is a vector
field that is invariant under left-translations. In other words, X must satisfy:

La?X|g = X|ag . (2.7)

The definition of right-invariant vector fields is of course analogous. Any
vector V in the tangent space Te of the identity element defines a unique
left-invariant vector field VL by way of the mappings Lg?:

VL|g = Lg?V . (2.8)

Obviously, every left-invariant vector field VL defines a unique element of
Te simply by evaluating it at the identity. Therefore, there is a one-to-one
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correspondence between elements of the tangent space Te and the invariant
vector fields on G. Furthermore, the set of left-invariant vector fields is closed
under the Lie bracket. Let us see why this is the case. Given two vector fields
X, Y the Lie bracket [X, Y ] is defined as follows:

[X, Y ]f = X[Y [f ]]− Y [X[f ]] , (2.9)

where f is some curve in G. Then, if X and Y are left-invariant, we find:

La?[X, Y ]|g = [La?X|g, La?Y |g] = [X|ag, Y |ag] = [X, Y ]|ag , (2.10)

so the Lie bracket of two left-invariant fields is itself a left-invariant field.
Now we can define the Lie algebra g of G as the set of left-invariant vector
fields in G with the Lie bracket [ , ] : g× g→ g. We will sometimes refer to
the elements of g as the generators of G. The Lie algebra satisfies the Jacobi
identity. Given three elements X, Y, Z ∈ g, we have:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 . (2.11)

We may label the elements of g as Gi where i = 0, 1, . . . dimg. Then, for the
Lie bracket we obtain: [Gi, Gj] = fij

kGk. The fij
k are the structure constants

of the algebra and the group.
Conversely, we can now give a bottom-up definition of a Lie algebra: a

Lie algebra g is a vector space over a field with the anti-symmetric bracket
[ , ] : g× g→ g which satisfies the Jacobi identity.

The Lie algebra contains all the information about the local properties of
the group. In fact, we may reconstruct the group G in a finite neighborhood
of the identity by exponentiating the generators: g(ε) = eε

iXi , where the
parameters εi provide a local set of coordinates for G. When G is simply
connected, the image of the exponential mapping is G, so that the entire
group is characterized by the Lie algebra.

When the symmetries of the system S[φ] form the Lie group G, its in-
finitesimal transformations make up the Lie algebra g. Just like the Lie
algebra contains all the local information about the Lie group, the infinites-
imal transformations characterize the symmetry group locally. For most of
our purposes, only the local properties are important. Let us see how a Lie
algebra arises from the infinitesimal transformation laws. Parametrize the
symmetry transformation close to the identity with the local coordinates εi:
g(ε) · (x, φ) = F (ε;x, φ) = (x′, φ′). Now take εi infinitesimal. We then find:

φ′(x′) = φ(x) + εigi(x, φ, . . .), x′ = x+ εifi(x, φ, . . .) . (2.12)

We then define the infinitesimal transformation law associated to the gener-
ator Gi as:

δi(x, φ, . . .) = (fi(x, φ, . . .), gi(x, φ, . . .)) . (2.13)
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It is then easy to see that the infinitesimal transformation laws realize the
Lie algebra g:

[δi, δj](x, φ, . . .) = fij
kδk(x, φ, . . .) . (2.14)

We can now separate symmetry groups into two important classes: in-
ternal and space-time symmetries. Every theory that does not include a
dynamical metric is defined on a certain background geometry. This back-
ground may have certain isometries. One usually requires that the isometries
are represented as variational symmetry transformations of the action func-
tional S[φ]. The isometries then make up a subgroup of the total group of
symmetries of S[φ]. The most important example is the Poincaré symme-
try group enjoyed by relativistic theories on the flat Minkowski background
geometry. Then, a symmetry generator that in the Lie algebra commutes
with each of the Poincaré generators corresponds to an internal symmetry.
Each generator that fails to commute with any of the Poincaré generators is
a space-time symmetry.

The left-invariant vector fields of G are dual to its left-invariant one-
forms2. Take the basis (GL)i for the left-invariant vector fields defined by
acting with (2.8) on the elements Gi of Te which make up the Lie algebra.
Now define the dual basis Θi such that 〈(GL)i,Θ

j〉 = δi
j. The one-forms Θi

span the set of left-invariant one-forms of G. The basis one-forms satisfy the
Maurer-Cartan structure equation:

dΘi = −1
2
fjk

iΘj ∧Θk . (2.15)

We can now define a special Lie algebra-valued one-form ω on G that will
play an important role in the theory of non-linear realizations. The Maurer-
Cartan form is a mapping ω : Tg → Te which acts on a vector field X at g
as:

ω(X)|g = Lg−1?X . (2.16)

It is easy to see that ω = Gi⊗Θi by expanding X into the basis (GL)i, using
left-invariance and noting that (GL)i|e = Gi. Furthermore, due to (2.15), the
Maurer-Cartan form satisfies the Maurer-Cartan equation:

dω = −1
2
ω ∧ ω . (2.17)

2.1.3 Coset manifolds

Consider a Lie subgroup H of a Lie group G and define the equivalence
relation ∼ such that g ∼ g′ if and only if g′ = gh for some element h ∈ H.

2Similarly to an LI vector field, a left-invariant one-form is mapped to itself under the
pullback of a left-translation.
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The set of equivalence classes under ∼ forms the coset space G/H. If G and
H are Lie groups, the coset space is always a manifold. It is a Lie group
whenever H is a normal subgroup of G. Coset spaces of Lie (super)groups
will play a very important role in the rest of this thesis, as they are the
structure on which spontaneously broken symmetries are defined. For this
reason, let us spend a few moments to see how some of the concepts of the
previous section generalize to coset spaces.

To begin, let us define the notion of a projectable p-form. Consider a Lie
group G with Lie subgroup H and the coset manifold K = G/H. We can
define a projection mapping π : G → K that maps each element g of G to
the corresponding equivalence class {gH} in K,

π : gh→ {gH} , (2.18)

where h ∈ H. Then, a p-form Ω in G is projectable if there is a corresponding
p-form Ω̄ on K whose pullback by the projection map is Ω, i.e. Ω = π?(Ω̄).
A form Ω is projectable if and only if: [138,139]:

� Ω(X1, . . . , Xp) = 0 if any of the LI vector fields Xi is in h,

� Rh?Ω = Ω, i.e. Ω is right-invariant under H.

We can now define a notion of cohomology that will prove important in
finding Wess-Zumino terms in the theory of non-linear realizations, to be
discussed in the next chapter. The relative Chevalley-Eilenberg (CE) coho-
mology of G and H is given by the p-forms in G which are: left-invariant,
closed, projectable, and not the exterior derivative of an LI projectable p− 1
form in G 3 The relative CE cohomology of G and H is related to the de Rham
cohomology of K. In the next chapter, we will see that these cohomology
groups classify the so-called Wess-Zumino terms.

2.1.4 Noether’s first theorem

The most important consequence of a continuous variational symmetry is the
existence of either a conserved current or a gauge identity. [35] The former
arises from a global symmetry and the latter from a local or gauge symmetry.

3The LI forms on G are in one-to-one correspondence with the p-skew symmetric map-
pings g1∧g2∧ . . .∧gp → R. When such a mapping vanishes on h and is adh invariant, the
associated LI form is projectable. Moreover, the exterior derivative has a corresponding
coboundary operator that takes p−1-skew symmetric mappings to p-skew symmetric map-
pings. Then, the relative Lie algebra cohomology is given by the space of p-skew symmetric
mappings that satisfy the projectability conditions and are closed under the coboundary
operator. Thus, CE cohomology is identical to Lie algebra cohomology.
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A global symmetry is one that acts on the coordinates and the fields with the
same group element at each space-time point. In other words, the parameter
used to describe it is a constant ε. Conversely, the parameter of a local
symmetry may be a function of space-time, ε(x).

In this section, we will deal with Noether’s first theorem, which states
that there is a one-to-one correspondence between the generators Gi of a
continuous, global variational Lie group symmetry and conserved currents.
The symmetry group is parametrized by the constants εi. We write the active
infinitesimal transformation on the fields φa as δφa = εigai (x, φ, . . .). Then,
the variation of the Lagrangian is:

δL = εi
[

∂L
∂(∂µφa)

∂µg
a
i +

∂L
∂φa

gai

]
= εi∂µK

µ
i , (2.19)

where the second equality is just the statement that δφa generates a symme-
try. Using the Euler-Lagrange equations, one finds: [123]

∂µ

(
− ∂L
∂(∂µφa)

gai +Kµ
i

)
≡ ∂µJ

µ
i = 0 . (2.20)

The bracketed quantity Jµi is the conserved current associated to the gen-
erator Gi. Note that we may redefine Jµi as J̃µi = Jµi + Gµ if Gµ(x, φ, . . .)
is either identically conserved (i.e. ∂µG

µ = 0 whether or not equations of
motion are satisfied) or vanishes on-shell (i.e. Gµ(x, φ̃, ∂φ̃, . . .) = 0 whenever
φ̃ is a solution). Such a redefinition does not affect the fact that Jµ is con-
served. We consider two currents equivalent if they differ by such a quantity
Gµ.

Note that we have considered only an active transformation δφa(x) =
εigai (x, φ, . . .) here. However, there is no loss of generality as the current
that follows from the associated passive transformation differs from Jµi by an
identically conserved quantity. Therefore, as expected the active and passive
forms of a symmetry give rise to equivalent conserved currents.

Given some foliation of D-dimensional space-time by space-like (D − 1)-
dimensional surfaces Σ(τ), we can integrate a conserved current to produce
a conserved charge:

Qi =

∫
Σ(τ)

dΣµ J
µ
i . (2.21)

Whether or not the integral converges depends on the behavior of the field
configuration at infinity. When it is well-defined, Qi is independent of the
chosen surface thanks to the fact that Jµi is conserved. Choosing the fixed t
surfaces Σ(t), (2.21) reduces to:

Qi =

∫
dD−1x J0

i (x, t) . (2.22)
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Then, Qi is time independent, dQi
dt

= 0. The conserved charges Qi do not nec-
essarily exist in the quantum theory, as we will see. Notably, the currents of
spontaneously broken symmetries do not in general integrate to well-defined
quantum charges.

With the generalization to the quantum theory in mind, let us examine
charges in the classical Hamiltonian formalism. We specialize to the case
where the Lagrangian depends on at most the first derivatives of the fields,
L = L(x, φ, ∂φ). The Poisson bracket of two quantities A(φ, π) and B(φ, π)
is [123] defined as:

{A,B}PB =

∫
dD−1x

(
δA

δφa
δB

δπa
− δA

δπa

δB

δπa

)
. (2.23)

where πa is the canonical momentum conjugate to φa. Then, the Poisson
bracket of the field φa and the Noether charge Qi is the transformation law
for the generator Gi:

{φa, Qi}PB = gai (x, φ, . . .) , (2.24)

and the Poisson bracket of two charges realizes the Lie algebra of the sym-
metry group:

{Qi, Qj}PB = fij
kQk . (2.25)

2.1.5 Noether’s second theorem

We now turn our attention to local symmetries and their consequences on the
equations of motion. Noether’s second theorem states that there is a one-
to-one correspondence between a differential relation among the equations
of motion and a symmetry depending on an arbitrary function of space-
time. Consider a local symmetry which depends on the function ε(x) and its
derivatives up to order n. Its active, infinitesimal form is:

δφ(x) = ε(x)g(0)(x, φ, . . .) + ∂µε(x)g(0)µ(x, φ, . . .) + . . .+ ∂(n)g(n)(x, φ, . . .) .
(2.26)

Once again, there is no loss of generality in considering an active transfor-
mation. By using the fact that δφ(x) generates a symmetry, we may write:

δφE(φ) = ∂µK
µ , (2.27)

where E(φ) represent the equations of motion of the system and for some
Kµ(x, φ, . . .). We now assume that ε(x) vanishes at the boundary. Then,
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we can integrate over the internal volume and use partial integration to
find: [133–135] ∫

ε(x)

( n∑
k=0

(−1)kg(k) dk

(dx)k
E(φ)

)
dDx = 0 . (2.28)

Since ε(x) is an arbitrary function of space-time, the bracketed quantity
vanishes. Thus, we have derived an n-th order differential relation among
the equations of motion from the existence of a local symmetry.

The existence of a differential relation implies that the equations of motion
are underdetermined, i.e. given a set of boundary conditions, the equations
of motion do not uniquely determine the evolution. For this reason, a gauge
symmetry is often called a redundancy rather than a true symmetry. Field
configurations which can be transformed into each other by a gauge trans-
formation which preserves the boundary condition are considered physically
equivalent. This interpretation is even more clear in the quantized theory, as
one has to divide the path integral by the volume of gauge-equivalent field
configurations in order to arrive at a well-defined theory.

We note that it was crucial here to assume that ε(x) vanish at the bound-
ary. The subset of gauge transformations that do not leave the boundary
conditions invariant, often called large gauge transformations, do not lead
to differential relations and may be considered as an infinite set of global
symmetries. For example, consider a U(1) transformation of a gauge vector.
Restricting to Taylor expandable functions ε(x), we find:

δAµ(x) = aµ + bµνx
ν + cµνρx

νxρ + . . . . (2.29)

Such large gauge transformations will play an important role in the rest of
this thesis.

One can easily go through the calculation of the previous section for
a local symmetry and find a quantity Jµ which is conserved. However, it
turns out that for a gauge symmetry Jµ always either vanishes on-shell or is
identically conserved. Therefore, the would-be Noether current is trivial.

2.2 Quantum symmetries

2.2.1 Symmetries of the path integral

Having addressed symmetries in classical Lagrangian field theory, we now
move on to symmetries in quantum field theory. The natural generalization of
the Lagrangian theory in quantum mechanics is the path integral formalism.
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We will first make use of the path integral formalism to define symmetry
transformations in QFT and to derive the quantum counterpart of Noether’s
theorem. Later, however, we will move to the canonical formalism to state
the theorems of Coleman-Mandula [38] and Haag-Lopszanski-Sohnius. [39]

The fundamental object in the path integral formalism is the following
generating functional, the partition function:

Z[J ]|J=0 =

∫
Dφ e−S[φ] , (2.30)

where the argument of Z[J ] represents sources, which we have put to zero for
the moment. The integration with the measure Dφ represents an integration
over all field configurations φ(x). S[φ] =

∫
ddxL is the ordinary action, where

L is again, in general, a mapping from the infinite order jet space J∞ to R.
The expectation value of an operator F(φ) is defined as:

〈F(φ)〉 =

∫
Dφ e−S[φ]F(φ) , (2.31)

Often, one calculates such expectation values by expanding F(φ) in powers
of φ(x) and applying functional derivatives with respect to J(x) to Z[J ].

Let us see how various important notions from classical physics find their
counterpart in the quantum field theory. By applying a functional derivative
with respect to φ(x) inside the path integral, one finds the classical equations
of motion E(x, φ):

〈E(x, φ)〉 =

∫
Dφ δ

δφ(x)
e−S[φ] =

∫
Dφ e−S[φ]E(x, φ) . (2.32)

Since the path integral over a total derivative is zero, assuming appropriate
boundary conditions, we find that the expectation value of the classical equa-
tions of motion is equal to zero: 〈E(x, φ)〉 = 0. We can make an even more
general statement. Insert into (2.32) a number of local operators O1(x1),
O2(x2), . . ., at points x1, x2, . . . distinct from x:

〈E(x, φ)O1(x1)O2(x2) . . .〉 =

∫
Dφ δ

δφ(x)

(
e−S[φ]O1(x1)O2(x2) . . .

)
,

=

∫
Dφ e−S[φ]E(x, φ)O1(x1)O2(x2) . . . = 0 .

(2.33)

Thus, the equations of motion have vanishing expectation value also when
inserting separated local operators. In other words, the equations of motion
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hold as operator equations. In the following, we will write operator equations
like (2.33) as

〈E(x, φ) . . .〉 = 0 , (2.34)

with the ellipses representing insertions of local operators.
Let us turn our attention to symmetries. A variational symmetry of the

path integral is an invertible transformation (f, g) : J∞ → J∞ where

x→ x′ = f(x, φ, ∂φ, . . .), φ→ φ′ = h(x, φ, ∂φ, . . .) , (2.35)

such that the product of measure and the quantity e−S[φ] remains invariant:
[130,131]

Dφ′ e−
∫
ddxL(x′,φ′,...) = Dφ e−

∫
ddxL(x,φ,...) . (2.36)

Clearly, any variational classical symmetry that leaves the measure invari-
ant, Dφ′ = Dφ, is also a symmetry of the path integral. Not all classical
symmetries become symmetries of the path integral, however. Any classi-
cal variational symmetry which fails to become a path integral symmetry
is known as an anomalous symmetry. In most cases, it is not a problem
when a global symmetry becomes anomalous. An anomalous gauge symme-
try, on the other hand, signals an inconsistency as one cannot make sense of
the integration over field configurations which are classically gauge-invariant.
The requirement that gauge symmetries should not be anomalous often leads
to important restrictions on the Lagrangian. In the Standard Model, such
anomaly cancellation conditions relate the quark electric charges to the elec-
tric charges of leptons in such a way to forbid bound states with fractional
charge. In string theory, anomaly cancellation conditions fix the internal
gauge symmetry groups of heterotic strings to either SO(32) or E8×E8. [152]

Just like in the classical field theory, a continuous and global Lie group
symmetry of the path integral leads to a conserved current. In addition,
symmetries imply Ward identities, which relate products of currents and
operators to the transformation laws of operators. To see this, consider the
following active, infinitesimal and global symmetry transformation:

φ(x)→ φ(x) + ε∆φ(x) . (2.37)

Then, localize the transformation with an arbitrary function ρ(x):

φ(x)→ φ(x) + ερ(x)∆φ(x) , (2.38)

Of course, (2.38) is not a symmetry transformation, but it reduces to (2.37)
in the limit ρ→ constant. Therefore, the variation of the quantity Dφ e−S[φ]

is proportional to a derivative of ρ:

Dφ′ e−S[φ′] = Dφ e−S[φ]

[
1 + ε

∫
M
ddx
√
gJµ(x)∂µρ(x) +O(ε2)

]
. (2.39)
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The quantity Jµ(x) is nothing but the Noether current for the symmetry
transformation (2.37), as we will see. We now assume that ρ(x) has support
only in a submanifold U of M. Then, consider the local operators O1(x1),
O2(x2), . . ., where x1, x2, . . . lie outside of U . Additionally, consider the
local operators A1(y1), A2(y2), . . ., where this time the coordinates y1, y2,
. . . lie inside of U . By inserting the transformation (2.38) we then find, to
first order in ε:∫

Dφ′ e−S[φ′]

(
O1(x1) . . .

)(
A1(y1) . . .

)
=

∫
Dφ e−S[φ]

(
O1(x1) . . .

)(
A1(y1) . . .− δA1(y1)A2(y2) . . .−

. . .−A1(y1)δA2(y2) . . .

)
, (2.40)

where Ai(yi) → Ai(yi) + ρ(yi)δAi(yi) is the transformation law of Ai under
(2.38). Equation (2.40) simply states that (2.38) is an invertible change of
the jet space variables, which leaves the path integral invariant. The change
of variables has no effect on the operators Oi either, as they lie outside U .
Now, insert equation (2.39) into (2.40) to find:∫

M
ddx
√
g ε∇µJ

µ(x)A1(y1)A2(y2) + . . .

+ δA1(y1)A2(y2) . . .+A1(y1)δA2(y2) + . . . = 0 , (2.41)

as an operator equation. We have integrated by parts once to move the
derivative to Jµ. Equation (2.41) is known as the Ward identity for the
symmetry (2.37). Let us remove the insertions Ai for now. We then find the
operator equation:

〈∇µJ
µ(x) . . .〉 = 0 . (2.42)

This is the quantum version of Noether’s first theorem. It is useful to rewrite
(2.41) as:

∇µJ
µ(x)A1(y1)A2(y2) . . . =

1
√
g

(
δd(x− y1)δA1(y1)A2(y2) . . .+

+ δd(x− y2)A1(y1)δA2(y2) . . .+ . . .

)
. (2.43)

We have seen how the classical notions of equations of motion, symmetry
transformations and Noether currents find their counterparts in quantum
field theory. We wish to emphasize that we never assumed the transformation
laws are simple linear functions of the fields.
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2.2.2 Symmetries of the quantum effective action

We have seen that the classical equations of motion have meaning in the
quantum theory as operator equations. However, the classical solutions in
general do not correspond to quantum expectation values for the fields. There
is a different functional, called the quantum effective action, whose stationary
points do coincide with one-point functions for the fields. As we will see, the
quantum effective action shares the symmetries of the path integral.

To define the quantum effective action, it will be necessary to introduce
some new quantities. Let us restore the currents J in the partition function
Z[J ]:

Z[J ] =

∫
Dφ eiS[φ]+i

∫
d4xφi(x)Ji(x) , (2.44)

where i runs over the number of fields in the theory and a summation over
any group indices is implicit. The expectation value of the field φi, in the
presence of the currents J(x), is defined as:

〈φi(x)〉J = φiJ(x) =
1

Z[J ]

∫
Dφ eiS[φ]+i

∫
d4xφi(x)Ji(x)φr(x)

= −i 1

Z[J ]

δ

δJi(x)
Z[J ] . (2.45)

We can rewrite the partition function Z[J ] as the exponential of a quantity
W [J ]:

Z[J ] =
∞∑
n=0

1

n!
(iW [J ])n = exp(iW [J ]) . (2.46)

Whereas the partition function Z[J ] is the sum of all vacuum-to-vacuum
diagrams, W [J ] is the sum of all such connected diagrams. Clearly, Z[J ] is the
sum of products of mutually disconnected diagrams. Each term in the sum
is weighted by a symmetry factor 1/(n!) related to exchanging n connected
subcomponents, leading to (2.46). In terms of W [J ], the expectation of φi

becomes:

φiJ(x) =
δ

δJi(x)
W [J ] . (2.47)

Let us now choose a particular field configuration φ̄i(x). Then, the we label
the background current that leads to 〈φi(x)〉 = φ̄i(x) as Jiφ̄(x). In other
words:

〈φi(x)〉Jφ̄ =
δ

δJi(x)
W [J ]|J=Jφ̄

= φ̄(x) . (2.48)

The quantum effective action Γ[φ] is then defined as:

Γ[φ] = −
∫
ddxφi(x)Jφi(x) +W [Jφ] . (2.49)
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It is easy to see that stationary points of Γ[φ] are related to one-point
functions. Acting with a functional derivative with respect to the field, we
find:

δ

δφi(x)
Γ[φ] = −Jφi(x)−

∫
ddy φj(y)

δJφj(y)

δφi(x)
+

∫
ddy

δJjφ(y)

δφi(x)

δW [Jφ]

δJjφ(y)

= −Jφi(x) , (2.50)

where in the second line we have used (2.48). Therefore, a stationary point
φ(0)(x) is the expectation value at zero background current. The equa-
tions (2.47) and (2.50) lead to important relations between second functional
derivatives of W [J ] and Γ[φ]:

P (ix,jy) =
δ2W [J ]

δJi(x)δJj(y)
=
δφiJ(x)

δJj(y)
,

Π(ix,jy) =
δ2Γ[φ]

δφi(x)δφj(y)
= −δJφi(x)

δφj(y)
. (2.51)

In other words, P (ix,jy) and Π(ix, jy) are each other’s inverse, in the sense:∫
ddz P (ix,jz)|J=JφΠ(jz,ky) = −

∫
ddx

δφi(x)

δJφj(z)

δJφj(z)

δφk(y)
= −δ(d)(x− y) δik .

(2.52)
The quantity P (ix,jy), evaluated at J = 0, is the complete interacting propa-
gator. The relation (2.51) is important for proving Goldstone’s theorem. [126]

The quantum effective action has other interesting properties. One can
obtain, in principle, the full partition function Z[J ] from a tree level calcula-
tion using the quantum effective action in place of the ordinary action S[φ]
(see for instance [125,128,129]):

W [J ] = WΓ(0) [J ] . (2.53)

The quantum effective action shares the symmetries of the path integral. In
particular, consider an active, infinitesimal transformation:

φ(x)→ φ(x) + ε∆φ(x) , (2.54)

where ∆φ(x) depends on the jet space variables. If this transformation is a
symmetry of the path integral (in the sense defined in the previous section),
then the quantum effective action is invariant under:

φ(x)→ φ(x) + ε〈∆φ(x)〉Jφ . (2.55)

If the symmetry of the path integral is linearly realized on φ, then (2.55) is
the same as (2.54).
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2.2.3 Symmetries in Hilbert space

Let us turn our attention to symmetries in the canonical Hilbert space for-
malism. In classical field theory, we defined a symmetry transformation as a
mapping on the space of field configurations that takes physical states (i.e.
solutions to the classical field equations) to physical states. In the canoni-
cal formalism, physical configurations are represented by rays R in Hilbert
space. A ray is a set of elements in Hilbert space that are related to each
other by multiplication with a phase factor. In other words, two elements
Ψ1 and Ψ2 in Hilbert space belong to the same ray R if Ψ1 = eiφΨ2 for some
φ ∈ R. Then, a natural definition of a symmetry in quantum mechanics is
a transformation that maps rays R to different rays R′. Furthermore, we
require that the symmetry transformation preserves transition probabilities.
In other words, given an element Ψ1 of R1 and Ψ2 of R2, we require:

|〈Ψ1|Ψ2〉|2 = |〈Ψ′1|Ψ′2〉|2 . (2.56)

where Ψ′1 and Ψ′2 are of course elements of the transformed rays R′1 and R′2.
In the classical theory, we required in addition that the symmetry transforma-
tion be a diffeomorphism on the jet space of coordinates and field variables.
Similarly, in the quantum theory we must require that the transformation
have an inverse that preserves transition probabilities. Clearly, with these
requirements in place, the set of group transformations satisfies the group
axioms. Finally, a symmetry transformation must act on the asymptotic in
and out states of the interacting theory as it does on the free particle states.
Because of this last requirement, our definition of symmetry transformations
in Hilbert space is stronger than the one we gave in the path integral formal-
ism. We are essentially restricting to symmetries of the S-matrix, as we will
explain in more detail in section 2.2.5.

We want to represent the symmetry as a mapping between ray represen-
tatives, i.e. as an operator acting on states in Hilbert space. A fundamental
theorem by Wigner states that any operator U which realizes a symmetry
transformation is either:

� linear and unitary :

U(aΨ + bΦ) = aUΨ + bUΦ ,

〈UΨ|UΦ〉 = 〈Ψ|Φ〉 , (2.57)

� or anti-linear and anti-unitary :

U(aΨ + bΦ) = a∗UΨ + b∗UΦ ,

〈UΨ|UΦ〉 = (〈Ψ|Φ〉)∗ . (2.58)
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For a simple and detailed proof, see [125]. To accommodate the fact that an
anti-linear symmetry operator is anti-unitary, the adjoint of an anti-linear
operator U is defined a little differently than usual. We have:

〈Φ|UΨ〉 = (〈UΦ|Ψ〉)∗ , (2.59)

for any Φ and Ψ. Then, the condition of (anti-)unitarity becomes U−1 = U †.
Most interesting symmetry transformations are represented by linear and
unitary operators. Any set of symmetry transformations that is continu-
ously connected to the trivial transformation has to be linear and unitary,
because the identity matrix is. Conversely, the anti-linear and anti-unitary
transformation always involve some sort of flip of the time coordinate, which
is a discrete transformation.

There is an interesting subtlety regarding the symmetry group realized by
the operators U . Since symmetry transformations are defined as mappings
between rays rather than between states, there can be a phase shift in the
group composition law. To be precise, given two group elements g1 and g2

of the symmetry group that corresponds to the transformation on rays, we
have the operators U(g1) and U(g2). Then, we have:

U(g1)U(g2)Ψ = eiφ12U(g1g2)Ψ . (2.60)

for some φ12 ∈ R. It can be shown that this phase factor does not depend
on the state Ψ. [125] 4 When φ12 6= 0, the operators U(g) form a projective
representation of the group realized by the ray transformations.

Let us introduce a set of coordinates θ that describe the symmetry group
around the identity element. We may then describe the group law by a
function f(θ, θ′) of the coordinates:

U(θ)U(θ′) = U(f(θ, θ′)) . (2.61)

We then Taylor expand the operators U(θ), the function f(θ, θ′) and the
phase factor in (2.60):

U(θ) = 1 + iθigi + 1
2
θiθjgij + . . . ,

f i(θ, θ′) = θi + θ′i + cijkθ
′jθi + . . . ,

φ(θ, θ′) = hijθ
iθ′j + . . . , (2.62)

Then, by using (2.60), one can easily see that:

[gi, gj] = ifkijgk + ifij1 , (2.63)

4To be more precise, it does not depend on the choice of state within a superselection
sector. States in the same superselection sector may be prepared in superposition, whereas
states in different superselection sectors cannot.
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where fkij = −ckij + ckji and fij = −hij + hji. Therefore, a non-zero phase
factor is related to an identity element appearing on the right-hand side of a
Lie bracket, i.e. a central charge. Whenever one can redefine the generators
to remove central charges, one can similarly redefine U(θ) to remove the phase
factor in (2.60), at least in a finite neighborhood around the identity. In the
important case of the Poincaré algebra, one can indeed remove all central
charges by redefining the basis of generators [125]. However, the Poincaré
group is not simply connected. In a group that is not simply connected, there
may be a topological obstruction to setting the phase factor to zero globally.
From now on, we will ignore the possibility of projective representations and
assume we have defined our operators such that φ(θ, θ′) = 0.

2.2.4 The Poincaré group and classification of single-
particle states

We will now discuss the important Poincaré symmetry group of relativistic
theories on flat D = 4 space-time. Our main aim here is to show how the
existence of a Poincaré symmetry allows for a convenient definition of the
particle species. The D = 4 Poincaré group ISO(1, 3) is defined by the set
of coordinate transformations which leave the metric ηµν = diag(−1, 1, 1, 1)
invariant, i.e. it is the isometry group of Minkowski space. The coordinate
transformations are characterized by the Lorentz transformations Λµ

ν and
the translations aµ:

x′µ = Λµ
νx

ν + aµ , (2.64)

where Λµ
ν satisfies:

Λµ
ρ ηµν Λν

λ = ηρλ . (2.65)

The Lie algebra of the Poincaré group is generated by the Lorentz genera-
tors Mµν and translation generators Pµ. It is related by exponentiation to
the subgroup formed by translations and the Lorentz transformations with
det(Λ) = 1 and Λ0

0 ≥ 1. The latter form what is known as the proper
orthochronous Lorentz group. The commutation relations are:

[Mµν ,Mρσ] = i(ηµρMνσ − ηνρMµσ + ηνσMµρ − ηµσMνρ) ,

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), [Pµ, Pν ] = 0 , (2.66)

Although we specialize to D = 4 in this section, these commutation relations
define the Poincaré algebra iso(1, D − 1) for all dimension D ≥ 2.

The Poincaré group is realized on the Hilbert space by unitary operators
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U(Λ, a) which satisfy the composition law 5:

U(Λ, a)U(Λ′, a′) = U(ΛΛ′,Λa′ + a) . (2.67)

The generators Mµν and Pµ appear in the Taylor expansion of these operators
around the origin:

U(1 + ω, ε) = 1 +
1

2
iωµνMµν − iεµPµ + . . . . (2.68)

Because U(Λ, a) is unitary, Pµ and Mµν are both Hermitian as quantum
operators. Note that U(Λ, a) and Mµν cannot be respectively unitary or
Hermitian in any finite-dimensional matrix representation, as the Lorentz
group is non-compact. We can now use the generators (Pµ,Mµν) to define
multiplets of single-particle states as (infinite dimensional) representations
of the Poincaré group. Firstly, consider the eigenstates Ψp,σ of the four-
momentum operators Pµ:

PµΨp,s = pµΨp,s . (2.69)

The subscript s indicates a set of discrete variables that label the state. The
finite translation U(1, a) is then represented as U(1, a)Ψp,σ = e−ia

µPµΨp,s =
e−ia

µpµΨp,s. Then, the Lorentz transformations U(Λ, 0) = U(Λ) send the
state with momentum eigenvalue p to a linear combination of states with
momentum eigenvalue Λp:

U(Λ)Ψp,s =
∑
s′

Cs,s′(Λ)ΨΛp,s′ . (2.70)

Now, the state space of a particular particle species coincides with an irre-
ducible Lorentz-invariant subspace of the space of states Ψp,s. In other words,
the particle species are identified with the irreducible representations of the
Lorentz group contained in Cs,s′ . More generally, one would identify particle
species according to irreducible representation of the full symmetry group of
the theory. For example, the state space of gluons in the Standard Model
coincides with a multiplet of massless vector representations of the Lorentz
group that together form the adjoint representation of SU(3).

We can learn a lot about the matrices Cs,s′ by using the little group
method, more generally known as the method of induced representations. [36]
We first separate the space of momentum vectors pµ into equivalence classes

5We assume that we are dealing with bosonic representations. For fermions a minus
sign can appear, signaling a projective representation.
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formed by the orbits of proper orthochronous (homogeneous) Lorentz trans-
formations. In other words, two momenta pµ and kµ belong to the same
class if and only if they are related by a homogeneous Lorentz transforma-
tion L: pµ = Lµνk

ν . Proper orthochronous Lorentz transformations do not
change the invariant mass pµpµ or the sign of p0. Therefore, the equivalence
classes are characterized by those properties. Then, we pick a represen-
tative standard momentum from each equivalence class. The subgroup of
Lorentz transformations W µ

ν that leaves the standard momentum kµ invari-
ant, W µ

νk
ν = kµ, is known as the little group of the class. For most physical

purposes, there are three classes of interest:

� p2 = 0, p0 = 0. Representative kµ = (0, 0, 0, 0). The little group is the
full SO(1, 3). The vacuum state in unbroken Lorentz-invariant theories
belongs to this class.

� p2 = −M2, p0 < 0. Representative kµ = (−M, 0, 0, 0). Little group is
SO(3). This is the class of massive particles.

� p2 = 0, p0 > 0. Representative kµ = (k, k, 0, 0). Little group is ISO(2).
Massless particles belong to this class.

For each momentum pµ in the class of a particular kµ, we define a standard
Lorentz transformation L(p) that takes kµ to pµ: L(p)µνk

ν = pµ. Now define
the orthonormalized eigenstates Ψk,s of representative momenta:

〈Ψk,s|Ψk′,s′〉 = δ(3)(~k − ~k′)δs,s′ . (2.71)

We now assume that p0 > 0. Define the states of arbitrary momentum pµ as:

Ψp,s =

√
p0

k0
U(L(p))Ψk,s . (2.72)

This definition then fixes all the transformation properties of the states Ψp,s:

U(Λ)Ψp,s =
∑
s′

Ds,s′(W (Λ, p))ΨΛp,s′ , (2.73)

where Ds,s′ is an irreducible representation of the little group in the class of
pµ. For every p, W (Λ, p) is a mapping from the Lorentz group to the little
group in the equivalence class of p. It is defined as follows:

W (Λ, p) = L−1(Λp)ΛL(p) , (2.74)

where L(p) is the mapping defined above that takes a standard momentum kµ

to the argument pµ. The mapping W (Λ, p) is known as the Wigner rotation
[36].
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For massive particles, the Wigner rotation acts like an ordinary rotation
when Λ is restricted to the SO(3) subgroup. This means that all the fa-
miliar properties of SO(3) representations in quantum mechanics carry over
to relativistic quantum field theory. The representations are labeled by the
spin quantum number j ∈ N. They act on a (2j + 1)-dimensional vector
space. To include fermionic representations, one either has to allow for pro-
jective representations or enhance the Lorentz group to the universal cover
SL(2,C). Then, the little group for massive particles is SU(2), which admits
half-integer j representations.

The ISO(2) little group has rather different properties. As ISO(2) is not
semi-simple, it allows in principle for continuous spin representations (CSR),
which have a continuous spin degree of freedom. As these are not observed,
one has to impose by hand that the eigenvalues of two of the generators
of ISO(2) are zero for all physical states. That leaves one generator, whose
eigenvalue is known as the helicity of the massless particle state. This restric-
tion on the massless degrees of freedom is implemented on the Lagrangian
field theoy side by gauge redundancy. It is interesting to note that CSRs
do not exist in low-energy models coming from string theory. [144] Ordinary
field theory, on the other hand, does not explain why nature does not make
use of CSRs.

2.2.5 Symmetries of the S-matrix

In the beginning of this section, we defined a quantum symmetry as an
invertible mapping from the space of rays to itself that preserves transition
probabilities. This definition ensures that symmetry transformations are
represented on the Hilbert space as (anti)-linear and (anti)-unitary operators.
We were then able to define single free particle states according to their
transformation law under Lorentz transformations. We also required that a
symmetry transformation act on the in and out states of the S-matrix in the
same way that it does on free particle states. Let us take a moment to clarify
this last requirement.

The S-matrix contains all the information about scattering experiments
in a QFT. In a scattering experiment, a number of particles that are initially
separated by large distances come together to interact in a small region,
producing a possibly different set of particles which then separate again to
large distances. As an approximation, the incoming particles (represented by
the in states Ψ−α ) come in from the infinite past t = −∞ and the outgoing
particles (the out states Ψ−α ) travel into the infinite future t = ∞. We
assume that the particles do not interact at all when they are separated by
large distances, so that the in and out states approximate free particle states.
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The S-matrix is then defined according to the matrix elements between in
and out states:

〈Ψ−α |Ψ+
β 〉 = Sαβ , (2.75)

where α, β labels stand for discrete variables (e.g. particle number, Lorentz
or color indices) as well as momenta.

Let us give a proper definition of the in and out states. Consider a
Hamiltonian H = H0 +Hint decomposed into a free Hamiltonian H0 and an
interaction Hamiltonian Hint. We have the following eigenstates of H and
H0:

HΨα = EαΨα , H0Φα = EαΦα . (2.76)

Note that H0 is defined in such a way that H and H0 have the same spectrum
Eα. Now consider a probability g(α) distribution over the (discrete and con-
tinuous) particle labels α. Assume that g(α) is smooth over the continuous
variables in a finite range. Otherwise, g(α) is arbitary. Then, the in and out
states Ψ±α are those eigenstates of H which satisfy:

lim
t→±∞

exp(−iHt)
∫
dα g(α)Ψ±α = lim

t→±∞

∫
dα e−iEαtg(α)Φα . (2.77)

In other words, the in and out states are energy eigenstates of the full Hamil-
tonian which approximate single free particle states in the distant past or
future. Note that the states Ψα themselves are time-independent in the
Heisenberg picture. The equation (2.77) implies that one will find a particle
of the type represented by Φα if one observes the state Ψα in the infinite past
or future. The distribution function g(α) is a necessary part of the definition
because the operator exp(−iHt) acting on an eigenstates produces only an
unphysical phase factor. The S-matrix is unitary: S = S†. It is useful to
define a unitary operator S which represents the S-matrix on the free particle
states, in the sense that:

〈Φα |SΦβ〉 = Sαβ . (2.78)

Now let us come back to our definition of symmetries: a symmetry trans-
formation acts on in and out states in the same way as it does on free particle
states. For simplicity’s sake, we consider here an internal symmetry group G,
which only acts on internal discrete labels. For more complicated examples,
see again [125]. The symmetry is realized as a unitary, linear operator U(g)
where g is a group element. On free particle states, we have:

g · Φp1σ1l1; p2σ2l2; ... = U(g)Φp1σ1l1; p2σ2l2; ...

=
∑

L1,L2,...

D
(g)
l1L1

D
(g)
l2L2

. . .Φp1σ1L1; p2σ2L2; ... , (2.79)
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where D(g) is some unitary representation of the symmetry group. Now, our
definition of a quantum symmetry implies that:

Sp1σ1l1, ...; p1σ1l′1, ...
=

∑
L1,L2,...

∑
L′1,L

′
2,...

(D
(g)
l1L1

)∗(D
(g)
l2L2

)∗ . . . D
(g)

l′1L
′
1
D

(g)

l′2L
′
2
. . . Sp1σ1L1,...;p1σ1L′1,...

(2.80)
This is the case if and only if U(g)−1SU(g) = S. In other words, the gener-
ators of the symmetry group Gi must commute with S:

[Gi, S] = 0 . (2.81)

Thus, the existence of a quantum symmetry leads to an algebraic condition
on the S-matrix. As we stated in the beginning of this section, our definition
for symmetries in Hilbert space is stricter than for symmetries of the path
integral. Indeed, not every symmetry of the path integral leads to a condition
of the type (2.81). However, we saw in the previous section that symmetries
of the path integral lead to the important operator equation (2.42).

Let us return to our discussion in 2.1.4. There, we indicated that some
symmetries which have a Noether current Jµi may not integrate into a well-
defined charge Qi. This may occur for special classical field configurations,
but it is a particularly important point in QFT. There may be symmetries
of the Lagrangian with well-defined quantum currents which nevertheless are
not represented by a unitary operator in the Hilbert space. There is then
no operator Gi which imposes (2.81). Such a symmetry does not lead to
an algebraic condition on the S-matrix, but still has physical implications
on the dynamics of the theory. We have already come across an example of
such symmetries, namely proper (i.e. not large) gauge redundancies. For the
simple example of the U(1) Maxwell theory, the gauge redundancy implies
that the gauge potential Aµ appears in the Lagrangian only in the field
strength Fµν . The associated current, however, is trivial and leads to a
vanishing charge. However, the gauge parameter is constant (i.e. performing
a ”large gauge transformation”), we of course obtain conservation of electric
charge, which imposes an algebraic condition on the S-matrix.

