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The use of circulating biomarkers for heart failure (HF) is engrained in contemporary cardiovascular practice and provides objective
information about various pathophysiological pathways associated with HF syndrome. However, biomarker profiles differ considerably
among women and men. For instance, in the general population, markers of cardiac stretch (natriuretic peptides) and fibrosis (galectin-3)
are higher in women, whereas markers of cardiac injury (cardiac troponins) and inflammation (sST2) are higher in men. Such differences
may reflect sex-specific pathogenic processes associated with HF risk, but may also arise as a result of differences in sex hormone profiles
and fat distribution. From a clinical perspective, sex-related differences in biomarker levels may affect the objectivity of biomarkers in HF
management because what is considered to be ‘normal’ in one sex may not be so in the other. The objectives of this review are, therefore:
(i) to examine the sex-specific dynamics of clinically relevant HF biomarkers in the general population, as well as in HF patients; (ii) to
discuss the overlap between sex-related and obesity-related effects, and (iii) to identify knowledge gaps to stimulate research on sex-related
differences in HF.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Keywords Heart failure • Biomarkers • Sex • Obesity • Prognostic value

Introduction
Heart failure (HF) is a multifactorial disorder characterized by
impaired cardiac function, systemic inflammation and neurohor-
monal activation.1,2 The most recent trends according to data
from 4 million individuals indicate that the absolute number of
incident HF cases was 9% higher in men than in women, but
among older individuals (>80 years), the absolute number of
HF cases was higher in women (Figure 1).3 Whereas macrovas-
cular coronary artery disease and myocardial infarction are
leading causes of HF in men,4–7 coronary microvascular dys-
function, hypertension and immuno-inflammatory mechanisms
are thought to play a greater role in the development of HF
in women.4,8,9 Response of the myocardium to ischaemic injury
and cardiovascular stress also differ between men and women.
For instance, after an ischaemic insult to the heart, a ∼10-fold
higher apoptotic rate in the peri-infarct region has been observed
in men compared with women.10 When subjected to pressure
overload, female hearts tend to remodel in a concentric pat-
tern, whereas male hearts more often progress to an eccentric
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.. remodelling pattern.10–12 However, the exact pathophysiological

mechanisms that lead to these sex-related differences are yet to be
elucidated.

Circulating HF biomarkers encompass a wide range of molecules
(e.g. proteins, enzymes, hormones and gene products) present in
blood and other body fluids, and furnish objective information
about various biological or pathological processes associated with
this syndrome.13,14 Some are routinely used in clinical practice [e.g.
natriuretic peptides (NPs)] to diagnose and estimate HF severity,
and also to provide prognostic information beyond traditional car-
diovascular risk factors. In addition to pre-analytical factors such
as sample collection, storage and choice of assay, sex is a major
factor influencing biomarker levels.15 Biological sex-related differ-
ences in HF biomarkers may result from differences in genetic
makeup, the direct effects of sex hormones, and also indirectly
from differences in fat distribution among men and women.16,17

However, information regarding the pathobiology of sex differ-
ences in HF biomarker concentrations is limited. The extent to
which sex-related differences affect the utility of biomarkers in
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Figure 1 Overall and age-stratified incidence of heart failure (HF) in women and men. Standardized HF incidence (left panel) presents cases
in 100 000 persons from the European standard population. Crude incidence (right panel) presents estimated absolute number of cases in the
UK population (2014 census mid-year estimates). Age-standardized incidence of HF was 52% higher in men than in women. However, the total
number of incident HF cases was only 9% higher in men. Reproduced with permission from Conrad et al.3

contemporary HF management is also unclear. The current review
aims to address these issues.

Sex differences in heart failure
biomarkers
In the following sections we will focus on the HF biomarkers with
the greatest potential clinical relevance, based on the availability of
robust biochemical assays and multiple publications demonstrating
clinical utility beyond traditional HF risk factors.13,14 These include
NPs, as well as the more novel HF biomarkers,18 which include
cardiac troponins (cTns), galectin-3 and soluble interleukin-1
receptor-like 1 (sST2). We will also briefly discuss two poten-
tial HF biomarker candidates related to inflammation: growth
differentiation factor-15 (GDF-15) and osteopontin. Table 1 and ..
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. Figure 2 provide the reader with a synopsis of HF biomark-
ers and their chief sources, highlighting sex-specific aspects.
Figure 3B illustrates sex-specific biomarker dynamics in healthy
individuals and in HF patients. Table 2 summarizes sex-specific
data on the value of these biomarkers in HF prediction and
prognosis.

Natriuretic peptides
Natriuretic peptides are a group of polypeptides secreted primarily
by the heart, kidneys and the vascular endothelium. They regu-
late intravascular volume and arterial pressure, thereby maintain-
ing fluid and cardiovascular homeostasis.92,93 They are known to
exert antifibrotic effects94 and may also have a role in metabolic
homeostasis.95,96 The biological effects of NPs are usually mediated

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 1 Heart failure biomarkers: major sources, impact of sex hormones and effects of obesity

Biomarkers (domains) Major sources Sex differences
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Direct effect of sex hormones Effects of adipose tissue
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NPsa (myocardial stretch) Heart (cardiomyocytes)19 Present

• Testosterone suppresses NP
levels20–24

• Oestrogens may increase NP
levels,25 but more data needed

Present

• Obesity is associated with lower levels
of cardiac NPs26–28

• In healthy individuals, male sex-related
lowering of NPs is stronger than
obesity-related effects,26,27 which may
explain lower NP levels in men despite
lower fat mass

Cardiac troponinsb

(myocardial injury)
Heart (cardiomyocytes)29 Unlikely Present

• Obesity is associated with higher levels
of cardiac troponins30

Galectin-3
(tissue fibrosis)

Adipose tissue,31,32 lungs,31

haematopoietic system
Lesser extent: liver, heart

(fibroblasts, resident
macrophages)

Unlikely Strong

• Direct association with total body fat
has been observed in both children
and adults33–36

• Higher percentage body fat may explain
higher plasma levels in healthy women

sST2 (inflammation) Lungs37,38

Lesser extent: vascular
endothelium, heart (cardiac
endothelial cells,
fibroblasts)38,39

Unclear

• Weak correlation between sST2
and total testosterone/oestradiol
in males40

• Controversial evidence in
women40,41

Unlikely

• No significant association with body
mass index in adults41–43

• Weak association with waist
circumference may exist41

NP, natriuretic peptide; sST2, soluble interleukin-1 receptor-like 1.
aNPs include N-terminal pro-B-type NP and B-type NP.
bCardiac troponins include troponin T and I.

by binding to NP receptors (NPR-A and NPR-B), which are
expressed in various tissues including the heart, vasculature, adi-
pose tissue and kidneys.97–99 Active clearance of NPs is facilitated
via a third NP receptor (NPR-C), which is also widely distributed
in many tissues including the adipose tissue and kidneys.97,98 More
general clearance mechanisms also exist, for instance, degradation
of NPs by the enzyme neprilysin.93,98,100

Atrial NP (ANP) and B-type NP (BNP) are thought to be the
most important NPs with regard to fluid regulation and blood pres-
sure homeostasis, and are chiefly secreted by cardiomyocytes.19

They bind to NPR-A, and elicit cardioprotective and antihy-
pertensive effects by counter-regulating overactivity of the
renin–angiotensin system, and also through natriuretic as well as
vasodilatory effects.93 They have an important role in contempo-
rary HF management, with BNP and its amino-terminal-peptide
fragment (NT-proBNP) being the most important molecules used
to diagnose (or exclude) HF in patients presenting with acute
dyspnoea (Class I, Level A evidence).2,13,86,101

In the general population, circulating levels of cardiac NPs
are approximately two-fold higher in women compared with
men (Figure 3B),26,27,44,45 although such differences are not
observed before puberty.102 Currently, there is strong clinical
evidence demonstrating that testosterone lowers cardiac NP ..
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.. levels,20–24,103,104 which may partly explain the relative cardiac NP

deficiency in men. The exact mechanism through which testos-
terone reduces cardiac NP levels remains poorly understood,
although up-regulation of neprilysin activity by testosterone may
be one possible explanation.105,106