We are therefore led to the following classification of symmetries, following
Weinberg’s contribution to [137]. We will call symmetry transformations that
lead to algebraic conditions on the S-matrix (i.e. quantum symmetries as we
have defined them) algebraic symmetries. Symmetries of the Lagrangian that
do not lead to such algebraic conditions are called dynamical symmetries.
Note that we are not talking about symmetries which are destroyed by the
quantization process (anomalous symmetries), but symmetries of the full
path integral that do not lead to algebraic conditions on the S-matrix.
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In the next section, we will turn our attention to a very important class of
dynamical symmetries: the spontaneously broken global symmetries. Such
symmetries do not lead to algebraic conditions due to the appearance of
massless Goldstone modes which can render the integral (2.21) divergent.

2.3 Spontaneous symmetry breaking and non-

linear realizations

Not only theories, but also physical states may enjoy symmetry. A state
φ̄ inherits a symmetry of the action whenever that symmetry sends φ̄ into
itself. It is clear that a generic symmetry transformation does not leave all
solutions to the field equations invariant, so most physical states break at
least some of the symmetries of the action. 6 A particularly important case
is when the vacuum, the state of lowest energy, breaks a symmetry of the
action.

Let us address symmetry breaking by the vacuum state first in classical
field theory. Consider the action S[φ] with a variational global symmetry
group G and a vacuum solution φ0(x). In the active form, the symmetry
group G acts on the fields φ(x) as

g · φ(x) = φ′(x) = f(x, φ, . . .) , (2.82)

while the coordinates do not transform. A symmetry transformation for
which g · φ0(x) 6= φ0(x) is broken by the vacuum field configuration. Con-
versely, the set of symmetry transformations h that do leave the vacuum
invariant (h · φ0(x) = φ0(x)), forms the unbroken subgroup H of G. Any
two elements g1 and g2 have an equivalent action on the vacuum whenever
g1 = g2h for some h ∈ H. The set of symmetry transformations broken by
the vacuum state therefore makes up the right-coset manifold G/H. The
coset manifold is itself a Lie group if and only if H is an invariant subgroup
of G.

Now, let us rearrange our field basis such that φ0(x) = 0. In this field
basis, any transformation broken by the vacuum is realized as a non-linear
transformation on the fields. We may therefore use the theory of non-linear
realizations to describe symmetries broken by the vacuum state. In fact, we

6A symmetry transformation that leaves all solutions invariant is called a zilch sym-
metry. Any action with two fields or more enjoys a zilch symmetry. [123] The Noether
current associated to a zilch symmetry always vanishes on-shell, so it has no immediate
physical implications. However, there are infinitesimal symmetry transformations whose
algebra only closes up to zilch symmetries. Alternatively, one can say that such algebras
are closed only on-shell.
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can choose to dispense with the initial vacuum field configuration φ0(x) and
symmetry transformation (2.82) altogether. In this bottom-up approach, we
keep only the fluctuations around the vacuum in the φ0(x) = 0 field basis
and fix the symmetry transformations using non-linear realizations. We will
have much more to say about this in Chapter 3.

One often starts with a field basis such that the origin φ(x) = 0 is invariant
under the full symmetry group: g · 0 = 0. This is only possible if there are
field configurations φ̄(x) such that g · φ̄(x) = φ̄(x) for all g ∈ G. If there
are no such field configurations, a subset of the symmetry transformations
is non-linearly realized in any field basis. A symmetry transformation which
admits a linear realization in some field basis, but which does not map φ0

into itself, is known as a spontaneously broken symmetry. [44–47,58,61,62]

Let us illustrate spontaneous symmetry breaking in a simple example.
Consider a relativistic theory with a Poincaré invariant vacuum state with a
spontaneously broken internal Lie group symmetry. Then, in the vacuum all
time and space derivatives vanish so that the problem of finding the vacuum
state reduces to finding extrema φ̄ of the potential V (φ). Because the symme-
try is internal, it maps the vacuum into another Lorentz-invariant state of the
same energy. In addition, because the symmetry transformation is continu-
ous, the potential V (φ) must have flat directions at the point φ̄. Of course,
any of the field configurations along the flat direction is an equally valid
choice for vacuum state. We discover that spontaneous symmetry breaking
is related to vacuum degeneracy. In addition, we observe that fluctuating the
field configuration in one of the flat directions costs no potential energy. In
other words, we find that the spontaneously broken symmetry corresponds
to a massless mode. This is known as Goldstone’s theorem: [63,87] every gen-
erator of a spontaneously broken, global Lie group symmetry corresponds to
a massless particle with the same quantum numbers.

Clearly, fluctuating in the flat direction is equivalent to locally performing
an infinitesimal transformation with the broken symmetry generator. There-
fore, given a vacuum field configuration |0〉 and a broken symmetry generator
Gi, we can identify the classical Goldstone modes with the following field
configurations: [90]

φi(x)Gi|0〉 , (2.83)

where φi(x) is some slowly varying function of the space-time coordinates.

To develop these ideas further, let us address spontaneous symmetry
breaking in the quantum theory.

Let us now present a proof of Goldstone’s theorem, due to Weinberg [126],
that does not make use of the integrated quantum charge. Assume that we
have the following path integral symmetry, linearly realized on the scalar
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fields φi(x):
φi(x)→ φi(x) + iεGijφj(x) , (2.84)

where Gij is a matrix, providing a representation of a single generator of an
internal symmetry group. Since the transformation is linear in the fields,
the quantum effective action is invariant under the same transformation. We
assume that the vacuum of our theory is Poincaré-invariant. In other words,
the expectation values of φi(x) do not depend on the coordinates. Then,
evaluated on the vacuum state, the effective action is just a potential:

Γ[Φ] = −VV [φ] , (2.85)

where we split off a factor V equal to the volume of space-time. Invariance
of the effective action now leads to:

∂V [φ]

∂φi
Gijφj = 0 . (2.86)

Differentiating this equation with respect to φ and evaluating at a stationary
point φ̄ of the effective potential yields:(

∂2V [φ̄]

∂φ̄i∂φ̄j

)
Gikφ̄k = 0 . (2.87)

The second derivative of the effective potential is also the second derivative
of the quantum effective action, evaluated on constant field configurations.

Therefore, we can identify −V ∂2V [φ]
∂φi∂φj

= Π(i,j)(0). The quantity Π(i,j)(0) is the

momentum-space version of Π(ix,jy) from (2.51), evaluated at zero momen-
tum because we are dealing with constant field configurations. We find that
Π(i,j)(0) has a non-zero eigenvector Gijφ̄j with vanishing eigenvalue. The
eigenvector here is non-zero, of course, precisely because we assume that the
symmetry transformation does not leave the vacuum field configuration in-
variant. Since P (i,j)(q2), the complete propagator, is the inverse of Π(i,j),
it must have a pole at q2 = 0. By the standard arguments regarding the
non-perturbative structure of n-point functions (see e.g. [129]) we can iden-
tify this pole with a massless particle: the Goldstone mode of the broken
symmetry transformation generated by Gij.

Throughout this section, we have been careful to distinguish sponta-
neously broken symmetries from the larger set of symmetries broken by the
vacuum state. Although one often assumes that a non-linear symmetry is an
IR consequence of a linear symmetry in the UV, we can entertain the idea
that a non-linear symmetry exists period. Therefore, there may be symme-
tries broken by the vacuum which are not, strictly speaking, spontaneously
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broken. In the rest of this work, we will be less careful with the term Gold-
stone mode. In our nomenclature, any field which non-linearly realizes a
symmetry as a preferred field (as opposed to unpreferred matter fields, see
Chapter 3), is a Goldstone field. As we will see, a generalized Goldstone field
is not always protected from obtaining a mass. Indeed, not all of the sym-
metries we examine admit a linear realization, at least not by an ordinary
local field theory living in the same number of dimensions.

2.4 Classification of algebraic symmetries

We have now defined many different classes of symmetries: global and local,
internal and space-time, algebraic and dynamical, and so on. It is now time
to ask what symmetry groups of each class can actually be realized in a
physical theory. Let us begin to answer this question in the context of the
algebraic symmetries, i.e. symmetries of the S-matrix. In 1976, Coleman
and Mandula [38] proved the following important theorem: in a relativistic
interacting theory in D = 4, all possible algebraic symmetry Lie groups are
a direct product of the Poincaré group and an internal symmetry group.

The work of Coleman and Mandula put an end to much speculation
about enhancements of the Poincaré group. It is not possible to introduce
hybrid symmetries, which mix particle flavor and Lorentz indices. Nor can
one embed the Poincaré group in a larger space-time symmetry group. It is
not always impossible to define single-particle states which are representa-
tions of hybrid symmetries or enhanced space-time symmetry groups. How-
ever, either of these possibilities will introduce physically unrealistic behavior
in scattering experiments. To make this clear, let us state the Coleman-
Mandula theorem. [40]

The Coleman-Mandula theorem: Assume that:

� Algebraic symmetries are represented in Hilbert space as unitary oper-
ators that commute with the S-matrix operator S.

� The Poincaré group is a subgroup of the algebraic symmetry group.

� All particles have a positive mass. The number of particle types with
mass below any given energy scale is finite.

� The T-matrix, Tαβ = Sαβ −1αβ for 2→ 2 scattering is a product of an
energy-momentum conservation Dirac delta and an analytic function
of the kinematic Mandelstam variables s and t.
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� The T-matrix vanishes only for a discrete set of values of the kinematic
variables.

� The matrix elements 〈Ψα|GiΨβ〉 of the generators Gi are distributions
in momentum space.

Then, the most general algebraic symmetry group is a direct product of
the Poincaré group and an internal symmetry group. For a detailed proof,
see [40].

The last assumption listed stands out from the others as technical rather
than physical. This is because the Coleman-Mandula theorem was proved
without assuming that the theory is a QFT. In a QFT, however, the technical
assumption is manifest. The other assumptions are quite minimal, but they
are by no means satisfied by all interesting QFTs. In particular, one may
give up the idea of particles states that decouple at large spatial separation,
invalidating the concept of scattering experiments altogether. This is the
case for conformal field theories (CFTs), which indeed enhance the Poincaré
group to the conformal group. Another interesting possibility is to introduce
symmetries that form a Lie supergroup rather than an ordinary Lie group.

Close to the identity, a supergroup is characterized by a superalgebra (or
graded algebra). A superalgebra contains even and odd elements, which sat-
isfy commutation and anti-commutation relations respectively. It turns out
that there is only one way to enhance the Poincaré group with odd algebra
elements. Haag, Lopuszanski and Sohnius [39] proved that the odd elements
must be spin-1

2
representations of the Lorentz algebra, QL

α and Q̄α̇M . Their
anti-commutator must give rise to the translation generator Pαα̇. This is
known as the supersymmetry algebra. In theories with linear supersymme-
try, particles of integer and half-integer spin come as pairs with equal mass
in supermultiplets. The fact that each boson is paired with an equal-mass
fermion gives rise to cancellations in many important calculations. For this
reason, supersymmetric theories have been of phenomenological interest for
a very long time. Furthermore, supersymmetry is an essential part of all
string theories that contain fermions. Let us give a precise statement of the
Haag-Lopuszanski-Sohnius theorem.

The Haag-Lopuszanski-Sohnius theorem: Allow the set of algebraic
symmetry transformations to form a Lie supergroup. Make all assumptions
listed for the Coleman-Mandula theorem. In addition, assume that: [122]

� The odd operators Qn,m = Qα1...αnα̇1...α̇m act in a Hilbert space with a
positive definite metric.
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� The Hermitian conjugates Q̄m,n = Q̄α1...αmα̇1...α̇n of Qn,m live in the
superalgebra.

Then, the most general algebraic superalgebra is the N -extended, centrally
extended supersymmetry algebra. This superalgebra is spanned by the Poincaré
generators, the supertranslations (QM

α , Q̄α̇M), and the scalar generators Bi.
The Bi generators make up an internal R-symmetry algebra which is the
direct sum a = a1 +a2 of a semi-simple algebra a1 and an Abelian algebra a2.
For the full list of anti-commutators in the general D = 4 supersymmetry
algebra, see for example [122].

The theorems of Coleman-Mandula and Haag-Lopuszanski-Sohnius are
very powerful. However, as we have emphasized throughout, they are ap-
plicable only for algebraic symmetries. There are numerous ways to add a
non-trivial dynamical space-time symmetry to a relativistic field theory. We
will encounter examples later in this chapter. It is natural to wonder whether
one can give a similar accounting of the possible dynamical space-time sym-
metries. The rest of this thesis will be an attempt to answer this question.
We will concentrate on the non-linearly realized global symmetries. It turns
out that one can get very general results in two different ways. First, one can
use the existence of an enhanced soft limit in scattering amplitudes, which
always accompanies a non-linearly realized symmetry, as we will see in the
next section. Second, we can make use of algebraic properties of non-linear
realizations. These properties follow from the general theory of non-linear
realizations, to be discussed in chapter 3.

2.5 Dynamics of Goldstone modes

Spontaneously broken symmetries have qualitatively different physical im-
plications than symmetries of the physical Hilbert space. We have seen in
section 2.2.4 that the latter may be used to define the particle multiplets
of the theory in a convenient way. Spontaneously broken symmetries, being
dynamical symmetries, do not lead to a similar classification of the particle
spectrum. We can however, under the conditions discussed in section 2.3,
identify a massless Goldstone modes for each broken symmetry. In addition,
the interactions one can write down for the Goldstone modes are constrained
by the broken and unbroken symmetries of the theory. This enables us to
make very general statements, sometimes called soft theorems or low-energy
theorems, about the way Goldstone modes couple to each other and to un-
preferred ”matter fields” which are not associated to a broken symmetry.

The most well-known example of a soft theorem is the Adler zero. Con-
sider a theory with a spontaneously broken internal symmetry and its corre-
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sponding Goldstone boson φ. Then, the S-matrix element (up to factors of π
and momentum conservation delta functions) for emitting a φ particle with
on-shell momentum p in a α→ β scattering process is: [2–4,126]

Mβ+φ(p),α =
1

F
pµN

µ
βα , (2.88)

where Nµ
βα is the regular contribution to the matrix element 〈β|Jµ(0)|α〉,

with Jµ the Noether current of the φ symmetry. The important part of
equation (2.88) is the factor pµ. It ensures that the amplitude for emitting a
φ particle goes to zero as the external momentum pµ goes to zero. One often
says that the scattering amplitude for this process has a vanishing soft limit.
It is easy to motivate the Adler zero from our discussion in section 2.3. In
the field basis φ0 = 0, the spontaneously broken symmetry transformation
necessarily acts on the Goldstone field φ with a constant shift:

δφ = c+ . . . . (2.89)

The shift requires that φ appears in the Lagrangian always with at least a
single derivative.7 In the literature, it is often said that φ must be derivatively
coupled.

In fact, one can generalize (2.88) for symmetries that shift φ by polyno-
mials in the coordinates rather than by a constant. In general, as we will see,
a symmetry transformation that includes a term xn leads to n powers of pµ

in (2.88). Such a symmetry with n > 0 is necessarily space-time, as it fails
to commute with translations. We will have much more to say about such
transformations in Chapter 3.

In this section, we will give an explanation of soft limits for higher-order
symmetries and define exceptional EFTs, which have the highest-possible soft
degree for a given derivative power counting. Exceptional EFTs will play an
important part in the classification of non-linear space-time symmetries in
Chapters 4 and 5. We will end this chapter by discussing two quintessential
non-linear realizations: the Akulov-Volkov Goldstino and the DBI scalar.

2.5.1 Soft limits and extended shift symmetries

Consider a theory with a scalar field φ(x) which realizes the following n-th
order non-linear symmetry transformation:

δ(n)φ(x) = cµ1...µn [xµ1 . . . xµn + fµ1...µn(x, φ, ∂φ, . . .)] . (2.90)

7Wess-Zumino terms, to be discussed in Chapter 3, are an exception to this statement
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As we will see in Chapter 3, closure of the symmetry algebra requires that φ
also realize an (n−1)-th order symmetry transformation of the same form as
(2.90). Working our way backwards, we find that the scalar field realizes a
shift symmetry δ(0)φ = c+ . . .. Each independent transformation δ(n)φ leads
to a current (J (n))µµ1...µn . These currents, however, are not all independent.
There is an important off-shell relation between J (n) for n > 0 and the current
for the shift symmetry J (0), discovered in [5] (see also [3]). This relation,
together with the ordinary Adler zero, leads to enhanced soft degrees for
theories with symmetries (2.90) for n > 0. Let us rewrite the whole chain of
transformations (2.90) as:

δ̄φ(x) = c(n)(α
(n)(x) + α

(n)
A (x)OA[φ]) , (2.91)

where we have suppressed all Lorentz indices. Here, α
(n)
A and α(n) are polyno-

mials in xµ and OA[φ] is constructed out of φ and its space-time derivatives.
We can obtain a relation between J (0) and the other currents by applying

a standard trick. One can calculate a Noether current for any global sym-
metry from the transformation of the action under a localized version of the
symmetry. For instance, consider the following transformation:

δφ = c(x)∆φ(x) . (2.92)

Assume that this is a symmetry transformation only for c(x) = constant.
Then, the transformation of the action should be proportional to a derivative
of c(x), as it vanishes in the limit c(x)→ constant:

δS =

∫
ddx ∂µc(x)Jµ(x, φ, ∂φ, . . .) . (2.93)

By definition, any variation of φ leaves S invariant when the equation of
motion are satisfied. Therefore, after partial integration, we find ∂µJ

µ(x) = 0
on-shell, which identifies Jµ as a Noether current. Now let us apply this trick
to the transformation (2.91). We can write δ̄φ(x) as a special localized shift
symmetry:

δ̄φ(x) = â(x) , (2.94)

where â(x) = c(n)(α
(n)(x) + α

(n)
A (x)OA[φ]). Now, we can obtain the Noether

currents either by applying the trick for a localized shift symmetry or by
localizing the c(n) parameters of the n-th order transformations. We thus
find: ∫

ddx ∂µâ(x)
(
J (0)
)µ

(x) =

∫
ddx ∂c(n) · J (n)(x) , (2.95)

suppressing Lorentz indices for the n-th order case. In the limit c(n) →
constant, the integral on the right vanishes. Therefore, the integrand on
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the left becomes a total derivative. Writing out the derivative of â(x) and
neglecting all ∂c(n) terms, we obtain:(

∂α(n) + ∂α
(n)
A OA[φ] + α

(n)
A ∂OA[φ]

)
· J = ∂µ

((
β

(n)
I

)µ
OI [φ]

)
, (2.96)

where β
(n)
I is a function of the coordinates and OI [φ] is a local operator

built out of φ and its derivatives. Equation (2.96) is the first of the off-shell
relations. We find another one by inserting it back into (2.95):(

J (n)
)µ

= α
(n)
A OA[φ]Jµ(x)−

(
β

(n)
I

)µ
OI [φ] . (2.97)

Next, we follow [3] and assume that the identities (2.96) and (2.97) con-
tinue to hold in the quantum theory as operator equations. That is, we
assume that they hold when squeezed in between the in- and out-states |β〉
and 〈α|:

〈α|
(
∂α(n)+∂α

(n)
A OA[φ]+α

(n)
A ∂OA[φ]

)
·J |β〉 = ∂µ〈α|

(
β

(n)
I

)µ
OI [φ]|β〉 , (2.98)

Using a Ward identity for Jµ then leads to:

∂α(n) · 〈α|J |β〉 = −∂ · 〈α|α(n)
A OA[φ]J − β(n)

I OI [φ]|β〉 , (2.99)

or, collecting the αA and βI polynomials and the corresponding local opera-
tors OA[φ], OI [φ]:

∂α(n) · 〈α|J(x)|β〉 = ∂ · 〈α|γC(x)OC [φ]|β〉 . (2.100)

We now need to elaborate on the inner products that appear in (2.100).
Let us recall our discussion from section 2.3 on the non-perturbative pole
structure of n-point functions. First, factor out the x-dependence in the
inner products by using the translation operator:

e−ip·x∂α(n) · 〈α|J(0)|β〉 = ∂ ·
(
γC(x)e−ip·x

)
〈α|OC [φ](0)|β〉 . (2.101)

Just like in section 2.3, the quantities 〈α|J(0)|β〉 and 〈α|OC [φ](0)|β〉 develop
poles (as function of pµ = P µ

β − P µ
α ) at the mass squared of each physical

particle, as long as the operator in the middle has a non-zero inner product in
between the vacuum and the particle in-state. Let us denote the Goldstone
boson in-states of momentum pµ by |φ(p)〉. The residues of the poles at zero
mass due to the Goldstones are then given precisely by operator squeezed in
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between the vacuum and the single Goldstone in-states. By Lorentz covari-
ance, we have:

〈0|Jµ(x)|φ(p)〉 = ipµFe−ip·x , (2.102)

for some constant F . We find:

〈α|Jµ(0)|β〉 =
i

p2
〈0|Jµ(0)|φ(p)〉〈α + φ(p)|β〉+Nµ

αβ(p)

=
−pµ

p2
F 〈α + φ(p)|β〉+Rµ(p) ,

〈α|OC [φ](0)|β〉 =
i

p2
〈0|OC [φ](0)|φ(p)〉〈α + φ(p)|β〉+NC

αβ(p) , (2.103)

where Nµ
αβ(p) and NC

αβ(p) are, by assumption, regular remainder functions8.
Let us contract the first equation in (2.103) with pµ. Using the fact that Jµ

is conserved, we then find:

pµN
µ
αβ = F 〈α + φ(p)|β〉 = FMα+φ(p),β . (2.104)

In other words, we find the Adler zero relation Mβ+φ(p),α = 1
F
pµN

µ
βα.

Equations (2.101) and (2.103) lead to a relation between the remainders
Nµ
αβ(p) and NC

αβ(p):

e−ip·x∂α(n) ·Nαβ(p) = ∂ ·
(
γC(x)e−ip·x

)
NC
αβ . (2.105)

Let us write out the n-th order polynomial α(n) to find9:

e−ip·x∂µ(xµ1 . . . xµn)Nµ
αβ(p) = ∂µ

(
γµµ1...µn
C (x)e−ip·x

)
NC
αβ . (2.106)

Integrating this equation over all of space-time, one obtains:

pµN
µ
αβ(p)∂µ1 . . . ∂µnδ(d)(p) = 0 , (2.107)

because the right-hand side of (2.106) is a total derivative. We can now work
order-by-order in n to find out what (2.107) implies. At zeroth order, we find
limp→0 pµN

µ
αβ = 0, which is just the statement that the remainder is regular.

Taking a derivative of the zeroth order (2.107), we find:

0 = ∂ν(pµN
µ
αβ)δ(d)(p) + pµN

µ
αβ∂

νδ(d)(p) = 0 , (2.108)

which, using (2.106) at first order, implies limp→0 ∂
ν(pµN

µ
αβ). Therefore,

expanding the quantity Mβ+φ(p),α in powers of pµ, the first n+1 terms vanish.
In other words, the existence of an n-th order symmetry of the type (2.90)
leads to an (n + 1) degree soft limit in the S-matrix element for emitting a
Goldstone boson in the process β → α.

8This is always the case in the absence of cubic vertices. [3]
9To be precise, this equation only holds for the projection onto the Lorentz represen-

tation picked out by the parameter c(n).
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2.5.2 Exceptional EFTs and on-shell reconstruction

Up to now, we have focused on the field-independent, coordinate-dependent
shift in the transformation law (2.90). We have seen that an n-th order
shift implies a soft degree (n + 1). This may be considered a rather trivial
consequence of the fact that an n-th order shift in the coordinates requires
the Goldstone fields to appear with (n+ 1) derivatives. However, as we have
indicated earlier, this is not always true for Wess-Zumino interactions (which
are invariant only up to a total derivative) or when the field-dependent part
of (2.90) is non-trivial. We will address the latter possibility in this section.

Consider a theory of a massless scalar, with the general Lagrangian: [2]

L = (∂φ)2

∞∑
n,m

λm,n∂
mφn . (2.109)

Let us define the quantity ρ = m
n

, which counts the number of derivatives
per field apart from the (∂φ)2 factor. A Lagrangian with a fixed ρ has the
general form

L(ρ) = (∂φ)2

∞∑
n

λn∂
ρnφn = (∂φ)2F (∂mφn) . (2.110)

The quantity ρ is important because, for tree-level scattering, only diagrams
coming from interactions with the same ρ can cancel each other to provide
non-trivial soft-limits. Following [2], we will refer to ρ as the derivative power
counting of a theory defined by Lρ.

As we have discussed before, for a given ρ a certain soft degree is a trivial
consequence of having the right number of derivatives on the fields in every
interaction. Specifically, a soft degree σ

σ ≤ m+ 2

n+ 2
=
ρn+ 2

n+ 2
, (2.111)

for an interaction of the type (2.109) is trivial. Whenever a theory has a soft
degree σ greater than this quantity, we say that its soft limit is enhanced.

Let us see how an enhanced soft limit σ > ρ can come about. We assume
that the soft degree σ is the consequence of an order n = (σ−1) shift symme-
try, (2.90). Furthermore, we assume that the Lagrangian is strictly invariant
under this transformation. We will address the possibility of invariance up
to a total derivative in the next chapter. Clearly, none of the λn terms in
the expansion (2.110) separately are invariant under the field-independent
part of the transformation (2.90). Therefore, this transformation needs to
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be cancelled by one of the other terms in the Lagrangian. However, as these
terms have a different number of fields n, the symmetry transformation must
have a field-dependent part. To be precise, we want to cancel the transfor-
mation of the λn term under the shift symmetry with the field-dependent
transformation of the λn′ term. This can happen if the field-dependent part
of the transformation has a term with n− n′ fields.

However, now the field-dependent transformation of the λn term has to be
cancelled by something else. Usually, this requires a term of the Lagrangian
with more fields than λn. In general, therefore, we expect that a soft limit
σ > ρ leads to an infinite number of interactions all fixed by the symmetry
in terms of a single coupling constant. One expects that such theories are
sparse. Indeed (after imposing analyticity, crossing symmetry and unitarity),
there is often only a single possible theory that realizes a particular choice
(ρ, σ) with σ > ρ. Such a theory is therefore reconstructible given only its
soft limits and derivative power counting. We will refer to a reconstructible
theory with enhanced soft degree σ > ρ as an exceptional EFT.

In Chapter 3, we will see that an n-th order symmetry of the type (2.90)
is a consequence of having n inverse Higgs relations in the coset construc-
tion, which requires that the commutator of translations and the n-th order
shift give rise to the (n − 1)-th order shift. The field-dependent part of
the transformation law of an exceptional theory is the consequence of non-
vanishing commutation relations besides those required for imposing inverse
Higgs constraints.

In the references [2–4, 9, 10], a classification of symmetries of the type
(2.90) was achieved by reconstructing the EFTs from the soft data (ρ, σ).
We will give a complementary classification using algebraic properties in
chapters 4 and 5.
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Chapter 3

The general theory of
non-linear realizations

In the previous chapter, we examined some important effective field theories
with special non-linear symmetries. The usefulness of that approach relies
on the fact that the non-linear symmetries highly constrain the dynamics of
the Goldstone degrees of freedom and their coupling to matter fields. As we
have seen, non-linear symmetries allow one to derive important low-energy
theorems, which explain the implications of the non-linear symmetries be-
low their breaking scale. An important consequence at low energies is the
existence of enhanced soft limits in scattering amplitudes of the Goldstone
degrees of freedom. In this chapter, we will investigate how to obtain trans-
formation laws for the Goldstone and matter fields and how to construct
actions invariant under those transformations.

The general procedure for non-linear internal symmetries was developed
long ago by Callan, Coleman, Wess & Zumino, (CCWZ) [49, 50] building
on Weinberg’s work on the non-linear realization of chiral symmetry. [41,48]
They showed that any given symmetry breaking pattern, defined by the coset
G
H

, leads to transformation laws for the Goldstone and matter fields which are
unique up to field redefinitions. Furthermore, they showed how to construct
the most general Lagrangians invariant under those transformation laws, us-
ing appropriately modified covariant derivatives. From now on, we will refer
to their framework as the coset construction. The most general invariant
action is a sum of the Lagrangians determined by the coset construction and
Wess-Zumino terms, which are invariant only up to a total derivative. We
will refer to the fact that the coset construction provides the most general in-
variant actions as coset universality. We will examine the coset construction
for internal symmetries in section 3.1.

Volkov [54], Ivanov and Ogievetsky [55] generalized the coset construction

49



50CHAPTER 3. THE GENERAL THEORY OF NON-LINEAR REALIZATIONS

to non-linear space-time symmetries. A new ingredient in the space-time case
is the existence of inverse Higgs constraints (IHCs), which allow one to con-
sistently eliminate some Goldstone fields in terms of others, thereby violating
Goldstone’s theorem. As we will show, the existence of inverse Higgs con-
straints is easy to understand as a consequence of degeneracy in the Goldstone
modes that are induced by independent symmetry generators. [90] [80]This
occurs when one Goldstone mode can be transformed into another by per-
forming a local translation. The possibility of eliminating some Goldstone
fields in favor of others allows one to introduce multiple symmetry generators
per physical Goldstone field, giving rise to a richer structure of symmetry al-
gebras than is possible for internal symmetries. However, it is only possible
to impose the IHCs if the symmetry algebra satisfies some important con-
ditions. [54] [141] As we will see, these conditions enable us to classify all
possible non-linear symmetry algebras that can be realized on a particular
choice of Goldstone fields, under minimal assumptions. [76] [77] [78] [79] We
will cover the coset construction for space-time symmetries in detail in sec-
tion 3.2, but leave the explanation of the EFT classification for the following
chapter.

For space-time symmetries there is no formal proof that the coset con-
struction provides the most general transformation laws and invariant ac-
tions. However, there are numerous non-trivial checks that lead us to believe
that this is the case for space-time symmetries as well. In this chapter, we
will take a look at the non-linear realization of the D = 4 conformal group
and show that different basis choices lead to equivalent theories . [174] We
will also address the question of universality for non-linear realizations of
N = 1 supersymmetry.

The coset construction has a straightforward generalization from ordi-
nary space-time to superspace. [155] [156] [173] Just like Goldstone modes
in ordinary space-time are degenerate when they can be transformed into
each other by local translations, Goldstone modes in superspace are degen-
erate when they are related by a local supersymmetry transformation. [80]
The existence of superspace inverse Higgs constraints constrains the allowed
symmetry superalgebras. Once again, this enables us to classify all possible
Goldstone EFTs under minimal assumptions. [80]

Particularly in the supersymmetric setting, the coset construction is a
useful tool for constructing actions that describe extended objects such as
superstrings and branes. [153,154,181] The superstring in D = 10 flat space
in the Green-Schwarz formulation may be considered as a two-dimensional
coset model for the symmetric space isomorphic to the D = 10 Type II
supersymmetry group. In more general backgrounds, the target space de-
scription may require non-trivial p-form fluxes in order to solve the Einstein
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equations. In the worldsheet picture, complicated Wess-Zumino interactions
of the symmetry breaking pattern must then be added to the action. These
Wess-Zumino terms describe the couplings to the background gauge poten-
tials. From the worldvolume point of view, they are necessary to preserve
the local fermionic κ-symmetry. The coset construction is a crucial tool for
explicitly constructing the non-trivial Wess-Zumino interactions.

In certain very special backgrounds, such as the AdS5 × S5 background
relevant to the AdS/CFT correspondence [75], the description of superstring
actions as coset models allows one to construct infinite sets of conserved
charges. The existence of an infinite number of charges can make calculations
tractable in situations where neither side of the AdS/CFT is duality weakly
coupled. Thus, the coset construction has become an important tool in the
integrability approach to the AdS3/CFT2 correspondence (see for instance
[154,194]). We will examine the formulation of superstring and brane actions
as coset models in section 3.4.

3.1 Internal symmetries

We begin by considering the coset construction for internal symmetries, which
was developed by CCWZ in [49,50]. Consider the symmetry breaking of the
compact, semi-simple Lie group G down to a subgroup H. We want to
know how to construct transformation laws under G which are linear only
for elements of H. The groups G and H define a coset space G

H
, which we will

refer to as the symmetry breaking pattern. We require that G is an internal
symmetry, which means that the overall symmetry group of the theory is a
direct product of G and the Poincaré group. We parametrize an element g
in the connected component of G as follows:

g = ec
iGieu

aZa , (3.1)

where Za are the generators of the subgroup H and Gi are the remaining
generators, which make up the coset G

H
. In order to consistently break the

group G to H, the algebra must take the form:

[Za,Mb] = fab
cMc, [Gi, Gj] = fij

kGk + fij
aZa,

[Za, Gi] = fai
jGj . (3.2)

In other words, the commutator of a broken generator with an unbroken
one must equal a broken generator. Now consider a mapping γ(x) from the
space-time coordinates to an element of the coset space:

γ = eφ
i(x)Gi . (3.3)
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The function φi(x) is the Goldstone field associated to the symmetry gener-
ator Gi. Acting on the left with g on γ yields:

g · γ = eφ
′i(x)Gieh

a(φ,g)Za . (3.4)

This equation defines the transformation law φ(x) → φ′i(x) under g for the
Goldstone fields φi(x). By acting on (3.4) with another group g2, one finds
that the transformation law φ(x) → φ′i(x) satisfies the group law. The
transformation becomes linear when g = h is an element of H, that is:

φ′i(x) = DG(h)ijφ
j(x) , (3.5)

where DG is some representation of H.
Now consider a field multiplet ψA which transforms according to the

representation D of H, ψ′A(x) = DA
B(h)ψB(x). We can use the mapping

ha(φ, g) from (3.4) to define a transformation law for ψA under elements g
of the full group:

ψ′A(x) = D(h(φ, g))AB ψ
B(x) , (3.6)

where h(φ, g) = expha(φ, g)Za. Once again, this transformation law satisfies
the group law and reduces to the ordinary transformation law when g is
restricted to the unbroken group H. The full group G is then realized on the
Goldstone fields φi and the matter fields ψA as a transformation that becomes
linear when restricted to H, as desired. The primary result of CCWZ was
that any realization of G that becomes linear on H can be transformed into
(3.4) and (3.6) by an invertible local field redefinition, as long as G is an
internal, compact, connected, and semisimple Lie group. [49] Let us see how
to construct actions invariant under the symmetry transformations (3.4) and
(3.6).

The field multiplet ψA transforms under G
H

as a field-dependent H trans-
formation, so any H-invariant quantity built out of ψA is G-invariant. How-
ever, derivatives of ψA are not covariant due to the φ dependence of the trans-
formation law. Similarly, neither the Goldstone fields φi nor their derivatives
∂φi transform covariantly. CCWZ proved that there is a unique set of co-
variant objects which contains derivatives of φi and ψA, up to invertible field
redefinitions. Let us see how to construct them.

Consider the following Lie algebra-valued 1-form built out of the coset
element γ:

ω = γ−1dγ , (3.7)

where d is the exterior derivative on space-time. ω is the pullback to space-
time of the Maurer-Cartan form on G by the mapping γ(x). It satisfies the
Maurer-Cartan equation dω + ω ∧ ω = 0. In the following, we simply refer
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to ω as the Maurer-Cartan form of the symmetry breaking pattern G
H

.1 We
may decompose ω in terms of the symmetry generators Gi and Za:

ω = ωaZa + ωiGi = (ωa)µdx
µZa + (ωi)µdx

µGi . (3.8)

We will refer to the 1-forms multiplying the symmetry generators as Maurer-
Cartan components. We now define covariant derivatives for φi and ψA as
follows:

D̂µφ
i = (ωi)µ, D̂µψ

A = ∂µψ
A + (ωa)µD(Za)

A
Bψ

B , (3.9)

where D(Za) is the matrix associated to the generator Za in the H represen-
tation D of the multiplet ψA. These objects transform covariantly under the
full group G:

(Dµφ
i)′(x) = DG(h)ijφ

j(x), (Dµψ
A)′(x) = D(h)ABψ

B(x) , (3.10)

where once again h = expha(φ, g)Za and DG is the H representation defined
by equation (3.5). Therefore, the quantities ψA, D̂φi and D̂ψA all transform
under G as field-dependent H transformations. Any H-invariant Lagrangian
built out of them is therefore automatically G-invariant.

3.1.1 Wess-Zumino terms

We have seen how the coset construction provides the most general invariant
Lagrangian for the symmetry breaking pattern G/H. Of course, to find the
most general invariant action we need in addition to know all terms which
are not invariant but transform into a total derivative. Wess and Zumino
showed [51] (in the context of pion physics) that such terms may be generated
quantum mechanically, even when one does not include them initially. In the
literature, operators which transform under a broken symmetry into a total
derivative are often called Wess-Zumino or Wess-Zumino-Witten [52] terms.
We will encounter Wess-Zumino terms throughout this thesis. Important
examples are the Galileons [96] and the Lagrangians that govern the dynamics
of supersymmetry-preserving branes and strings.

Wess-Zumino terms in d dimensions are always equal to integrals of in-
variant Lagrangians in d + 1 dimensions. [52] Weinberg and D’Hoker [53]
showed that the d + 1-dimensional interactions are identified with elements
of the d + 1-th cohomology group of the manifold G/H, Hd+1(G/H,R). In
other words, they are the invariant and closed d+ 1-forms on G/H that are
not themselves the exterior derivative of an invariant d-form. Let us briefly

1Note that the definition of the Maurer-Cartan form may change depending on the
parametrization of the coset element.
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review the arguments of Weinberg and D’Hoker. We will give an example of
how one constructs these invariant forms after we have introduced the coset
construction for space-time symmetries.

First, Weinberg and D’Hoker show that even when an operator transforms
into a total derivative under the symmetry transformations, a variation of
that operator with respect to a Goldstone field is strictly invariant. In order
to see this, write the variation of the action as follows:

δS[φ] =

∫
ddxTr

[
(γ−1δγ)GiJ [φ, ∂φ, . . .]

]
. (3.11)

where γ(φ) is the usual mapping from the Goldstone fields to elements of
G/H and J is a general local functional of the Goldstones φi and their
derivatives. The subscript in (γ−1δγ)Gi indicates that we restrict to terms
proportional to broken generators. It is possible to write a general variation
in this way when the Goldstone fields always enter into the action by way of
the mapping γ(φ(x)), as is true in the coset construction.

At this stage, assume that the transformation laws of the Goldstone fields
come from the coset construction, (3.4). Vary the transformation law with
respect to the untransformed field φi to obtain the transformation of the
bracketed quantity in (3.11):

γ−1(φ′)δγ(φ′) = h(φ, g) ·γ−1(φ)δγ(φ) ·h−1(φ, g)−δh(φ, g) ·h−1(φ, g) . (3.12)

The transformation law of (γ−1δγ)Gi reduces to the first term on the right-
hand side. Then, by equating the variational derivatives of the transformed
and untransformed actions, δS[φ′]

δφi
= δS[φ]

δφi
, one obtains:

J(φ′) = h(φ, g) · J(φ) · h−1(φ, g) . (3.13)

Together, (3.12) and (3.13) imply that (3.11) is the integral over a G-invariant
Lagrangian density.

The next step is to write the invariant operator as the integral over an
extended d+1-dimensional space. First, compactify the d-dimensional space-
time to a d-sphere Md. The image of the space-time in the manifold G/H
under the mapping γ(φ(x)) is then also a d-sphere. Assuming this d-sphere
can be continuously shrunk to a point (i.e. assuming γ(φ(x)) is in the trivial
d-th homotopy class of G/H), we may construct a smooth interpolating

function φ̂i(x, t1) such that φ̂i(x, 1) = φi(x) and φ̂i(x, 0) = 0. Then, we may
write S[φ] as:

S[φ] =

∫
Bd+1

ddx dt1 Tr

[(
γ−1(φ̂(x))

∂γ(φ̂)

∂t1

)
Gi
J

]
, (3.14)
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where Bd+1 is the d + 1-ball formed by space-time and the new coordinate
t1. As we have explained, the integrand is a G-invariant density.

The last step is to smoothly extend φ̂ into other directions ti such that xµ

and ti provide a set of coordinates for the full coset space G/H. Then, one
can write (3.14) as the integral over Bd+1 of a closed G-invariant d+ 1-form
F in G/H:

S[φ] =

∫
Bd+1

F . (3.15)

Now, when two invariant d+ 1-forms live F and F ′ in the same cohomology
class of G/H, they differ by the exterior derivative of an invariant d-form
H: F ′d+1 = Fd+1 + dH. That means we can write:∫

Bd+1

F =

∫
Bd+1

F ′ +

∫
Md

H . (3.16)

In other words, the difference in the actions can be written as a d-dimensional
integral of an invariant density. Such terms are of course exactly what the
usual coset construction provides. Thus, the non-trivial Wess-Zumino terms
are classified by the cohomology classes of d+ 1-forms in G/H.

In this section, we have explained how one (formally) constructs a higher-
dimensional invariant density out of a Wess-Zumino term. In practice, we will
work the other way around and construct Wess-Zumino terms from closed,
invariant d + 1 forms that are not the exterior derivative of an invariant
d-form. In the next section, we will explain how to find the Wess-Zumino
terms of the Galileon algebra. In the last section of this chapter, we will see
that Wess-Zumino terms play an important role in constructing superstring
and brane actions.