The role of female sex hormones in modulating plasma con-
centrations of cardiac NPs appears to be complicated: although
oestrogen may increase cardiac NP levels by directly increasing
cardiac NP gene expression and release,107,108 or by increasing the
NPR-A to NPR-C ratio,109–111 there are also reports suggesting
that oestrogen increases neprilysin activity.112,113 In the clinical
setting, evidence regarding the association of endogenous female
sex hormones with higher cardiac NP levels is limited; some stud-
ies, however, indicate that exogenous female hormone therapy
may contribute to higher cardiac NP levels.25,114

In HF patients, sex differences in cardiac NP levels are
inconsistent,46–49 and on an average, their levels appear to be
slightly higher in men (Figure 3B). This suggests that in diseased
states associated with massive cardiac NP production, such as HF,
more ‘subtle’ effects of sex hormones are overridden, and plasma
levels may no longer reflect sex-specific changes. Nevertheless, HF
is a complex phenotype, and differences in NP levels between men
and women with HF should be interpreted with caution because

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Heart failure biomarkers include cardiac-specific as well as non-cardiac biomarkers. This figure highlights the impact of sex hormones
and adiposity on plasma concentrations of heart failure biomarkers. eGFR, estimated glomerular filtration rate; GDF-15, growth differentiation
factor-15; NPR, natriuretic peptide receptor; sST2, soluble interleukin-like receptor-like 1.

such differences may relate to differential prevalence of HF with
reduced ejection fraction (HFrEF) vs. HF with preserved ejection
fraction (HFpEF) among men and women.5,87,115,116

Lower cardiac natriuretic peptide levels
in heavier individuals: is this sex-related
or obesity-related?
Obesity is known to promote a state of relative cardiac NP
deficiency.27,117,118 We recently showed that, in the general pop-
ulation, lower NT-proBNP levels in heavier individuals are bet-
ter explained by sex than by obesity.26 In other words, (male)
sex-related lowering of NT-proBNP was more prominent than
obesity-associated reduction in NT-proBNP levels (Figure 4). These
observations may have clinical consequences with regard to the
choice of optimal cut-off value to rule out HF. For instance, current
guidelines recommend a universal NT-proBNP cut-off (125 ng/L
in the non-acute setting) to exclude HF with confidence, and a
reduced cut-off (∼50% lower) in obese individuals.88 However, ..
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women, and 25–40 ng/L in men.26,27 Given that, in the general pop-
ulation, sex strongly impacts cardiac NP levels (more so than even
obesity), we argue that sex-specific cutpoints to rule out HF119

(e.g. lower NT-proBNP cutpoints in men) should be embraced.
By contrast, in HF patients, sex-related effects appear to be

subtle (Figure 3B), and obesity may play a greater role.28,120–122

In fact, NT-proBNP levels are up to 60% lower in obese HF
patients compared with their lean counterparts.123 This suggests
that in HF patients, a lower cutpoint should potentially be con-
sidered in obese individuals to estimate disease severity, and
sex-specific cutpoints may be redundant. Future studies should
examine this hypothesis in HF patients and also among individual
HF subtypes.

Heart failure prediction and prognosis
In addition to their utility in HF diagnosis, NPs serve as valuable
tools in preventive cardiovascular medicine, and strongly predict
incident HF in the general population.2,18,27,88,101 In a meta-analysis

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 3 (A) An overview of relative proportions (i.e. fold change) of biomarker levels in heart failure (HF) patients (black) compared with
community-dwelling individuals (grey) using pooled data from multiple studies.24–27,30,33,40–42,44–85 On average, N-terminal pro-B-type natriuretic
peptide (NT-proBNP) is ∼45-fold higher in HF patients compared with healthy individuals, followed by troponins (∼6-fold), soluble interleukin-1
receptor-like 1 (sST2, ∼2.5-fold), and galectin-3 (∼1.5-fold). (B) Impact of sex on circulating biomarker levels in the general population and in
HF patients. The x-axis represents percentage increase in biomarker concentrations in women compared with men (red), and in men compared
with women (blue). In community-dwelling individuals, NT-proBNP levels are ∼90% higher in women compared with men. Galectin-3 is also
slightly higher in women, whereas cardiac troponins and sST2 are higher in men. In HF patients, sex-related differences in biomarker levels are
attenuated, and on an average, all biomarkers are higher in men. The reader is advised to consider assay-related differences for more exact
representation. Troponins include cardiac troponins T and I.