3.2 Space-time symmetries

We now consider the case of broken space-time symmetries. A space-time
symmetry group has generators which don’t commute with the Poincaré al-
gebra. We work in D dimensions and we assume that the full D-dimensional
Poincaré group remains unbroken. The broken space-time symmetries there-
fore come in addition to the Poincaré group. As we have seen, the Coleman-
Mandula theorem states that such symmetry groups cannot be realized lin-
early. However, there is no theorem that forbids non-linear realizations. The
coset construction for space-time symmetries was developed by Volkov [54]
and Ivanov & Ogievetsky. [55]

Because the overall symmetry group is no longer a simple direct product
of Poincaré and an internal group, the G relevant for the coset construction



56CHAPTER 3. THE GENERAL THEORY OF NON-LINEAR REALIZATIONS

includes the full Poincaré group in addition to the broken symmetries. The
main subtlety in the coset construction for space-time symmetries is the role
of the translation generators Pµ. Since they act non-linearly on the space-
time coordinates in the passive formulation, they live in the coset G

H
rather

than inH, even though translations act linearly on the fields. We parametrize
G locally as follows:

g = ea
µPµec

iGiec
µνMµνeh

aZa , (3.17)

where we decompose the algebra of G into the broken generators Gi and
unbroken ones Za, in addition to the Poincaré generators Mµν and Pµ. We
have suppressed the Lorentz indices of Gi and Za. In general, they can span
an arbitrary representation of the Lorentz group. The commutation relations
must be restricted to the following general form, for consistency of the coset
construction:

[Za, Zb] = fab
cZc , [Gi, Za] = fia

jGj ,

[Pµ, Za] = fµa
νPν . (3.18)

The remaining commutation relations, involving [Pµ, Gi] or [Gj, Gj] are not
restricted a priori. The choice of parametrization (3.17) is of course not a
unique one. In fact, we will usually make a different choice where each non-
linear H multiplet of Goldstones φi comes in a separate exponential, but let
us work with (3.17) for the moment.

As before, we define a mapping γ(x) from the space-time coordinates to
the coset space by way of the Goldstone fields φi(x). Acting with a group
element g defines the passive transformation law φ(x)→ φ′(x′) for the Gold-
stone fields and xµ → x′µ for space-time coordinates:

γ(x) = ex
µPµeφ

i(x)Gi ,

g · γ(x) = ex
′µPµeφ

′i(x′)Giec
µν(φ,g)Mµνeh

a(φ,g)Za . (3.19)

Note the dependence on the transformed coordinate in φ′(x′). The trans-
formations of φ and x are, in general, point transformations, meaning they
depend on the coordinates as well as the fields. The transformation law
becomes linear when g = h is an element of H:

h · φ(x) = φ′i(x′) = DG(h)ijφ
j(x) , (3.20)

for some representation DG of H. The transformation law for the coordinates
x then reduces to the standard Poincaré transformation. Note that DG may
act on the suppressed Lorentz indices of φi(x), since H includes the Lorentz
group. Once again, the mappings cµν(φ, g) and ha(φ, g) determine the trans-
formation law of the matter fields. Define h(φ, g) = ec

µν(φ,g)Mµνeh
a(φ,g)Za . A



3.2. SPACE-TIME SYMMETRIES 57

matter field H multiplet ψA which transforms in the representation D of H
transforms under the full group G as:

g · ψ = ψ′A(x′) = D(h(φ, g))ABψ
B(x) , (3.21)

where the index A runs over all indices of H in the representation of ψA,
including the Lorentz indices.

The Maurer-Cartan form ω decomposes as follows:

ω = γ−1dγ = ωµPµ + ωµνMµν + ωiGi + ωaZa

= (ωµ)νdx
νPµ + (ωµν)ρdx

ρMµν + (ωi)µdx
µGi + (ωa)µdx

µZa .
(3.22)

ω satisfies the Maurer-Cartan equation dω + ω ∧ ω = 0. Let us see how the
Maurer-Cartan components transform. Using (3.19), we find for the non-
linearly realized components ωG (i.e. the translation and Gi components):

g · ωG = ω′G(x′) = h(φ, g)ωG(x)h−1(φ, g) . (3.23)

This is a linear transformation, so g · ωG = h(φ, g) · ωG = D(h(φ, g))ωG
for the representation DG of H spanned by ωG. In particular, ωµ = (ωP )µ

transforms as a Lorentz vector with a field-dependent parameter:(
g · ωP

)µ
(x′) =

(
ec
ρν(φ,g)LρνωP

)µ
(x) , (3.24)

where Lµν is the vector representation of Lorentz transformations. The lin-
early realized Lorentz and Za components, however, transform together like
a gauge connection for H:

ω′a(x′)Za + ω′µνMµν = (ωC)′(x′)ZC

= h(φ, g)
(
ωC(x)ZC

)
h−1(φ, g)− h−1(φ, g)dh(φ, g) ,

(3.25)

where ZC stands for all generators of H, including Mµν .
The objects ωG transform covariantly and are built out of derivatives of

the Goldstones, so we can use them to build covariant derivatives. However,
it is the full 1-form ωG, not the component (ωG)µdx

µ that has nice transfor-
mation properties. Since the coordinates transform non-trivially under G,
we need to deal with the transformation of the basis 1-form dxµ. Notice,
however, that the Maurer-Cartan component of translations at zeroth order
in the fields is simply a delta: (ωµ)ν = δµν+O(φ). We can therefore compute
its inverse, (ω−1

ν )µ, at least perturbatively. We will soon see that (ωµ)ν is like
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a vielbein, so let us set (ωµ)ν = eµν and (ω−1
ν )µ = (e−1)ν

µ. It is now clear
that the following quantity D̂µφ

i transforms covariantly under G:

D̂µφ
i := (e−1)µ

ν(ωi)ν ,

(D̂µφ
i)′(x′) = h(φ, g) · D̂µφ

i(x) . (3.26)

This is the covariant derivative for the Goldstone field φi. The covariant
derivatives for matter fields are defined as follows:

D̂µψ
A(x) = (e−1)µ

ν

(
∂νψ

A(x) + (ωC(x))νD(ZC)ABψ
B(x)

)
. (3.27)

The inhomogeneous transformation of ∂µψ is cancelled by the transformation
law (3.25) for ωC . Thus, ωC plays the role of a gauge connection for H, as
expected.

We now have the objects D̂µφ
i, D̂µψ

A and ψA, all of which transform
under G as a field-dependent H transformation. The only thing left to deal
with is the transformation of the space-time coordinates, defined by (3.19).
Earlier we noted that ωP transforms under G like a Lorentz vector with a
field-dependent parameter, (3.24). Define the following volume form:

dV = (ωP )0 ∧ (ωP )1 ∧ . . . ∧ (ωP )D−1 (3.28)

= det(e)dx0 . . . dxD−1 . (3.29)

dV is then invariant under G. Therefore, the general action obtained from
the coset construction is:

S =

∫
dDx det(e)L , (3.30)

where L is any H scalar built out of the quantities D̂µφ
i, D̂µψ

A and ψA.
In addition to the action obtained from the coset construction, there can be
Wess-Zumino interactions for space-time symmetries, as we will see.

The EFTs for broken space-time symmetries that we encountered in the
previous chapter have more broken symmetry generators than Goldstone
fields, violating Goldstone’s theorem. However, we have seen that in the
coset construction one has to associate a Goldstone field φi(x) to each broken
generator Gi. How can we reconcile these two observations? It turns out that
not all Goldstone fields are essential to the non-linear realization. We can
sometimes eliminate a Goldstone in favor of others by imposing constraints
that are compatible with all symmetries. We refer to these as inverse Higgs
constraints (IHCs) [55] and to the Goldstone fields that they eliminate as
inessential Goldstones. [141] The existence of IHCs is an important part of
why it is hard to prove coset universality for space-time symmetries. We will
discuss IHCs in detail in the next subsection. After that, we will return to
the question of coset universality.
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3.2.1 Degenerate Goldstone modes

In the previous sections, we studied spontaneous symmetry breaking in the
bottom-up approach of non-linear realizations. We saw that theories with
non-linear space-time symmetries may violate Goldstone’s theorem due to
the possibility of imposing inverse Higgs constraints. In order to understand
physically why IHCs exist, it will be useful to take a more top-down point of
view. Consider a theory with a linearly realized symmetry group G, in the
vacuum field configuration |0〉. We assume that |0〉 breaks the symmetries
to the subgroup H. The broken generators Gi, when acting on |0〉, produce
the following massless Goldstone modes:

φi(x)Gi|0〉 , (3.31)

where φi(x) is a slowly-varying function. [90] We will refer to φi(x) as the
Goldstone field. Note that once again we suppress any possible Lorentz
indices on φi. When Gi generates a space-time symmetry, it has a non-
trivial commutation relation with the generators of the Poincaré group. This
opens up the possibility that (3.31) contains degeneracies. That is, there
may be non-trivial solutions φi(x) to the following equation:

φi(x)Gi|0〉 = 0 . (3.32)

Let us see why such degeneracies may exist for space-time symmetries. Act
on (3.32) with the translation operator Pµ. On the Goldstone field, the
translations are represented as −i∂µ and on the generators Gi, they act as
defined by the symmetry algebra of G. The result is:

0 = (∂µφ
i − fµjiφj)Gi|0〉 , (3.33)

where fµj
i are the structure constants:

[Pµ, Gi] = ifµi
jGj + . . . . (3.34)

The ellipses stand for all generators apart from the broken generators Gi.
Therefore, a non-trivial solution to (3.32) is:

∂µφ
i − φjfµji = O(φ2) , (3.35)

This equation relates the linear combination of Goldstone field φjfµj
i to the

derivative of φi. Imposing it as an inverse Higgs constraint eliminates the
linear combination φjfµj

i from the theory. Clearly, such a solution only ex-
ists when fµj

i 6= 0. In the following chapters, we will use this very important
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condition on the algebra to classify EFTs with extended space-time symme-
tries.

It should now be clear when inverse Higgs constraints can arise. The
Goldstone modes (3.31) are nothing but localized Gi transformations. Even
though the global actions of the Gi generators are independent, the local
versions may not be.2

The O(φ2) terms are exactly those that enter into the covariant derivative
of φi in the coset construction. Thus, in the coset construction one imposes
the IHC by setting D̂µφ

i = 0. The O(φ2) terms impose further conditions on
the symmetry algebra (in addition to fµj

i 6= 0) in order for (3.35) to be con-
sistent. [141] As we will see, these conditions depend on how we parametrize
the coset element. However, the condition fµj

i 6= 0 is universal for any coset
parametrization, as is obvious from the fact that we derived it without even
using the coset construction.

3.2.2 Inverse Higgs constraints

To obtain the non-linear completion of (3.35), we need to return to the coset
construction. Consider the symmetry breaking pattern G

H
where the coset

is spanned by translations Pµ and the two broken generators G1 and G2.
Assume that G1 spans an arbitrary irreducible representation of H (which
includes of course the Lorentz symmetry) and G2 is another irrep such that
we can have [Pµ, G2] ⊃ G1. We indicate the H indices in the G1 irrep
collectively by Greek indices α, β, . . ., and the indices of G2 by a, b, . . ..
We denote indices that run over all representations as I, J , . . .. With these
conventions, define the following commutation relations in the symmetry
algebra of G:

[(G2)a, (G2)b] = fab
α(G1)α + . . . , [Pµ, (G2)a] = fµa

α(G1)α + . . . ,

[(G2)a, (G1)α] = faα
β(G2)β + faα

µPµ + faα
b(G1)b + . . . := faα

IGI + . . . .
(3.36)

Now parametrize the coset element as follows:

γ = ex
µPµeφ

1(x)G1eφ2(x)G2 , (3.37)

with H indices suppressed. Using the Baker-Campbell-Hausdorff formula in
(3.22), we obtain the Maurer-Cartan component for G1, which contains the

2The reference [90] contains an illuminating example of this for the symmetry breaking
induced by a string in flat space-time, where the action of local translations and rotations
in the transverse directions are degenerate.
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following terms:

(ωα1 )µ =∂µ(φ1)α + (φ2)afµa
1 − 1

2!
(φ2)a∂µ(φ2)bfab

1 + 1
3!

(φ2)a(φ2)b∂µ(φ2)cf IacfbI
α−

− 1
4!

(φ2)a(φ2)b(φ2)c∂µ(φ2)dfac
IfbI

JfcJ
α + . . . . (3.38)

The idea behind IHCs is to solve ω1 = 0 algebraically for φ2. Only then can
we consistently plug the solution back into the action. One can solve this
equation algebraically only if no ∂µφ

2 terms appear. Thus, we obtain the
following conditions on the symmetry algebra: [141]

fab
1 = f IacfbI

α = fac
IfbI

JfcJ
α = . . . = 0 . (3.39)

We will use the first of these constraints in a number of places in the classi-
fication of space-time Goldstone EFTs. Note that these constraints depend
heavily on the choice of coset element (3.37), as the entire structure of (3.38)
will change. However, other parametrizations impose even stricter condi-
tions.

One may worry whether the coset construction truly provides a universal
action principle for any symmetry breaking pattern, given that the funda-
mental quantities depend so heavily on a choice of parametrization. Further-
more, there are situations where auxiliary Goldstone fields are eliminated by
field equations rather than inverse Higgs constraints. However, it was shown
in [141] that, at least prior to imposing IHCs, all choices of coset parametriza-
tion and algebra bases give rise to equivalent theories. Additionally, as long
as the conditions (3.39) are satisfied, the transformation laws and invariant
actions do not depend on how one eliminates the inessential fields. We will
return to the question of coset universality in the next subsections, where we
investigate two important case studies: the breaking of AdS isometries and
the breaking of supersymmetry.

It is important to understand that imposing inverse Higgs conditions is
never necessary. Without eliminating the inessential fields, the coset con-
struction provides perfectly consistent EFT actions. However, note that
(3.38) contains the universal term linear in the inessential field φ2. This
means that any term proportional to (D̂φ1)2 contains a mass term for φ2.
Thus, one may end up having to integrate out φ2 anyway, as the Goldstone
EFTs in any case are only valid in a limited energy range. Coset universality
then guarantees that the theory after integrating out the inessential field is
equivalent to a non-linear realization with inverse Higgs constraints.

3.2.3 Galileons and Inönu-Wigner contractions

We have now introduced the notions of inverse Higgs constraints, inessential
Goldstone fields and Wess-Zumino interactions. In order to demonstrate how
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one deals with these concepts in practice, we will now look at the simplest
class of EFTs where they all play a role: the Galileons. 3

A (multi-field) Galileon theory is an EFT in d dimensions with a set
of scalar fields πi, where i = 1, . . . , n. The fields πi realize the following
non-linear symmetry transformations:

πi → πi + ci + ciµx
µ , (3.40)

i.e. the theory has n independent first-order extended shift symmetries. In
addition, we assume that the fields πi form a multiplet of an unbroken internal
SO(n) symmetry. These transformations are based on the following algebra,
involving the constant shift generators Ci, the SO(n) generators J ij and the
Galileon boosts Ki

µ:

[Pµ, K
i
ν ] = ηµνC

i , [J ij, Ck] = (δikCj − δjkCi) ,

[J ij, Kk
µ] = (δikBj

µ − δjkBi
µ) . (3.41)

In addition, there is the d-dimensional Poincaré algebra. Ci and J ij are
Lorentz scalars and Ki

µ are vectors. Together, this makes up the algebra
Gal(d, n).

The Galileons first attracted attention in the work of Dvali, Gabadadze
and Porrati (DGP). [92] The DGP model is an action for a 3-brane embedded
in a five-dimensional space consisting of two terms. The first is a standard
bulk Einstein-Hilbert term, built out of the 5D metric and Ricci scalar. The
second term is localized on the brane and built out of the induced metric
and the associated 4D Ricci scalar. The effective action living on the brane
looks like ordinary 4D gravity at short distances, but receives corrections
on large scales due to the presence of a scalar field π with the interaction
�π(∂π)2. [93] Below, we will identify this operator as the cubic Galileon in
d = 4. It is clearly invariant up to a total derivative under a transformation
of the type (3.40).

The Galileons have been studied in great detail over the last decade. We
will not have the space here to cover all their interesting properties, but see
for example [94–98]. For our purposes, the Galileons - and more generally
the n-th order extended shift symmetries - are the foundation upon which
more complicated EFTs are built. To that end, we will explain below the
relation between the Galileons and DBI scalars. [96,97]

3The Galileons were first considered as Wess-Zumino interactions in [96].
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Inverse Higgs constraints and Wess-Zumino interactions

Let us examine the coset construction for a single Galileon in d = 4. We
begin by defining the coset element g:

g = ex
µPµeπC+AµKµ

. (3.42)

The relevant Maurer-Cartan components are:

ωµP = dxµ, ωC = dπ + Aµdx
µ, +ωµK = dAµ . (3.43)

Note that g is a mapping from the coordinates (xµ, Aµ, π) to the coset space.
We are not yet assuming that Aµ and π are fields living on the 4D Minkowski
space-time. It should be clear that the relevant inverse Higgs constraint is
ωC = 0. We will wait to impose this condition until after we pull back to
space-time. Then, this constraint will eliminate Aµ(x) in terms of C(x).

Let us construct the cubic Galileon from the DGP model using the coset
construction for the symmetry breaking pattern Gal(4, 1) → iso3, 1. The
Maurer-Cartan components ωC , ωK , and ωP are left-invariant under broken
generators. As we have explained in section 3.1.1, Wess-Zumino interactions
result from left-invariant 5-forms integrated over a space whose boundary
is 4D Minkowski space. We can look for left-invariant 5-forms by wedging
together the components of the Maurer-Cartan form.

Because we are looking for a term cubic in the fields, we need three wedg-
ings of the forms ωC or ωK . The remaining two factors must then come from
ωP . To make the 5-form invariant under the linearly realized Lorentz sym-
metry, we must multiply this wedge product by a Lorentz-invariant tensor,
i.e. ηµν or εµνρσ. The only possibility for a cubic Wess-Zumino interaction is
then: [96]

ω3 = εµνρσωC ∧ ωµB ∧ ω
ν
B ∧ ω

ρ
P ∧ ω

σ
P ,

ω3 = dβ3 = εµνρσd

(
πdAµ ∧ dAν ∧ dxρ ∧ dxσ − 1

3
A2dAµdxνdxρdxσ

)
.

(3.44)

Importantly, we may write ω3 as the exterior derivative of the 4-form β3,
which is not itself left-invariant. We must now integrate ω3 over a slice of
the coset space whose boundary is Minkowski space-time. In other words,
we must integrate β3 over M4. At this stage, we also pull-back β3 by the
mappings defined by the Goldstone fields Aµ(x), π(x). Then, we can impose
the inverse Higgs constraint ωC = 0. After pulling back to space-time, it
reads:

Aµ = −∂µπ . (3.45)
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All in all, we obtain:

S3 =

∫
M4

Ω?(β3)|ωC=0 (3.46)

=

∫
M4

d4x

(
− 2π((∂ · A)2 − ∂µAν∂νAµ) + 2AµA

µ∂νA
ν

)
Aµ=−∂µπ

=

∫
M4

d4x�π(∂π)2 , (3.47)

where Ω is the mapping Aµ = Aµ(x), π = π(x) from M4 to the coset.
There are four other single-field Galileon interactions in d = 4: the tad-

pole, the Klein-Gordon kinetic term, the quartic and quintic Galileons:

L4 = (∂π)2((�π)2 − (∂µ∂νπ)2) , (3.48)

L5 = (∂π)2((�π)3 − 3�π(∂µ∂νπ)2 + 2∂µ∂νπ∂
µ∂σπ∂ν∂σπ) . (3.49)

All of these interactions arise from left-invariant 5-forms in the coset space.
[96] They have the important property that their field equations are second-
order in time derivatives in π, even though the action depends on derivatives
of higher than first-order. This means that the Galileon interactions define
a consistent variational problem which does not suffer from an Ostrogradsky
instability, as generic actions depending on the jet space of order n ≥ 2
normally do. [94–98]

Inönu-Wigner contractions and small-field limits

The Galileon algebra and, more generally, the order n extended shift symme-
tries form the foundation for more complicated symmetry breaking patterns.
One can see this from the fact that the Gal(d, n) algebra contains no non-
vanishing commutation relations other than those required for inverse Higgs
relations, and those that define the representation of generators under the
Lorentz algebra and the internal SO(n). All further contributions to com-
mutation relations would add field-dependent terms to (3.40), leading to a
transformation law of the general type (2.90). In this section, we want to ex-
plain how one explicitly relates more complicated theories (e.g. exceptional
EFTs) to the baseline extended shift symmetries, at the level of the algebra
and in the Lagrangian field theory.

The DBI scalar in d = 4 is defined by the following action:

S =

∫
d4x

(
− Λ

√
1 + (∂π)2 + Λ

)
, (3.50)
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The scalar field π(x) transforms as:

π(x)→ π(x) + c+ cµx
µ + π(x)cµ∂µπ(x) . (3.51)

This transformation non-linearly realizes the translation and boost trans-
formation of a d = 5 Poincaré algebra, iso(4, 1). The symmetry breaking

pattern is therefore iso(4,1)
so(3,1)

. Let us recall the d-dimensional Poincaré algebra

(using anti-Hermitian generators JAB and PA):

[JAB, JCD] = (ηACJBD − ηBCJAD + ηBDJAC − ηADJBC) ,

[JAB, PC ] = (ηACPB − ηBCPA), [PA, PB] = 0 , (3.52)

where A,B, . . . = 0, . . . , 4. We will indicate the indices A = 0, . . . 3 with the
Greek indices µ, ν, . . .. The coset element for iso(4,1)

so(3,1)
is:

g = ex·P eπ(x)P4eA
µ4(x)Jµ4 , (3.53)

Now, let us introduce a dummy parameter σ. We rescale the generators in
the following way:

P4 → σC, J4µ → σKµ . (3.54)

Upon sending σ →∞, we recover the Galileon algebra (3.41). We see that the
Galileon and Poincaré algebras are related by an Inönu-Wigner contraction.
Equivalently, we can say that Poincaré algebras are analytic deformations of
Galileon algebras. It is easy to extend this procedure to multiple fields and
different dimensions [96].

To see the effect of rescaling P4 and Jµ4 on the transformation laws, let
us simultaneously rescale π = x4 and Aµ = Aµ4 by the inverse factor:

π(x)→ 1

σ
π̃(x), Aµ(x)→ 1

σ
Ãµ(x) , (3.55)

so that the coset element becomes:

g = ex·P eπ̃(x)CeÃ
µ(x)Kµ , (3.56)

Now, defining the symmetry parameters c̃ = σc, c̃µ = σcµ and inserting into
(3.51), we find:

π̃(x)→ π̃(x) + c̃+ c̃µxµ . (3.57)

We see that the the field-dependent term drops out and we recover (3.40).
The procedure of rescaling the Goldstone fields is known as taking a small-
field limit. We can just as well take the limit directly on the action (3.50).
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We then obtain simply a Klein-Gordon kinetic term for π(x), which is the
”quadratic Galileon”.

By taking a small-field limit on higher-derivative invariants of the Poincaré
algebra, it is possible to reconstruct all of the Wess-Zumino interactions of
the Galileon algebra. [97] Similarly, we can connect the conformal algebra
in the AdS and conformal bases by an Inönu-Wigner contraction. We then
recover the conformal Galileons by means of a small-field limit on the action
for a probe brane in anti-de Sitter space. We will treat these cases in more
detail in the next section.

In 3.3.3, we will show that the story of this section carries over without
much modification to supersymmetric Goldstone EFTs: the supersymmetric
Galileons - and order n supersymmetric extended shifts - provide the founda-
tion for more complicated EFTs (such as those that describe supersymmetry
preserving branes propagating in higher dimensions). Those EFTs can be
then related to the supersymmetric Galileons again by taking a small-field
limit on the action or an Inönu-Wigner contraction on the symmetry algebra.

3.2.4 Coset universality and space-time symmetries:
the AdS and conformal bases

Earlier in this Chapter, we emphasized that there is no proof of coset uni-
versality beyond the case of internal, compact and semi-simple symmetries.
While it is possible to relax semi-simplicity in the proof of CCWZ, it is not
straightforward to generalize to non-compact space-time symmetry groups.
However, we note that there are no known counterexamples to coset uni-
versality, despite some effort to discover them. In order to help the reader
appreciate this, we will examine the following two case studies: the non-linear
realizations of the D = 4 conformal algebra and the N = 1 supersymmetry
algebra. In both cases, several non-linear realizations exist, but they all map
into each other by highly non-trivial field redefinitions. The mapping of the
conformal group realizations was studied in the papers [25,174], and the map-
ping of supersymmetry realizations in [26–30,116,117]. The work of [25,174]
was then generalized in [141]. The coset models for SO(D, 2)/SO(d, 1) and
N -extended supersymmetry will appear again numerous times throughout
this thesis. The following two subsections should also serve as an introduc-
tion to the simplest cases of these models and to their non-linear symmetries.

Let us begin with the symmetry breaking pattern of the D = 4 confor-
mal group SO(4, 2) down to the Poincaré group ISO(3, 1). This coset has
two common realizations. The first of these, called the DBI realization [25]
naturally describes the dynamics of a probe 3-brane in AdS5 space, with the
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action:

SDBI =

∫
d4x

(
− λe−4π/`

√
1 + e2π/l(∂π)2 + λe−4π/`

)
. (3.58)

This is the static gauge DBI action for the probe brane, which we discussed
in the previous chapter. It inherits the isometries of the ambient AdS5 space.
However, only the ISO(3, 1) subgroup remains linearly realized. The trans-
verse isometries are broken because they come together with a compensating
gauge transformation that puts the system back in the static gauge. The
dilaton field π has the following symmetry transformations:

δcπ = c

(
1− 1

`
xµ∂µφ

)
,

δvπ = vµx
µ + ∂µ

(
`
2
(e2π/` − 1)vµ + 1

2`
vµx2 − 1

`
vνxνx

µ

)
. (3.59)

The second realization of the symmetry breaking pattern is called the
Weyl realization, where the fundamental quantity is the effective metric
e−2π̄ηµν . Invariant actions are built out of curvature tensors of this object.
The dilaton π̄ now transforms as follows:

δĉπ̄ = ĉ

(
1− xµ∂µπ̄

)
,

δv̂π̄ = v̂µ
(
− 2xµ − x2∂µπ̄ + xµ(x · ∂π̄)

)
. (3.60)

It is not straightforward to find redefinitions of the coordinates and the
fields that map these symmetry transformation laws into each other. Let
us see how these mappings follow from the coset construction. The DBI
and Weyl realizations follow from different basis choices for the SO(4, 2) Lie
algebra. In the so-called AdS basis, the SO(d, 2) algebra is spanned by the
generators PA, KA, D, and MAB where A, B are d-dimensional space-time
indices. The commutation relations are:

[PA, D] = PA ,

[KA, D] = −KA + PA ,

[PA, KB] = 2MAB + 2ηABD ,

[KA, KB] = 2MAB ,

[MAB, PC ] = ηACPB − ηBCPA ,
[MAB, KC ] = ηACKB − ηBCKA ,

[MAB,MCD] = 2ηC[AMB]D − 2ηB[DMC]A .

The conformal basis is defined from the above by the redefinition:

K̄A = KA − 1
2
PA . (3.61)
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For general co-dimension branes, we would split up these indices into D = 4
Greek indices µ, ν, . . . and the remaining d − D indices I, J , . . .. For co-
dimension 1, however, we have D = d, so we simply relabel the A indices with
Greek letters. Then, in the DBI realization using the AdS basis, parametrize
the coset as follows:

gDBI = ex
µPµeπDeΛµKµ . (3.62)

From this definition, one can calculate the Maurer-Cartan form g−1
DBI dgDBI .

The result appears in [25]. The Maurer-Cartan form defines the following
inverse Higgs constraint, which eliminates the inessential vector field Λµ:

Λµ(x) =

(
tan
√

Λ2/2√
Λ2

)−1
∂µπe

π/`

1 +
√

1 + e2π/`(∂π)2
. (3.63)

Likewise, the Weyl realization follows from the following coset parametriza-
tion in the conformal basis:

gWeyl = ey
µPµeπ̄DeΛ̄µK̄µ . (3.64)

Once again, we can calculate the Maurer-Cartan form and obtain the inverse
Higgs relation. The result appears in [25]. The Inverse Higgs constraint now
reads:

Λ̄µ(y) = 1
2
eπ̄∂µπ(y) . (3.65)

Now we can obtain the mapping between the two realizations by equating
the Maurer-Cartan forms: g−1

DBI dgDBI = g−1
Weyl dgWeyl. Solving the equation

leads to the following remarkable relations between the DBI and Weyl coset
variables:

yµ = xµ + `eπ(x)/`Λµ(x)

(
tan
√

Λ2(x)/2√
Λ2(x)

)
,

π̄(y) =
π(x)

`
+ log

[
1 +

(
tan
√

Λ2/2√
Λ2

)2

Λ2

]
,

Λ̄µ(y) =
1

`

(
tan
√

Λ2/2√
Λ2

)
Λµ(x) . (3.66)

These field redefinitions and coordinate transformations indeed provide a
mapping between (3.59) and (3.60). Furthermore, they map the inverse Higgs
constraints (3.59) and (3.60). In [141], it was shown that equating Maurer-
Cartan forms before imposing inverse Higgs relations always results in this
type of field redefinition that relates the transformation rules. However, the
inverse Higgs constraints are not necessarily mapped by the same relations.
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3.2.5 Coset universality and space-time symmetries:
supersymmetry

We now turn our attention to the non-linear realization of N = 1 supersym-
metry in D = 4, with a linearly realized Poincaré group. Several realizations
of this coset model appear in the literature. The most important one is
the Volkov-Akulov model, [104] which makes use of a single Weyl fermion
λα. While ordinary linear supersymmetry requires multiplets of fields with
different spins, non-linear realizations only require a single Goldstino. Of
course, this should be expected from our discussion in Chapter 1, where we
explained that dynamical symmetries do not lead to particle classification.
The N = 1 supersymmetry algebra consists of the Poincaré algebra in ad-
dition to the fermionic generator Qα which satisfies the anti-commutation
relation:

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ = 2Pαβ̇ . (3.67)

The Volkov-Akulov Goldstino λα non-linearly realizes this algebra with the
following transformation law:

δελα(x) = fεα − i
f
(λσµε̄− εσµλ̄)∂µλα . (3.68)

The coset construction for this superalgebra gives rise to the following viel-
bein:

Aµ
a = δm

a − if−2∂µλσ
aλ̄+ if−2λσa∂µλ̄ . (3.69)

The leading order invariant action is then given by:

L = −f
2

2
detA . (3.70)

This Lagrangian contains self-interaction terms for λ up to order λ6 in D =
4. As an essential Goldstone field, λ is massless. The Lagrangian (3.70)
gives rise to an enhanced soft-limit σ = 2 for λ due to the exceptional non-
linear symmetry. [110, 111] Volkov and Akulov initially proposed (3.70) as
a model for the neutrino, with the broken supersymmetry transformation
explaining its (near-) masslessness. This idea was later found to disagree
with experiment. [115] The Volkov-Akulov model lives on, however, as it
exists at some level of description in any model with spontaneously broken
supersymmetry.

The transformation of matter fields A(x) of arbitrary spin that accompa-
nies (3.68) is the following:

δεA(x) = −if−1

(
λ(x)σµε̄− εσµλ̄(x)

)
∂µA(x) . (3.71)
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Together, (3.68) and (3.71) define the standard realization of non-linear su-
persymmetry.

Although non-linear supersymmetry does not require supermultiplets, it
is still convenient to use the superfield formalism to describe the non-linear
realization. The other models that we will explore in this section all make
use of superfields. One constructs a superfield Λα out of λα as follows: [122]

Λα(x, θ, θ̄) = exp(θQ+ θ̄Q̄) · λα(x) . (3.72)

This θ polynomial transforms as a superfield under Qα, while the lowest
component Λα(x, θ, θ̄)| = λα(x) retains the transformation law (3.68). Λα

satisfies the constraints:

DαΛβ = fεβα +
i

f
(σµ)ββ̇Λ̄β̇∂µΛα ,

D̄β̇Λα = − i
f

Λβ(σµ)ββ̇∂µΛα . (3.73)

In superspace, the Volkov-Akulov Lagrangian is:

L = − 1

f 2

∫
d4θΛ2Λ̄2 . (3.74)

We could have started the other way around and use these constraints
to define Λα. Then we would find that its lowest components behaves ex-
actly as a Volkov-Akulov fermion. The appearance of constrained superfields
is universal for all non-linear realizations that make use of superspace.4 In
recent years, the description of non-linear supersymmetry using the nilpotent
chiral superfield X has been popular. [106–109] On top of the chirality con-
dition D̄α̇X = 0, X satisfies the non-linear constraint X2 = 0. These two
constraints are solved by:

X =
G(y)2

2F (y)
+
√

2θG(y) + θ2F (y) , (3.75)

whereG and F are functions of the chiral coordinate yµ = xµ+iθσµθ̄. Clearly,
this solution makes sense only if F 6= 0, i.e. when supersymmetry is sponta-
neously broken. The supersymmetry transformation for G(x) then becomes

4Of course, most of the superfield one encounters in the literature satisfy some kind
of supersymmetry-covariant constraint. Usually, they project the superfield to an irre-
ducible representation of supersymmetry, like the chiral constraint D̄α̇Φ = 0 does. The
constraints we are talking about reduce the superfield to less than an irreducible multi-
plet. Clearly, such a constraint can only have a non-trivial solution when supersymmetry
is spontaneously broken. We will refer to superfields like Φ as irreducible superfields and
those that contain less than an irreducible supermultiplet as constrained superfields.
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linear after inserting the solution to the auxiliary field equations for F (x).
Notice that the scalar superpartner of G(y) (the ”sgoldstino”) is eliminated
by the nilpotency condition. The fact that X does not contain a full multi-
plet of supersymmetry has been especially useful in cosmology, as it allows
one to consider effective Lagrangians with spontaneously broken supersym-
metry without worrying about stabilizing superfluous scalar excitations in
the cosmological background. [167–169]

At leading order, the unique Lagrangian one can build out of X is:

L =

∫
d4θXX̄ +

(
f

∫
d2θX + c.c.

)
. (3.76)

Our objective is to show the equivalence between (3.70) and (3.76). Many
references have treated this question (see [26–30, 116, 117]). Let us follow
the [30] and answer it completely in the superspace formalism.

Define the Samuel-Wess superfield [105] Γα(x, θ, θ̄) using the Volkov-
Akulov superfield Λα:

Γα = −2f
DαD̄

2(Λ2Λ̄2)

D2D̄2(Λ2Λ̄2)
. (3.77)

The Samuel-Wess superfield satisfies constraints very similar to (3.73):

DαΓβ = fεβα ,

D̄α̇Γβ = −2i

f
Γγ(σµ)γβ̇∂µΓβ , (3.78)

which again could have served as a definition of Γ. The Samuel-Wess super-
field can also be written in terms of the nilpotent superfield X:

Γα = −2f
DαX

D2X
. (3.79)

The relation between the Volkov-Akulov description and the nilpotent super-
field description is provided by the equations (3.79) and (3.77). Note that the
former definition for Γ still involves the auxiliary field F in X, which needs
to be integrated out before these relations can be interpreted as field redef-
initions. The reference [30] shows how to write (3.76) using (3.79). Upon
integrating out the auxiliary field, the Lagrangian then reduces to (3.70).

We have introduced three different non-linear realizations of N = 1 su-
persymmetry and shown how to relate them in superspace. One can find
the explicit field redefinitions of the component fields that result from these
relations in the references [26–29]. The existence of these field redefinitions
is important evidence for coset universality.
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In closing, let us comment on the universality of the matter field trans-
formation (3.71). Given the superfield realization of Volkov-Akulov using
Λα, how can we expect coupled matter fields (which should be carried by
ordinary superfields Φ) to transform according to the standard realization?
Ivanov and Kapustnikov [116, 117] that by performing a local supertrans-
lation on Φ using λα(x) as a parameter, one finds a field redefinition that
brings the components of Φ into the standard realization (3.71).

3.3 Supercosets

We will now extend our discussion of the coset construction for space-time
symmetries to the case of linear N = 1 supersymmetry in D = 4. As
we will, see most of the previous discussion goes through in a straightfor-
ward way. However, there are two important new ingredients: superspace
inverse Higgs constraints and covariant irreducibility conditions. The former
are analogous to ordinary space-time IHCs. However, instead of eliminat-
ing inessential Goldstone fields, they eliminate superfluous superpartners by
identifying them with other Goldstone fields. Just like ordinary space-time
IHCs, superspace inverse Higgs constraints exist because independent global
symmetries may become degenerate when they are localized in superspace.
The covariant irreducibility conditions are the generalization of ordinary ir-
reducibility conditions (like the usual chirality conditon D̄α̇Φ = 0) in the
presence of the non-linear symmetries. In practice, the covariant irreducibil-
ity conditions can be hard to find. However, we will see that they tend to
simplify when one enhances the amount of non-linear symmetry in the EFT.

In this section and the following, we will follow the notation conventions
of [122]. Space-time vector indices will be labeled m,n,a,b etc. Spinor indices
are µ, ν,α, β, etc.

We assume the following set of linearly realized symmetries: the ordinary
Poincaré algebra, generated by Pm and Mmn; a linear internal symmetry
group, generated by ZI ; and N = 1 supersymmetry, with the generators Qµ

which satisfy:

{Qα, Q̄α̇} = 2(σa)αα̇Pa = 2Pαα̇ . (3.80)

Here, we have made use of two-component notation to write the matrix-
valued vector (σa)αα̇Pa as Pαα̇. (See for instance [122, 124]) On top of the
linearly realized symmetries we include the broken generators Gi that make
up our coset G/H. We assign a superfield Φi(x, θ, θ̄) (with appropriate H in-
dices) to each broken generator Gi. For consistency of the coset construction,
the algebra must be restricted to the following general form:
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[ZI , ZJ ] = fIJ
KZK , [Gi, ZJ ] = fiJ

jGj, (3.81)

[Pµ, ZI ] = fµI
νPν , [Qα, ZI ] = fαI

βQβ, (3.82)

(3.83)

while the remaining (anti)-commutation relations are unconstrained at this
stage.

At this stage, there are no constraints on Φi, so it forms a reducible
representation of supersymmetry. For the moment, we will make use of the
following parametrization for the coset element:

γ = ei(x
aPa+θαQα+θ̄α̇Q̄

α̇)eiZ
iGi . (3.84)

Note that this will not be the most convenient parametrization when it comes
to imposing superspace inverse Higgs constraints, as we will explain in a mo-
ment. The transformation law for the Goldstone superfields and the super-
space coordinates is defined by:

g · γ = ei(x
′aPa+θ′αQα+θ̄′α̇Q̄

α̇)eiZ
′iGieih

I(Φ,g)ZI . (3.85)

As usual, we define the Maurer-Cartan form ω:

ω = γ−1dγ , (3.86)

where the exterior derivative is extended to the full superspace: d = dxm∂m+
dθµ∂µ+θ̄µ̇∂

µ̇, where ∂µ = ∂
∂θµ

. We refer the reader to [122] for an introduction
to differential forms in superspace. Expand the Maurer-Cartan form into Lie
algebra generators:

ω = (ωaP )Pa + (ωαQ)Qα + (ωQ̄α̇)Q̄α̇ + (ωi)Gi + (ωI)ZI + (ωabM)Mab . (3.87)

Each of the Maurer-Cartan components in general has component along all
the superspace coordinate basis 1-forms, for example:

(ωaP ) = (ωaP )mdx
m + dθµ(ωaP )µ + dθ̄µ̇(ωaP )µ̇ . (3.88)

Much of the story of the previous sections now goes through. The Maurer-
Cartan components proportional to broken generators and the coordinates
transform under G as a Goldstone-dependent H transformation; the compo-
nents proportional to linearly realized generators transform like gauge con-
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nections for H:

(ωaP )′(x′, θ′, θ̄′)Pa = h (ωaP )(x, θ, θ̄)Pa h
−1,

(ωαQ)′(x′, θ′, θ̄′)Qα = h (ωαQ)(x)Qα h
−1,

(ωQ̄α̇)′(x′, θ′, θ̄′)Q̄α̇ = h (ωQ̄α̇)(x, θ, θ̄)Q̄α̇ h−1,

(ωi)′(x′, θ′, θ̄′)Gi = hωi(x, θ θ̄)Zi h
−1,

(ωI)′(x′, θ′, θ̄′)ZI + (ωM)′ab(x′, θ′, θ̄′)Mab = h [ωI(x, θ, θ̄)(x, θ, θ̄)ZI

+ ωabM(x, θ, θ̄)Mab]h
−1 + h dh−1 ,

(3.89)

where h = h(Φ, g) = eih
a(Φ,g)Za . The components (ωP ), (ωQ) and (ωQ̄) com-

bine into a supervielbein EM
A, such that:

ωaPa + ωαQQα + ωQ̄α̇Q̄
α̇ = dXMEM

APA . (3.90)

M and A are combined spinor and vector indices. dXM stands for the su-
perspace coordinate basis 1-forms, i.e. dXm = dxm, dXµ = dθµ, dXµ̇ = dθ̄µ̇.
Similarly, PA stands for the translation and supertranslation generators com-
bined. Note that summation over the dotted indices always occurs with
the up-down convention when the generalized indices are written down with
down-up convention. In other words:

MANA = MaNa +MαNα +Mα̇N
α̇ . (3.91)

We can again use the supervielbein to extract covariant derivatives out of
the broken generator Maurer-Cartan components:

D̂AΦi = ẼA
N(ωi)N , (3.92)

where ωi = dXN(ωi)N . The quantity ẼA
N is the inverse vielbein: ẼA

NEN
B =

δA
B. The quantity D̂A includes the covariantized versions of the superspace

vector and spinor derivatives, i.e. ∂a, Dα and D̄α̇. The covariant derivative
of the matter field H multiplet Ψ(x, θ, θ̄) is defined as follows:

D̂AΨ = EA
N

(
∂NΨ + (ωI)ND(ZI) ·Ψ + (ωabM)ND(Mab) ·Ψ

)
(3.93)

where D(ZI) is the generator ZI in the representation spanned by the H-
multiplet Ψ.

Lastly, wedging together the eight (super)translation Maurer-Cartan com-
ponents gives rise to an invariant integration measure, proportional to the
superdeterminant (Berezinian) of the supervielbein:∫

d4x d4θBer(EM
A) =

∫
d4x d4θ E . (3.94)
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Any H-invariant density built out of covariant derivatives of Goldstone and
matter fields, multiplied by the Berezinian of the supervielbein, is then also
G-invariant.

3.3.1 Superspace inverse Higgs constraints

Just like in ordinary space-time, independent global symmetry generators
may become degenerate when they are localized. We saw that this gives rise
to the inverse Higgs phenomenon, whereby inessential Goldstone fields are
eliminated after imposing covariant constraints. In the supersymmetric case,
there are not just inessential Goldstone superfields, but also many superfluous
superpartner fields that come along for the ride in the coset element (3.84).
We would like to find a realization of the non-linear symmetries where several
Goldstone fields live together in the same superfield. This is possible when
the massless mode parametrized by the superpartner of a Goldstone Φ1 is
degenerate with another Goldstone mode Φ2.

Let us work in a similar setup as before. We write the Goldstone modes as
localized G/H transformations on the H-invariant vacuum field configuration
|0〉:

Φi(x, θ, θ̄)Gi|0〉 , (3.95)

where Φi is a slowly-varying function of superspace. There are degenerate
modes when there are non-trivial solutions to the following equation:

Φi(x, θ, θ̄)Gi|0〉 = 0 . (3.96)

Again, let us act on this equation with a differential operator to see what form
the solutions should take. The appropriate operator is e−UdeU , where U =
i(xaPa + θαQα + θ̄α̇Q̄

α̇). Here, the exterior derivative d acts on everything to
the right and generators act only on each other, not on fields or coordinates.
We then find:[
ea(∂aΦ

i − fajiΦj) + eα(DαΦi − fαjiΦj) + eα̇(D̄α̇Φi − f α̇j iΦj)
]
Gi|0〉 = 0 .

(3.97)

We have switched here from the coordinate basis 1-forms to the so-called
supersymmetric flat space basis [122] 1-forms ea, eα and eα̇. In this basis,
the exterior derivative takes the convenient form:

d = ea∂a + eαDα + eα̇D̄
α̇ , (3.98)
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so that each component of the exterior derivative of a superfield dΦ is a
superfield. The structure constants in (3.97) are defined as follows:

[Pαα̇, Gi] = −ifαα̇ijGj + . . . , [Qα, Gi]± = ifαi
jGj + . . .

[Q̄α̇, Gi]± = ifα̇i
jGj + . . . (3.99)

The ellipses on the right-hand side indicate unbroken generators. Working
to first order in the fields, we may then set each of the bracketed terms to
zero:

∂aΦ
i − fajiΦj = O(Φ2),

DαΦi − fαjiΦj = O(Φ2),

D̄α̇Φi − f α̇j iΦj = O(Φ2) , (3.100)

The first of these equations is the linearized version of the ordinary IHcs.
The second and third equations are the linearized superspace inverse Higgs
constraints. We see that we can relate the linear combination of Goldstone
modes fαj

iΦj to the superspace derivative Φi. At lowest order in θ and θ̄, this
precisely relates the superpartner of the Goldstone associated to Gi to the
fαj

iΦj, as we have anticipated. We find that in order to relate the Goldstone
superfield Φ2 to DαΦ1, we must have [Qα, G2] ⊃ G1. Similarly, imposing
Φ2 ∝ D̄α̇Φ1 requires [Q̄α̇, G2] ⊃ G1.

Once again, to find the non-linear completion of the equations (3.100),
we must make use of the coset construction. The inverse Higgs constraints
of the ordinary coset construction generalize in a straightforward way to the
supercosets. The algebraic relation [Qα, G2] ⊃ G1 leads to a term linear in
Φ2 in the supercoset derivative D̂αΦ1, in addition to higher-order terms in
the fields. Then, imposing the constraint D̂αΦ1 = 0 leads to a relation Φ2 ∝
D̄α̇Φ1, with the appropriate higher-order corrections. Similar statements hold

of course for the barred spinor derivative ˆ̄Dα̇ and the covariant space-time
derivative D̂µ.

The higher-order corrections that appear in the coset covariant derivatives
introduce consistency conditions on the algebra, in addition to the familiar
relations of the type [Qα, G2] ⊃ G1. These conditions will not play an im-
portant role in the classification of exceptional EFTs, so we will not address
them further. The form of the higher-order conditions will depend on the
parametrization of the coset element, as we saw previously in 3.2.2.

3.3.2 Covariant irreducibility conditions

There is one last point to discuss regarding supercosets, before we move on to
some concrete examples. In most cases, the Goldstone superfields Φi in (3.84)
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are, a priori, unconstrained functions of superspace. That means they carry
reducible multiplets of supersymmetry. Ordinarily, we would reduce their
field content to an irreducible supermultiplet by imposing one or a number
of the canonical irreducibility conditions. For example, to reduce the field
content of a complex scalar superfield Φ to that of a chiral supermultiplet,
we impose the condition:

D̄α̇Φ = 0 . (3.101)

However, as we have explained in the previous section, the spinor derivatives
Dα and D̄α̇ and the ordinary space-time derivative ∂αα̇ are not always covari-
ant with respect to the non-linear symmetry transformations. The constraint
(3.101) is then not left invariant under one or some of the broken symmetries.
This does not imply, however, that the non-linear transformations are actu-
ally incompatible with the irreducibility condition. Rather, it means that the
condition (3.101) does not hold in the field basis where the non-linear field
transformations are defined by (3.84). It can still be possible to perform a jet
space redefinition such that (3.101) is covariant with respect to all non-linear
symmetries, but the transformation laws are then not directly constructed
from the coset construction. Alternatively, we can impose a generalized irre-
ducibility that is manifestly covariant under all non-linear symmetries, but
whose solutions are in one-to-one correspondence with a canonical irreducible
superfield. We will pursue this strategy in the rest of this thesis, following
for example [155,156,173].

Let us imagine we have a particular symmetry breaking pattern G/H
which we would like to realize on a single chiral superfield. Our task is then

to calculate the generalized covariant derivatives - D̂α, ˆ̄Dα̇, and ∂̂αα̇ - and to
impose a condition of the form:

Tα̇[D̂Φ, ˆ̄DΦ, ∂̂Φ, . . .] = 0 . (3.102)

Here, Tα̇ is some dotted spinor built from manifestly covariant objects. We
emphasize that in many cases the tensor T will not be a minimal general-
ization of the canonical version. We then attempt to reconstruct Φ out of a
chiral superfield Ψ which satisfies the canonical condition (3.101):

Φ = F [Ψ, DΨ, D̄Ψ, ∂Ψ, . . .] . (3.103)

We should then find that (3.102) holds as a consequence of (3.101). Addi-
tionally, we should ensure that (3.103) defines an invertible redefinition of
the (super-) jet space. Because of this last point, the seemingly complicated
and arbitrary process of finding suitable irreducibility conditions poses no
additional problems for the question of coset universality. We can always
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map one set of irreducibility conditions into another by convoluting the re-
definitions (3.103). In practice, however, it is difficult to prove invertibility.
The examples in the literature known to us do not explicitly check invertibil-
ity. We comment on the issue here mostly to alleviate any concern that this
inelegant process calls into question the viability of describing all non-linear
realizations using supercosets.

3.3.3 Supersymmetric Galileons and Inönu-Wigner con-
tractions

To illustrate the concepts of inverse Higgs constraints in superspace and irre-
ducibility conditions, we will now take a look at one of the simplest possible
examples: non-linear realizations of the supersymmetric Galileon algebra.
We will explain how this algebra arises as an Inönu-Wigner contraction of
the super-Poincaré algebra. [160] Equivalently, supersymmetric Galileons are
the small-field limit of the SUSY DBI model. Thus, just like the purely
bosonic Galileons of 3.2.3, the SUSY Galileons - and SUSY extended shift
symmetries - provide the blueprint for more complicated EFTs.

Similarly to section 3.2.3, we define supersymmetric Galileons as the min-
imal algebra necessary for imposing a space-time inverse Higgs relation. In
addition to the four-dimensional Poincaré algebra, defined by the generators
Pµµ̇ and Mµν , we introduce a complex scalar generator G, a Weyl fermion Sν
and a vector Kµµ̇:

{Qµ, Sν} = 2εµνG, [Pµµ̇, Gνν̇ ] = iεµνεµ̇ν̇G, [Q̄µ̇, Gνν̇ ] = iεµ̇ν̇Sν . (3.104)

Note that, following [122], we will use Greek letters from the middle of the
alphabet (e.g. µ, ν, . . .) for space-time spinor indices. Greek letters from
the start of the alphabet (α, β, . . .) are reserved for tangent space spinor
indices. This tangent space will be defined by the supervielbein derived from
the coset construction. Of course, the algebra (3.104) is very simple and the
use of the coset construction to understand it may seem like overkill. We
include this discussion mainly as a warmup to the more complicated cases
that appear in the rest of the thesis.

Let us refer to the Goldstone superfields of G, Gµµ̇ and Sµ as Φ, Λµµ̇ and
Ψµ respectively. The commutation relation [Pµµ̇, Gνν̇ ] allows for a space-time
inverse Higgs relation to eliminate Λ in terms of Φ. Likewise, the bracket
{Qµ, Sν} suggests a superspace inverse Higgs relation between Φ and Ψ.
Lastly, [Q̄µ̇, Gνν̇ ] allows an inverse Higgs constraint that links Λ to Ψ. Indeed,
we will impose all of these relations below. The space-time IHC is related to
the two superspace IHCs, as we will discuss in great detail in Chapter 5.
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We will refer to the algebra (3.104) as sgal(4, 1 | 6, (1, 0)). The first two
arguments refer to the D = 4, N = 1 super-Poincaré subalgebra. The
latter arguments represent that this algebra is based on the minimal (1, 0)
supersymmetry algebra in D = 6, as will become clear below.

Superspace inverse Higgs constraints and irreducibility conditions

We define a coset element as follows: [80]

Ω = eUeV , (3.105)

where

U = i
2
xµµ̇Pµµ̇ + iθµQµ + iθ̄µ̇Q̄

µ̇,

V = iΦG+ iΦ̄Ḡ+ iΨµSµ + iΨ̄µ̇S̄
µ̇ − i

2
Λµµ̇Gµµ̇ − i

2
Λ̄µµ̇Ḡµµ̇ . (3.106)

The Maurer-Cartan form is given by:

ω = −iΩ−1dΩ = −ie−V (e−UdeU)eV − ie−V deV . (3.107)

We begin by computing e−UdeU which, by using the SUSY algebra {Qα, Q̄α̇} =
2Pαα̇, is given by

e−UdeU = i
2
Pµµ̇dx

µµ̇ + idθµQµ + idθ̄µ̇Q̄
µ̇ − Pµµ̇(dθµθ̄µ̇ + dθ̄µ̇θµ) . (3.108)

In the supersymmetric flat space basis, the exterior derivative is expressed
as

d = −1
2
eαα̇∂αα̇ + eαDα + eα̇D̄

α̇ , (3.109)

Expressing e−UdeU in terms of these basis one-forms, we obtain

e−UdeU = i
2
eαα̇Pαα̇ + ieαQα + ieα̇Q̄

α̇ . (3.110)

It is then simple to show that:

e−V (e−UdeU)eV = i
2
eαα̇Pαα̇ + ieαQα + ieα̇Q̄

α̇ + (2eαΨα + i
4
eαα̇Λαα̇)G

+ (2eα̇Ψ̄α̇ + i
4
eαα̇Λ̄αα̇)Ḡ+ i

2
eβ̇Λββ̇Sβ − i

2
eαΛ̄αα̇S̄

α̇. (3.111)

The next factor is trivial, as all generators that appear in V commute
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amongst each other: e−V deV = dV . The full Maurer-Cartan form is then:

iω = i
2
eαα̇Pαα̇ + ieαQα + ieα̇Q̄

α̇

+

[
− i

2
eαα̇(−1

2
Λαα̇ + ∂αα̇Φ) + eα(2Ψα + iDαΦ) + ieα̇D̄

α̇Φ

]
G

+

[
− i

2
eαα̇(−1

2
Λ̄αα̇ + ∂αα̇Φ̄) + ieαDαΦ̄ + eα̇(2Ψ̄α̇ + iD̄α̇Φ̄)

]
Ḡ

+

[
− i

2
eαα̇∂

αα̇Ψβ + ieαDαΨβ + eβ̇
(
i
2
Λββ̇ + iD̄β̇Ψβ

)]
Sβ

+

[
− i

2
eαα̇∂

αα̇Ψ̄β̇ + eβ( i
2
Λ̄β

β̇ + iDβΨ̄β̇) + ieα̇D
α̇Ψ̄β̇

]
S̄β̇

+

[
i
4
eαα̇∂αα̇Λββ̇ − i

2
eαDαΛββ̇ − i

2
eα̇D̄

α̇Λββ̇

]
Gββ̇

+

[
i
4
eαα̇∂αα̇Λ̄ββ̇ − i

2
eαDαΛ̄ββ̇ − i

2
eα̇D̄

α̇Λ̄ββ̇

]
Ḡββ̇ . (3.112)

We explained in the first part of 3.3 that the covariant derivatives come from
the product of the supervielbein and the Maurer-Cartan components, (3.92).
For this algebra, the supervielbein is trivial and we can simply read off the
full covariant derivatives D̂A. The ones relevant for the superspace inverse
Higgs constraints are

D̂µµ̇Φ = ∂µµ̇Φ− 1
2
Λµµ̇, D̂µΦ = DµΦ− 2iΨµ,

¯̂
Dµ̇Ψν = D̄µ̇Ψν + 1

2
Λµ̇ν .
(3.113)

The inverse Higgs constraints and their solutions are then:

D̂µµ̇Φ = 0→ Λµµ̇ = 2∂µµ̇Φ, D̂µΦ = 0→ 2Ψµ = −iDµΦ, (3.114)

¯̂
Dµ̇Ψν = 0→ Λνµ̇ = −2D̄µ̇Ψν . (3.115)

Lastly, we need to impose the appropriate irreducibility conditions. From
the solutions in (3.114), we find D̄µ̇DµΦ = −2i∂µµ̇Φ. Using the algebra of
ordinary N = 1 covariant derivatives {Dµ, D̄µ̇} = −2i∂µµ̇, we find that we
must have D̄µ̇Φ = 0. This is a covariant condition since the ordinary barred

spinor derivative D̄µ̇Φ coincides with the coset covariant version ˆ̄Dµ̇Φ. This
is precisely the canonical irreducibility condition for the chiral superfield.
In this case, we can interpret it as a consistency condition following from
imposing the superspace inverse Higgs constraints. For more complicated
algebras, the irreducibility conditions are modified from their canonical ex-
pressions. We want to emphasize here that the choice of algebra has led to



3.3. SUPERCOSETS 81

a natural essential Goldstone superfield. In Chapter 5, we will investigate
systematically which algebras correspond to which irreducible supermultiplet
of N = 1 supersymmetry.

Inönu-Wigner contractions and small-field limits

The algebra sgal(4, 1 | 6, (1, 0)) is related to the ordinary (1, 0) super-Poincaré
algebra in D = 6 by an Inönu-Wigner contraction. The relevant rescaling of
generators is essentially the same as in 3.2.3, combined with a simultaneous
rescaling of the odd (fermionic) components of the superalgebra. Let us begin
by explaining what rescaling the fermionic generators would imply.

The N = 1 supersymmetry algebra is defined by:

{Qα, Q̄β̇} = 2Pαβ̇ . (3.116)

We now introduce the following contraction:

Qα → σSα, where σ →∞ . (3.117)

The anti-commutator is now simply {Sα, S̄β̇} = 0.
Equivalently, we can take the non-linear realization of N = 1 supersym-

metry, the Akulov-Volkov model, and take the small-field limit. This means
that we rescale the Goldstino λα by the inverse factor:

λα → λα/σ, where σ →∞ . (3.118)

The Akulov-Volkov transformation law then becomes an ordinary shift sym-
metry:

δλα = εα . (3.119)

The implications of such a symmetry have been studied in, for instance,
[111–113]. Similar to Galileons, a fermionic shift symmetry does not admit a
unitary UV completion. It could, however, describe an alternative scenario
of fermion compositeness. In [160], it was shown that the fermionic shift
symmetry does not admit Wess-Zumino terms in D = 4 beyond the ordinary
Weyl kinetic term. This has important implications for the existence of a
massive gravitino [114] in four dimensions.

Next, we will carry out the contraction of the full (centrally extended)
D = 6, N = (1, 0) super-Poincaré algebra to sgal(4, 1 | 6, (1, 0)). The (1, 0)
supersymmetry algebra has eight supercharges. These come in the form of a
pair of SU(2) Majorana-Weyl spinors Qi (i = 1, 2). Such a pair constitutes
a minimal spinor of D = 6. The spinors Qi satisfy the condition:

Qi = εij (Qj)
C = εij B

−1(Qj)
∗ , (3.120)
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where the superscript C denotes charge conjugation. The matrix B is re-
lated to the charge conjugation matrix C: B = it0Cγ

0 (see e.g. [123]). The
supersymmetry algebra is then defined by the following anti-commutation
relation:

{Qiα, Qjβ} = −1
2
(γA)αβεijPA , (3.121)

in addition to the standard D = 6 Poincaré algebra. Here, α denotes a D = 6
spinor index, which has 4 components, and A denotes a D = 6 space-time
index.

We can decompose the symplectic pair Qiα into two D = 4 Weyl spinors:

Q1α = (Qα,−S
α̇
)T , Q2α = (Sα, Q

α̇
) . (3.122)

Additionally, we decompose the D = 6 Poincaré subalgebra in terms of D = 4
representations. In two-component notation, we find:

[Pαα̇, Gββ̇] = iεαβεα̇β̇G, [Gαα̇, Ḡββ̇] = −i(εαβM̄α̇β̇ + εα̇β̇Mαβ) + 2εαβεα̇β̇M,

[Ḡ, Gαα̇] = 2iPαα̇, [G,M ] = G, [Gαα̇,M ] = Gαα̇, (3.123)

The generator M is a generator of U(1) ' SO(2), which rotates the codi-
mensional directions into each other. The non-vanishing (anti)-commutation
relations involving the fermions Qα and S̄α̇ are:

{Qα, Sβ} = 2εαβG, {Sα, S̄α̇} = 2Pαα̇, (3.124)

[Qα, Ḡββ̇] = iεαβS̄β̇, [Sα, Ḡββ̇] = −iεαβQ̄β̇. (3.125)

This is the N = 2-extended supersymmetry algebra in D = 4, together with
the automorphism algebra so(1, 5). Additionally, the algebra admits a U(2)
R-symmetry.

Let us introduce the rescaling parameter σ. Importantly, we cannot
rescale the bosonic generators according to 3.2.3 without a simultaneous
rescaling of the fermions. This would lead to a singular anti-commutation
relation {Q, Q̄}. Therefore, there is no N = 2 extension of the gal(4, 2) alge-
bra. Instead, we need to rescale one of the fermions along with the bosons.
Let us pick Sα, without loss of generality:

Qα → Qα , Sα → σSα , where σ →∞ . (3.126)

Simultaneously, we rescale the bosonic generators G and Gαα̇. Finally, let us
see what happens to the R-symmetry generators. We need to rescale the off-
diagonal generators of SU(2) ⊂ U(2), which we will denote by the complex
scalar generator R.

R→ σR , R̄→ σR̄ , where σ →∞ . (3.127)
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The non-vanishing (anti)-commutation relations are now:

{Qα, Qβ̇} = 2Pαβ̇ , [Pαα̇, Gββ̇] = iεαβεα̇β̇G ,

{Qα, Sβ} = 2εαβG , [R,Qα] = Sα , (3.128)

[G,M ] = G, [Gαα̇,M ] = Gαα̇ (3.129)

in addition, of course, to those that define the Poincaré group and the Lorentz
representations of the generators. All the equations in (3.128) - apart from
those that involve the U(1) ' SO(2) generator M - are related to imposing
superspace inverse Higgs relations. This is the algebra sgal(4, 1 | 6, (1, 0)), as
desired.

Let us comment on the difference between (3.128) and (3.104). In (3.128),
we have explicitly included the U(1) generator M . We did not need to
include this before, because this generator is linearly realized. It is the linear
SO(2) symmetry we included as part of the definition of 2-field Galileons in
section 3.2.3. The generator R, conversely, must be either explicitly broken
or non-linearly realized, because of the bracket [R,Qα] = Sα. When non-
linearly realized, it corresponds to a shift of the auxiliary field F in the chiral
superfield. It will, therefore, be broken explicitly upon substituting the field
equations for F . We will have more to say about the role of such symmetries
in Chapter 5.

An interesting interaction for the coset (3.105) is the following: [166]

L4 =

∫
d4θΦ(Dα̇∂µΦσ̄α̇αν Dα∂ρΦ)εµνρσ∂σΦ . (3.130)

where Φ is a chiral superfield. This is the supersymmetric version of the
quartic bi-Galileon. In terms of its component fields φ and χ, it has the
following symmetries:

φ→ φ+ c+ cµx
µ , χα → χα + εα , (3.131)

which is a standard bi-Galileon symmetry combined with a shift symmetry
of the fermion. The generator R is broken explicitly by the operator (3.130).
Interestingly, (3.130) was derived in [166] by first constructing a new minimal
supergravity version of the so-called slotheon [170], which is related to the
Galileon by a decoupling procedure. We are not aware of a reference where all
supersymmetric Galileon interactions are derived using a systematic Wess-
Zumino formalism.

The contaction from super-Poincaré to supersymmetric Galileon algebras
can of course be generalized to different dimensions and extended supersym-
metry. One must be careful, however, to rescale the codimensional Lorentz
boosts in the appropriate way. The reference [160] contains the contraction
of minimal (Type I) D = 10 supersymmetry to sgal(4, 1 | 10, 1).
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3.4 Superstring and brane actions

Having studied the general theory of non-linear realizations in detail, we
now want to give special attention to the actions of p-branes embedded in
some ambient geometry. Such actions can have special linear and non-linear
symmetries, inherited from the isometries of the embedding space. This
makes it possible to construct and study p-brane actions using coset models.
We will begin this section by explaining how p-brane actions inherit the
symmetries of their embedding space. Some of these symmetries become
non-linearly realized, depending on the formalism one uses to describe the
brane action. Our explanation will focus on bosonic branes embedded in
ordinary background geometries. However, the discussion should carry over
to branes embedded in supermanifolds.

We will examine some important examples of p-brane actions. Firstly,
we treat the Green-Schwarz superstring embedded in flat and then curved
anti-de Sitter superspace. These are important coset models whose classical
equations of motion are integrable. In the next section, we will see how the
use of the coset construction for superstring actions allows one to find infinite
sets of conserved charges relevant to integrability. Finally, we examine the
N = 1 preserving D = 4 brane actions discovered by Bagger & Galperin.
[155, 156, 173] These actions will play a prominent role in our classification
of N = 1 preserving EFTs.

Consider a p-brane embedded in a d-dimensional space-time.5 The brane
is described by the p + 1 worldvolume coordinates xα. Its embedding in
space-time is given by the mappings Xµ(x) from the worldvolume to the
space-time coordinates. The Xµ(x) are scalars on the worldvolume. The
ambient space has a metric Gµν(X) whose pull-back to the worldvolume is
the brane induced metric gαβ:

gαβ =
∂Xµ

∂xα
∂Xν

∂xβ
Gµν(X(x)) . (3.132)

Let us indicate the brane tangent vectors by T µα = ∂Xµ

∂xα
. The normal vector

nµ is defined by the conditions:

T µαn
µGµν(X) = 0, nµnνGµν(X) = 1 . (3.133)

The brane action should have invariance under reparametrizations xα →
x′α(x) (i.e. worldvolume diffeomorphisms). The infinitesimal action of this
symmetry on the worldvolume scalar embedding functions is:

δXµ = ξα(x)∂αX
µ(x) , (3.134)

5We follow the discussion of [95].
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where ξα is the parameter of the diffeomorphism. The most general action
with these symmetries is:

S =

∫
ddx
√
−g F (gαβ, Rαβγδ, Kαβ,∇µ, . . .) , (3.135)

where F is some local function of the induced metric, its intrinsic curvatures
and their covariant derivatives, and the extrinsic curvature Kµν of the em-
bedding. The leading order action consists of only the determinant of the
induced metric, i.e. F = 1. We will refer to such actions as Nambu-Goto
actions in what follows.

Now, if Kµ is a Killing vector of the ambient space metric, S will be
invariant under the transformation:

δXµ = Kµ(X) . (3.136)

Let us now separate the embedding space coordinates Xµ into the groups
Xα and X i, where α = 0, 1, . . . , p and i = p + 1, . . . d. Now we choose
coordinates such that the brane is the hypersurface defined by X i = constant.
Now we isolate the subalgebra of Killing vectors Kµ

I (X) that satisfy:

Ki
I(X) = 0 . (3.137)

The Kµ
I (X) preserve the chosen foliation of the ambient space. We denote

the remaining Killing vectors Kµ
A(X). Now we make use of reparametrization

invariance to choose the static gauge, where:

Xα(x) = xα . (3.138)

Furthermore, we relabel X i(x) = πi(x). The πi(x) are the only remain-
ing physical fields. The symmetry transformations (3.134) do not in general
preserve the static gauge, so it is necessary to accompany them with a com-
pensating gauge transformation. Therefore, in the static gauge the general
symmetry transformation becomes:

δπi(x) = aAKi
A(x, π)− aIKα

I ∂απ
i(x, π)− aAKα

A(x, π)∂απ
i(x) . (3.139)

We see that at most the subgroup generated by Kµ
I remains linearly re-

alized in the static gauge. Before fixing the gauge, a larger subgroup of the
ambient space isometries can be linearly realized. In both cases, the brane
action can be considered a coset model. There is no mismatch between phys-
ical Goldstone modes in these two frameworks. On the gauge invariant side,
a subset of the would-be Goldstone degrees of freedom is pure gauge. On the
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gauge-fixed side, the generators associated to that same subset are identified
with the linearly realized translation generators. Furthermore, the Goldstone
modes of the isotropy subgroup (which becomes non-linearly realized in the
gauge-fixed description) are degenerate and can be eliminated by inverse
Higgs constraints. We will encounter both gauge invariant and gauge-fixed
descriptions in what follows.

3.4.1 Green-Schwarz superstrings

We now turn our attention to Type II superstrings, which are 2-dimensional
extended objects living in D = 10 space-time. There are several inequivalent
formulation of superstrings, each highlighting a different aspect of the theory.
In the Green-Schwarz (GS) formulation, the symmetries of the target space
are made manifest. [149, 150] We will first present the Green-Schwarz string
action in flat space and then explain its interpretation as a coset model.
[148] In the next subsection, we will examine the GS string in an AdS5 × S5

background. We include the discussion of Green-Schwarz superstrings to
provide an example of gauge invariant coset models (most of our attention in
the following will be devoted to gauge-fixed models of extended objects) and
to highlight a particularly beautiful application of the theory of non-linear
realizations. As such, the sections 3.4.1 and 3.4.2 are not crucial to our main
line of argumentation.

The GS superstring action in D = 10 flat space is a straightforward gener-
alization of the Nambu-Goto action encountered in the previous subsection.
It is built out of the worldsheet scalar fields Xµ(x) and the Grassmann-odd
fields ΘI , with I = 1, 2. Together, Xµ and ΘI form the coordinates for the
D = 10 superspace in which the string is embedded. The fermionic coordi-
nates ΘI are D = 10 Majorana-Weyl spinors 6. The 10-dimensional chirality
of ΘI determines whether we are dealing with Type IIA or Type IIB su-
perstrings. In Type IIA, the chiralities are opposite and in Type IIB they
are the same. Consider the following linear combination of the superspace
coordinates:

Πµ
α = ∂αX

µ − Θ̄IΓµ∂αΘI . (3.140)

The Γµ are D = 10 gamma matrices. This quantity is invariant under D = 10
supersymmetry transformations, which act on Xµ and ΘI as:

δΘI = εI , δXµ = ε̄IΓµΘI . (3.141)

6See [123] for a comprehensive treatment of gamma matrices and spinors in arbitrary
dimensions.
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This transformation law acts exactly as one would expect for coordinates of
superspace. The transformation parameters εI are Majorana-Weyl spinors of
the same chirality as ΘI .

The GS superstring action now reads as follows:

S = − 1

π

∫
d2σ

√
det(Πα · Πβ) +

∫
ΩWZ ,

ΩWZ =
1

π

(
(Θ1ΓµdΘ1 − Θ̄2ΓµdΘ2)dXµ − Θ̄1ΓµdΘ1Θ̄2ΓµdΘ2

)
. (3.142)

The first term in the GS action is the supersymmetric generalization of
the Nambu-Goto term. The second is a Wess-Zumino term of the coset
model, as we will soon make clear. This is why it is written as the integral
over a 2-form. It corresponds to the following invariant 3-form:

Ω3 =
1

π
(dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2)(dXµ − Θ̄IΓµdΘI) . (3.143)

Altogether, the GS action has the following symmetries:

� World sheet diffeomorphisms: Reparametrizations σα → σ′α(σ)
under which the fields transform as X ′µ(σ′) = Xµ(σ), Θ′I(σ′) = ΘI(σ).

� Kappa symmetry: A fermionic gauge symmetry under which:

δΘ1 = κ̄1P−, δΘ2 = κ̄2P+ ,

δXµ = Θ̄IΓµδΘI ,

P± =
1

2

(
1∓

εαβΠµ
αΠν

βΓµν

2
√
− det(Πα · Πβ)

)
. (3.144)

The κI are independent D = 10 Majorana spinor gauge parameters of
the appropriate chirality.

� Global space-time supersymmetry: The D = 10 supersymmetry
acts on the fields Xµ and ΘI as on coordinates of superspace:

δΘI = εI , δXµ = ε̄IΓµΘI . (3.145)

Note that there is no manifest worldsheet supersymmetry. In the RNS
formalism for Type II superstrings [132], however, a worldsheet super-
symmetry is manifest. Unfortunately, in this formalism the ambient
space symmetries are obscured.
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� Space-time Poincaré symmetry: The 10-dimensional translations
shift the coordinates δXµ = aµ and Lorentz transformations act in the
obvious way.

The local Kappa symmetry ensures that the fermionic and bosonic degrees
of freedom match both before and after fixing the gauge symmetries. The
presence of all these linear and non-linear symmetries suggests that the GS
superstring is nothing but the coset model for the symmetry breaking pattern
of the Type II super-Poincaré group in ten dimensions, modulo the ten-
dimensional Lorentz group SO(1, 9). The model is then further constrained
by the requirements of reparametrization invariance and Kappa symmetry.
Note that the first term in (3.142) is invariant under the global symmetries
and reparametrization invariance. The second term is a reparametrization
invariant Wess-Zumino term for the coset space. Only this specific linear
combination respects the Kappa symmetry.

To make the coset interpretation explicit, it is convenient to work in the
Polyakov formalism. This will simplify the equations by getting rid of the
cumbersome square root and determinant in (3.142). The Polyakov formal-
ism requires an auxiliary worldsheet metric hαβ, whose inverse is hαβ. Now
introduce some parametrization g(X,Θ) for the coset space. This gives rise
to the Maurer-Cartan currents ωα:

g−1∂αg = ωα = (ωµP )αPµ + (ωIQ)αQ
I + (ωµνM )αMµν . (3.146)

In the usual exponential parametrization g = ei(x
αPα+ΘIQI), the Maurer-

Cartan component of translations is simply the supersymmetric invariant
combination we found earlier, (ωαP )µ = Πα

µ. Then GS action in the Polyakov
formalism then reads:

S = − 1

π

∫
d2σ
√
hhαβ Str(ωαωβ)|P +

∫
ΩWZ ,

= − 1

π

∫
d2σ
√
hhαβ (ωµP )α(ωνP )β Str(PµPν) +

∫
ΩWZ . (3.147)

Here, Str(. . .) refers to the supertrace over the generators in a matrix rep-
resentation of the symmetry algebra. In additional to the symmetries we
enumerated earlier, the Polyakov GS action has a local Weyl symmetry
hµν → f(x)hµν . To recover the Nambu-Goto type action (3.142), calcu-
late the equations of motion for the auxiliary metric and plug them back
into the action. Note that the equations of motion only determine the metric
up to a local rescaling, due to the Weyl symmetry. However, the rescaling
drops out of (3.147).
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3.4.2 Green-Schwarz-Metsaev-Tseytlin superstrings

In the previous subsection, we examined the Type II superstring in 10-
dimensional flat space in the covariant GS formalism. The flat D = 10 target
space represents the trivial R(1,9) solution of the Type IIB supergravity equa-
tions of motion, which preserves all of the 32 supercharges. Another solution
which preserves the maximal supersymmetry is the well-known AdS5 × S5

background discovered in [151]. This solution describes the near-horizon ge-
ometry of D3-brane solutions in Type II supergravity, which plays a crucial
role in the AdS / CFT correspondence. [75] The superstring on AdS5× S5 is
sometimes called the Green-Schwarz-Metsaev-Tseytlin (GSMT) string, after
Green-Schwarz and the authors of [153].

The AdS5 × S5 space is the direct product of the coset spaces:

AdS5 =
SO(2, 4)

SO(1, 4)
, S5 =

SO(6)

SO(5)
. (3.148)

The isometry group generated by the Killing vectors on AdS5 × S5 is then
SO(2, 4)×SO(6). Including the Killing spinors of the maximally supersym-
metric Type II supergravity solution, the superisometry group is enhanced
to PSU(2, 2|4). This is the N = 4 superconformal group in D = 4, including
its SU(4)R automorphism group. Let us highlight some important properties
of its superalgebra, psu(2, 2|4), before we present the GSMT coset model.

The PSU(2, 2|4) superalgebra psu(2, 2|4) contains 32 supercharges, equal
to the number of supersymmetries in Type II supergravity. The superalgebra
is obtained from su(2, 2|4) as a quotient over its u(1) center. The superalgebra
su(2, 2|4), in turn, is spanned by supertraceless 8× 8 supermatrices M that
satisfy the reality condition:

M †H +HM = 0 , (3.149)

where H is:

H =

(
Σ 0
0 14

)
, (3.150)

and:

Σ =

(
12 0
0 −12

)
. (3.151)

The generators of psu(2, 2|4) may be separated into four sectors,

psu(2, 2|4) = g0 + g1 + g2 + g3 , (3.152)
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according to their charge under a Z4 automorphism7. This automorphism
plays an important role in establishing the integrability of the GSMT super-
string, as we will see. On a supermatrix representation M of su(2, 2|4), the
automorphism acts as:

M → Ω(M) = −KM stK−1 , (3.153)

where M st refers to the supertranspose of the matrix M :

M =

(
m θ
η n

)
→M st =

(
mt −ηt
θt nt

)
(3.154)

where mt is the usual transpose of m. Furthermore, K = diag(K,K), where
K is defined by:

K =

(
−iσ2 0

0 −iσ2

)
. (3.155)

The elements Mk of gk in (3.152) then satisfy:

Ω(Mk) = ikMk . (3.156)

The elements of g0 span the so(1, 4)×so(5) bosonic subalgebra, which makes
up the linearly realized symmetry group. The components g1 and g3 com-
prise the fermionic generators. Then, g2 makes up the spontaneously broken
bosonic sector.

With these generalities out of the way, we can present the GSMT La-
grangian : [154]

L = −g
2

[
γαβStr(A(2)

α A
(2)
β ) + κεαβStr(A(1)

α A
(3)
β )

]
. (3.157)

where Aα = g−1∂αg is the Maurer-Cartan current and the bracketed super-
scripts refer to its components under the Z4 automorphism. Furthermore,
we have combined the metric and its determinant into γαβ =

√
−hhαβ.

One can show that for κ = ±1, (3.157) has a fermionic local Kappa
symmetry which is realized as a right-multiplication:

g ·G = g′h , (3.158)

where G = exp(ε(τ, σ)) and ε(τ, σ) is a local fermionic parameter which
satisfies a constraint. In addition, the equations of motion derived from
(3.157) admit a Lax representation if and only if κ = ±1.

7In fact, this automorphism exists for the entire superalgebra of supertraceless 8 × 8
supermatrices, sl(4|4).
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The second term in (3.157) is once again a Wess-Zumino term. It is equal
to the integration of the following closed, invariant 3-form:

Θ3 = Str(A(2) ∧A(3) ∧A(3) −A(2) ∧A(1) ∧A(1)) = 1
2
Str(A(1) ∧A(3)) (3.159)

over a D = 3 space whose boundary is the string worldsheet.
Note that in order to do physics with (3.157), one has to specify a

parametrization of the coset element g and calculate the Maurer-Cartan cur-
rent, which in general is a cumbersome procedure. The Green-Schwarz type
action for the superstring is known in a general background [140], includ-
ing ones that have no interpretation as a coset model. However, the coset
construction provides a clean formal expression in (3.157) from which one
can deduce important properties of the theory. One of the advantages of the
coset description is that it allows one to easily extract the conserved quan-
tities of the action. These include an infinite set of commuting conserved
currents, which means that the equations of motion that result from (3.157)
are integrable.

3.4.3 Partial breaking of global supersymmetry in four
dimensions

In this section, we will take a look at two quintessential examples of su-
persymmetric non-linear realizations, both related to the partial breaking of
N = 2 supersymmetry to N = 1 in four dimensions. Spontaneously breaking
a supersymmetry leads to at least a single Goldstino, which must live in a
full supermultiplet in order to preserve N = 1 supersymmetry. There are
then several choices to complete the multiplet. For instance, we can include
a complex scalar field to obtain a chiral superfield. Adding a vector field
gives rise to a vector or Maxwell supermultiplet. This choice comes down to
whether we choose to centrally extend the N = 2 supersymmetry algebra,
as we will soon discover. The main references for this section are [155,156].

We first address an important subtlety of partially breaking supersymme-
try. [157] The minimal N = 2 supersymmetry algebra consists of two D = 4
Weyl spinors (Sα, Qα) with the following anti-commutation relations:

{Qα, Q̄α̇} = 2Pαα̇, {Sα, S̄α̇} = 2Pαα̇ . (3.160)

If we then assume that Q annihilates the vacuum state |0〉 (i.e. Q generates
an unbroken symmetry), we must also conclude that the Hamiltonian H ∝
P 0 annihilates the (spatial translation-invariant) vacuum, due to the anti-
commutator {Q, Q̄}:

H |0〉 = 0 . (3.161)
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Naively, this immediately implies that also {S, S̄} |0〉 = 0. Then, if the
Hilbert space is positive definite, we must conclude:

S |0〉 = S̄ |0〉 = 0 , (3.162)

which seems to suggest the second supersymmetry must be unbroken if the
first supersymmetry is unbroken. However, as we have emphasized through-
out this thesis, spontaneously broken symmetries do not always lead to well-
defined quantum charges. We can only count on the existence of a current
algebra, which will receive modifications from the breaking of supersymmetry
such that the naive argument is circumvented. It is also possible that the
Hilbert space is not positive definite. This happens, for instance in covari-
antly quantized supergravity [157] due to negative-norm components of the
gravitino.

Even though the naive argument forbidding partial breaking may be cir-
cumvented, it does suggest that such theories are rather special. Indeed, the
realizations of partial breaking we discuss below do not come from ordinary
N = 2 field theories living in four spatial dimensions. As we have explained
above, they both describe the longitudinal modes of membranes. In the case
of the chiral superfield, the theory describes the massless modes of a 3-brane
solution in a minimally supersymmetric D = 6 gauge theory. [179] The the-
ory is effectively four-dimensional because the massless modes are confined
to the surface of the 3-brane. Likewise, the vector superfield describes a D3-
brane solution of superstring theory. The full target space-time in this case
is therefore ten-dimensional, but we can again consistently truncate to the
massless modes which live on the surface of the D3-brane.