of 40 prospective studies (95 617 participants, 2212 HF events),
the risk ratio for HF (comparing the top and bottom thirds of
NT-proBNP concentrations after sex stratification and adjustment
for clinical risk factors) was higher in men than in women [4.25
vs. 2.44; P< 0.001].50 Another recently conducted prospective
study including participants from four cohorts (n = 78 657) also
reported a similar trend: NT-proBNP (measured in 30 443 individ-
uals) was more strongly associated with incident HF in men than
in women [hazard ratio (HR) 1.89 vs. 1.54; P = 0.006].51 NPs also
strongly predict outcomes in HF46–48,52–59,87 with some evidence
that NT-proBNP may be a superior predictor of mortality and HF
readmission in men.49

Cardiac troponins
The troponin complex consists of three subunits regulating
actin–myosin interaction: troponin C (TnC; the calcium-binding
subunit), troponin T (TnT; the tropomyosin-binding subunit), and
troponin I (TnI; the inhibitory subunit).124 Troponins relevant ..
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. to cardiology practice include cardiac-specific isoforms of TnT
and TnI (i.e. cTns).125 Even minor elevations in circulating cTns
raise the suspicion of ongoing cardiac damage29,30,126 although
such findings do not provide any information about the cause of
myocardial injury.

In healthy individuals, circulating cTn levels are higher in men
than women.127,128 For instance, median values were ∼53%
higher in men using the Roche Diagnostics cTnT assay [pooled
median values± standard deviation (SD): 5.5± 2.2 ng/L in men
vs. 3.6±1.3 ng/L in women],60–64 and ∼44% higher in men with
the Abbott cTnI assay (2.6±1.1 ng/L in men vs. 1.8± 1.0 ng/L in
women).60,62,65 An illustrative overview of sex-related differences
in the 99th percentile values for cTnT assay (Roche Diagnostics)
and cTnI assays (Abbott Diagnostics, Beckman Coulter, Singulex
and Siemens) using data from over 30 population-based studies
was recently provided by Romiti and colleagues.128

In HF patients, plasma cTn levels rise several fold
(Figure 3A),66,129,130 and on average, men have higher cTn lev-
els compared with women (Figure 3B).67–69 For example, in a study

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 2 Sex-specific predictive and prognostic value of heart failure biomarkers

Biomarkers Predicting incident heart failure Predicting outcomes in heart failure
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total population Sex-specific data Total population Sex-specific data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Natriuretic
peptidesa

Strong
evidence50,51,53

• RR in men > women: 4.25 vs. 2.44
(P<0.001). Type of study:
meta-analysis of prospective cohort
studiesc; n= 95 61750

• HR in men > women: 1.89 (95% CI
1.75–2.05) vs. 1.54 (95% CI
1.37–1.74) (P=0.006). Type of
study: prospective cohort studyd;
n= 30 44351

• Sex-specific cutpoints for HF
diagnosis/prediction not routinely
used in clinical practice86

Strong evidence2,18,87,88 • HR for composite events in men >

women: 1.74 (95% CI 1.25–2.43) vs.
1.17 (95% CI 0.84–1.56). Type of
study: prospective cohort study
enrolling patients with acute HF;
n= 228049

Cardiac
troponinsb

Strong evi-
dence53,60,70,89

• HR comparable in men and women:
2.29 (95% CI 1.64–3.21) vs. 2.18
(95% CI 1.68–2.81). Type of study:
meta-analysis of prospective cohort
studiese; n= 67 07370

Strong emerging
evidence71,73

• HR for all-cause mortality
comparable in men and women
using a universal cTnT cutpoint of
18 ng/L [1.48 (95% CI 1.41–1.57)
vs. 1.48 (95% CI 1.34–1.62)]. Type
of study: meta-analysis of cohort
studies enrolling patients with
chronic HF; n= 9289.73

• HR for composite events in men >

women using cTnI assay [3.33 (95%
CI 1.82–6.09) vs. 1.35 (95% CI
0.94–1.93)]. Type of study:
prospective cohort study enrolling
patients with HF with preserved
ejection fraction; n=1096.74