Partial breaking using a Maxwell superfield

Let us first examine the minimal case, where we do not centrally extend the
N = 2 algebra or include any of its R-symmetry group. In addition to the
D = 4 Poincaré algebra, we have:

{Qα, Q̄α̇} = 2(σa)αα̇Pa, {Sα, S̄α̇} = 2(σa)αα̇Pa , (3.163)

{Qα, Sβ} = 0, {Qα, S̄β̇} = 0 . (3.164)

Here, we will employ Latin letters for bosonic indices and Greek letters for
spinorial indices. As usual, we will use letters from the beginning of the
alphabet to denote tangent space indices and reserve letters from the middle
of the alphabet for space-time. We intend to realize Sα non-linearly and keep
Qα unbroken. Therefore, we define the following coset element:

g = ei(x
aPa+θαQα+θ̄α̇Q̄

α̇)ei(Ψ
αSα+Ψ̄α̇S̄

α̇) . (3.165)
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The covariant derivatives D̂α, ˆ̄Dα̇ and D̂a are extracted from the Maurer-
Cartan form γ = g−1dg according to the procedure discussed in 3.3. Among
the terms proportional to (super)translation generators, only the space-time
translation term is non-trivial:

(ωaP ) = dxa + i(dθσaθ̄ + θσadθ̄ + dΨσΨ̄ + ΨσdΨ̄) . (3.166)

This defines the supervielbein component Em
a, according to (3.90). We find:

Em
a = δm

a + i(∂mψσ
aψ̄ + ψσa∂mψ̄) . (3.167)

We can now extract covariant derivatives using (3.92). The result is: [156]

D̂aΨβ = (E−1)a
m∂mΨβ ,

D̂αΨβ = DαΨβ − i(DαΨσaΨ̄ +DαΨ̄σ̄aΨ)(E−1)a
m∂mΨβ ,

ˆ̄Dα̇Ψβ = D̄α̇ − i(D̄α̇ΨσaΨ̄ + D̄α̇Ψ̄σ̄aΨ)(E−1)a
m∂mΨβ , (3.168)

where E−1 is the inverse of the supervielbein. These covariant derivatives
realize a modified algebra:

{D̂α, D̂β} = O((D̂Ψ)3) ,

{D̂α,
ˆ̄Dβ̇} = 2i(σa)αβ̇ +O((D̂Ψ)3) ,

[D̂α, D̂a] = O((D̂Ψ)3) . (3.169)

We must now make use of the covariant derivatives (3.168) to impose
irreducibility conditions. We intend to identify Ψα, on the solution of the
appropriate constraint equation, with a canonical Maxwell superfield Wα. 8

Such a superfield satsifies the constraint equations:

D̄α̇Wα = 0, DαWα + D̄α̇W
α̇ = 0 . (3.170)

The first of these equations, the chirality conditions, is easy to make covari-
ant with respect to the non-linear transformations. We simply replace the
ordinary covariant derivative with the coset covariant derivative:

ˆ̄Dα̇Ψα = 0 . (3.171)

8The Maxwell superfield is not the only irreducible spinor superfield. We are however
led to this particular multiplet by choosing the minimal version of the N = 2 superalge-
bra. In Chapter 5, we will discuss in great detail how the algebra picks out a particular
irreducible supermultiplet.
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This constraint is compatible with the modified algebra of covariant deriva-
tives (3.169). This constraint can made covariant in the minimal way because
it is fixed by Lorentz invariance, as we will explain in Chapter 5.

The second constraint is rather more complicated. As Bagger & Galperin
explain, the naive generalization D̂αΨα + c.c. is not compatible with the
algebra of covariant derivatives (3.169). The only solution is then Ψ = 0.
Instead, it must be replaced by a different constraint, which to fifth order in
the fields reads:

D̂αΨα −
1

2
D̂αΨβD̂βΨαD̂

γΨγ + c.c. = O(Ψ5) . (3.172)

The solution to this constraint may be written in terms of a canonical
Maxwell superfield Wα:

Ψα = Wα +
1

4
D̄2(W̄ 2)Wα − iW βW̄ β̇∂ββ̇Wα +O(W 5) . (3.173)

We will have more to say about the peculiar form of this constraint in Chapter
5.

Now that we have defined our covariant irreducibility conditions, the next
step is to construct an action. Formally, all invariant actions are given by
a sum of Wess-Zumino interactions and strictly invariant Lagrangians. We
construct the latter by building scalars out of the covariant derivatives of
Ψα, multiplying by the Berezinian of the supervielbein and integrating over
N = 1 superspace. In practice, however, building actions in this way is
very involved for supercosets. Instead, Bagger-Galperin proceed by writing
the transformation laws derived from the coset construction in terms of Wα,
by way of equation (3.173). We can proceed by writing down the lowest-
order Lorentz scalar W 2 and add higher-order interactions terms to find an
interaction that is invariant up to some order in the fields. The result is, to
order W 6:

L =
1

4

∫
d4x d2θW 2 +

1

4

∫
d4x d4θW 2W̄ 2 + c.c+O(W 6) . (3.174)

If we truncate this action to only the gauge vector Aµ, we find that it coincides
with the Born-Infeld action up to this order in the fields. [156] This confirms
that the theory is related to the propagation of a D3-brane in superstring
theory. Bagger-Galperin actually succeed in defining an invariant theory
to all order in the fields, by means of a clever recursively-defined auxiliary
multiplet.

We note that for our purposes in Chapter 5 - classifying the symmetry
breaking patterns consistent with the Maxwell multiplet - it is more impor-
tant to understand how to find covariant constraints than invariant actions.
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In the next subsection, we will centrally extend the minimal N = 2 su-
peralgebra and attempt to break it to N = 1. The additional symmetry
generators force us to use a different irreducible multiplet of supersymmetry
and to impose superspace inverse Higgs constraints.

Partial breaking using a chiral superfield

The N = 2 algebra admits a central extension: we may add a complex scalar
generator Z and fix the following anti-commutation relations:

{Qα, Q̄α̇} = 2(σa)αα̇Pa, {Sα, S̄α̇} = 2(σa)αα̇Pa ,

{Qα, Sβ} = 2εαβZ, {Qα, S̄β̇} = 0 . (3.175)

The reader should compare this algebra to (3.104). The only difference re-
sides in the {S, S̄} anti-commutation relation. This has no bearing on inverse
Higgs relations (at least to linear order in the fields) so we will use the same
structure of degeneracy conditions for this non-linear realization. Our essen-
tial Goldstone superfield is now a complex scalar Φ. The spinor Goldstino
Ψα associated to Sα will be related to a derivative of Φ by superspace inverse
Higgs conditions.

We may study (3.175) in its own right, deriving its covariant derivatives
and transformation laws from the coset construction. However, it is more
interesting to add a second level of degenerate Goldstone modes. We can do
this by connecting the first level generator Sα to a vector Ka or a scalar R,
by means of the following inverse Higgs commutation relations:

[Ka, Q̄
α̇] = i(σ̄a)

α̇αSα, [R, Q̄α̇] = −S̄α̇, [Ka, Pb] = iηabZ . (3.176)

The first and second commutation relations allow us to impose the required
inverse Higgs relations. The third bracket is enforced by the super-Jacobi
identity involving the three generators (Qα, Q̄α̇, Ka). This ensures that we
may at the same time impose an ordinary space-time inverse Higgs relation to
project out the lowest component field in the vector Goldstone superfield Λa

associated to Ka. We will explore such structures in great detail in Chapter
5.

Because {S, S̄} ∝ P , we also need to include the following non-trivial
brackets (as we will show in detail in Chapter 5):

[Ka, Z̄] = 2iPa [Ka, S̄
α̇] = −i(σ̄a)α̇αQα (3.177)

[T, Sα] = Qα . (3.178)

This algebra is equivalent to the minimal supersymmetry algebra in D = 6
enhanced with an SU(2) R-symmetry.
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Bagger-Galperin then proceed to define the coset element:

g = ei(x
aPa+θαQα+θ̄α̇Q̄

α̇)ei(ΦZ+Φ̄Z̄+ΨαSα+Ψ̄α̇S̄α̇)ei(Λ
aKa+Λ̄aK̄a)ei(TR+T̄ R̄) , (3.179)

and impose the following irreducibility and inverse Higgs conditions:

ˆ̄Dα̇Φ = 0, D̂αΦ = 0, D̂a = 0, (3.180)

D̂αΨβ = 0, ˆ̄Dα̇Ψβ = 0 . (3.181)

The first condition imposes chirality. The remaining spinorial derivative
conditions impose the superspace inverse Higgs constraint, and the vector
derivative condition takes care of space-time inverse Higgs. This means that
there is only a single remaining independent superfield, which is Φ. Due to
the covariant chirality condition, it is possible to write Φ (perturbatively) in
terms of a canonical chiral superfield Φ [155]:

Φ = Φ− i

4
(DΦσaD̄Φ̄)∂aΦ− (∂aΦ)2Φ̄+ . . . . (3.182)

Using the solutions to the constraint equations and the transformation
laws defined by the coset element (3.179), Bagger-Galperin then provide (up
to sixth order in Φ) the unique action that starts at quadratic order. It
is more instructive, however, to report the action derived by Rocek and
Tseytlin [163] using constrained superfield methods:

L =

∫
d4θ ΦΦ̄+

1
2
(DΦ)2(D̄Φ̄)2

1 + A+
√

(1 + A)2 − AĀ
, (3.183)

where A = ∂αα̇Φ∂αα̇Φ. One can check that the scalar component ϕ of Φ is
subject to the ordinary DBI action in flat embedding space. See, for exam-
ple, [164,165] where (3.183) was derived by explicitly supersymmetrizing the
ordinary scalar DBI action. Thus, (3.183) provides the correct leading (in
derivatives) action for the spontaneous breaking of D = 6 minimal super-
symmetry, to all orders in the fields.



Chapter 4

Exceptional EFTs with
Poincaré symmetry

4.1 Extended shift symmetries and IHCs

In Chapters 2 and 3, we discovered that spontaneously broken space-time
symmetries may violate Goldstone’s theorem. We arrived at this conclusion
from several related directions. In section 3.2.1, we saw that Goldstone modes
may be identified with a space-time dependent action of a broken global
symmetry on the background field configuration. It can happen that the
local action of one space-time symmetry transformation is degenerate with
another, even if the two are independent as global transformations. In the
theory of non-linear realizations, this degeneracy corresponds to inverse Higgs
constraints, which consistently project out some Goldstone fields in terms of
others. In section 2.5, we encountered theories with coordinate-dependent
symmetries of the type (2.90), which may be realized at the same time as an
ordinary shift symmetry without adding additional Goldstone fields. We then
related the Noether current of the n-th order symmetry to that of the shift
symmetry, implying that the two are not completely independent. Indeed,
the off-shell relation (2.96) between the currents is a consequence of the local
degeneracy of the corresponding symmetry transformations, as expressed by
(2.94).

In this section, we will address the following question: given a set of
independent fields φ(x), what is the most general set of symmetry generators
that may be realized on φ(x) as non-linear transformations? We assume that
our theory lives in D = 4 and has unbroken Poincaré symmetry, so that the
fields φ(x) form a representation of the four-dimensional Lorentz algebra. Of
course, we may ask the same question in different settings. Indeed, at the

97
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end of this chapter we will briefly examine non-linear realizations in anti-
de Sitter space-time. In Chapter 5, we will address theories with unbroken
N = 1 supersymmetry. In answering this question, we will also constrain
the commutation relations of the non-linearly realized generators with space-
time translations. Fixing the spectrum of generators and their commutation
relations with translations is the first step towards our larger aim: to classify
the non-linear realizations.

Let us return to our discussion from section 3.2.1. There, we argued
that a Lorentz irreducible Goldstone field may non-linearly realize several
independent symmetries, if there are solutions to the equation

φi(x)Gi|0〉 = 0 . (4.1)

Acting with the translation operator produces the consistency condition
(3.33). Truncating to lowest order in the fields, the condition reads (3.35). A
non-trivial solution therefore requires the algebraic relation fµj

i 6= 0. Then,
the linear combination of fields φjfµj

i may be eliminated in favor of φi. This
combination of Goldstone fields is associated to generators which contain the
generator Gi in their commutation relation with translations.

We can of course repeat this trick and act with the translation operator
Pµ on (3.32) a second time. Let us turn our attention to a particular Gold-
stone field φ0, which we assume corresponds to a generator which satisfies
[Pµ, G

(0)] = . . ., where the ellipses contain only linearly realized generators
(i.e. in this case those belonging to Poincaré or some internal linear symme-
try). It is never possible to project out such a Goldstone field with inverse
Higgs relations. We will call such Goldstone fields essential, as opposed to
inessential Goldstone fields which may be projected out. Acting with trans-
lations twice, we find:

∂µφ
0(x) = fµi

0φi(x) +O(φ2) ,

∂µ∂νφ
0(x) = fµi

jfνj
0φi(x) +O(φ2) . (4.2)

Therefore, we may project out two independent linear combinations of Gold-
stone fields, if the algebra satisfies fµj

0 6= 0 and fµi
jfνj

0 6= 0. The Goldstones
eliminated by the first relation correspond to the linear combination of gen-
erators: ∑

i

Gi [Pµ, Gi]|G(0) = Gi fµi
0 , (4.3)

which is just a sum over all generators which yield G(0) in their commutation
relation with translations. We will refer to these as first-order generators.
Similarly, the corresponding Goldstone fields are first-order inessential.
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Inserting the first equation into the second, we also find:

∂µ(fνi
0φi(x)) = fµi

jfνj
0φi +O(φ2) , (4.4)

The second order generators are then:∑
i

[Pµ, Gi]|Gj fνj0 = Gi fνi
jfµj

0 , (4.5)

which again is a sum over all generators Gi which satisfy [Pµ, Gi] ⊃ G(1),
where G(1) indicates the first-order generators.

Clearly, we may repeat this procedure an arbitrary number of times.
At order n, we find that the n-th order generators are those which satisfy
[Pµ, G

(n)] ⊃ G(n−1). We may then eliminate the n-th order inessential Gold-
stone fields by a relation which reads, schematically:

∂µ(fn−1φ(x)) = fnφ(x) +O(φ2) . (4.6)

The right- and left-hand sides of equations (4.2) contain, in general, sev-
eral irreducible Lorentz representations. Let us assume that G(0) is an ir-
reducible Lorentz representation of spin-s. The first-order generators then
take spins (s − 1), s, or (s + 1). There can be two independent first-order
spin-s generators, so that we have a degeneracy (1, 2, 1). The second-order
generators are spin (s− 2), (s− 1), s, (s+ 1), or (s+ 2). The degeneracy is
then (1, 4, 6, 4, 1). We are led to a tree of generators, depicted up to second
order in figure 4.1. The dashed lines there indicate that the higher-order
generator (lower on the figure) gives rise to the lower-order one when taking
a commutation relation with translations. From now on, we will call a tree
like 4.1 an inverse Higgs tree.

There are various consistency conditions which reduce the generator con-
tent depicted in 4.1. First of all, we observe that the left-hand side of the
second equation (4.2) is symmetric with respect to exchanging (µ ↔ ν).
Therefore, we obtain a consistency condition f[µi

jfν]j
0 = 0. We obtain simi-

lar constraints by imposing more symmetrization conditions. It is clear that
at order n in the inverse Higgs tree, the Lorentz representations that are
compatible with the symmetry conditions are precisely those which appear
at the n-th order of a Taylor expansion for a spin-s field. At second order,
this reduces the degeneracy to at most (1, 2, 4, 2, 1). We may obtain the same
conditions (and more) from inspecting Jacobi identities involving two trans-
lation generators and an n-th order non-linearly realized one. For example,
let us inspect one of the (s−1) generators at second order, G

(2)
s−1. The Jacobi

identity
[Pµ, [Pν , G

(2)
s−1]] + [Pν , [G

(2)
s−1, Pµ]] = 0 , (4.7)
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Representations

(s)

(s− 1) (s) (s+ 1)

(s− 2) (s− 1) (s) (s+ 1) (s+ 2)

Figure 4.1: The possible non-linear symmetries that can be realized on a
spin-s Lorentz representation and their links via space-time translations.

relates four coefficients to each other, depicted by the blue dashed lines in
figure 4.1. This reduces the degeneracy at spin-(s − 1) to 2. From further
Jacobi identities, we can again conclude that the generator content of the
inverse Higgs tree at order n coincides with the Lorentz representations at n-
th order in a Taylor expansion of a spin-s field. [76,79] This is of course very
reminiscent of the symmetry transformations (2.90) we examined in section
2.5. We will argue below that precisely these symmetry transformations
result from the coset construction for a scalar essential Goldstone. However,
the kinetic term is canonical in the same basis only if [Pµ, G

(0)] = 0.

Note that the lines going upward from a particular n-th order generator
to a (n− 1)-th order generators always come together. For example, it is not
possible to connect the vector at third order to the scalar at second order
without also connecting it to the second order rank-2 symmetric tensor. The
commutation relations implied by these lines are related to each other by
Jacobi identities.

We can further simplify the algebra by making a convenient choice of
basis. Let us focus for now on the case of a single scalar generator G(0)

at order 0. The inverse Higgs tree, i.e. the Taylor expansion of φ(x), ap-
pears up to fourth order in figure 4.2. The dashed lines again indicate com-
mutation relations with translations and the Young tableaux correspond to
Lorentz representations. We have fixed the commutation relations so that
[Pµ, G

(n+1)] ⊃ G(n), but we have not yet ruled out other contributions to the
right-hand side. We now show that one can always choose a basis such that
[Pµ, G

(n+1)] = iG(n) + . . ., where the ellipses contain only linearly realized
generators. The commutation relations involving translations then admit a
strict ordering in terms of levels in the inverse Higgs tree.

We will only include a finite number of generators from the inverse Higgs
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tree. Additionally, we assume that the zero-th order generator G(0) satisfies
[Pµ, G

(0)] = . . . (i.e. only linearly realized generators appear on the right-
hand side) and will only work with basis changes that preserve this choice.
This means that the generators at the end points of the inverse Higgs tree
never appear on the right-hand side of a commutation relation involving
translations and a non-linearly realized symmetry. For example, if we assume
that the inverse Higgs tree ends at the scalar G(4) at fourth order in 4.2, there
is no vector Gµ such that [Pµ, Gν ] ⊃ G(3). If the highest order generator in
the inverse Higgs tree is G(n), we will say that the tree itself has order n.

We note that it is impossible to make a basis change such that [Pµ, G
(n)] =

. . . for n > 0, as this would render it impossible to impose degeneracy condi-
tions. Let us consider all generators Ga in the algebra of a particular Lorentz
representation. The index a runs from 1 to the number n of independent
generators of that Lorentz representation. Then, commutation relations with
translations are defined by an n× n matrix CaI :

[Pµ, Ga] = CaI G
I , (4.8)

where GI (I = 1, . . . , n) are the linear combinations of generators that attach
to Ga generators in the inverse Higgs tree. For example, if Ga represent
the vectors, then GI will include the scalar at level 0, the combination of
scalar and rank-2 symmetric tensor at level 2, etc. The matrix CaI must
have maximal rank, as otherwise it would be possible to define basis changes
G̃a = DabGb such that [Pµ, G̃a] = . . . for some a. In other words, CaI is
diagonalizable. This means we can choose a basis such that [Pµ, G

(n+1)] =
iG(n) + . . ., i.e. there exists a strict ordering of translation commutators
by levels in the inverse Higgs tree. The same ideas generalize easily to the
case of multiple scalar fields or multiple spin-1

2
essential Goldstone fermions.

The algebra admits a strict ordering and the trees attached to the different
zero-th order generators G(i) decouple from each other: [P,G

(n)
(i) ] = iG

(n−1)
(i) .

Up to this point in this section, we have not directly used the coset
construction. We did assume that the possibility of non-linearly realizing
multiple symmetries on a single Goldstone field is due to a local degeneracy
of independent global transformations. As we have explained in section 2.3,
not all non-linearly realized symmetries are broken spontaneously. If there is
no underlying linear realization of the symmetry, our starting point (3.32) is
suspect. However, we can replace the assumption of local degeneracy with the
assumption of coset universality. The algebraic condition [Pµ, G

(n)] ⊃ G(n−1)

that allows for inverse Higgs relations is of course the same that results from
assuming local degeneracy.

To connect the results we have obtained here to the actual transforma-
tion laws realized by the Goldstone fields, we do need to refer to the coset
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Scalar tree

•

•

•

Figure 4.2: The non-linear symmetries that can be realized on a scalar, and
their space-time relations.

construction. Consider a zero-th order scalar generator G(0) and its scalar
Goldstone φ(x). From the coset construction, we immediately find that the
transformation law of φ(x) under G(0) starts with a constant shift:

δ0φ(x) = c0 + . . . , (4.9)

where the ellipses contain any possible field-dependent terms. The condition
[Pµ, G

(n)] = iG(n−1) + . . . then tells us that, schematically:

δ(n)φ(x) = c(n)x
n + . . . . (4.10)

In other words, the coset construction produces symmetry transformations
of the type (2.90). However, the connection to our discussion of soft limits
is not immediate. Whenever [Pµ, G

(0)] = Pµ, the coset construction does not
generate a canonical kinetic term for φ(x) in the field basis where δ0 takes the
form (4.9).1 After canonically normalizing, the transformation law contains
field-dependence in every term. Indeed, the dilaton EFT does not show any
special soft limits, see [32–34].

In Chapter 3, we saw that the coset construction - in addition to the
constraint [Pµ, G

(n)] ⊃ G(n−1) - requires higher-order conditions of the type
(3.39) in order to impose inverse Higgs constraints. In principle, one could
use these conditions to further reduce the Ansätze for non-linearly realized

1In this case, G(0) generates a scaling symmetry. It turns out that a non-linear re-
alization of scaling symmetry always enhances to a non-linear realization of conformal
symmetry. In other words, there is always a hidden generator of special conformal trans-
formations.
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algebras. In particular, they would constrain the form of the commutation
relations involving two non-linearly realized generators, [G(p), G(q)], whereas
up to now we have only constrained commutation relations involving trans-
lations. Equations (3.39), however, depend on the choice of parametrization
of the coset element. This makes them possibly suspect to use for an ex-
haustive classification. A preferred exponential parametrization does exists
which, in all known examples, is least restrictive for imposing inverse Higgs
constraints. In practice, however, we have not come across a situation where
the conditions (3.39) are necessary or useful for classifying non-linearly real-
ized symmetries.

4.1.1 Canonical propagators

We have now fixed the generator content of the most general finite non-
linearly realized algebra, assuming unbroken Poincaré invariance and given
a choice of essential Goldstone field. By imposing Jacobi identities and con-
sistency of the degeneracy conditions, and after picking a suitable basis, we
were able to identify the inverse Higgs tree with the Taylor expansion of the
essential field. We now introduce a minimal physical condition to further
reduce the inverse Higgs tree: we assume that the coset construction pro-
duces a canonically normalized kinetic term for all Goldstone fields, in the
field basis where the transformation laws take the standard form (4.10). If,
in addition, there is no potential for the Goldstone fields, we arrive exactly
at the spectrum of theories we considered in section 2.5. These are the EFTs
whose S-matrix display the Adler zero and possibly higher-order soft limits
dictated by the highest order transformation law (2.90) (i.e. by the order of
the inverse Higgs tree).

Let us work with a single scalar essential Goldstone and assume that the
canonical kinetic term is the operator with the fewest number of fields in
the Lagrangian. Then, the kinetic term must be invariant under the field-
independent part of the transformation law (4.10). This drastically cuts down
on the allowed generators in figure 4.1. At order n, the field-independent part
of the transformation is:

δnφ(x) = c(n)
µ1...µn

xµ1 . . . xµn + . . . . (4.11)

The canonical kinetic term φ�φ is invariant, up to a total derivative, under
this transformation only if c(n) is fully symmetric and traceless. This means
that we reduce the inverse Higgs tree to the right-most diagonal line in figure
4.1. We have a single rank-n traceless and symmetric generator at order n.

There are certainly interesting EFTs of a single scalar which violate the
assumptions we make in this section. We have already mentioned the theory
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of spontaneously broken conformal symmetry, in the previous section and
3.2.4. The codimension-1 case (i.e. the 5-dimensional AdS algebra) includes a
potential in the vielbein term to achieve invariance under the transformation
law (3.59). 2 It is the only single-scalar EFT with this property. The
higher codimension AdS algebras (which require multiple essential scalar
Goldstones) include generators which are not on the right-most diagonal line
in 4.1. For example, the AdS6 algebra includes the scalar generator at order
2, i.e. a transformation law of the type:

δ(2)φ(x) = c(2)x
2 + . . . . (4.12)

We will argue below that these exceptions, based on anti-de Sitter space-time,
are the only scalar EFTs which can make use of the off-diagonal generators
and at the same time include canonical kinetic terms.

We can repeat the arguments for essential spin-1
2

Weyl fermion Goldsti-
nos. In two-component notation, the general field-independent transforma-
tion law reads:

δ(n)λα = (c(n))αβ1...βnβ̇1...β̇n
xβ1β̇1 . . . xβ1β̇1 + . . . , (4.13)

where, a priori, the coefficients c(n) are not Lorentz irreps. They are, however,

symmetric with respect to the pairwise exchange (βi ↔ βj, β̇i ↔ β̇j). Now
invariance, up to a total derivative, of the Weyl action requires that c(n) be
fully symmetric in all dotted and undotted indices, respectively. This cuts
the inverse Higgs tree down to a single spin-1

2
(n+1) Lorentz irrep at order n.

The same conclusion holds in a theory of multiple essential spin-1
2

fermions.
The story is very similar for U(1) gauge vectors. The non-linearly realized

generators live in the Taylor expansion of a vector:

δ(n)Aµ(x) = (c(n))µµ1...µnx
µ1 . . . xµn + . . . . (4.14)

This implies that (c(n))µµ1...µn is either fully symmetric in all indices or sym-
metric in (µ1, . . . µn) and anti-symmetric under the exchange (µ ↔ µi). In
the case that c(n) is fully symmetric, the transformation (4.14) can be written
as δ(n)Aµ(x) = ∂µα(x). In other words, all transformations of this type are
part of the U(1) gauge symmetry. This means that we always have to take
into account an infinite sequence of generators when we study non-linear re-
alizations in gauge-invariant theories. A convenient way to deal with this (for
general p-form gauge theories), is to use the invariant field strength Fp+1 as

2In the action (3.58), the potential is removed by a separately total derivative-invariant
Wess-Zumino term.
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fundamental field, subject to Bianchi identity, rather than the gauge poten-
tial Ap. This is the approach we will take when we look at SUSY-invariant
theories in Chapter 5.

After taking into account the gauge symmetry, the transformation (4.14)
still contains several Lorentz representations at each order in the inverse
Higgs tree. Invariance of the gauge-invariant canonical kinetic term FµνF

µν

leaves us again with only a single Lorentz-irreducible representation at each
order. These are the generators which are anti-symmetric under the exchange
(µ↔ µ1), symmetric with respect to (µi ↔ µj), and fully traceless.

4.1.2 Towards exceptional EFTs

Let us quickly recap what we have done so far. By making some mini-
mal assumptions - local degeneracy of Goldstone modes/existence of inverse
Higgs relations, compatibility with canonical normalization, and closure of
the symmetry algebra - we were able to eliminate a large class of EFTs. The
structure of non-linearly realized symmetry algebras is always identical to a
Taylor expansion of the essential Goldstone fields. Invariance of canonical
kinetic terms then reduces to a single non-linearly realized generator at each
order. In fact, this structure is so simple that we can complete our classi-
fication simply by writing down a general Ansatz for the symmetry algebra
and imposing closure with Jacobi identities. For the cases of single scalar,
single vector or multiple fermion EFTs, we can then enumerate all solutions
to the Jacobi identities up to arbitrary finite order in the inverse Higgs tree.
Algebraic classifications of this type were first carried out by [76,77] and [78].
In [79, 80], we emphasized the systematic and general approach outlined in
this Chapter.

In section 4.2, we present the results of [76–79] alongside those from the
complementary soft bootstrap approach of [2–4,8]. The remaining discussion
in this Chapter is based on the references [79, 80].

4.2 Classification of exceptional EFTs

In this section we carry out our procedure using a number of examples
where we can exhaustively classify all algebras that can be non-linearly re-
alized. We will employ two-component notation [124] (sometimes known as
SU(2) × SU(2)) throughout most of the following, since we will work ex-
clusively in four space-time dimensions. We use the following convention
for commutators between a tensor Tα1,...αnα̇1,...α̇m and the Lorentz generators
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Mβγ, M̄β̇γ̇

[Tα1...αnα̇1...α̇m ,Mβγ] = 2n! iεα1(βTγ)α2...αnα̇1...α̇m ,

[Tα1...αnα̇1...α̇m , M̄β̇γ̇] = 2m! iεα̇1(β̇T|α1...αn|γ̇)α̇2...α̇m , (4.15)

where we have explicitly symmetrized in (β, γ) or (β̇, γ̇) with weight one,
where necessary. In these and all following equations, the symmetrization
with weight one of groups of indices such as α1, . . . , αn will be implicit (and
similarly for the dotted indices).

4.2.1 Single scalar Goldstone modes

We begin with a single scalar Goldstone where all non-linearly realized gener-
ators are fully symmetric and traceless, as argued in section 4.1. We denote
the nth order generator in the inverse Higgs tree by Gn ≡ Gα1,...,αnα̇1,...α̇n

where n = 0, 1, . . . Z, i.e. we include generators up to a finite order Z with
G0 corresponding to the zeroth-order generator. These generators are fully
symmetric in the sets (α1, . . . , αn), (α̇1, . . . , α̇n) since they correspond to
symmetric traceless Lorentz tensors.

The appearance of non-linear generators in [Pγγ̇, Gα1...αnα̇1...α̇n ] ≡ [Pγγ̇, Gn]
is fixed by our above analysis of inverse Higgs trees while the commutator
between two non-linear generators remains unconstrained. We have

[Pγγ̇, Gn] = 1
2
iεγα1εγ̇α̇1Gα2...αnα̇2...α̇n

+ iAPγγ̇ (only for n = 0)

+Bεγα1M̄γ̇α̇1 − B̄εγ̇α̇1Mγα1 , (only for n = 1) (4.16)

where A and B are respectively real and complex parameters. The fact
that B is complex suggests that there are two different Lorentz structures
involving the Lorentz generators. In SO(1, 3) notation this is clearly the
case, since we can write down both Mµν and εµνρσM

ρσ on the right-hand side
when n = 1. We could have also added a term of the form εγα1εγ̇α̇1Pα2α̇2

in the [Pγγ̇, G2] commutator, but this can always be removed by a change
of basis. The general form of the [Gα1...αmα̇1...α̇m , Gβ1...βnβ̇1...β̇n

] ≡ [Gm, Gn]
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commutators is:

[Gm, Gn] =
n∑
k=0

iC
(m,n)
k

k∏
q=1

εαqβqεα̇qβ̇qGαk+1...αmβk+1...βnα̇k+1...α̇mβ̇k+1...β̇n

+ iDm

m−1∏
q=1

εαqβqεα̇qβ̇qPαmα̇m (m = n+ 1)

+
m−1∏
q=1

εαqβqεα̇qβ̇q(E
mεαmβmM̄α̇mβ̇m

− Ēmεα̇mβ̇mMαmβm) , (m = n)

(4.17)

where C
(m,n)
k and Dm are real parameters and Em are complex parameters.

Note that C
(m,n)
k = 0 if 2k < (n + m − Z). We have also assumed in the

above that m ≥ n without loss of generality.

We now constrain the form of these commutators using the remaining
Jacobi identities. We consider the two cases of Z ≤ 2 and Z ≥ 3 separately.
The former has been computed in [76, 77] (and was confirmed by our own
analysis of this case).

• Z ≤ 2

Up to and including two inverse Higgs relations, there are two branches
of solutions depending on whether A vanishes or not. This distinguishes
between the cases where the essential Goldstone realizes a shift or a scaling
symmetry.

For A = 0 we also have B = 0 and G0 generates a shift symmetry for
the scalar. There are two distinct algebras up to first-order (Z = 1), with
one arising as a singular contraction of the other. These correspond to the
five-dimensional Poincaré algebra and its Galilean contraction. They are re-
spectively non-linearly realized by the scalar DBI action [99, 100] and the
Galileons [94]. At the level of transformation rules, the scalar DBI transfor-
mation rule has field-dependence while this is lost in the Galilean contraction,
where the transformation rule is reduced to a first order extended shift sym-
metry (see section 3.2.3). As discussed, this field-dependence is responsible
for the scalar DBI being an exceptional EFT. [3] Both EFTs have a quadratic
scaling in soft scattering amplitudes, which is related to the fact that in each
case we only need to impose a single inverse Higgs constraint (to remove
the vector generator Gαα̇). We refer the reader to [76, 77] for full details on
the transformation rules and algebras. Schematically, the five-dimensional
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Poincaré algebra reads:

[G0, G1] = aP, [G1, G1] = aM . (4.18)

This will be a recurring theme in what follows3.
In the presence of the second-order generator G2, this set of generators

again leads to two distinct algebras with one a contraction of the other. Both
require the sub-algebra up to order Z = 1 to be that of the contracted five-
dimensional Poincaré. The uncontracted Z = 2 algebra is that of the Special
Galileon, [91,103] which has non-vanishing commutators between non-linear
generators. The contraction again loses this property, thereby reducing the
G2 transformation rule to a second order extended shift symmetry. The
Special Galileon is an exceptional EFT due to the field-dependence in the
transformation rule generated by G2. Since in both cases we need to impose
two inverse Higgs constraints, both algebras lead to EFTs with a cubic soft
scaling in scattering amplitudes. Again, we refer the reader to [76,77,91,103]
for full details on the Special Galileon algebra. However, let us state that
the non-zero commutators between non-linear generators are of the form4

[G1, G2] = bP, [G2, G2] = bM. (4.19)

Note the close similarity between the structure of these commutators and
those in (4.18).

For A 6= 0, G0 is the generator of dilatations. Jacobi identities ensure
that the algebra up to first-order is that of the four-dimensional conformal
algebra. It is not possible to extend the conformal algebra with the addition
of G2 apart from in two space-time dimensions (see for [82] more details.).
Due to the lack of shift symmetry and Adler’s zero for the scalar, there is no
sense in which the resulting EFT of the dilaton has an enhanced soft limit.
We note that there are two well known bases for the conformal algebra but
both give rise to identical EFTs, as we have discussed extensively in section
3.2.4.5. [25]

• Z ≥ 3

We now turn our attention to the case with more than two inverse Higgs
relations. We begin with the Jacobi identity which involves two copies of

3We note that this also includes scalar anti-DBI, where the non-linearly realized algebra
has two time-like directions. Whether the exceptional EFT is scalar DBI or scalar anti-DBI
depends only on the sign of the a.

4Again the parameter b can be positive or negative, similar to (anti-)DBI.
5This is not always guaranteed in the presence of inverse Higgs constraints. [141]



4.2. CLASSIFICATION OF EXCEPTIONAL EFTS 109

translations. Similar to the case with two inverse Higgs relations, this imme-
diately fixes A = B = 0 leaving only [P,Gn] = Gn−1 as required to satisfy
inverse Higgs relations. Next we consider the Jacobi identity with one copy
of translations and two non-linear generators. By projecting onto different
Lorentz structures, we find that all other parameters are also forced to van-
ish other than DZ and Re(EZ), which are fixed to be proportional. We are
therefore left with a single free parameter. The only non-vanishing commuta-
tors which contain non-linear generators are those required by inverse Higgs
constraints, and the following, schematically

[GZ−1, GZ ] = DZP, [GZ , GZ ] = DZM . (4.20)

Note that this structure is identical to the Z = 1 and Z = 2 cases above.
Finally, we consider the remaining Jacobi identities which involve three

non-linear generators. Right away the Jacobi identity involving the gener-
ators (GZ−2, GZ−1, GZ) fixes DZ = 0 since we must have [P,GZ−2] 6= 0 to
reduce to the single scalar Goldstone. Therefore for Z ≥ 3 all commutators
between non-linear generators vanish. It follows that all symmetries reduce
to extended shift symmetries and no further exceptional EFTs.

We have therefore proved, using only Lorentz invariance, the existence
of inverse Higgs constraints, and Jacobi identities, that the only exceptional
scalar EFTs are scalar DBI and the Special Galileon: exceptional theories
with σ > 3 do not exist. We refer the reader to [3] for similar results derived
using on-shell amplitudes methods.

4.2.2 Multiple scalar Goldstone modes

We now consider the case where there are N > 1 essential scalar Goldstones.
Most of our discussion on the single scalar carries over to this case. In par-
ticular, the inverse Higgs trees attached to the different scalar zeroth-order
generators decouple (so that [P,G(i)] ⊃ G(i) where i labels each tree) and each
attains the same structure as in the previous section: only symmetric, trace-
less generators at each order. We label the generators Gi

n ≡ Gi
α1,...,αnα̇1,...α̇n

according to the tree i they belong to with i = 1, . . . , N and their rank n
within that tree. Now translations act as

[Pγγ̇, G
i
n] = 1

2
iεγα1εγ̇α̇1G

i
α2...αnα̇2...α̇n

+ iAiPγγ̇ (only for n = 0)

+Biεγα1M̄γ̇α̇1 − B̄iεγ̇α̇1Mγα1 (only for n = 1) , (4.21)

with each tree containing a finite number Zi of non-linearly realized genera-
tors. The coefficient Ai may, without loss of generality, be set to zero for all
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but a single non-linear scalar generator, i.e. there can only be a single dila-
ton. The commutators [Gi

n, G
j
m] are also very similar to the previous section,

but coefficients now carry the appropriate extra indices

[Gi
m, G

j
n] =

N∑
k=1

n∑
w=0

w∏
q=1

εαqβqεα̇qβ̇q iD
(i,m;j,n)k
w Gk

αw+1...αmβw+1...βnα̇w+1...α̇mβ̇w+1...β̇n

+ iF ij,m

m−1∏
q=1

εαqβqεα̇qβ̇qPαmα̇m (only for m = n+ 1)

+
m−1∏
q=1

εαqβqεα̇q β̇q(H
ij,mεαmβmM̄α̇mβ̇m

− H̄ ij,mεα̇mβ̇mMαmβm) (m = n)

+
m∏
q=1

εαqβqεα̇qβ̇q iX
ij,m (only for m = n) , (4.22)

where we have taken m ≥ n. The parameters D
(i,m;j,n)k
w and F ij,m are real,

whereas H ij,m are complex in general. The linear scalar generators X ij,m

are defined by this commutation relation. Since they are linearly realized,
they commute with translations, form a sub-algebra, and their commutation
relations with non-linear generators can only produce non-linear generators
(see section 3.2.2).

When m = n, the right-hand side needs to be anti-symmetric under the
simultaneous exchange of both the Lorentz indices on Gi

m and Gj
m, and the

tree labels i and j. This imposes the conditions

D(i,n;j,n)k
w = −D(j,n;i,n)k

w , H ij,m = Hji,m , X ij,m = −Xji,m . (4.23)

In particular, when there are two scalar essentials (N = 2), there is only
a single linear scalar generator at each order: X ij,m ≡ Xm. We also have
D

(i,m;j,n)k
w = 0 when 2w < (n+m− Zk).

We now consider the following cases separately: first we investigate the
case where there are no inverse Higgs constraints i.e. Zi = 0. We then
consider the case where no tree involves more than a single additional non-
linear generator i.e Zmax = 1. Finally, we consider the case where at least one
essential Goldstone contains at least two additional non-linear generators in
its inverse Higgs tree i.e. Zmax ≥ 2. For these cases, we cannot enumerate
all solutions to the Jacobi identities - there are infinitely many due to the
possibility of non-linearly realizing generic internal symmetry groups - but
we will derive general results on the structure of these algebras.
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• Zmax = 0

In the case Zmax = 0 all generators other than translations and Lorentz trans-
formations are scalars. We collectively denote them as (Y i, D) for simplicity,
where D is the generator of dilatations. We assume that D is a non-linear
generator while Y i includes both linear and non-linear generators. After
imposing all the constraints from Jacobi identities we have

[Pαα̇, Y
i] = 0, [Pαα̇, D] = iPαα̇ , (4.24)

and

[Y i, Y j] = iDij
kY

k, [D, Y i] = iEi
jY

j , (4.25)

with the constraints

D[ij
kE

k]
l = 0, D[ij

lD
k]l
m = 0 . (4.26)

In the presence of dilatations, each Y i can therefore have a non-trivial scalar
weight. In general the scalars of these theories are said to span a non-linear
sigma-model. In the two-scalar cases they include the well known coset
spaces6

SO(3)

SO(2)
,

SO(1, 2)

SO(2)
, (4.27)

which appear often in the inflationary literature, e.g. as α-attractors. [84–86]
Such non-linear sigma-models define an exceptional EFT since the two-
derivative action, which includes interactions, is completely fixed by sym-
metry. Indeed, the transformation rules include field-dependent pieces.

• Zmax = 1

We now turn to the case where Zmax = 1. Here we find it useful to separate
the calculation into two sub-cases: in the first we do not allow any non-linear
generators in the dilaton’s inverse Higgs tree (if the dilaton exists in the
first place), while in the second case we do allow for that vector generator
which we denote as K. Schematically, the Jacobi identity (P, P,G) imposes
[P,K] ∝ D + M where D is the generator of dilatations. This means that
K necessarily generates special conformal transformations. Because the case
Zmax = 1 without the dilaton was considered in [76, 77], we will focus on
what changes when the dilaton is included.

6They also include the algebra of the scaling superfluid presented in [82] and we refer
the reader there for more details.
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In the following the generators Gi are scalars which are connected to the
non-linear vectorsGi

αα̇. Furthermore, we have scalarsXI which do not fit into
the previous two categories i.e. they can be linearly realized or correspond
to scalar Goldstones with empty inverse Higgs trees.

Without special conformal transformations

In the first sub-case, after we have imposed all the constraints from Jacobi
identities on the Ansatz (4.21)(4.22), the part of the algebra that does not
involve dilatations reduces to:

[Pγγ̇, G
i
αα̇] = 1

2
iεγαεγ̇α̇G

i , [Gi
αα̇, G

j] = iH ijPαα̇

[Gi
αα̇, G

j

ββ̇
] = 4iH ij(εαβM̄α̇β̇ + εα̇β̇Mαβ) + iεαβεα̇β̇Y

ij , [XI , XJ ] = if IJKX
K ,

[XI , Gi] = iBiI
jG

j + iDiI
JX

J , [XI , Gi
αα̇] = iBiI

jG
j
αα̇ + iCiIPαα̇ . (4.28)

We arrive at this result by eliminating the generator D from the right-hand
side of each of the above commutators. Then the calculation reduces to the
case considered in [77]. We will consider the commutators involving D in a
moment.