Galectin-3 May predict
incident HF80

Serial
measurements
preferable90,91

• Limited Moderate
evidence14,80

Universal cutpoint:
17.8 μg/L

• Limited

sST2 May predict
incident
HF53,82

• Limited Strong emerging
evidence83–85

Universal cutpoint:
35 μg/L

• Limited

CI, confidence interval; cTnI, cardiac troponin I; cTnT, cardiac troponin-T; RR, risk ratio; HR, hazard ratio; HF, heart failure; sST2, soluble interleukin-1 receptor-like 1.
aNatriuretic peptides include N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide.
bCardiac troponins include cTnT and cTnI.
cCommunity-dwelling individuals without baseline cardiovascular disease were included for analyses. Sex-specific secondary analysis was performed in a subset.
dCommunity-dwelling individuals without baseline HF were included for analyses. N-terminal pro-B-type natriuretic peptide was measured in 30 443 individuals.
eCommunity-dwelling individuals without baseline HF were included for analyses. Sex-specific secondary analysis was performed in a subset.

including stable HF patients, median cTnT levels were 23 ng/L
in men and 18 ng/L in women.67 Several mechanisms have been
proposed to explain raised cTns in HF,131,132 but the exact patho-
physiology of sex-related differences remains to be elucidated. We
postulate that a greater prevalence of cardiac comorbidities133–135

(e.g. atrial fibrillation, ventricular arrhythmias, coronary artery
disease, cardiomyopathies, myocarditis) and male-specific hor-
monal mechanisms136 (e.g. testosterone-induced hypertrophy and
apoptosis of cardiomyocytes) contribute to higher cTn levels in
men with HF. By contrast, more subtle mechanisms of myocardial ..
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. injury137,138 (e.g. coronary microvascular disease), along with the
cardioprotective effects of oestrogen139–142 (e.g. suppression of
cardiomyocyte apoptosis), may translate into relatively lower cTn
levels in women presenting with HF.

According to data from the study conducted by Ndumele
and colleagues (n = 9507), obesity was strongly associated with
elevated cTns.30 It is hypothesized that adipokines released from
the fat tissue may potentiate cardio-deleterious signals or even
directly damage the cardiac tissue,143 resulting in adverse cardiac
remodelling144,145 and in cardiac steatosis.146 Given the differences

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 4 Impact of sex and obesity on N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels in the general population. In the general
population, lower NT-proBNP levels in heavier individuals can be better explained by (male) sex than by obesity. (A) Black lines represent
median NT-proBNP levels in the overall population; grey bands represent prediction intervals of median NT-proBNP; histograms represent
distribution of bodyweight in men (blue) and women (red). (B) Sex-specific associations of body weight and NT-proBNP. Blue lines represent
median NT-proBNP levels in men; red lines represent median NT-proBNP levels in women; grey bands represent prediction intervals of median
NT-proBNP. Reproduced with permission from Suthahar et al.26

in fat distribution among men and women,147 and the higher global
prevalence of obesity in women,148 examining sex differences in
obesity cardiomyopathy may potentially be an exciting avenue of
research.

Heart failure prediction and prognosis
The value of cTns in HF diagnosis is limited. However, cTns strongly
predict incident HF in the general population53,60,89,126, and in a
meta-analysis of 16 studies (67 063 individuals and 4165 HF events),
the predictive value of cTns for incident HF was comparable in
men and women (Table 2).70 cTns can also potentially be used
to risk-stratify HF patients, although the level of evidence for
this is currently lower than for NPs.2,13,101 Nevertheless, evidence
offered by the current body of literature is gaining momentum,
emphasizing the strong and independent performance of cTns
in prognosticating outcomes in both acute71,72 and chronic73 HF
patients. In a meta-analysis of 11 cohort studies including chronic
HF patients (n = 9289), cTnT was a robust predictor of outcomes,
and the prognostic value of cTnT for all-cause death was similar
in men and women73 (Table 2). Recently Gohar and colleagues
reported that both cTnT and cTnI strongly predicted outcome
(all-cause mortality or HF rehospitalization) in patients with HFpEF.
Interestingly, cTnT was similarly associated with adverse events in
both sexes, whereas cTnI (measured using a more sensitive assay)
was more strongly associated with adverse events in men with
HFpEF (HR 3.33, P< 0.001) than in women with HFpEF (HR 1.35,
P = 0.100).74 Nevertheless, limited data on sex-related differences
in the prognostic value of cTns in HF patients preclude the drawing
of any definitive conclusions. ..
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.. Galectin-3