The [Gi
αα̇, G

j

ββ̇
] commutator defines the scalars Y ij. These generators are

not independent from Gi and XI . In general, a linear combination of Gi

and XI generators can appear on the right-hand side of the commutator for
i 6= j7. There are several additional constraints on the coefficients in (4.28).
The full list appears in [76]8 and we refer the reader there for full details.
Here we simply comment on the structure of the solutions.

We start by assuming that no non-linear generators appear on the RHS
of a commutator between a pair of non-linear generators. The matrix H ij

can be made diagonal by a basis change. Then, the non-zero elements can be
made 1 or −1 by rescaling generators. Scalar Goldstones whose first-order
vectors have a non-vanishing commutator take the DBI form while those with
a vanishing commutator correspond to Galileons which can be coupled to the
DBI scalars. The matrix H ij fixes the commutation relations of the Y ij with

7The commutation relations of the Y ij generators are fixed by Jacobi identities, but
that does not identify the linear combination of Gi and XI generators that appears in
the commutator. In particular, we can always add a central charge C. When linearly
realized, this does not change the transformation laws or invariants derived from the coset
construction.

8Note that the coefficients aiA and eAi of equation (4.1) in [76] are fixed (up to a
basis change) by the inverse Higgs trees to be diagonal and zero, respectively. We have
furthermore divided the scalar sectors in a different way, which is why we are able to
remove the term [G,Gαα̇] ∝ Gαα̇.
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themselves and with Gi
αα̇. In the case that H ij = δij, the symmetry algebra

contains a factor ISO(1, 3+N) and Y ij generate the SO(N) subgroup. This
algebra is non-linearly realized by the multi-DBI exceptional EFT. [161]

We now consider the commutations relations between dilatations D and
the other generators. We fix the dilatation weight of the translation generator
to unity i.e. [Pγγ̇, D] = iPγγ̇. The remaining commutation relations are

[D,Gi] = iBi
jG

j, [D,Gi
αα̇] = i(Bi

j − δij)G
j
αα̇ + iJ iPαα̇ ,

[D,XI ] = iSI iG
i + iT IJX

J , (4.29)

with constraints

T [ij]J = 0, S[ij]
k = J [iδj]k, H ij = −(Bik − δik)Hkj . (4.30)

The pair of indices ij on the T and S coefficients is a special case of the
general index I, as before. In addition to these, we have the usual constraint
of the form (4.26) that relates the structure constants of the scalar subalgebra
to the dilatation weights. Finally, the last constraint fixes the weights of the
higher-dimensional translation and boost generators. Taking H ij diagonal,
it follows that the DBI scalars have zero scaling weight. The weights of the
Galileon directions are not fixed by this equation.

We note that, similar to the Zmax = 0 case, there are many different
solutions to the Jacobi identities for different choices of the generator content.
However, the structure of those solutions is very simple: in every case the
vectors generate the symmetry algebra of a higher-dimensional space with
the scalars corresponding to DBI or Galileons. Furthermore, one can add a
dilaton and some internal coset space G/H. The dilatation weights of the
DBI scalars vanish and their representation under the internal coset space
must satisfy the constraints of [76].

Let us explain in more detail why we can couple a DBI scalar to a
Galileon. Consider the six-dimensional Poincaré algebra with generator con-
tent: Pµ,Mµν , P4, P5,Mµ4,Mµ5,M45 where (4, 5) refer to the two extra di-
mensions. In the usual construction of multi-DBI, P4, P5 correspond to the
two essential scalars, while Mµ4,Mµ5 correspond to two inessential vectors
which are eliminated by inverse Higgs constraints. M45 is a linearly realized
SO(2) between the two scalars. However, we can take a singular contraction
by rescaling P5 → ωP5,Mµ5 → ωMµ5 and M45 → ωM45 with ω → ∞ such
that the scalar corresponding to P4 is a DBI scalar with [Mµ4,Mν4] = Mµν ,
[P4,Mµ4] = Pµ while the scalar corresponding to P5 reduces to a Galileon
with [Mµ5,Mν5] = 0, [P5,Mµ5] = 0. We therefore have a DBI scalar cou-
pled to a Galileon but let us stress that the presence of M45 is crucial since
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[Mµ4,Mν5] = ηµνM45, both before and after the contraction. This algebra
also appears in [77].

Existence of this algebra is a necessary condition for the existence of the
corresponding EFT but more work is required to see if both the DBI and
Galileon scalars can have standard kinetic terms which can be augmented
by interactions. Indeed, the Galileon kinetic term is a Wess-Zumino and
therefore a more thorough analysis than the coset construction is required.
It would be very interesting to check if there is a sensible realisation of this
algebra.

So far we have assumed that only linear generators appear on the RHS
of commutators between a pair of non-linear generators. However, this is
not forced upon us by Jacobi identities. Indeed, Jacobi identities allow for
non-linear scalars to appear on the RHS of the commutator between a pair
of non-linear vector generators. For example, consider an algebra with the
generators G1, G1

αα̇, G
2, G2

αα̇ and G3 where G1,2 are scalar generators corre-
sponding to essential scalar Goldstones each with a tree containing a vector
G1,2
αα̇:

[Pα1α̇1 , G
1
α2α̇2

] = iεα1α2εα̇1α̇2G
1, [Pα1α̇1 , G

2
α2α̇2

] = iεα1α2εα̇1α̇2G
2, (4.31)

where G3 is another scalar generator whose corresponding Goldstone has an
empty inverse Higgs tree. The above structure from Jacobi identities allows
for the commutator

[G1
α1α̇1

, G2
α2α̇2

] = iεα1α2εα̇1α̇2G
3 , (4.32)

where G3 is a central extension of the bi-Galileon algebra which cannot be
eliminated by a basis change. This algebra satisfies Jacobi identities and
can be non-linearly realized by a sensible EFT that is not equivalent to any
of the cases mentioned elsewhere in the paper. A general analysis of such
possibilities has not appeared in the literature.

With special conformal transformations

Next we consider the case where we include Kαα̇. We immediately have

[Pγγ̇, Kαα̇] = −iεγαεγ̇α̇D + i
2
εγαM̄γ̇α̇ + i

2
εγ̇α̇Mγα . (4.33)

The Jacobi identity (P,K,D) fixes the subalgebra spanned by D, Kαα̇ and
the Poincaré generators to the ordinary AdS5 algebra. We have checked that
it is not possible to extend this algebra with other non-linear vector gener-
ators. This is an unsurprising result, because the AdS4+n algebra satisfies
Zmax = 2 for n > 1. It is not possible to truncate these algebras to a Zmax = 1
component. We will return to the higher-dimensional Anti-de Sitter algebras
in the following subsection.
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• Zmax ≥ 2

We now consider the case where at least one of the trees, say i = 1, includes
a second-order non-linear generator i.e. Z1 ≥ 2. We do not assume anything
about the other trees. However, their structure will be constrained by Jacobi
identities. We will primarily concentrate on the cases where the RHS of com-
mutators between a pair of non-linear generators contains a linear generator,
[G,G] = linear + . . .. We concentrate on these cases since they represent
the natural extension of the DBI and Special Galileon algebras, which are
the only exceptional ones in the single scalar case. The appearance of linear
generators in the commutation relation of two broken generators is a neces-
sary condition for the symmetry to have a passive form where it acts on the
coordinates. When only linear generators appear in [G,G], the coset is said
to be symmetric.

Note, however, that there can still be exceptional EFTs where linear gen-
erators do not appear in the commutators of broken generators (as with e.g.
non-linear sigma models). We outline some of the constraints on these alge-
bras, but will not attempt to enumerate possibilities, as there are infinitely
many solutions to the Jacobi identities.

We begin with the Jacobi identities involving two copies of translations
and one non-linear generator since these Jacobi identities do not mix the
different trees. It is simple to see that each tree that includes a second-order
generator must have A = B = 0 i.e. an essential scalar generator can only
generate dilatations if its tree has at most one non-linear generator (which
of course corresponds to special conformal transformations).

We now move onto Jacobi identities involving one translation generator
and two non-linear generators from any tree i.e. (P,Gi

m, G
j
n). This tells us

that Bi = 0 for all trees, so any algebras involving at least one second-order,
traceless generator cannot form an extension the conformal algebra. For this
reason we will assume that the dilaton is not included for the moment and
come back to that possibility later. The remaining constraints tell us the
following:

� H ij,Zi = 4iF ij,Zj if i and j label two trees with Zi = Zj. All other H
and F coefficients are zero. This structure strongly resembles (4.20).

� The linear scalars X ij,m can only appear if Zi = Zj = m.

� The appearance of non-linear generatorsGk in the commutators [Gi, Gj]
is also highly constrained. The only allowed structure is [Gi

Zi , G
j
m] ⊃

Gk
m−Zi where m ≥ Zi and k is an arbitrary tree label. Furthermore, the
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(P,G,G) Jacobi identity tells us that [Gi
Zi , G

j
m+1] ⊃ Gk

m+1−Zi whenever

[Gi
Zi , G

j
m] ⊃ Gk

m−Zi , for the same k.

We now consider Jacobi identities with three non-linear generators, namely
(Gi, Gj, Gk). We begin by taking the second-order generator G1

α1α2α̇1α̇2
from

the i = 1 tree, together with two vectors Gj

ββ̇
, Gk

γγ̇ from any trees in the

algebra. From inspecting the terms proportional to G1
α1α2α̇1α̇2

we obtain
Hjk,1 = 0, telling us that any tree with Z = 1 cannot realize the DBI struc-
ture (4.20). We also see that any scalar generator which has a non-zero
commutator with G1

α1α2α̇1α̇2
cannot appear in any commutator involving two

vectors.
From this Jacobi identity we can also infer that it is impossible to couple

several Special Galileons. Indeed, if we take i = j = 1 and Zk = 2, there are
two terms proportional to non-linear scalars given by

iF ik,2εα1γεα̇1γ̇εα2βεα̇2β̇
Gj

0 − iF ij,2εα1β1εα̇1β̇
εα2γεα̇2γ̇G

k
0 (4.34)

with symmetrization over the α indices assumed, as usual. These terms only
cancel when i = j = k. Therefore, at most one Special Galileon can exist
at once. The same result, for the case of two scalar fields, was found from
amplitude methods in [2–4].

The terms proportional to non-linear scalars impose important constraints
as well. Taking the trees i and k to be the same, i = k = 1, and j to be some
tree that obeys Zj = 1, we find

F 11,2 = −2D(12;j1)mD(11;m1)j . (4.35)

The coefficient on the left-hand side F 11,2 determines whether the Special
Galileon structure (4.20) is realized by the tree i = 1. The coefficients on the
right-hand side tell us whether the commutator [G1

2, G
j
1] (where the subscript

refers to the number of Lorentz indices) contains a vector V which satisfies
[G1

1, V ] ∝ Gj
0. We will now show that no such vector V can exist. To do

so we inspect the Jacobi identity involving three vectors, two of them from
trees with Z ≥ 2 and one of them from a tree with Z = 1. Inserting the
constraint [Gi

Zi , G
j
m] ⊃ Gk

m−Zi , we find

[Gi
1, G

j
1] 6⊃ Gk

0 (if Zi = 1, Zj = 2) , (4.36)

which implies that the right-hand side of (4.35) is equal to zero.
We have therefore seen that if the EFT includes a Special Galileon, it

must be the only one and can only couple to other scalars which have empty
inverse Higgs trees. This rules out, for example, a Special Galileon coupled to
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a standard Galileon as well as multi-Special Galileon theories. This is in stark
contrast to the Zmax = 1 case where we can have multi-DBI. Furthermore, if
the EFT contains any scalar which has Z ≥ 3, no exceptional algebras exist
as one would expect from our single scalar analysis9.

Off-diagonal generators and dilatons

An important caveat concerns our restriction to purely symmetric and trace-
less representations in inverse Higgs trees, i.e. from Zmax = 2 onward. As
explained in section 3.2, these are the unique transformations that leave the
kinetic terms invariant provided the latter are the lowest order terms in a
derivative expansion. This is a general statement in the absence of a dilaton.
In the presence of a dilaton, however, non-linearly realized symmetries may
relate the dilaton potential to kinetic terms.

An interesting example of this possibility is provided by the AdS4+n al-
gebra, that can be written as

[PA, D] = PA ,

[KA, D] = −KA + PA ,

[PA, KB] = 2MAB + 2ηABD ,

[KA, KB] = 2MAB ,

[MAB, PC ] = ηACPB − ηBCPA ,
[MAB, KC ] = ηACKB − ηBCKA ,

[MAB,MCD] = 2ηC[AMB]D + 2ηA[DMCB ,

with A = (µ, i2, . . . in). For n = 1, this only involves a dilaton Goldstone and
its inverse Higgs vector of special conformal transformations, as discussed in
section 4.2.1. However, when n ≥ 2 this set-up is augmented with n−1 trees
consisting of an axion Goldstone, its inverse Higgs vector of Lorentz boosts,
as well as a Z = 2 scalar arising from special conformal transformations in the
higher-dimensional directions10. It is discussed in [142] how the lowest order
invariant that includes the kinetic terms also generates a potential term for
the dilaton. This combination allows for the Z = 2 scalar in the axion trees,
which was ruled out in the general discussion above under the assumption of
having shift symmetries and no dilatations.

9This assumes that we only allow for linear generators on the RHS of commutators
between a pair of non-linear generators. However, other algebras certainly exist. A simple
example would be a Zmax = 2 generalisation of the Zmax = 1 discussion above where a
scalar with an empty inverse Higgs tree corresponds to a central extension of an algebra
which previously only gave rise to extended shift symmetries.

10This algebra allows for (at least) two inequivalent Inönu-Wigner contractions, leading
either to the Poincaré or the Galileon algebra, as discussed in the single-field case in [97].
Importantly, the contraction that gives rise to Poincaré does not preserve the structure of
the inverse Higgs relations.
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Crucially, the combination of special conformal transformations in one in-
verse Higgs tree, and a Z = 2 symmetric traceless generator in another, was
ruled out in the above. Moreover, the inclusion of any off-diagonal genera-
tors other than the Z = 2 scalar requires the Z = 2 symmetric traceless one,
as discussed in section 3.2. This implies that the above exception based on
conformal symmetry is the unique one; adding additional Goldstone modes
to this can only give rise to higher-dimensional Anti-de Sitter algebras. How-
ever, these would not be exceptional EFTs with soft limits as defined 2.5,
due to the different implications of scaling symmetries.

Finally, let us mention that we can still include the dilaton with an empty
inverse Higgs tree, i.e. without special conformal transformations. Here the
algebras are the ones discussed above but generators can have a non-vanishing
scaling weight with generalisations of the (4.26) constraints.

4.2.3 Fermion Goldstone modes

We now study the case where the essential Goldstones areN spin-1/2 fermions
χiα, with i = 1, . . . , N . Any higher-order generators we add to this algebra
to realize more symmetries on the essential fermions must also be fermionic,
as they are related to other non-linear generators by space-time translations.
Moreover, since the anti-commutator between two fermionic generators can
only give rise to bosonic generators (in this case only linear ones), the alge-
bras at every order in the inverse Higgs tree will always form subalgebras.
Note that this is very different to the bosonic case where there is much more
freedom in a commutator between two non-linear generators, as illustrated
by the discussion above. For this reason our analysis here will be exhaustive,
in contrast to the multi-scalar case.

The inverse Higgs tree for each fermion decouples [79]. Section 4.1 tells us
that if the essential fermions are to have canonical propagators, we can only
add a single non-linear generator at order n in each inverse Higgs tree which
has spin-(n + 1/2). We again consider non-linear generators up to finite
order Zi, allowing for different top levels for each fermion, denoted χin ≡
χiα1...αn+1α̇1...α̇n

with Hermitian conjugate χ̄in ≡ χ̄iα1...αnα̇1...α̇n+1
, where n =

0, . . . Zi. The inverse Higgs tree fixes the commutators between translations
and non-linear generators to be

[Pγγ̇, χ
i
n] = iεγα1εγ̇α̇1χ

i
α2...αn+1α̇2...α̇n

, (4.37)

while commutators between two non-linear generators are only constrained
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by the linear symmetries. We have

{χim, χjn} = A(ij,m)

m∏
q=1

εαqβqεα̇qβ̇qMαm+1βm+1 (m = n)

+B(ij,m)

m−1∏
q=1

εαqβqεα̇qβ̇qεαmβmεαm+1βm+1M̄α̇mβ̇m
(m = n)

+ C(ij,m)

m−1∏
q=1

εαqβqεα̇qβ̇qεαmβmPαm+1α̇m , (m = n+ 1) (4.38)

with m ≥ n and complex parameters, and

{χim, χ̄jn} = D(ij,m)

m−1∏
q=1

εαqβqεα̇qβ̇qεα̇mβ̇mMαmαm+1 (m = n+ 1) (4.39)

+ E(ij,n)

n−1∏
q=1

εαqβqεα̇qβ̇qεαnβnM̄β̇nβ̇n+1
(n = m+ 1) (4.40)

+ F (ij,m)

m∏
q=1

εαqβqεα̇qβ̇qPαm+1β̇m+1
, (m = n) (4.41)

where again all parameters are complex. We now consider Zi = 0 and Zmax ≥
1 separately.

• Zi = 0

First consider the case where Zi = 0, where the results are well known.
The allowed algebras correspond to N -extended super-Poincaré and Inonu-
Wigner contractions thereof. The only non-trivial and non-vanishing com-
mutators in the uncontracted algebra are11

{χiα, χ̄
j

β̇
} = 2δijPαβ̇ . (4.42)

At lowest order in derivatives, the EFT which non-linearly realizes the N -
extended super-Poincaré algebra is that of multi Volkov-Akulov (VA). [104]

11The appearance of δij is guaranteed by positivity in Hilbert space. This is a necessary
requirement in any linear realisations of the symmetry algebra, but not in non-linear re-
alisations as the currents don’t integrate into well-defined charges in the quantum theory.
Here we still assume the requirement of positivity in Hilbert space. This is a reasonable as-
sumption if one anticipates that the non-linear realisations have a (partial) UV completion
to a linearly realized theory, or to be a particular limit of such a theory.
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The commutator (4.42) guarantees that the transformation rules for each
fermion are field-dependent and therefore VA is an exceptional EFT with
σ = 1 soft behaviour.

In addition there are many different contractions of this algebra that give
rise to new ones. We can take the limit where {χiα, χ̄

j

β̇
} = 0 for all i, j

in which case all transformation rules reduce to shift symmetries for each
fermion, see [160]. However, we do not have to perform this contraction for
all N generators. We can do it to none, all or any other number in between.
Indeed we can realize an EFT consisting of N1 shift symmetric fermions and
N2 VA fermions with the only constraint that N = N1 + N2. The N = 1
contracted case was studied in detail in [160], where it was shown that in four-
dimensions the only Wess-Zumino term one can write down is the fermion’s
kinetic term, i.e. all interactions need at least one derivative per field.

• Zmax ≥ 1

We now consider adding higher-order non-linear generators with inverse Higgs
relations. We allow for different top levels in each tree but we assume that
at least one tree has Z ≥ 1. We follow exactly the same process as we
did previously: we use the Jacobi identities (Pµ, χm, χn), (Pµ, χm, χ̄n) and
(χm, χm, χ̄n) and find that all free parameters must vanish. We therefore
find that for Zmax ≥ 1 the only non-trivial commutators are those required
by inverse Higgs constraints, which results in extended shift symmetries for
all the fermions. There are no other exceptional EFTs. This includes the
fermionic generalisation of scalar multi-Galileons12, which are invariant under
shifts linear in the coordinates. This theory, for the case of a single fermion
essential, was also discovered in [2] using soft amplitudes. We have therefore
seen that field-dependent transformation rules for the essential fermions are
incompatible with inverse Higgs constraints. The only exceptional fermion
EFT is that of Volkov-Akulov and its multi-field extensions.

4.2.4 Vector Goldstone modes

After the above classifications for the cases of scalar or spin-1/2 fermion
Goldstone modes, we would now like to discuss a number of aspects when
turning to a vector instead.

At lowest order this involves the introduction of a vector generator that is
spontaneously broken, with an associated vector Goldstone mode. In contrast
to the fermion case, it turns out to be impossible to introduce a deformation

12See [?] for a discussion on bi-Galileons.
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of this algebra with a non-vanishing RHS for the commutator of a vector with
itself. [78] In other words, there are no exceptional algebras when just intro-
ducing an essential vector generator. This implies that the field transforms
with a constant shift, ruling out a mass term. Without gauge symmetry, such
theories will therefore generically propagate a ghost or an infinitely strongly
coupled longitudinal mode; however, this conclusion can be circumvented in
a number of ways, as we will see.

In the inverse Higgs tree, one can introduce three different non-linear
generators at the first level, corresponding to an anti-symmetric tensor as
well as a symmetric and traceless tensor and a trace. The latter two of these
would belong to the possible gauge symmetry of the vector, which can be
seen as an infinite sequence of non-linearly realized symmetries of the form

δAµ = uµ + uµνx
ν + uµνρx

νxρ + . . . , (4.43)

where the uµ··· parameters are symmetric and contain traces. Therefore, the
first non-trivial extension of this symmetry under which the field strength
transforms consists of the anti-symmetric component δAµ = bµνx

ν + . . .,
where the dots indicate possible field-dependent terms. There are similar
structures at higher powers of the coordinates that involve mixed symme-
try tensors. However, these always require the two-form generator Bµν to
be included as well, and moreover the transformations up to and including
first order generators always form a subalgebra. [78] It therefore suffices to
investigate the implications of this algebra.

It was shown in [78] that it is impossible to have non-vanishing commu-
tation relations between non-linear generators of this subalgebra. Therefore,
there are no exceptional EFTs for a single gauge vector at this level, as was
also found from an amplitude perspective in [2]. The only non-trivial pos-
sibility beyond gauge symmetry is therefore to have the field-independent
transformation δAµ = bµνx

ν , which can be seen as the vector analogon of the
scalar Galileon transformations. However, there are no corresponding inter-
actions which do not introduce additional ghostly degrees of freedom. [171]

Discarding gauge symmetry, there are two interesting algebras that we
would like to discuss. The first one only includes the symmetric and traceless
non-linear generators Zµν at first level in the tree. This generator content
allows for an exceptional algebra that is given by the complexified version
of Poincaré i.e. C4 n SU(4), see also [103]. This is the isometry group of
an eight-dimensional ambient space with two invariant tensors, a Minkowski
metric and a complex structure. The pull-back of these invariant tensors
onto the worldvolume theory yields the covariant tensors

gµν = ηµν + ∂µAρ∂νA
ρ , Fµν = ∂[µAν] , (4.44)
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which at the one-derivative-per-field level are the only building blocks for
interactions. With these building blocks, however, the theory will (possibly
unsurprisingly) propagate a ghost. However, this can be remedied by includ-
ing a central extension of the algebra: one can add a scalar generator on the
RHS of the commutator of the vector generator with translations. In other
words, one can inverse Higgs the vector itself in terms of an essential scalar.
The resulting symmetry breaking pattern is identical to that of the Special
Galileon, [103] and so is the theory: due to the central extension one can add
Wess-Zumino terms that give rise to a healthy kinetic term for the essential
scalar Goldstone.

This construction therefore leads to a known theory, but sheds light on
its symmetry and geometric interpretation: the Special Galileon algebra is a
central extension of complexified Poincaré. Moreover, in the process we have
introduced a vector that can be retained as a matter field with a specific
transformation under the Special Galileon transformations. When writing
the above vector as Aµ = ∂µφ+mÃµ using the Stuckelberg trick, we introduce
a gauge symmetry of the form

δφ = −mλ , δÃµ = ∂µλ . (4.45)

Moreover, the covariant tensors g and F depend on both fields in a specific
way. In the limit m→ 0, these become (after an overall rescaling of the field
strength)

gµν = ηµν + ∂µ∂ρφ∂ν∂
ρφ , Fµν = ∂[µÃν] . (4.46)

Both are covariant tensors under the non-linear transformations. The trans-
formation rules generated by Zµν read (up to a specific gauge transforma-
tion)13

δφ = zµν(xµxν + ∂µφ∂νφ) , δÃρ = 2zµν(∂µφ∂νÃρ + Ãµ∂ν∂ρφ) . (4.48)

Note that the gauge vector forms a linear representation of the highest order
generator of the essential scalar’s inverse Higgs tree (it does not transform

13Note the close similarity to the DBI scalar coupled to a gauge vector, with transfor-
mations [?,?]

δφ = yµ(xµ + φ∂µφ) , δAµ = yν(φ∂νAµ +Aν∂µφ) . (4.47)

The gauge vector forms a linear representation of the vector generator of the scalar algebra
(which is again the generator which sits at the highest level in the inverse Higgs tree) and
requires specific couplings to the DBI scalar. The special pedigree of this theory can be
seen from e.g. its higher-dimensional origin, its possible supersymmetrization and, given
the present discussion, also from the perspective of soft limits, which would be σ = 2 and
σ = 0 for the scalar and vector, respectively.
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under the scalar and vector generators which sit at level 0 and 1 respectively).
We therefore have a field content consisting of a scalar that is a Special
Galileon Goldstone, and a gauge vector that transforms as a matter field.
These symmetries require specific couplings between the fields in the resulting
EFT: these have to be constructed from the above, and therefore are e.g. at
lowest order given by

√
−ggµνFνρgρσFσµ . (4.49)

Due to the non-linear symmetry, these must have soft limits of σ = 3 and
σ = 0 for the scalar and vector, respectively. Interactions of this kind with
exactly these soft limits were recently proposed in [2]. Therefore we expect
that the above symmetry for the vector explains the non-trivial couplings
found in that work.

To close the vector discussion, there is an alternative exceptional algebra
when including only the anti-symmetric generator instead at the first level.
This has an analogous geometric interpretation, in this case with two metric
structures in the eight-dimensional space-time that break the isometries down
to a double copy of four-dimensional Poincaré. [78] The covariant objects are
gµν and the symmetric combination of ∂µAν . While this theory propagates
a ghost (and does not allow for gauge symmetry or a central extension), it
might be related to a sensible EFT by including a cosmological constant:
in AdS space-time there is a theory of a massive vector with a double copy
of the AdS isometries as non-linear symmetries, which arises in a specific
decoupling limit of massive gravity. [81, 172] It would be very interesting
to investigate the relations of this theory to its flat space-time counterpart
discussed here.
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Chapter 5

Exceptional EFTs with N = 1
supersymmetry

5.1 Extended shift symmetries and SUSY IHCs

In Chapter 3, we saw how non-linearly realized space-time symmetries can
evade Goldstone’s theorem. The Goldstone bosons of independent broken
symmetries may be related to each other if the symmetry transformations
are locally degenerate. In 3.3.1, we explained how these statements carry
over to supersymmetric theories. A priori, each broken symmetry generator
Gi induces a massless mode in superspace, parametrized by a Goldstone
superfield Φi(x, θ, θ̄). However, these modes are again related to each other
if the symmetry transformations are locally degenerate in superspace. In 4.1,
we extended this idea order by order for Poincaré-invariant theories, giving
rise to inverse Higgs trees. We will now derive a similar generalization for
N = 1 supersymmetry in D = 4. Just like ordinary inverse Higgs trees are
identical to Taylor expansions of the essential field, superspace inverse Higgs
trees coincide with superspace expansions.

Let us begin as we did in 3.3.1, by looking for solutions to the equation:

Φi(x, θ, θ̄)Gi|0〉 = 0 . (5.1)

We found a first-order degeneracy by acting with the operator e−UdeU , which
combines space-time and superspace derivatives and translation operators in
a covariant manner. The operator U is defined as U = i(xaPa+θαQα+ θ̄α̇Q̄

α̇)
and the exterior derivative is:

d = ea∂a + eαDα + eα̇D̄
α̇ . (5.2)

125
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We then obtained (3.97), whose solution reads (3.100). We repeat the defi-
nition of the structure constants for convenience:

[Pαα̇, Gi] = −ifαα̇ijGj + . . . , [Qα, Gi]± = ifαi
jGj + . . . ,

[Q̄α̇, Gi]± = ifα̇i
jGj + . . . . (5.3)

The equations (3.100) project out the following linear combinations of Gold-
stone superfields, in terms of superspace derivatives of Φi: fαα̇j

iΦj, fαj
iΦj,

and f α̇j
iΦj. As expected, these are just sums over all generators which con-

tain Gi in their commutation relations with (respectively) space-time trans-
lations Pαα̇, superspace translations Qα, and their complex conjugate Q̄α̇.

Let us now pick a generator G(0), which satisfies:

[Pαα̇, G
(0)] = [Qα, G

(0)] = [Q̄α̇, G
(0)] = . . . , (5.4)

where the ellipses, as usual, stand in for any possible unbroken realized sym-
metries (in this case: supersymmetry, Poincaré or some internal symmetry).
Similarly to cases which are just Poincaré-invariant, the Goldstone superfield
Φ0(x, θ, θ̄) can never be eliminated by inverse Higgs conditions and is there-
fore essential. In this Chapter, we will also use the terms P-(in)essential and
Q-(in)essential. A P- or Q-inessential Goldstone satisfies the weaker require-
ment that its (anti)-commutation relation with Pαα̇ or Qα vanishes, modulo
unbroken generators.

Acting with the operator e−UdeU twice, and projecting the result onto
G(0)|0〉, we obtain a number of consistency conditions:

DαΦ0 = fαi
0Φi , D̄α̇Φ0 = fα̇i

0Φi ,

∂αα̇Φ0 = fαα̇i
0Φi ,

DαDβΦ0 = fαi
0fβj

iΦj , DαD̄β̇Φ0 = fαi
0fβ̇j

iΦj ,

D̄α̇DβΦ0 = fα̇i
0fβj

iΦj , D̄α̇D̄β̇Φ0 = fα̇i
0fβ̇j

iΦj , (5.5)

All of these equations are understood to hold to first order in the Gold-
stone fields Φi. For the non-linear completion, we have to refer to the coset
construction.

The structure of the equations (5.5) is the same as (4.2). For example, let
us focus on the equation involving DαDβΦ0. On the right-hand side, we find
the linear combination of Goldstone superfields fαi

0fβj
iΦj. These Goldstones

correspond to the following sum of generators:∑
i

Gi [Qα, Gi]|Gj fβj0 = Gi fαi
jfβj

0 . (5.6)
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This is a sum of generators Gi whose (anti)-commutation relation with Qα

yields a generator Gj: [Qα, Gi] ⊃ Gj. In turn, the Gj are the generators
which yield G(0) when taking a bracket with Qβ. Again, the structure of a
tree appears by repeatedly applying translation operators and derivatives.
The same holds for the other equations (5.5). At each order n, we may
project out - by means of the derivatives D, D̄ and ∂ - a linear combination
of generators whose bracket with (super)translations yields order (n − 1)
generators.

There are many consistency conditions on the structure constants in (5.5)
that result from the superspace derivative algebra:

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0, {Dα, D̄α̇} = −2i∂αα̇ . (5.7)

For example, the fact that the unbarred derivatives anti-commute tells us that
the right-hand side of the corresponding equation in (5.5) is anti-symmetric
under the exchange (α↔ β):

f(αi
0fβ)j

i = 0 . (5.8)

The same sort of condition holds for the barred derivatives. Similarly, we
can use {Dα, D̄α̇} = −2i∂αα̇ to relate the third, fifth and sixth equations
in (5.5) to each other. These conditions can also be derived from (super)-
Jacobi identities. For example, the condition (5.8) also follows from the
Jacobi identity:

[Qα, [Qβ, Gi]] + (−1)Fi [Qβ, [Gi, Qα]] = 0 , (5.9)

where Fi is one or zero depending on whetherGi has even or odd grading. The
square brackets here refer to the superbracket, i.e. they are anti-commutators
when both of the generators have odd grading and commutators otherwise.
The condition that follows from {Dα, D̄α̇} = −2i∂αα̇ can similarly be derived
from the Jacobi identity with the generators (Qα, Q̄α̇, Gi).

Let us decompose into Lorentz irreps order-by-order and draw the inverse
Higgs tree for a general (m,n) superfield, see figure 5.1. The solid blue
lines indicate that the higher-order generator (i.e. lower on the picture)
contains the lower-order one in its commutation relation with either Q or Q̄.
A dashed red line similarly indicates a commutation relation with Pαα̇. In
this figure, we have taken into account the (anti)-symmetry conditions from
(5.5) or, equivalently, the Jacobi identities. This has, for example, reduced
the degeneracy of spin-m+n

2
generators in the third line to 4, as we saw before

in 4.1.
It should now be clear that each generator in the inverse Higgs tree can

be identified with a term in the perturbative expansion of the essential (m,n)
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(m,n)

(m± 1
2
, n) (m,n± 1

2
)

(m,n) 2x (m± 1
2
, n± 1

2
) (m,n)

Figure 5.1: The generators that can be non-linearly realized on a generic
(m,n) supermultiplet thanks to superspace inverse Higgs constraints, and
their relations under superspace and space-time translations. The solid blue
lines heading north-west and north-east denote connections by Q̄ and Q re-
spectively while the red dashed lines denote connections by space-time trans-
lations.

superfield Φ(x). The expansion is in powers of the space-time coordinates
xµ as well as the superspace coordinates θ, θ̄. In the following, we will often
say that the inverse Higgs tree is identical to a superspace expansion of the
essential superfield.

Just like we were able to do for essential scalar fields and Weyl fermions
in Chapter 4, we can - in all cases that we will study - rearrange basis in our
algebra so that the (super)translation brackets have a strict ordering. We
assign each generator a (half-)integer label G(i)/2. The zeroth-order generator
G(0) is associated to the essential superfield Φ(x, θ, θ̄). Then, we obtain:

[Qα, G
(i)/2] = G(i−1)/2 + . . . , [Q̄α̇, G

(i)/2] = G(i−1)/2 + . . . ,

[Pαα̇, G
(i)/2] = G(i−2)/2 + . . . , (5.10)

where [, ] is the Lie superbracket. These statements are true under the same
assumptions we made in Chapter 4: existence of an essential Goldstone field
and finiteness of the superalgebra.

We note that the space-time translations Pαα̇ move up the tree two steps.
This is because the ordering is dictated by the Q and Q̄ operators. If a
generator Gi is connected to Gj by translations, i.e. [Pµ, Gi] ⊃ Gj, we must
also have that [Q, [Q̄, Gi]] ⊃ Gj. This is what we concluded from consistency
conditions (5.5) and from the Jacobi identity involving (Q, Q̄,Gi). The fact
that space-time translations move up two levels implies, for example, that
the Goldstone superfields Φ(1/2) of G(1/2) are P-essential. From Chapter 3, we
know that there must be a physical Goldstone boson/fermion φ(1/2) associated
to G(1/2). This is the lowest component of the Φ(1/2). Then, φ(1/2) is identified
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with the θ or θ̄ component of the essential superfield Φ(x, θ, θ̄) by the first-
order superspace inverse Higgs relations.

Let us see what the structure of inverse Higgs relations implies for the
transformation laws realized by the essential superfield. In the coset con-
struction, the transformation law of each Goldstone under its own generator
always starts with a constant shift. This is true for ordinary Goldstone space-
time fields and carries over to supersymmetric non-linear realizations. We
therefore find:

δG(n) Φ(n)(x, θ, θ̄) = εn + . . . , (5.11)

where the ellipses contain all field-dependent terms. Assume that we have
[Qα, G

(n)/2] = G(n−1)/2+. . .. Then, the degeneracy condition implies, schemat-
ically: DαΦ(n−1)/2 = Φ(n)/2. Clearly this implies that Φ(n−1)/2 transforms
with a constant shift at order θ1:

δG(n)/2 Φ(n−1)/2(x, θ, θ̄) = θεn + . . . , (5.12)

We can extend this idea to the entire inverse Higgs tree. Each time we
connect a new generator by Qα, the essential superfield obtains a transfor-
mation law which starts with a shift at one higher power of θα, and similarly
for Q̄. Of course, there is no θ3 or higher in N = 1 supersymmetry, so we
have to be careful. We can never build up the inverse Higgs tree with three
subsequent Qα relations. Rather, at least one Q̄ relation must sit in between.
Using the derivative algebra {Dα, D̄α̇} = −2i∂αα̇, we see that the essential
Goldstone then obtains a shift at one higher power of xµ. We note that
everything we say in this paragraph is essentially a restatement of what we
learned from Jacobi identities and the consistency conditions on (5.5).

5.1.1 Covariant irreducibility conditions

In the last section, we examined superspace inverse Higgs trees for generic
(m,n) supermultiplets. It is more interesting to study irreducible supermul-
tiplets. We can obtain an irreducible supermultiplet from a generic one by
imposing constraints that are covariant with respect to all the symmetries of
the theory. An example is the chiral supermultiplet Φ(x, θ, θ̄), which satisfies
the condition:

D̄α̇Φ = 0 . (5.13)

The equations (5.5) need to be compatible with this irreducibility condition,
as do the transformation laws (5.12). This dramatically reduces the generator
content that can be realized on the essential superfield, as we will see in 5.3.1
and beyond.
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In Chapter 2, we explained that irreducibility conditions are modified in
the presence of non-linear symmetries. The superspace derivatives (Dα, D̄α̇)

are transformed by the coset construction to new operators (D̂α,
ˆ̄Dα̇). We

must use these objects to impose irreducibility rather than the ordinary su-
perspace derivatives. A generic constraint equation must take the following
form:

Tα1...α̇1...(∂̂Φ, D̂Φ, ˆ̄DΦ, D̂2Φ, ˆ̄D2Φ, . . .) = 0 , (5.14)

i.e. T is some tensor built out of the covariant derivatives from the coset
construction.

In 3.4.3, we already saw that it is not always easy to find conditions
that are equivalent to a canonical constraint of the type (5.13). There are
often many covariant candidate terms that could appear in T . By imposing
inverse Higgs conditions, however, we constrain some of these candidates to
vanish. Thus, if we struggle to find irreducibility conditions for a particular
symmetry breaking pattern G/H, we can try to extend the algebra to a
higher order one G′ in the inverse Higgs tree. The extended algebra allows
for fewer independent candidate terms, so the problem of finding the right
conditions simplifies. Then, we can rewrite the constraint equation obtained
from G′/H in terms of G/H covariant derivatives.

This procedure will work as long as a realization of an extended algebra
exists, because the canonical constraint equation has hidden covariance under
all symmetries that can be realized on the supermultiplet. By using covariant
derivatives of the extended algebra, we simply make this covariance manifest.
We encountered an example of this idea in 3.4.3: the irreducibility conditions
for partial breaking of N = 2 on a Maxwell superfield are automatically
symmetric under shifts of the auxiliary scalar field. We will comment further
on irreducibility conditions case-by-case in the sections 5.3.1 to 5.3.3.

5.1.2 Canonical propagators

In Chapter 4, we required that the coset construction provide a canonical
kinetic term for all propagating fields in the theory. As we want to continue
to work only with theories that have a sensible perturbation theory, we will
make the same assumption in this Chapter. In addition to propagating fields,
off-shell supersymmetry multiplets contain auxiliary fields. We are interested
in symmetries that can be realized on physical on-shell supermultiplets, so
the auxiliary fields need to retain algebraic equations of motion. Further-
more, the field equations must contain a term linear in the auxiliary field, as
otherwise they will impose an on-shell condition on the propagating fields.

Together, these conditions imply that the non-linearly realized symmetry
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must be compatible with the canonical superspace kinetic term for the su-
perfield. In the next sections, we will study irreducible chiral, Maxwell and
real linear superfields. Their superspace kinetic terms are:

� Lfree =
∫
d4θΦΦ̄ for the chiral superfield,

� Lfree =
∫
d4θWαWα for the Maxwell superfield,

� Lfree =
∫
d4θ L2 for the real linear superfield.

In Chapter 4, we saw that assuming a canonical kinetic term reduced the
inverse Higgs tree to a single generator at each order. For supermultiplets, we
will obtain a similar result. There remains a single generator at each order,
dictated by Q and Q̄. We will show this on a case-by-case basis starting in
section 5.3.1.

The canonical superspace kinetic term for the chiral superfield contains
at the component level a term proportional to FF̄ . Clearly, this term forbids
a shift symmetry of the form δF = c+ . . . if it is the term of lowest order in
F . However, some of the algebras we have studied do contain generators that
induce a shift of the auxiliary field. For example, this happened in the partial
breaking of N = 2 on a chiral superfield, see section 3.4.3. In that particular
case it is consistent to plug the F field equations back into the action, even
though the action does not contain the canonical term proportional to F 2.

This does not mean that we are missing any interesting EFTs by not
including generators of auxiliary field shifts. On-shell, the shift symmetry is
broken explicitly. Therefore, we can just as well describe the physical theory
by a symmetry breaking pattern that does not include the generator that
shifts F . This is only possible if the F -shift corresponds to an automorphism
of the algebra. Conversely, if it is not an automorphism, one of two things
must happen: either F becomes a propagating field, or the entire coset G/H
is broken explicity by its field equations. Our classification will not miss
any well-defined EFTs even if we do not take into account all such auto-
morphisms. However, it is sometimes useful to include them, for example to
simplify the search for irreducibility conditions.

5.2 Supersymmetric soft bootstrap

5.3 Classification of exceptional EFTs

It is time to present the classification of N = 1 supersymmetric Goldstone
EFTs. We will consider theories with an essential chiral, Maxwell, or real
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linear Goldstone superfield in sections 5.3.1, 5.3.2, and 5.3.3 respectively.
In contrast to Chapter 4, we will always assume here that there is a single
physical Goldstone superfield. The results of the algebraic classification are
fully exhaustive - up to arbitrary finite order in the superspace inverse Higgs
trees - for the chiral and Maxwell superfields. In case of the real linear
superfield, we will be exhaustive only in our search for EFTs where the 2-
form field can be dualized to a pseudoscalar. In the following sections, we
will first discuss irreducibility conditions and then fix the superspace inverse
Higgs trees for the essential superfield at hand. Similarly to Chapter 4, we
then classify the possible Goldstone EFTs simply by demanding closure of
the algebra with Jacobi identities. Along the way, we compare the results
of the algebraic classification to those of the complementary soft bootstrap
approach.

5.3.1 Chiral Goldstone superfields

Irreducibility conditions

The chiral superfield of N = 1 supersymmetry is a complex scalar function
of superspace Φ(x, θ, θ̄) which satisfies the condition D̄α̇Φ = 0. The solution
to this constraint can be written as follows:

Φ(x, θ, θ̄) = Φ(y, θ) = φ(y) +
√

2θχ(y) + θ2F (y) , (5.15)

where yαα̇ = xαα̇ − 2iθαθ̄α̇. The physical fields that reside in the chiral
superfield are thus a complex scalar φ(x), a Weyl fermion χ(x) and a complex
scalar auxiliary field F (x). In order to obtain a chiral superfield from the
coset construction, we start with a zeroth-order complex scalar generator Z
which satisfies:

[Q,Z] = [Q̄, Z] = [P,Z] = . . . , (5.16)

i.e. the brackets of Z with all supertranslation generators give rise to only
unbroken symmetries. Then, we assign to Z the complex scalar Goldstone
superfield Φ in the coset element. In the preferred exponential parametriza-
tion, we get:

g = eiΦ(x,θ,θ̄)ZeiG
(1/2)Φ(1/2) . . . , (5.17)

where the ellipses contain separate exponential factors for all higher-order
generators. The physical EFT is obtained after imposing the relevant inverse
Higgs relations and a chirality condition on Φ.

The chirality condition is modified from its canonical form by the non-
linear symmetries. Because the correct constraint should remain a dotted
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spinor equation, the most general form it can take is the following:

Tα̇β̇(D̂Φ, ˆ̄DΦ, ∂̂Φ, . . .)D̂β̇Φ = 0 . (5.18)

The aim is to find a constraint of this type that is equivalent to the ordinary
chirality condition, in the sense that there exists a redefinition that maps Φ
- which is subject to the constraint (5.18) - to an ordinary chiral superfield
Ψ. To be more precise, this redefinition only needs to exist when the (5.18)
is evaluated on the solution of the inverse Higgs relations.

It is clear that all superfield configurations which satisfy the simpler con-

straint ˆ̄Dα̇Φ = 0 are also solutions to (5.18). There can be further solutions
if Tα̇β̇ is a singular matrix. However, then Φ must be subject to an indepen-
dent scalar constraint det(Tα̇β̇) = 0. Therefore, (5.18) can only be equivalent

to the canonical chirality conditon D̄α̇Φ = 0 if Tα̇β̇ is invertible. In other
words, we can replace the constraint with the minimal generalization of the
ordinary chirality condition:

ˆ̄Dα̇Φ = 0 . (5.19)

We cannot prove in generality that (5.19) is equivalent to the canonical chi-
rality condition for all symmetry breaking patterns G/H. We have merely
shown that if a consistent covariant constraint equation exists, it must be
(5.19). We emphasize that in general the constraint equations will not be
a simple covariantization of the canonical constraint. This is a special fea-
ture of the chiral superfield, essentially due to representation theory of the
Lorentz group.

Superspace inverse Higgs tree

Let us investigate the consequence of the irreducibility condition (5.19) on
the superspace inverse Higgs tree. At level n = 1/2 there are, a priori, two
independent Weyl fermion generators χα and ξ̄α̇ compatible with the essential
complex scalar. The relevant anti-commutation relations are:1

{Qα, Sβ} = 2εαβZ + . . . , {Q̄α̇, ξ̄β̇} = 2εα̇β̇Z + . . . , (5.20)

The inverse Higgs relation that projects out the Goldstone superfield of ξ̄
would exactly coincide with (5.19). This constraint cannot, at the same time,

1Note that the full generator Z - rather than just its real (Z + Z̄) or imaginary part
(Z − Z̄) - appears in these brackets. In case only a real (imaginary) part appears, the
imaginary (real) part of Z will detach from the inverse Higgs tree. It will then induce only
a constant shift symmetry on the imaginary (real) part of the scalar component field in
Φ. In our view, such EFTs are naturally defined on the real linear supermultiplet rather
than the chiral, so we will consider them in 5.3.3.
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Figure 5.2: The non-linear generators that can be realized on a chiral super-
multiplet (left) and the subset that is consistent with canonical propagators
(right).

project out an inessential Goldstone and impose chirality on Φ. Therefore,
we cannot include the generator ξ̄ in the algebra. At level n = 1/2, we find
only a single (1

2
, 0) Weyl fermion, see figure 5.2. We can also conclude this

from the fact that both S and ξ̄ are P-essential due to Jacobi identities.
Therefore, any EFT with both of these symmetries requires at least two
propagating Weyl fermions. As these cannot be accommodated by a single
chiral superfield, one of the n = 1/2 Weyl fermions must be excluded.

In the previous sections, we have demonstrated that Jacobi identities
imply many interrelations between (super)translation brackets. Excluding
the generator ξ̄ therefore has important implications at all orders in the
inverse Higgs tree. Every generator that would be connected to ξ̄ by a blue
line in a figure such as 5.1 must be excluded.

At order n = 1, Lorentz invariance allows for a complex scalar (0, 0), a
complex vector (1

2
, 1

2
) and a 2-form (1, 0). These generators attach to Sα

by Qα, Q̄α̇ and Qα respectively. A 2-form, however, does not appear in
the Taylor expansion of any of the physical fields, so it cannot be included.
Equivalently, it is ruled out at the level of the algebra by the Jacobi identity
involving (Q,Q,B), where Bαβ denotes the would-be 2-form generator. The
relevant brackets are:

[Qα, R] = Sα + . . . , [Pαα̇, Gββ̇] = iεαβεα̇β̇ + . . . , [Q̄α̇, Gββ̇] = iεα̇β̇Sβ + . . . .
(5.21)

These commutation relations are depicted in figure 5.2 on the third level of
the left-hand side. The commutation relation of the vector Gββ̇ with space-
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time translations is fixed by the Jacobi identity (Q, Q̄,G).
There are further Jacobi identities at higher order in the inverse Higgs

tree. At order n = 3
2

and beyond, the Jacobi identities with (Q,P,G) and
(Q̄, P,G) impose constraints. From n > 2, we also have (P, P,G). In the
end, one is left with all the generators that appear in Taylor expansions of
the component fields in the chiral superfield, including the auxiliary field F .
We depict the result up to order n = 5

2
on the left of figure 5.2.

Canonical propagators

Let us see which generators are compatible with the canonical superspace
kinetic term

∫
d4θΦΦ̄. We argued in the previous section that a shift sym-

metry R of the highest component either requires a propagating field F , or R
constitutes an automorphism generator. The former scenario is outside the
scope of our classification and in the latter we can make sense of the EFT
without explicitly including R. In figure 5.2, R is represented by the (0, 0)
on the left at level n = 1. We will discard this generator, so that we only
have a complex (1

2
, 1

2
) level n = 1, as seen on the right side of figure 4.2.

Furthermore, we know from Chapter 4 that only fully symmetric and
traceless generators are compatible with the Klein-Gordon equation. There-
fore, any generator connected to the essential (0, 0) by a dashed red line
(representing a commutation relation with space-time translations) must be
a fully symmetric and traceless Lorentz irrep. A similar statement holds for
the P-essential (1

2
, 0) generator at n = 1/2. In the end, the superspace inverse

Higgs tree reduces to the right-hand side of figure 5.2. This figure represents
the following general (anti)-commutation relations:

{Qγ, Sα1...αN α̇1...α̇N−1
} = 2εγα1Gα2...αN α̇1...α̇N−1

+ . . . ,

[Q̄γ̇, Gα1...αN α̇1...α̇N ] = iεγ̇α̇1Sα1...αN α̇2...α̇N + . . . ,

[Pγγ̇, Sα1...αN α̇1...α̇N−1
] = iεγα1εγ̇α̇1Sα2...αN α̇2...α̇N−1

+ . . . ,

[Pγγ̇, Gα1...αN α̇1...α̇N ] = iεγα1εγ̇α̇1Gα2...αN α̇2...α̇N + . . . . (5.22)

In these expressions, a spin (N
2
, N − 12) fermionic (i.e. odd) generator is

denoted Sα1...αN α̇1...α̇N−1
. A spin (N

2
, N

2
) bosonic generator is labeled by

Gα1...αN α̇1...α̇N . Furthermore, we assume symmetry under exchange of any
pair of αi or α̇i indices.

Inverse Higgs tree and soft weights

We want to emphasize once more the relation between the inverse Higgs
tree and the on-shell soft weights of the amplitudes. The coset construction
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generates precisely the transformation law that give rise to the Adler zero
and possibly enhanced soft limits. We can read off the soft weight for the
fermion and boson from the inverse Higgs tree. We can end the tree either
at integer or half-integer order n. If n is integer, the scalar component field
in the chiral multiplet realizes an order n extended shift symmetry, giving
rise to soft weight n + 1. At the same time, the fermion has a soft weight
one lower than the fermion, equal to n, because the superspace inverse Higgs
tree alternates even and odd generators. If n is half-integer, both the Weyl
fermion and the scalar realize an order n extended shift symmetry, giving
rise to a soft weight n+ 1/2 for both physical fields. In other words, we find
that:

σφ = σχ = n+ 1/2 , for half-integer n ,

σφ = σχ + 1 = n+ 1 , for integer n . (5.23)

This relation between the fermionic and bosonic soft weights was also
derived in [9] using amplitudes methods.

Exceptional EFTs

We are now in a position where we can perform an exhaustive analysis of
the possible algebras which can be non-linearly realized by the single chiral
superfield. We remind the reader that the superspace inverse Higgs tree is
merely a necessary structure to i) reduce the EFT to the single chiral super-
field by incorporating the necessary superspace inverse Higgs constraints and
ii) satisfy Jacobi identities involving two copies of (super)-translations, up
to the presence of linear generators. If there are no linear generators on the
RHS of commutators between (super)-translations and a non-linear genera-
tor, and all commutators between a pair of non-linear generators vanish, then
all Jacobi identities have been satisfied. Algebras of this type were discussed
in the introduction; they lead to extended shift symmetries for each compo-
nent field. However, these are very easy to construct and indeed always exist
at every level in the tree. We will be primarily interested in the other type of
possible algebras where transformation rules can be field-dependent, thereby
leading to exceptional EFTs.

n = 0

We begin with the most simple case: n = 0 without any additional gener-
ators. Given our above discussion on soft limits, here the complex scalar
will have σφ = 1 behaviour while the fermion has σχ = 0. The fermion can
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therefore be seen as a matter field whose presence is only required to main-
tain linear SUSY. This of course includes the case where G commutes with
all other generators thereby simply generating a constant shift on the com-
plex scalar component φ. This leads to supersymmetric P (X) theories [159].
Just as a standard P (X) theory is the most simple Goldstone EFT one can
write down arising when a global U(1) symmetry is spontaneously broken,
this is the most simple supersymmetric Goldstone EFT (in terms of alge-
bras and symmetries that is; the leading order operators can be somewhat
complicated [159]).

There are also slightly more complicated algebras at this level corre-
sponding to supersymmetric non-linear sigma models characterised by the
non-vanishing [G, Ḡ] commutator. In contrast to the purely shift symmetric
case, the resulting EFTs can have field-dependent transformation rules and
are therefore exceptional EFTs given our definition in this work. Indeed,
the power counting in these theories is different to the naive expectation:
even though we have σφ = 1, the complex scalar can enter the action with
fewer than one derivative per field. A simple example is the two-derivative
action, which can be interpreted as a metric on the two-dimensional manifold
spanned by the components of the scalar field. The non-linear generators G
and Ḡ imply that this manifold has two transitively acting isometries. The
only such manifolds are the maximally symmetric ones, i.e. the hyperbolic
manifold SU(1, 1)/U(1) or the sphere SO(3)/SO(2), which are well-known
non-linear sigma models. We refer the reader to [9] and references therein
for more details.

n = 1/2

We now consider the case where the tree terminates at n = 1/2 with a
single additional non-linear generator Sα. The most general form of the
commutators in addition to those of the linear realized super-Poincaré and
the ones which define the Lorentz representation of the non-linear generators
is

[Pαα̇, G] = a1Pαα̇, [Qα, G] = a2Qα, [Q̄α̇, G] = a3Q̄α̇,

[Pαα̇, Sβ] = a4εαβQ̄α̇, {Qα, Sβ} = 2εαβG,+a5Mαβ,

[G, Ḡ] = a6G+ a7Ḡ, [Sα, G] = a8Sα + a9Qα, [S̄α̇, G] = a10S̄α̇ + a11Q̄α̇,

{Sα, Sβ} = a12Mαβ, {Sα, S̄α̇} = a13Pαα̇. (5.24)

Note that we didn’t allow for a commutator of the form {Q̄α̇, Sα} = a14Pαα̇
since it can be set to zero by a change of basis. Now the Jacobi identities are
very constraining, fixing all parameters to zero other than a13 ≡ s which is
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unconstrained. If s 6= 0 we can set it to 2 by rescaling generators such that
the algebra is that of N = 2 SUSY augmented with the only inverse Higgs
constraint2. In this case the component field χ takes the Volkov-Akulov (VA)
form. [104] This is an exceptional algebra by virtue of having a non-vanishing
commutator between non-linear generators. On the other hand, if s = 0
then Sα generates a constant shift on χ as studied in [160]. This is simply a
contraction of the s 6= 0 algebra. In both cases G generates a constant shift
on the complex scalar component field φ since by Jacobi identities G must
commute with (super)-translations and with Ḡ. We therefore have a shift
symmetric complex scalar field coupled to either a VA or shift symmetric
fermion field with the couplings fixed by linear SUSY. The soft weights at
this level are σφ = σχ = 1. This discussion is unchanged if we add linear
scalar generators3: they do not allow for additional exceptional algebras.

In terms of the low energy EFTs which can non-linearly realise these
algebras, when s = 2 it is not clear if they are independent from those
which sit at level n = 1 i.e. there could be symmetry enhancement. It
was suggested in [155] that the symmetry is indeed enhanced to the case
where the complex scalar has an additional symmetry but much more work
is required to arrive at a definitive answer. However, for s = 0 there are
invariants we can write down which do not exhibit symmetry enhancement.
For example, the operator∫

d4θ ∂αα̇Φ∂ββ̇Φ∂αα̇Φ̄∂ββ̇Φ̄ , (5.25)

for the chiral superfield Φ has a shift symmetry for its scalar and fermion
components but does not exhibit enhancement to level n = 1.

n = 1

We now also include the complex vector Gαα̇ taking us to level n = 1. Here
the soft limits are σφ = 2 and σχ = 1. We play the same game as before: write
down the most general commutators consistent with the superspace inverse
Higgs tree and impose Jacobi identities to derive the algebras which can be

2We keep s ≥ 0 to ensure positivity in Hilbert space. This is a necessary requirement
in any linear realisations of the symmetry algebra, but not in non-linear realisations as
the currents don’t integrate into well-defined charges in the quantum theory. Here we still
assume the requirement of positivity in Hilbert space. This is a reasonable assumption
if one anticipates that the non-linear realisations have a (partial) UV completion to a
linearly realized theory, or to be a particular limit of such a theory.

3Linearly realized scalar generators commute with the Poincaré factor but can appear
on the RHS of the above commutators, can form their own sub-algebra and can have
non-zero commutators with non-linear generators and super-translations.
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non-linearly realized on the chiral superfield. This is a simple generalisation
of the n = 1/2 case but since the full Ansatz for the commutators is quite
involved, here we will just describe the results. As in the previous case, we
allow for linear scalar generators which now turn out to be crucial in deriving
exceptional algebras and EFTs. Note that in the Ansatz we do not allow for
G or Ḡ to appear on the RHS of a commutator between a pair of non-linear
generators which correspond to inessential Goldstones (Sα and Gαα̇). This
is necessary to ensure that the relevant superspace inverse Higgs constraints
exists i.e. that the inessential Goldstones appear algebraically in the relevant
covariant derivatives. We refer the reader to [141] for more details.

Given that in all cases the bosonic generators form a sub-algebra, we can
use the results of Chapter 4 to fix these commutators. We refer the reader
to [79] for more details but let us briefly outline the allowed structures.
As in the n = 1/2 case, we find that the essential complex scalar cannot
contain a component which transforms like a dilaton so the sub-algebra must
correspond to that of the six-dimensional Poincaré group or contractions
thereof. We can perform two distinct contractions thereby yielding three
inequivalent algebras with their defining features the commutators between
non-linear generators. The non-zero commutators which involve non-linear
generators in the uncontracted six-dimensional Poincaré algebra are

[Pαα̇, Gββ̇] = iεαβεα̇β̇G, [Gαα̇, Ḡββ̇] = −i(εαβM̄α̇β̇ + εα̇β̇Mαβ) + 2εαβεα̇β̇M,

[Ḡ, Gαα̇] = 2iPαα̇, [G,M ] = G, [Gαα̇,M ] = Gαα̇, (5.26)

where M is a real, linearly realized scalar generator. The non-linear reali-
sation of this algebra is the two-scalar multi-DBI theory which has a neat
probe brane interpretation. [161]

The obvious contraction we can do leads to the trivial algebra where all
non-linear generators commute leaving only the commutators required by
superspace inverse Higgs constraints (and the linearly realized bosonic sub-
algebra). The low energy realisation of this algebra is that of bi-Galileons
[162] and can be seen as taking the small-field limit for both components
of the complex scalar. However, there is also a less obvious contraction
we can perform where we retain non-vanishing commutators between non-
linear generators. This contraction is somewhat difficult to understand in
terms of these complex generators but is simple when using the more familiar
generators PA, MAB where A,B, . . . are SO(1, 5) indices. In this case the
linear scalar is M45 ≡ M and the non-linear four-dimensional vectors are
Mµ4 ≡ Kµ and Mµ5 ≡ K̂µ, where µ is an SO(1, 3) index, which are related
to the complex generators by

G = P4 + iP5, Gαα̇ = Kαα̇ + iK̂αα̇. (5.27)
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The relevant contraction corresponds to sending P5 → ωP5, K̂µ → ωK̂µ and
M45 → ωM45 with ω → ∞. This contracted algebra is non-linearly realized
by a DBI scalar coupled to a Galileon and can be seen as taking a small field
limit for only one component of the complex scalar4. If we now switch back
to the complex generators, since [P5,Mµ5] = 0 we now have [G,Gαα̇] 6= 0
in contrast to the fully uncontracted case. This will be important in what
follows. We now take each of these sub-algebras in turn and ask which are
consistent with linear SUSY and the required non-linear fermionic generator
Sα.

If the bosonic sub-algebra is given by (5.26) then we find, perhaps un-
surprisingly, that the most general algebra is that of six-dimensional super-
Poincaré. In addition to the linearly realized super-Poincaré algebra and
(5.26), the non-zero commutators are

{Qα, Sβ} = 2εαβG, {Sα, S̄α̇} = 2Pαα̇, [Qα, Ḡββ̇] = iεαβS̄β̇,

[Sα, Ḡββ̇] = −iεαβQ̄β̇. (5.28)

In the resulting low energy realisation, the complex scalar takes the multi-
DBI form while the fermion takes the VA form. This theory has been very
well studied in various contexts, see e.g. [155,163].

If the bosonic algebra is the bi-Galileon one i.e. where the only non-
vanishing commutators are those required by inverse Higgs constraints, we
find that the supersymmetrisation also requires all commutators between
non-linear generators to vanish. The only non-trivial commutators are there-
fore those required by superspace inverse Higgs constraints. This is sim-
ply a contraction of the six-dimensional Poincaré algebra and results in the
six-dimensional supersymmetric Galileon algebra. Here the fermion is shift
symmetric and a quartic Wess-Zumino interaction for this algebra was con-
structed in [166] (for more details see [9, 10, 160]). We presented the coset
construction for this symmetry breaking pattern in 3.3.3.

Turning to the final bosonic sub-algebra, we find that it is impossible to
supersymmetrise the theory of a DBI scalar coupled to a Galileon. Indeed,
the Jacobi identities involving (Qα, Q̄α̇, Gββ̇) and (Qα, Sβ, Gγγ̇) fix [G,Gαα̇] =
0 which is incompatible with this partly contracted algebra. We therefore
conclude that there is only a single exceptional EFT for a chiral superfield
with σφ = 2, σχ = 1 soft limits which is the VA-DBI system which non-
linearly realizes the six-dimensional super-Poincaré algebra.

4This algebra also appeared in [77] and let us note that it is not clear if there exists a
sensible realisation where both scalars have canonical kinetic terms. However, we will see
in a moment that even if this theory existed, it cannot be supersymmetrised.
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n ≥ 3/2

When n ≥ 3/2 we find that no exceptional EFTs are possible: the only
non-trivial commutators are the ones required by superspace inverse Higgs
constraints and lead to extended shift symmetries for the component fields.
The situation for n = 3/2 is slightly different than for n ≥ 2 so we will discuss
these in turn but the results are qualitatively the same.

At n = 3/2, the bosonic sub-algebra must again be that of six-dimensional
Poincaré, or contractions, since i) the fermionic generators do not allow for
a dilaton as one component of the chiral superfield and ii) compared to
n = 1 we haven’t added any additional bosonic generators. However, we
very quickly establish that this sub-algebra must be the fully contracted one
i.e. both components of the complex scalar must transform as Galileons as
opposed to DBI scalars.

To arrive at this conclusion we first use the (Pαα̇, Pββ̇, Sγ1γ2γ̇) Jacobi iden-

tity to fix [Pαα̇, Sβ] = 0 and the (Pαα̇, Sβ, S̄β̇) Jacobi identity to eliminate Gαα̇

and Ḡαα̇ from the RHS of {Sα, S̄α̇}. From the Jacobi identities involving two
copies of (super)-translations and Sα we fix G to commute with all (super)-
translations and remove the possibility of adding Lorentz generators to the
RHS of {Qα, Sβ}. The Jacobi identities involving one (super)-translation,
G and either of the fermionic non-linear generators, and the (Qα, Sβ, S̄β̇)
Jacobi, ensures that G commutes with these fermionic generators. From
the (G,Qα, Sβ1β2β̇

) and (Ḡ, Qα, Sβ1β2β̇
) Jacobi identities we then see that

[G,Gαα̇] = [Ḡ, Gαα̇] = 0 thereby telling us that the bosonic sub-algebra must
be the fully contracted one. The remaining Jacobi identities tell us that
all other commutators between non-linear generators must vanish leaving us
with only extended shift symmetries. We have checked that this conclusion
is unaltered if we allow for linear scalars generators beyond the one in the
bosonic sub-algebra. So for σφ = σχ = 2 there are no exceptional EFTs.

The cases with n ≥ 2 are slightly more straightforward given our results
in Chapter 4. There we showed that if the essential Goldstone is a complex
scalar, there are no exceptional EFTs with σφ ≥ 3. That is, if we include
the (1

2
, 1

2
) complex generator Gαα̇ and the (1, 1) complex generator Gβ1β2β̇1β̇2

,
all non-linear generators must commute and give rise to only extended shift
symmetries. In particular, there is no complex version of the Special Galileon,
the algebra simply doesn’t exist. Taking this as a starting point, we add the
necessary superspace inverse Higgs commutators and use Jacobi identities to
show that all non-linear generators, bosonic and fermionic, must commute
amongst themselves. The calculation follows in a similar spirit to those
described above and is valid for any finite n ≥ 2.
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Brief summary

Just like in Chapter 4, we have seen that exceptional EFTs are hard to come
by: there are only a small number of non-linearly realized algebras which
allow for field-dependent transformation rules on a chiral superfield. Here we
summarise the main results of this section:

� The structure of the chiral superfield’s superspace inverse Higgs tree
tells us that the soft weights of the component fields are either equal
or the complex scalar’s can be one higher. The soft weights are fixed
by the level of the inverse Higgs tree and given by (5.23).

� The most simple exceptional EFTs are non-linear sigma models char-
acterised by [G, Ḡ] 6= 0. Here the scalar has a σφ = 1 soft weight
whereas the fermion must have σχ = 0. Indeed, whenever we include
the generator Sα, which is necessary for σχ ≥ 1, we find [G, Ḡ] = 0.

� In addition to non-linear sigma models, the only possible exceptional
EFTs have σχ = 1 and σφ = 1 or 2. Even though an exceptional algebra
exists at level n = 1/2, we expect that there is no realisation with the
corresponding properties, i.e. all EFTs one can derive will actually
realise the unique n = 1 exceptional algebra of six-dimensional super-
Poincaré. The contraction of this algebra gives rise to supersymmetric
Galileons.

� All other algebras, at any other finite level in the tree, lead to field-
independent extended shift symmetries. In particular, when both parts
of the complex scalar have equivalent inverse Higgs trees, it is impos-
sible to realise superconformal algebras on the single chiral superfield.
We will relax the assumption of equivalent inverse Higgs trees in section
5.3.3. Furthermore, one cannot supersymmetrise the Special Galileon,
at least in four dimensions.

� For leading values of the soft weights our results are completely com-
patible with the on-shell approach of [9].

5.3.2 Maxwell Goldstone superfields

Irreducibility condition I

We now turn our attention to EFTs that contain a single Maxwell superfield
Wα(x, θ, θ̄), also known as a field strength multiplet. Wα contains a Weyl
fermion χα, a 2-form field strength Fαβ - which is subject to Bianchi identity
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- and a real (auxiliary) scalar D. This field content is the result of the
following irreducibility conditions:

DαWα + c.c. = 0, D̄α̇Wα = 0 , (5.29)

whose solution reads:

Wα = χα(y) + iθαD(y) + iθβFβα(y) + iθ2∂αα̇χ̄
α̇(y) . (5.30)

Similarly to the scalar chiral superfield, the chirality condition D̄α̇Wα = 0
imposes the dependence on yαα̇ = xαα̇ − 2iθαθ̄α̇ and the absence of further θ̄
terms. The first equation in (5.29) imposes D = D̄ and the Bianchi identity
dF = 0.

We can obtain a Maxwell superfield from the coset construction by start-
ing with a Weyl fermion zeroth-order generator Gα, which must satisfy
schematically:

{Q,G} = {Q̄, G} = [P,G] = . . . . (5.31)

Then we add higher-order generators with the appropriate commutation re-
lations with supertranslations.

We will separate our discussion of irreducibility conditions into two parts.
Let us first investigate the covariant generalization of the chirality condition
D̄α̇Wα = 0. A general complex spin (1

2
, 1

2
) condition takes the form:

Tαβα̇β̇
ˆ̄Dβ̇W β = 0 , (5.32)

where T - evaluated on the inverse Higgs solution - is again a tensor built
out of covariant derivatives of Wα. All solutions to (5.32) - other than those

which satisfy ˆ̄DβW β = 0 - are subject to additional independent constraints
of different Lorentz representations, related to matrix singularity of T . We
therefore find that the appropriate generalization of the chirality constraint
is the minimal one:

ˆ̄Dα̇Wα = 0 . (5.33)

As before, one needs to investigate on a case-by-case basis whether (5.33) is
really equivalent to the canonical chirality condition, at least after imposing
inverse Higgs relations. The generalization of the first equation in (5.29)
is not as straightforward as the chirality condition. We will return to this
question in a moment.

Let us first pause to explain why we chose to consider Maxwell Goldstone
EFTs. Often, one uses a vector superfield V to parametrize the same physical
multiplet. A vector superfield, despite its name, is a scalar which is subject
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to a reality condition: V = V̄ . In addition, one assumes a gauge redundancy
of the form:

V → V + Φ + Φ̄ , (5.34)

where Φ is an arbitrary chiral superfield. It is possible to gauge fix part
of this redundancy such that V contains only a gauge vector Aαα̇, a Weyl
fermion χα and a real (auxiliary) scalar field D. This is of course equivalent
to the field content of the Maxwell superfield. Indeed, a superspace relation
between the two is:

Wα = −1

4
D̄2DαV . (5.35)

We use the Maxwell superfield precisely because the gauge redundancy of V
requires us to include infinitely many generators from the inverse Higgs tree,
corresponding to a subset of the large gauge transformations. The Maxwell
superfield contains the gauge-invariant field strength Fαβ rather than the
potential Aαα̇.

Finally, we note that the Maxwell multiplet is not the only irreducible
spinor superfield. A chiral spinor φα admits the following gauge redundancy,
parametrized by a vector superfield K:

φα → φα + D̄2DαK , (5.36)

or, equivalently, by a Maxwell superfield Kα = D̄2DαK. After gauge fixing,
φα contains a spinor χα, a real scalar a and the 2-form potential Bαβ. These
fields make up an irreducible physical supermultiplet. Again, there exists
another superfield which contains instead the invariant 3-form field strength
and is therefore not subject to any gauge redundancy. This is the real linear
superfield, which we will investigate in section 5.3.3.

Superspace inverse Higgs tree

In figure 5.3, we have depicted on the left the superspace inverse Higgs tree
of the chiral spinor superfield Wα, up to level n = 2. The chirality condition

reads ˆ̄Dα̇Wα = 0, so the barred spinor derivative is not available to impose
inverse Higgs relations. This means that at level n = 1

2
we can only connect

generators with the operator Qα, leading to a complex scalar and a two-form,
(0, 0)⊕ (1, 0). At level n = 1, Lorentz symmetry allows for two independent
(1

2
, 0) generators, connected to either the (0, 0) or (1, 0) by Qα, but Jacobi

identities only allow for one. Using Q̄α̇ we also find a (0, 1
2
) and (1, 1

2
) at

n = 1. These generators correspond to the two independent shifts of the
essential fermion, linear in the coordinates. All further Goldstone modes at
higher levels are P-inessential. The tree on the left therefore reduces to a
superspace expansion of the chiral spinor, as expected.
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Figure 5.3: The non-linear generators that can be realized on the chiral spinor
(left) and the subset that is consistent with canonical propagators and all
irreducibility conditions (right).

Irreducibility condition II

The second irreducibility condition that defines the canonical Maxwell su-
perfield reads:

DαWα + D̄α̇W̄
α̇ = 0 . (5.37)

This condition imposes reality of the scalar field in the chiral spinor, D = D̄.
Furthermore, it imposes Bianchi identity on the 2-form Fαβ, which should
therefore be considered a gauge field strength for a U(1) gauge field Aαα̇.

As we have seen, this irreducibility condition is harder to covariantize than
the chirality condition. In 3.4.3, we studied the partial breaking of N = 2
supersymmetry using the Maxwell superfield, following the reference [156].
In this setup, there is a single non-linearly realized generator Sα, with the
anti-commutation relation:

{Sα, S̄β̇} = 2Pαβ̇ . (5.38)

It was found that the correct generalization for this symmetry breaking pat-
tern, up to fifth order in the fields, is:

D̂αWα −
1

2
D̂γWγD̂(αWβ)D̂

(αW β) + c.c. + . . . = 0 . (5.39)

The solutions to this constraint equation can be written in terms of a canon-
ical Maxwell superfield. On the contrary, the naive generalization D̂αWα +
c.c. = 0 has only the trivial solution Wα = 0.
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The covariant irreducibility condition takes this complicated form because
there are many different covariant objects one can build out of Wα by acting

with D̂ and ˆ̄D. Equation (5.39) makes use of three independent tensors at
this order in the fields: the symmetric part of the tensor DαWβ, the real part
of its trace, and the imaginary part of its trace.

We have explained before that irreducibility condition have many hid-
den covariances, corresponding to all the different symmetry transformations
compatible with the physical supermultiplet. We can make the non-linear
covariances manifest by extending the algebra to a higher level in the inverse
Higgs tree. At the same time, extending the algebra introduces inverse Higgs
relations, reducing the number of independent covariant objects at a given
order in the fields and derivatives. The N = 2 supersymmetry algebra allows
for the following extension:

[Qα, C] = Sα . (5.40)

where C is a real scalar. This is just part of the R-symmetry automorphism
group of N = 2 supersymmetry, which lives at order n = 1

2
in the inverse

Higgs tree. The Goldstone superfield of C is projected out by the inverse
Higgs relation:

D̂αWα − c.c. = 0 . (5.41)

This object therefore cannot appear in the irreducibility condition. Indeed,
we have verified that (5.39) reduces to the naive generalization D̂αWα+c.c. =
0 in terms of covariant derivatives of the extended algebra.5 Note that the
generator C corresponds to a shift of the auxiliary field. By assumption, this
generator will not become a true symmetry of the physical EFT, but it is
very useful to include it in order to find consistent irreducibility conditions.

A further extension involving the n = 1
2

(1, 0) generator would also remove

the symmetry part of D̂αWβ, reducing to a single covariant object at first
order in the fields and derivatives. However, this extension is not compatible
with the N = 2 supersymmetry algebra, as we will find out below on the
basis of Jacobi identities.

Canonical propagators

We depict the consequences of both irreducibility conditions as well as the
restriction to canonical propagators (in the field basis picked out by the coset

5To be more precise, the condition (5.39) factorizes into (D̂αWα + c.c.)T = 0, where T
is a scalar built from covariant objects. This indicates that (5.39) has a second branch of
solutions which cannot be written in terms of a canonical Maxwell superfield.



5.3. CLASSIFICATION OF EXCEPTIONAL EFTS 147

construction) on the right in figure 5.3. We have reduced the inverse Higgs
tree to a single generator at each order.

Let us explain how one gets from the left of 5.3 to the right. The second
irreducibility condition reduces the complex (0, 0) at n = 1

2
to a real (0, 0).

This then also truncates all generators attached to its imaginary part, like
the (1

2
, 0) and (0, 1

2
) at n = 1, and so on.

The restriction to canonical propagators then removes the remaining real
(0, 0) at n = 1

2
, because it corresponds to a shift of the auxiliary field (we

have already explained that it is sometimes possible and useful to include
this generator, but never necessary). The remaining P-essential component
Goldstone fields are the essential Weyl fermion and the 2-form. The 2-form
is subject to Bianchi identity, so it only allows for generators consistent with
the canonical U(1) gauge kinetic term FµνF

µν . As we have explained in
Chapter 4, this leaves only a single independent shift of Fµν at each order in
the coordinates, corresponding to a hook generator.

In the end, the right side of 5.3 depicts the following general (anti)-
commutation relations:

[Qγ, Gα1...αn+3/2α̇1...α̇n−1/2
] = −iεγαn+3/2

Sα1...αn+1/2α̇1...α̇n−1/2
+ . . . ,

{Q̄γ̇, Sα1...αn+1α̇1...α̇n} = −εγ̇α̇nGα1...αn+1α̇1...α̇n−1 + . . . ,

[Pγγ̇, Gα1...αn+3/2α̇1...α̇n−1/2
] = i

2
εγαn+3/2

εγ̇α̇n−1/2
Gα1...αn+1/2α̇1...α̇n−3/2

+ . . . ,

[Pγγ̇, Sα1...αn+1α̇1...α̇n ] = i
2
εγαn+1εγ̇α̇nSα1...αnα̇1...α̇n−1 + . . . . (5.42)

In these expressions, the sets of indices (α1, . . ., αn) and (α̇1, . . . , α̇n) are fully
symmetric on the right- and left-hand sides. The generators Sα1...αn+1α̇1...α̇n

are spin-(n+1
2
) fermions, whereasGα1...αn+3/2α̇1...α̇n−1/2

are (n+3/2
2

, n−1/2
2

) bosonic
hook generators. Note that n denotes the level in the inverse Higgs tree,
which goes up by half-integer steps and starts at n = 0 for the spin-1

2
essen-

tial Weyl fermion. The remaining structure (5.42) is simple enough to admit
an exhaustive classification of all exceptional EFTs by simply demanding
closure of the algebra by Jacobi identities.

Inverse Higgs tree and soft weights

We want to emphasize again that one can read off the relation between
bosonic and fermionic soft weights from the superspace inverse Higgs tree
5.3, i.e. the algebra (5.42). This time, the bosonic soft weight is always equal
to or one less than the fermionic soft weight, as the zeroth-order generator
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is a fermion. In other words, we find:

σχ = σA + 1 = n+ 1 for integer n, (5.43)

σχ = σA = n+ 1
2

for half-integer n , (5.44)

which was also derived by amplitudes methods in [9].

Exceptional EFTs

With the superspace inverse Higgs tree at hand, we can now classify the possi-
ble exceptional algebras. We will separate our discussion into three sections:
the lowest level case n = 0 with no superspace inverse Higgs constraints,
n = 1/2, and finally any finite n ≥ 1. As it turns out, the Maxwell superfield
allows for only one exceptional algebra: the non-linear realisation of N = 2
supersymmetry by a VA fermion coupled to a BI vector described by Bagger
and Galperin in [156].

n = 0

When n = 0, the only non-linearly realized generator is the spinor Sα and
therefore the Ansatz for the commutators is very simple. Jacobi identities
tell us that the only non-trivial commutator involving non-linear generators
is

{Sα, S̄α̇} = sPαα̇ , (5.45)

which for s = 2 leads to N = 2 supersymmetry when combined with the
other commutators. This is an exceptional algebra and is non-linearly real-
ized by the exceptional EFT of a VA fermion coupled to a BI vector. As
is now well-known [9, 78], the BI vector has a vanishing soft weight and can
therefore be considered as a mater field required to maintain linear SUSY.
This is in comparison to the role of the fermion in P (X) theories of the chiral
superfield discussed in section 5.3.1. The coset construction for this case was
worked out in [156]. The s = 0 case is simply a contraction of the N = 2
algebra and is non-linearly realized by a shift symmetric fermion coupled to a
gauge vector in a linearly supersymmetric manner. The transformation rules
here are now field-independent.

n = 1/2

At level n = 1/2, we find the real scalar generator a and the 2-form Gα1α2 .
The real scalar generator is projected out by the requirement of canonical
propagators, but we will relax this assumption for a moment and include
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this automorphism generator. If we only include a and omit Gα1α2 , Jacobi
identities tell us that the only extension of the N = 2 algebra has

[Qα, a] = Sα, [Sα, a] = Qα , (5.46)

whereas if we include Gα1α2 as well, no exceptional algebras exist6. That is,
in the presence of Gα1α2 , the only non-trivial commutators are those required
by superspace inverse Higgs constraints i.e.

{Qα, a} = Sα, [Qα, Gβ1β2 ] = εαβ1Sβ2 . (5.47)

Here the field strength transforms with a constant shift under the 2-form
parameter and therefore the vector has a Galileon type symmetry: a shift
linear the space-time coordinates without field dependence. Interestingly,
unlike for the scalar Galileon, there are no self-interactions for this Galileon
gauge vector which do not introduce additional degrees of freedom. [171]

n ≥ 1

We will now proceed further in the inverse Higgs tree, to level n = 1 and
beyond. We make use of the superspace inverse Higgs relations (5.42) and
write down a general Ansatz for the remaining (anti)-commutators. Again
the answer is very long and complicated so to keep things readable we will
outline how we did the calculation.

As we have done for the chiral superfield, we will start with just the
bosonic sub-algebra which is spanned by the Poincaré generators and the
non-linear generators Gα1...αn+3/2α̇1...α̇n−1/2

. For n = 1 we have already seen
that the bosonic sub-algebra must be trivial but there are possible exceptional
structures at higher levels. In [78] it was shown that any vector symmetry
of the form δAα1α̇ = bα1

α2xα2α̇ cannot be augmented with field-dependent
pieces in the presence of the U(1) gauge symmetry. Since this symmetry
therefore only generates a constant shift on the field strength we will take
[Pγγ̇, Gβ1β2 ] = 0 as a starting point. Jacobi identities then tell us that the
commutators between translations and any non-linear bosonic generator are
fixed by the inverse Higgs relations i.e. the third equation in (5.42) with
ellipses equal to zero, up to a basis changes.

6At the purely bosonic level there is a consistent exceptional algebra where the 2-form
generator commutes with itself, into itself, just like the Lorentz generators. However, this
algebra is not compatible with the Bianchi identity for the field strength and so cannot
be realized on the gauge vector. One can see this by working out the transformation rules
using the coset construction, or by reintroducing the gauge symmetries in the algebra
computation as an infinite set of generators, realized on an essential vector, then checking
closure of the algebra. See also [78].
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Following the general recipe outlined in Chapter 4, we now inspect the
Jacobi identities involving one translation and two bosonic non-linear gener-
ators : (P,Gn, Ḡm) and (P,Gn, Gm) where again m,n are half-integer. The
former implies that the commutator [Gm, Ḡn] = 0 for any m and n while the
latter reduces the commutators schematically to

[Gzb , Gzb ] = cM, [Gzb , Gzb−1] = cP, (5.48)

where zb indicates the finite level at which the bosonic part of the tree ter-
minates, M and P refer to Lorentz generators and space-time translations
respectively, and c is an unconstrained coefficient. These structures are very
familiar from Chapter 4 [79], for example the DBI algebra has precisely this
structure. Note that Jacobi identities also allow for the 2-form generator Gαα̇

to appear on the RHS of the first of these commutators, however its pres-
ence would spoil the inverse Higgs constraints since they would no longer be
algebraic in the relevant inessential Goldstones. We encountered a similar
scenario in section 5.3.1. We now consider the Jacobi identity involving three
non-linear generators (Gzb , Gzb−1, Ḡn) which fixes c = 0 since for n > 1 there
is always at least one bosonic generator which does not commute with trans-
lations due to the inverse Higgs relations. The only non-trivial commutators
involving non-linear generators in the bosonic sub-algebra are therefore those
required by inverse Higgs.