Galectin-3 is a pro-fibrotic protein secreted by several cell types
including macrophages, and is involved in pathways leading to fibro-
sis of various organs including the heart, lungs, liver and kidneys.31

Unlike NPs and cTns, plasma levels of galectin-3 are chiefly main-
tained by contributions from non-cardiac sources (e.g. adipose
tissue, lungs, haematopoietic tissue, liver).31,32 According to data
from four large population-based studies (using BG Medicine,33,75

Alere,76 or ARCHITECHT77 assays), women consistently exhib-
ited slightly higher levels of galectin-3 than men (pooled median
value ± SD: 13.2±1.2 μg/L in women and 12.3±1.4 μg/L in men)
(Figure 3B). The reason for this sex-specific effect is unknown
although differences in fat mass may be a likely explanation. Indeed,
strong associations between adiposity and galectin-3 levels have
been observed in both population-based studies33–35 and animal
studies.32,149 Recently, a comprehensive analysis was performed
in children (n = 170) using more accurate estimates of body fat
mass and distribution [i.e. with dual energy X-ray absorptiome-
try (DEXA)].36 A strong association between total body fat and
galectin-3 levels was observed, indicating that adipose tissue mass,
and not the direct effect of sex hormones, would better explain the
galectin-3 ‘excess’ in women. Galectin-3 levels are generally higher
in HF patients than in healthy individuals78 (Figure 3A). For instance,
the pooled median galectin-3 value ± SD in HF patients from
multiple studies78 (using BG Medicine, Alere or ARCHITECHT
assays) was 18.8± 2.8 μg/L. Interestingly, in HF patients, sex dif-
ferences in plasma concentrations of galectin-3 are inconsistent,
and on an average, men tend to have slightly higher galectin-3
levels than women52,79 (Figure 3B). This suggests that in HF, the
production and clearance of galectin-3 change so that the dynamics
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and biology governing homeostasis under normal circumstances no
longer operate in disease.

Heart failure prediction and prognosis
Galectin-3 was significantly associated with incident HF in
community-dwelling individuals from the FHS (n = 3353)75

and FINRISK (n = 8444)77 studies, but not in the PREVEND
cohort (n = 8569).150,151 In a recent meta-analysis of 18 stud-
ies (n = 32 350),80 as well as in a pooled analysis of four
community-based cohorts (n = 22 756),53 galectin-3 remained
associated with incident HF. However, none of these studies
evaluated sex-specific associations of galectin-3 with incident HF
as the primary outcome. In the FINRISK cohort, sex-stratified
subanalyses were conducted and galectin-3 levels appeared to be
similarly associated with HF in both sexes.77

As galectin-3 is a relatively stable biomarker, serial measure-
ments would provide more precise information about an ongoing
disease process (e.g. cardiac fibrosis) compared with a random
one-time measurement. Indeed, longitudinal changes in galectin-3
levels predicted incident HF in both the FHS (n = 2477) and PRE-
VEND (n = 5958) cohorts, also after extensive adjustment for
cardiovascular risk factors.90,91 To date, no study has examined
whether longitudinal changes in galectin-3 predict new-onset HF
differentially in men and women.

Galectin-3 measurements can be used for risk stratification and
prognostication in acute and chronic HF patients [Class IIb rec-
ommendation; American College of Cardiology (ACC)/American
Heart Association (AHA) HF guidelines],13,14,101,152 and low dis-
charge galectin-3 values (<10th percentile) identify a relatively sta-
ble and low-risk subpopulation of HF patients.153 We lack data on
the sex-specific prognostic value of galectin-3 in HF patients.