We now include the fermionic generators with the superspace inverse
Higgs relations (5.42). It is easy to see that the Jacobi identities involv-
ing two (super)-translations and one non-linear generator ensure that the
ellipses in these commutators vanish i.e. we cannot include linearly real-
ized generators on the RHS. We also see that other commutators between
(super)-translations and fermionic generators, which are not required by the
superspace inverse Higgs constraints, i.e. {Q,Sn} must also vanish.

The only other commutators we need to fix involve two non-linear gen-
erators with at least one of these being fermionic. There is a natural way
to proceed through the remaining Jacobi identities, making use of the re-
sult that the bosonic sub-algebra is trivial. We begin, for example, with the
(Q̄, Gn, Sm) Jacobi identity which contains a single non-trivial term given by

{Q̄α̇, [Gα1...αn+3/2α̇1...α̇n−1/2
, Sβ1...βm+1β̇1...β̇m

]} = 0 , (5.49)

which is very constraining of the RHS of [Gn, Sm]. Proceeding in a similar
fashion with the other Jacobi identities involving one supertranslation we
find that schematically we can only have

{Szf , S̄zf} = aP, {Szf , Szf} = bM, {Szf , Szf−1} = bP , (5.50)
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where zf is the finite level at which the fermionic part of the tree terminates.
Again we have also imposed the extra condition that all inessential Gold-
stones appear algebraically in the relevant covariant derivatives. Now we see
that the Poincaré factor and the fermionic generators form a sub-algebra.
Therefore, we can use our results of Chapter 4 [79] where we showed that the
only exceptional algebra was that of the VA theory, i.e. only the zeroth order
generator can form an exceptional algebra. This requires the tree to termi-
nate at this level. Indeed, in the presence of any other fermionic generators
no exceptional algebras are possible. Since in this part we are concentrating
on n ≥ 1 where we have at least two non-linear fermionic generators, we
must now set a = b = 0.

We have therefore proven, to arbitrarily high finite level in the inverse
Higgs tree, that the only exceptional linearly supersymmetric EFT that can
be realized on a single Maxwell superfield is the VA/BI theory which non-
linearly realizes N = 2 SUSY [156] with σχ = 1, σA = 0 soft weights.

Brief summary

Let us very briefly summarise the main results for the Maxwell superfield:

� The superspace inverse Higgs tree allows us to read off the soft weights
of the fermion and gauge vector of the Maxwell superfield. The results
are given in equations (5.43) and (5.44).

� The only exceptional EFT in this case corresponds to a non-linear
realisation of N = 2 SUSY and is realized by a VA fermion coupled to
a BI vector. The soft weights are σχ = 1 and σA = 0.

� All other algebras lead to field-independent non-linear symmetries i.e.
extended shift symmetries. We have shown this to all finite levels in
the superspace inverse Higgs tree.

� The covariant irreducibility constraints that have been imposed on the
Maxwell supermultiplet can be understood via superspace inverse Higgs
constraints in terms of algebras which live at a higher level in the tree.
The constraints then take a simple form.

5.3.3 Real linear Goldstone superfields

Irreducibility conditions

The real linear superfield is a real scalar superfield L = L̄ subject to the
additional constraint:

D2L = D̄2L = 0 . (5.51)
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Its component fields are a real scalar field a(x), Weyl fermion χ(x) and a
vector field A(x) with the constraint:

∂αα̇A
αα̇ = 0 . (5.52)

This constraint is equivalent to the Bianchi identify for a dual 3-form field
strength, H = ?A. By virtue of (5.52) we obtain H = dB. Therefore, the
constrained vector field A is equivalent to a 2-form gauge potential.

The superspace expansion then reads:

L = a(x) + θχ(x) + θ̄χ̄(x)− θαθ̄α̇Aαα̇(x)− i
2
θ2θ̄α̇∂

αα̇χα(x)

+ i
2
θ̄2θα∂αα̇χ̄

α̇(x) + 1
2
θ2θ̄2�a(x) . (5.53)

A free 2-form B is on-shell equivalent to a real, shift-symmetric pseu-
doscalar. To see this, let us recall the standard dualization procedure. The
action for a free real 2-form Bµν reads:

L = HµνρH
µνρ . (5.54)

where H is the 3-form field strength, Hµνρ = ∂[µBνρ]. We can equivalently
consider Hµνρ as a fundamental 3-form field, and impose Bianchi identity by
means of a Lagrange multiplier scalar field b. The action then reads:

L = HµνρH
µνρ +

1

12
√

6
b εµνρσ ∂[µHνρσ] . (5.55)

The field equation for b then imposes the Bianchi condition on H, i.e.:
εµνρσ∂[µHνρσ] = 0, so that the action reduces to (5.54). If, instead of solving
the field equations for b, we integrate out Hµνρ by its equations of motion,
we obtain the dual action:

L = ∂µb ∂
µb , (5.56)

which is just the free action for a real scalar field. It is possible to dualize more
general actions than (5.54). For instance, we can minimally couple Hµνρ to a
fundamental 3-form potential. This gauges the global 2-form shift symmetry
of (5.54) and introduces a potential for b(x) in the dual picture. [146]

Upon dualizing the 2-form B that resides in a real linear superfield, we
obtain the field content of a physical chiral multiplet: two scalars a(x) and
b(x), and a Weyl fermion χ(x). Indeed, it is often possible to dualize the
real linear superfield to a chiral superfield directly in superspace, see for
instance [163]. This does not mean the real linear and chiral superfields are
strictly equivalent in all situations. For example, the real linear superfield
can only describe actions with unbroken U(1) R-symmetry, whereas this
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Figure 5.4: The non-linear generators that can be realized on a real linear
supermultiplet (left) and the subset that is consistent with the presence of
physical theories with canonical propagators (right). In general, the bosonic
generators at non-zero levels are complex but with only the real part connected
to the zeroth level by space-time translations.

automorphism can be broken by the chiral superfield. Additionally, it is not
clear whether the dualization procedure can work when the action includes
higher-derivative terms for the 2-form Bµν .

In the next section, we will describe the inverse Higgs trees for real linear
superfields in full generality. However, when we look for exceptional algebras,
we will restrict to those symmetry breaking patterns which are compatible
with dualizing the 2-form degree of freedom. As we will see, this restricts us
to algebras which admit a particular central extension.

Because the physical field content we will work with is equivalent to a
chiral multiplet, the reader may wonder what the difference is between sec-
tion 5.3.1 and the current discussion. In section 5.3.1, we assumed that both
scalar fields realize symmetries of the same order in the space-time coordi-
nates. We will relax this assumption in what follows. While the symmetry
breaking patterns we discuss here can be realized on a chiral superfield - up
to a central extension and following superspace dualization - the real linear
superfield is the more natural object to describe these mixed-level systems.
For informative examples, see for example [175] or [163].

Superspace inverse Higgs trees

The superspace inverse Higgs tree for a real linear multiplet starts at order
n = 0 with a Hermitian scalar, which we will call D. This (0, 0) must satisfy
[Q,D] = [Q̄,D] = [P,D] = . . ., as usual. At order n = 1

2
, we can attach a
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single Weyl fermion Sα, by means of the following anti-commutation relation:

{Qα, Sβ} = −εαβD + . . . . (5.57)

Then, at order n = 1, Lorentz symmetry allows for a (1, 0), a complex (0, 0)
and a complex (1

2
, 1

2
) to attach to Sα. The former two would be connected by

Qα, the latter by Q̄α̇. Jacob identities remove the 2-form (i.e. the (1, 0)) and
the scalar is killed by the irreducibility conditions. Note that there is no 2-
form directly in the superspace expansion of L, but a constrained vector. Let
us rearrange the complex vector at order n = 1 in terms of two Hermitian
vectors Kαα̇ and K̃αα̇. The relevant non-vanishing commutation relations
are:

[Pαα̇, Kββ̇] = −iεαβεα̇β̇D + . . . ,

[Q̄α̇, Kββ̇] = iεα̇β̇Sβ + . . . ,

[Q̄α̇, K̃ββ̇] = εα̇β̇Sβ + . . . . (5.58)

It is clear from these commutation relations that only the Goldstone field of
Kαα̇ is P-inessential. It leads to a shift of the essential scalar field, linear
in the space-time coordinates. The generator K̃αα̇ instead corresponds to a
constant shift of the constrained vector.

At level n = 3
2
, we find a (1, 1

2
) and a (0, 1

2
), both connected to the previous

level by Qα. When we include these n = 3
2

generators, Jacobi identities
dictate that the full complex vector at level n = 1

2
be present. We have

pictured the superspace inverse Higgs tree, prior to imposing compatibility
with canonical kinetic terms, on the left of figure 5.4.

Canonical propagators

The canonical kinetic term for the real linear superfield reads:

Lfree =

∫
d4θ L2 . (5.59)

At the component level, this term includes a Weyl kinetic term for the fermion
χα, the Klein-Gordon Lagrangian for the scalar field a and the term H2

(where H = dB) for Bαβ. We have drawn the inverse Higgs tree compatible
with the free action on the right in figure 5.4.

The result is very similar to the chiral superfield inverse Higgs tree 5.2.
The only difference results from the fact that the (1

2
, 0) generator at level

n = 1/2 is connected to a complex scalar field in 5.2 and to a real scalar
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field in 5.4. This amounts to the following central extension of the symmetry
algebra:

{Qα, Sβ} = . . .+ iεαβZ , (5.60)

where Z is a Hermitian scalar generator. Jacobi identities then imply the
further modification:

[Pαα̇, K̃ββ̇] = . . .+ iεαβεα̇β̇Z , (5.61)

and so on.
The picture 5.4 represents the following (anti)-commutation relations:

{Qγ, Sα1...αN α̇1...α̇N−1
} = −εγα1Gα2...αN α̇1...α̇N−1

+ . . . ,

[Q̄γ̇, Gα1...αN α̇1...α̇N ] = −iεγ̇α̇1Sα1...αN α̇2...α̇N + . . . ,

[Pγγ̇, Sα1...αN α̇1...α̇N−1
] = 1

2
iεγα1εγ̇α̇1Sα2...αN α̇2...α̇N−1

+ . . . ,

[Pγγ̇, Gα1...αN α̇1...α̇N ] = 1
2
iεγα1εγ̇α̇1Gα2...αN α̇2...α̇N + . . . , (5.62)

where the sets (α1, . . . αN) and (α̇1, . . . , α̇N) are assumed symmetric under
exchange on the left- and right-hand sides.

Exceptional EFTs

In contrast to the previous two cases, here we will not perform a general
analysis. Rather we will study certain cases of interest to illustrate that our
general techniques can indeed be applied to a real linear superfield. Below we
consider two cases: i) tree truncated at level n = 1 with a real vector gener-
ator and ii) tree truncated at level n = 2 with the complex vector generator
at n = 1 (as required by Jacobi identities) and a real symmetric, traceless
rank-2 generator (in addition to the fermionic generators in between). In
the following, we only consider systems which can be dualised to the chiral
superfield (or rather, those cases where the algebra does not rule out the du-
alisation). We leave an exhaustive classification that relaxes this assumption
to future work.

n = 1

We begin at level n = 1 where the non-linear generators are (D,Sα, Kαα̇),
with K Hermitian7. In addition to generators that define the Lorentz rep-
resentation of each generator, the most general form of the commutators

7After dualising to the chiral superfield, this is an example of an algebra where the two
parts of the complex scalar zeroth order generator have different inverse Higgs trees.
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is

{Qα, Q̄α̇} = 2Pαα̇, {Sα, S̄α̇} = sPαα̇ + a1Kαα̇, {Sα, Sβ} = a2Mαβ

{Qα, Sβ} = −εαβD + a3Mαβ + iεαβM
′, [Qα, Kββ̇] = iεαβS̄β̇ + a4εαβQ̄β̇,

[Pαα̇, Sβ] = a5εαβQ̄α̇, [Pαα̇, D] = ia6Pαα̇, [Qα, D] = a7Qα,

[Kαα̇, Kββ̇] = a8εαβM̄α̇β̇ − ā8εα̇β̇Mαβ + iεαβεα̇β̇M
′′,

[Pαα̇, Kββ̇] = −iεαβεα̇β̇D + iεαβεα̇β̇M
(3) + a9εαβM̄α̇β̇ − ā9εα̇β̇Mαβ,

[D,Sα] = a10Qα + a11Sα, [D,Kαα̇] = ia12Pαα̇ + ia13Kαα̇,

[Sα, Kββ̇] = a14εαβQ̄β̇ + a15εαβS̄β̇. (5.63)

Note that we allow for the most general linear internal symmetries by in-
troducing the scalar generators M ′, M ′′, and M (3) and again we have set
{Q̄α̇, Sα} = 0 without loss of generality by a basis change. Now Jacobi iden-
tities allow for only the M ′ linear scalar to exist and reduce the number of
free parameters to two which we denote as s and m. We have

{Qα, Q̄α̇} = 2Pαα̇, {Sα, S̄α̇} = sPαα̇ − 2mKαα̇,

{Qα, Sβ} = −εαβD +mMαβ + iεαβM
′, [Qα, Kββ̇] = iεαβS̄β̇

[Pαα̇, Sβ] = −imεαβQ̄α̇, [Pαα̇, D] = imPαα̇, [Qα, D] = i
m

2
Qα,

[Kαα̇, Kββ̇] = i
s

2
εαβM̄α̇β̇ + i

s

2
εα̇β̇Mαβ, [Sα, Kββ̇] = −is

2
εαβQ̄β̇,

[Pαα̇, Kββ̇] = −iεαβεα̇β̇D + i
m

2
εαβM̄α̇β̇ + i

m

2
εα̇β̇Mαβ,

[D,Sα] = i
m

2
Sα, [D,Kαα̇] = −isPαα̇ + imKαα̇

[M ′, Qα] = −3m

2
Qα, [M ′, Sα] =

3m

2
Sα. (5.64)

Let us now discuss these algebras in terms of s and m.
First of all, when m 6= 0 this is the AdS5 superalgebra. In this case the

parameter s turns out to be unphysical. Indeed we can make a simple change
of basis from (K,P ) to (K̂, P ) where K̂αβ̇ = Kαβ̇− s

2m
Pαβ̇ to set s = 0. When

s 6= 0 this basis is usually referred to as the “AdS” basis while with s = 0
we have the “conformal basis” [174]. Therefore, the only actual parameter
is the AdS radius R = 1/m. In terms of the bosonic sector these two bases
were considered in [25] where it was shown that the two different realisations
in terms of a single scalar degree of freedom (the vector associated to special
conformal transformations is removed by an inverse Higgs constraint) are
equivalent EFTs, as expected. The scalar in these theories has a vanishing
soft weight [32–34]. As we explained in the introduction, this is compatible
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with our superspace inverse Higgs tree since in this case once we canonically
normalise the scalar, all transformation rules become field-dependent.

The coset construction for this symmetry breaking pattern i.e. the AdS5

superalgebra broken down the four-dimensional super-Poincaré algebra was
studied in [158, 175] (see also [176] for a curved space generalization). The
authors constructed the leading action for a supersymmetric 3-brane in AdS5,
utilising a real linear superfield L. Their Lagrangian transforms as a total
derivative under a subset of the non-linear symmetries. After dualising the 2-
form in L to a scalar, their Lagrangian realizes an additional shift symmetry
that is not visible in the inverse Higgs tree. This allows for a different starting
point where the essential generator is a complex scalar, but only its real part
realizes non-linear symmetries in addition to the constant shift symmetries.
This is because there is only a real vector generator at level-1 and therefore
only a single scalar degree of freedom can support additional transformations.
This reflects the fact that the real linear superfield can be dualised to a chiral
superfield. The bosonic sector is then a dilaton (which realizes the conformal
symmetries) coupled to an axion.

The flat limit of the bulk space-time corresponds to taking m = 0. In
this case we cannot perform the aforementioned basis change and hence the
second parameter s distinguishes between two different algebras. The case
s = 2 is the flat limit of the AdS superalgebra and hence corresponds to
the super-Poincaré algebra in D = 5. However, in this limit one often has
symmetry enhancement to D = 6 super-Poincaré rather than D = 5 thanks
to the dualised 2-form field which obtains a field-dependent transformation,
see [155, 163]. This is related to the fact that no supersymmetric scalar 3-
brane exists in D = 5 [177, 178]. The resulting EFT is equivalent to the
scalar DBI-VA system we discussed in section 5.3.1.

Finally, we have the m = s = 0 case which yields the D = 5 supersym-
metric Galileon algebra. The authors of [10] conjectured that this algebra
has non-trivial quartic and quintic Wess-Zumino terms (in addition to the
interaction constructed in [166]), which also realise a second shift symmetry.
It is clear from our analysis that this Galileon/axion (the axion comes from
dualising the 2-form) system is naturally described by a real linear super-
field. We see from the algebra that when s = m = 0 we have {Sα, S̄α̇} = 0
and therefore the fermion is no longer of the VA type but becomes shift
symmetric.

n = 2

We now consider level n = 2 where the non-linear generators are
(D,Sα, Kαα̇, K̃αα̇, ψα1α2α̇, Gα1α2α̇1α̇2). As we saw above, in the presence of ψ
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we need to include both K and K̃ however we keep G real. Rather than per-
forming a full analysis, we ask if the lowest component of the superfield can
be a Special Galileon [101] with a σφ = 3 soft weight and a field-dependent
transformation rule. We find, thanks to our results in Chapter 4 [79], that
this is not possible. Indeed, since we are forced to include the full complex
vector, after dualisation both scalar degrees of freedom must be Galileons
i.e. both have a connection to a vector at level n = 1 by space-time trans-
lations. This implies that both have a transformation rule which starts out
linear in the space-time coordinates. Now we are also asking for the lowest
component to be a Special Galileon. However, we have already showed in
Chapter 4 that we cannot couple a Special Galileon to a Galileon: there is
no corresponding symmetry breaking pattern. Now since the bosonic sector
is always a sub-algebra this conclusion is robust against adding the relevant
fermionic generators. We therefore conclude that the lowest component of
the real linear superfield cannot be of the Special Galileon form8. The only
remaining possibility is that a Special Galileon exists, but that this algebra
is not compatible with dualisation (i.e. the central extension). This would
imply that the 2-form forms an integral part of the Goldstone EFT. We leave
the classification of such possibilities to future work.

Brief summary

Again let us provide a brief summary of our main results with regards to the
real linear superfield:

� The superspace inverse Higgs tree becomes particularly simple after
imposing both irreducibility conditions and the existence of canonical
propagators, and differs from the chiral case only by having a real (in-
stead of a complex) scalar generator at the lowest level. If we truncate
the tree at a half-integer level, all bosons other than the zeroth order
must be complex. However, if we truncate at an integer level, the high-
est generator can also be real. Moreover, the gauge symmetry of the
2-form gauge potential sitting inside the constrained vector decouple
from the tree.

� We have not performed an exhaustive classification, but demonstrated
that the algebras up to and including n = 1 correspond to super-AdS
in D = 5 and super-Poincaré in D = 6. We can perform a contraction
of the latter leading to a supersymmetric Galileon algebra.

8Note that we can couple a Special Galileon to an axion but we see from the tree that
this theory cannot be supersymmetrised since the presence of ψ demands that the axion
becomes a Galileon.
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� At n = 2 we have shown that the lowest order scalar cannot be a Special
Galileon with a field-dependent transformation rule if we dualise the 2-
form. Indeed, then the second scalar would be a Galileon which cannot
be coupled to a Special Galileon [79]. The only way out, which is an
interesting avenue for future work, is to not dualise the 2-form.
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Chapter 6

Conclusion

In the Chapters 4 and 5, we have presented a thorough exploration of non-
linear realizations in linearly Poincaré-invariant and N = 1 supersymmetric
backgrounds. The upshot of our results is that theories with non-trivial
(field-dependent) non-linear transformation laws are very scarce indeed. This
holds especially when the transformation laws are the result of inverse Higgs
relations. Using algebraic methods, one can obtain an exhaustive list of all
possible symmetry breaking patterns in certain cases. In Poincaré-invariant
theories 1, the following statements are fully general:

� For a single scalar Goldstone field, all possible non-linear symmetry
transformations are: I) (extended) shift symmetries, II) dilatations
and special conformal transformations, III) ISO(1, 4) or ISO(2, 3) DBI
transformations, and IV) the Special Galileon. [101,103]

� For any number of spin-1
2

Goldstinos, we find: I) (extended) fermionic
shift symmetries, II) (N -extended) supersymmetry.

� For a single gauge vector Goldstone field, no extended shift symmetries
[171] or exceptional symmetry breaking patterns [78] are possible. This
rules out, in particular, that a hidden symmetry underlies the Born-
Infeld action.

We have also examined the case where there are multiple independent
Goldstone scalar fields. In this setup, it is not possible to enumerate all sym-
metry breaking patterns consistent with the theory of non-linear realizations
and Jacobi identities. A systematic exploration of such possibilities is lack-
ing. However, we have ruled out finding a fundamentally new structure by

1Here we mean that the full linearly realized space-time symmetry group is Poincaré,
not that it admits a Poincaré subgroup. We only allow for internal symmetry groups which
combine with the Poincaré group in a direct product.

161
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coupling additional Goldstone scalar fields, at least as far as the relation to
space-time symmetry generators is concerned. The appearance of space-time
generators in commutation relations is limited to the DBI, conformal, or Spe-
cial Galileon structures, just like in the single-scalar case. One then couple
these systems to each other, or to Goldstones that non-linearly realize some
internal symmetry group. For example, it is possible to couple a flat-space
DBI scalar to a Galileon. [77] We can, however, rule out the following in gen-
eral: I) coupling several Special Galileons, II) or coupling Special Galileons
to DBI scalars (flat or curved space).

To derive these statements, we have assumed coset universality (as defined
in Chapter 3) and that there are a finite number of independent non-linearly
realized transformations. Then, we make use of a simple three-step proce-
dure: I) fixing the commutation relations of all non-linear generators with
translations (fixing the inverse Higgs tree), II) truncating to the subset of
generators compatible with canonical kinetic terms 2, and III) fixing the re-
maining structure with Jacobi identities. We have presented this systematic
procedure in [79,80], building on the work of [76,77].

In the case of linearly N = 1 supersymmetric theories, we have performed
an exhaustive classification in the following cases:

� For a single chiral Goldstone superfield, the possible symmetries are: I)
(extended) super-shift symmeties, which shift the scalar, fermion and
auxiliary field by some power of the coordinates, II) minimal D = 6
supersymmetry on flat or AdS space (these transformations include
an ISO(1, 5) or SO(2, 5) DBI scalar and an Akulov-Volkov fermion).
There is no supersymmetric version of the Special Galileon.

� For a single Maxwell superfield, the possibilities are I) (extended) super-
shift symmetries, and II) minimal N = 2 supersymmetry in D = 4.
There is no special symmetry underlying the super-Born Infeld action
- at least not one of the type considered here - in contradiction to
what was anticipated by Bagger and Galperin. [156] This is consistent
with the results for a single gauge vector Goldstone field in Poincaré
theories. [78,171]

In addition, the real linear superfield allows for non-linear realizations of the
D = 5 supersymmetric AdS algebra [175] and the D = 5 super-Poincaré
algebra. However, the latter is on-shell equivalent to a dual theory of a
chiral superfield that non-linearly realizes minimal D = 6 supersymmetry.
The two-form (constrained vector) in the real linear theory dualizes to a

2In the field basis where the zeroth-order transformation begins with a constant shift.
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scalar field that realizes the additional non-linear symmetry. We have not
been fully exhaustive for the real linear superfield, but we can rule out the
existence of other exceptional EFTs up to level n = 2 in the inverse Higgs
tree (i.e. symmetry transformations that start with a shift at second order in
the coordinate). This, therefore, rules out the existence of a supersymmetric
special Galileon. We obtain these results by following essentially the same
three-step procedure as in the Poincaré background, as we have explained in
Chapter 5.

These results coming from the algebraic method extend upon those from
the soft bootstrap amplitudes method [2–4,9,10], and are in agreement where
applicable. The algebraic method is usually simpler and therefore easier
to extend to more general cases. However, the soft bootstrap method also
provides a classification of the interactions - up to a given order in fields
and derivatives - that respect a certain symmetry breaking pattern, rather
than just the pattern itself. 3 In principle, one can easily classify invariant
interactions using the coset formalism, from only the leading terms that
appear in covariant derivatives. The structure of inverse Higgs relations
and irreducibility conditions immediately tells us which covariant objects are
available. However, this leaves out the Wess-Zumino terms, which are harder
to classify.

Exceptional EFTs and positivity bounds

In recent years, the swampland program [182] has received much attention.
This refers to the broad idea of constraining low-energy EFTs by general
consistency requirements coming from the UV. One can, for example, con-
strain low-energy EFTs by the requirement that any UV completion should
have a unitary, local , Lorentz-invariant S-matrix. This leads in particular
to so-called positivity constraints. [111, 183–187] EFTs that do not satisfy
positivity constraints are said to live in the swampland: they do not admit
a consistent UV completion (in terms of a field theory living in the same
number of dimensions)

It turns out that positivity constraints imply that in some cases there is
a unique exceptional theory. This is the case when we include only a single
scalar or fermion Goldstone in Poincaré-invariant theories. The only excep-
tional EFTs satisfying positivity are the DBI scalar (the anti-DBI scalar,
which is related to the DBI algebra by a sign flip, is ruled out) and Volkov-
Akulov fermion, respectively. This immediately implies that the only excep-
tional EFT in N = 1 supersymmetry, using a single chiral superfield, that

3More precisely, it tells us what interactions can exist, rather than are actually realized
as terms in a Lagrangian.
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satisfies positivity is the D = 6 super-DBI action of Bagger and Galperin.
This indicates how special the exceptional EFTs are. To our knowledge, a
satisfying explanation of this fact is lacking.

Possibilities for future research

It is easy to imagine extensions of our approach, generalizing to different
background symmetry groups. Some work in this direction appears in the
literature. For classifications of non-linearly realized symmetries in the cos-
mological background, using Lagrangian and algebraic methods, see [82,83].
A similar classification to the one presented in this thesis for AdS back-
grounds appears in [81].

The study of soft amplitudes has achieved great results in understanding
the UV behavior of extended supergravities. [11–15] Extended supergravity
theories feature remarkable cancellations in loop diagrams, such that they
often remain UV finite at very high loop order. [17–19] This has sometimes
been explained by the absence of the appropriate counterterms [16] which
would need to exist to cancel any UV divergences. Supergravity theories
in D = 4 admit a more and more constrained multiplet structure as one
extends the amount N of supersymmetry. While N = 1 allows for the same
chiral and vector multiplets that exist in global supersymmetry, the maximal
N = 8 supergravity theory has a completely fixed multiplet structure.

The scalar fields that enter into these multiplets non-linearly realize a
global symmetry. For example, the scalar fields in N = 8 supergravity
parametrize the coset E7(7)/SU(8). Therefore, their scattering amplitudes
feature enhanced soft limits. If a candidate counterterm destroys the soft
behavior of the scalar fields, and there is no other counterterm to restore
the soft limit, we know that it cannot be supersymmetrized. The soft boot-
strap method can therefore be used to classify counterterms in extended
supergravities. [11–15] It would be interesting to investigate whether our ap-
proach, based on the structure of inverse Higgs trees from the theory of non-
linear realizations, has anything to say about the counterterm structure. A
linearized description of extended supergravity should include linearized dif-
feomorphisms and gauge transformations in a superspace inverse Higgs tree
with E7(7)/SU(8) scalars at the top, connected by global supersymmetry
transformations. One should be able to count covariant objects from that
inverse Higgs tree and classify counterterms using the covariant derivative
(calculated perturbatively).

Another field of research where non-linear realizations have played a role
recently is the study of integrable deformations. These are special deforma-
tions that preserve an infinite set of commuting symmetries. In other words,
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they preserve the property of integrability. A particularly interesting class
are so-called T T̄ deformations of D = 2 quantum field theories. Such a de-
formation adds to the Lagrangian of a theory the irrelevant local operator
T T̄ , which is constructed from the energy-momentum tensor. One can add
such a deformation either discretely or following an infinitesimal flow along
the parameter t. In the latter case, the Lagrangian satisfies the differential
equation:

∂Lt
∂t

= det(Tµν) . (6.1)

[190] One can then study properties of the deformed action using the un-
deformed one. At the classical level, for example, there exists a mapping
of solutions to the equations of motion between deformed and undeformed
theories. [191,192]

If one follows the flow defined by this equation starting at the free action
for n scalars, L = (∂φi)(∂φj)δij, one arrives at the Nambu-Goto action for a
string in D = 2+n target space, i.e. the scalar DBI action of codimension-n.
Stated the inverted way, following the flow from finite t to t = 0 leads to
an Inönu-Wigner contraction of the co-dimension-n Poincaré action to the
gal(d, n) algebra for n Galileons.

There are many other examples where deforming a free action by T T̄
leads to a theory with a special non-linearly realized symmetry. For example,
deforming an action of free fermions in D = 2 leads to the Volkov-Akulov
action. When deforming a free action for a scalar supermultiplet, one couples
the DBI scalar to the Volkov-Akulov fermion, leading to a theory of partially
broken supersymmetry similar to the Bagger-Galperin model in D = 4. [193,
195] It would be very interesting to investigate whether there is a connection
between integrable deformations and the theory of non-linear realizations. .
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Samenvatting

Symmetrie is een cruciaal concept in de natuurkunde. Een object is sym-
metrisch wanneer men een transformatie kan uitoefenen op het object zonder
het wezenlijk te veranderen. Zo is een bol symmetrisch onder rotaties. De
wetten van de natuur kunnen ook symmetrie vertonen. De definitie van een
symmetrie van de natuurwetten verschilt iets van die van een symmetrie van
een object. De natuurwetten zijn symmetrisch wanneer men een transfor-
matie kan uitoefenen op alle objecten in de wereld tegelijk, zodanig dat de
getransformeerde toestand van de wereld nog steeds voldoet aan alle wetten
van de natuur.

In 1632 stelde Galileo het relativiteitsprincipe voor. Dit principe stelt
dat de natuurwetten gelijk zijn in alle inertiale referentiestelsels. Het rela-
tiviteitsprincipe is een voorbeeld van een symmetrie van de natuurwetten.
Er bestaan namelijk vanwege het relativiteitsprincipe transformaties die elke
volgens de natuurwetten legale toestand van de wereld transformeert naar
een andere eveneens legale toestand. Dit zijn de transformaties die inerti-
aalstelsels met elkaar verbinden, de zogenaamde Galilëısche transformaties.
Newtons wetten van de mechanica voldoen aan het relativiteitsprincipe van
Galileo.

Binnen de mechanica van Newton bestaan belangrijke behoudswetten. De
belangrijkste daarvan zijn de behoudswetten van energie en impuls. De be-
houdswetten in de Newtoniaanse mechanica zijn het gevolg van symmetrie.
Impuls is behouden vanwege symmetrie onder ruimtelijke translaties in de
wetten van Newton, energie vanwege translaties in tijd. Volgens de eerste
stelling van Noether bestaat er voor elke symmetrie van de natuurwetten
een corresponderende behoudswet, en vice versa. [35]

De volgende grote ontdekking over symmetrie kwam voort uit Maxwells
theorie van elektromagnetisme. De vergelijkingen van Maxwell leiden tot een
opmerkelijke conclusie: elektromagnetische golven in het vacuüm propageren
altijd met dezelfde snelheid c, de lichtsnelheid. Dit lijkt in tegenstelling te
zijn met het relativiteitsprincipe. Maxwells vergelijkingen hebben wel een
andere symmetrie, de Lorentz transformaties. Deze zetten elektrische en
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magnetische velden in elkaar om, zodanig dat een elektromagnetische golf
voor en na een Lorentz transformatie met snelheid c voortbeweegt.

Einstein gaf de correcte interpretatie van de Lorentz transformaties in
1905. Hij maakte twee minimale aannames: 1) het relativiteitsprincipe is
geldig, 2) de snelheid van het licht is c in alle inertiaalstelsels. Einstein
kon daarmee op een eenvoudige manier laten zien dat de transformaties van
Lorentz, niet die van Galileo, het ene inertiaalstelsel omzetten in het andere.
In Einsteins theorie van speciale relativiteit zijn de Lorentz transformaties
dus een volwaardige symmetriegroep van de natuur. De transformaties van
Lorentz vermengen de tijd tmet de ruimtelijke coördinaten ~x en vice versa. In
de speciale relativiteit zien we ruimte en tijd niet als gescheiden concepten,
maar als onderdelen van een groter geheel, de ruimtetijd. De theorie van
Einstein heeft daarmee drastisch veranderd hoe men denkt over ruimte en
tijd. Einstein kwam tot deze fundamentele inzichten door symmetrie voorop
te stellen. Het relativiteitsprincipe was volgens Einstein van groter belang
dan de mechanicawetten van Newton.

Na Einsteins succes met de speciale relativiteitstheorie begonnen natu-
urkundigen theorieën te definiëren aan de hand van hun symmetrie. Het stan-
daardmodel van de deeltjesfysica berust bijvoorbeeld op de symmetriegroep
SU(3) × SU(2) × U(1). Dit is een voorbeeld van een ijksymmetrie, een
symmetrie wiens transformaties afhangen van een arbitraire functie over de
ruimte-tijd coördinaten xµ. Voor elke soortgelijke functie bestaat er een
vectordeeltje, een ijkboson. De groep SU(3) × SU(2) × U(1) staat 12 vrije
functies toe en dus 12 ijkbosonen. Deze deeltjes zijn de dragers van de drie
krachten in het standaardmodel. De zogenaamde pure Yang-Mills theorie van
SU(3)× SU(2)× U(1) impliceert echter dat alle ijkbosonen massaloos zijn.
Dit is niet wat experimenteel geobserveerd wordt. Dit probleem kan worden
opgelost door de ijkbosonen te koppelen aan een scalair veld (het Higgs veld)
zodanig dat een effectieve massaterm voor de ijkbosonen verschijnt. Dit is
alleen mogelijk wanneer het scalair veld zelf ook transformeert onder de ijk-
groep. Tevens moet het scalairveld een vacuüm verwachtingswaarde. Deze
twee voorwaarden samen impliceren dat de groep SU(2) × U(1) (deels) ge-
broken wordt door de vacuümtoestand. Dit is een voorbeeld van spontane
symmetriebreking. De Higgs boson, een excitatie van het Higgs veld, werd in
2012 ontdekt door CERN. [67]

Goldstone, Salam en Weinberg [63] bewezen dat voor elke spontaan ge-
broken symmetrie een massaloos scalair deeltje bestaat. In het geval van een
ijksymmetrie zoals SU(2)×U(1) kan dit deeltje worden opgevat als de longi-
tudinale excitatie van een massieve vector. Als een globale symmetrie spon-
taan breekt, is het massaloze scalaire deeltje te observeren. Dit is een Gold-
stone boson. In het standaardmodel bestaat bij benadering een chirale sym-
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metrie. Deze symmetry wordt spontaan gebroken in het vacuüm, waardoor
Goldstone bosonen ontstaan, de pionen. Weinberg en Nambu [41, 42, 44–47]
slaagden erin de sterke kernkracht te beschrijven aan de hand van een theorie
waar pionen de dragers van de kracht zijn. De interacties van de pionen met
de kerndeeltjes en met elkaar worden bepaald door de spontaan gebroken
chirale symmetrie. De symmetrie werkt opeen speciale manier op de pio-
nen: deze is niet-lineair gerealizeerd. De methodes die Weinberg en Nambu
gebruikten om de sterke kernkracht te beschrijven met Goldstone bosonen
zijn verder uitgewerkt door Callan, Coleman, Wess en Zumino (CCWZ). Zij
ontwikkelden een algemene theorie die de interacties van Goldstone bosonen
op basis van de niet-lineaire symmetrie vastlegt.

Vanwege het grote succes van symmetrieprincipes in de natuurkunde is
het belangrijk te begrijpen welke symmetrieën zouden kunnen bestaan. Cole-
man en Mandula probeerden die vraag te beantwoorden in 1967. Zij leidden
af, onder zeer algemene aannames, dat de symmetriegroep van de natuur een
direct product moet zijn van de Poincaré transformaties van Einsteins spe-
ciale relativiteit en een interne symmetriegroep zoals de chirale symmetrie
en de ijkgroep van het standaardmodel. Er is geen ruimte voor hybride sym-
metrieën die de symmetrie van de ruimte-tijd combineren met een interne
symmetrie.

Het is mogelijk een deel van de aannames van Coleman en Mandula los
te laten. Haag, Lopuszanski en Sohnius verruimden de aanpak van Coleman
en Mandula door symmetrieën toe te laten die een super-Liegroep vormen in
plaats van een standaard Liegroep. Een super-Liegroep kan lokaal worden
beschreven door een super-Lie-algebra, waarin de standaard commutatiere-
laties worden uitgebreid door anti-commutatierelaties. Ook onder de aan-
names van Haag, Lopuszanski en Sohnius zijn de mogelijkheden beperkt: de
symmetrie van Einsteins speciale relativiteit kan alleen worden uitgebreid tot
supersymmetrie. Tot op heden is geen experimenteel bewijs gevonden voor
supersymmetrie in de natuur. Het werk van Coleman en Mandula is ook niet
van toepassing op zogeheten dynamische symmetrieën. Dit impliceert onder
andere dat het mogelijk is om de Poincaré symmetrie van de speciale rela-
tiviteit uit te breiden met een niet-lineair gerealizeerde ruimte-tijd of hybride
symmetrie.

In deze scriptie zullen we onderzoeken welke vormen van niet-lineair ge-
realizeerde symmetrie mogelijk zijn, op basis van de theorieën van Cole-
man/Mandula, Haag/Lopuszanski/Sohnius en CCWZ. We leggen de nadruk
op niet-lineaire ruimte-tijd of hybride symmetrie. We zullen gebruik maken
van algebräısche methoden. Soortgelijke vragen zijn ook behandeld op basis
van verstrooïıngsamplitudes. We zullen in de scriptie onze resultaten met
dergelijk werk vergelijken.
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Uit ons onderzoek blijkt dat niet-lineaire ruimte-tijd symmetrieën erg
zeldzaam zijn. In sommige gevallen (afhankelijk van hoeveel en welk type
Goldstone velden we gebruiken) kunnen we een volledige lijst geven van alle
mogelijkheden. Over theorieën met lineair gerealiseerde Poincaré symmetrie
in vier dimensies kunnen we het volgende concluderen:

� Voor een enkel scalair Goldstone veld zijn de mogelijkheden: I) extended
shift symmetrie, II) dilatatie symmetrie en speciale hoekgetrouwe trans-
formaties, III) de vijf-dimensionale (anti-)Poincaré groep ISO(1, 4) of
AdS groep ISO(2, 3) en de speciale Galileon.

� Voor een willekeurig aantal spin-1
2

Goldstino’s zijn I) extended shift
symmetrie en II) (N -extended)) supersymmetrie mogelijk.

� Voor een enkele ijkvector Goldstone zijn geen extended shift symmetrie
of veldafhankelijke (exceptionele) symmetrieën mogelijk.

We hebben deze conclusies afgeleid onder de aanname van coset univer-
sality. Dit houdt in dat I) de coset constructie, de methode can CCWZ,
de unieke niet-lineair gerealiseerde transformaties genereert voor elk patroon
van spontaan gebroken symmetrie en II) dat elke spontaan gebroken symme-
trie op basis van de CCWZ methode kan worden beschreven. Deze aanname
is bewezen voor het geval van interne niet-lineair gerealiseerde symmetrieën
in een Poincaré theorie. In deze scriptie zullen we bestuderen in hoeverre we
de aanname ook kunnen vertrouwen of verifiëren voor ruimte-tijd en hybride
symmetrieën.

We hebben dezelfde aanpak gebruikt om niet-lineaire symmetrieën ook
te bestuderen in lineair supersymmetrische theorieën. Voor N = 1 in vier
dimensies concluderen we het volgende:

� In het geval van een enkel chiraal Goldstone superveld zijn de mogeli-
jkheden: I) (extended) super -shift symmetrie. Een dergelijke symme-
trie shift het scalaire veld, het fermion, en/of het auxiliaire veld in een
chiral superveld. II) minimale D = 6 supersymmetrie in vlakke, dan
wel AdS ruimte-tijd. Een supersymmetrische versie van de speciale
Galileon bestaat echter niet.

� Voor een enkel Maxwell Goldstone superveld is het volgende mogelijk:
I) (extended) super-shift symmetrie, II) minimale N = 2 supersymme-
trie in vier dimensies.

We beginnen de scriptie met een algemene technische introductie tot sym-
metrie in de (kwantum)veldentheorie. Hier leggen we onder meer op technisch
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niveau uit wat het verschil is tussen globale en ijksymmetrieën, ruimte-tijd en
interne symmetrieën, algebräısche en dynamische symmetrieën. Daarna, in
hoofdstuk 3, geven we een uitleg van de algemene theorie van CCWZ, de ex-
tensie daarvan naar ruimte-tijd symmetrieën, en het inverse Higgs effect. In
de laatste twee hoofdstukken geven we een uitgebreide presentatie van onze
algebräısche methode en de resultaten voor Poincaré en supersymmetrische
theorieën in vier dimensies.
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