Soluble interleukin-1
receptor-like 1

The soluble form of ST2 (sST2) is speculated to indirectly promote
myocardial damage by acting as a ‘decoy’ receptor of interleukin-33
(IL-33); that is, circulating sST2 binds to IL-33 and blocks the car-
dioprotective effects generated by the interaction between IL-33
and the transmembrane ST2 ligand (i.e. IL-33/ST2L interaction).154

Non-cardiac sources, particularly pulmonary tissue,37,38 may be
more important in maintaining plasma sST2 levels, although pro-
duction from vasculature and cardiac endothelial cells has also been
recognized.39

Sex differences in sST2 levels are not observed in children
aged <15 years.155 However, sex differences become apparent in
older children (≥15 years), with males demonstrating higher levels
of sST2 compared with females.155 These sex-related differences
persist in both healthy individuals41,43,156,157 (average median values
± SD: 24.0± 0.78 μg/L in men and 17.2±1.18 μg/L in women),
as well as in HF patients52,81,158 (Figure 3B). Although male sex
appears to be consistently associated with higher sST2 levels,
the direct effect of sex hormones may only partly explain this
phenomenon. For instance, in men, both testosterone levels as well
as estradiol were significantly (but weakly) associated with sST2 ..
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.. levels.40 In women, exogenous oestrogen therapy was associated
with lower sST2 levels,41 whereas in another study sex hormones
did not correlate with sST2 levels.40 Therefore, other potential
mechanisms that would better explain this difference (also in HF)
need to be elucidated. Finally, a significant association between
obesity and sST2 levels has not been reported in population-based
studies,40,42,156 although some animal studies indicate that sST2
expression is decreased in adipose tissue, heart and liver of obese
mice compared with non-obese controls.159

Heart failure prediction and prognosis
Elevated sST2 levels predict incident HF to some extent,53,82 but
sex-specific data are limited. Currently, sST2 has only a Class IIb
recommendation for risk stratification in acute and chronic HF
patients (ACC/AHA HF guidelines),13,101 and a universal prognos-
tic cutpoint of 35 μg/L has been proposed.13,82 However, current
data indicate that sST2 measurements predict outcomes in both
acute83 and chronic84 HF patients. Recently, Emdin and colleagues
demonstrated that in chronic HF patients (n = 4268), sST2 was sig-
nificantly associated with HF hospitalization and mortality and also
provided prognostic information beyond NT-proBNP and cTnT.85

Whether sST2 measurements predict HF outcomes differentially
in men and women, and whether choosing sex-specific cutpoints
would further refine risk prediction in HF patients is not currently
known, and should be investigated in future studies.

Potential heart failure biomarkers:
growth differentiation factor-15
and osteopontin
Growth differentiation factor-15 is a member of the transforming
growth factor-𝛽 (TGF-𝛽) cytokine superfamily with anti-apoptotic,
anti-hypertrophic and anti-inflammatory properties. It is abun-
dantly expressed in extracardiac tissues (e.g. lungs, liver and
kidneys),32,160,161 whereas the heart has only moderate GDF-15
expression.32 Sex differences in plasma levels are not clearly
observed,162 although women may have slightly lower GDF-15
levels than men.163,164 GDF-15 is strongly associated with incident
HF165,166 and can potentially be used in conjunction with other HF
biomarkers to optimize HF prediction.165 GDF-15 also strongly
predicts outcomes in HF patients.164,167–169 However, sex-specific
data are lacking.

Osteopontin is a secreted matricellular glycoprotein expressed
primarily in extracardiac tissues (e.g. the kidneys and luminal
epithelial surfaces of various organs).170 Osteopontin expression
is up-regulated in HF, hypertension and various inflammatory
conditions including obesity.171–175 High cardiac osteopontin
expression promotes myocardial fibrosis and increases left
ventricular stiffness by facilitating the formation of insoluble
collagen.174,176 Interestingly, osteopontin deficiency ameliorates
myocardial fibrosis and improves cardiac function,177 indicating that
osteopontin may emerge as an attractive biotarget in the treat-
ment of cardiovascular disease.178 In humans, plasma osteopontin
levels appear to be lower in women,179,180 and it is suggested
that oestrogen suppresses osteopontin expression in the vascular
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tissue.181 Currently, there is strong evidence highlighting the
prognostic value of osteopontin in HF patients,182–184 although
sex-specific data are lacking.

State-of-the-art: the relevance
of sex-specific dynamics in heart
failure biomarkers
Heart failure biomarkers are indispensable tools in contemporary
cardiovascular medicine, and may play an even greater role in the ..
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.. future. Overall, it appears that sex-specific dynamics in biomarker
levels operate primarily in healthy individuals and to a lesser extent
in HF patients. Interestingly, biomarkers displaying lower levels in
healthy women (cTns and sST2) also display lower levels in women
with HF. By contrast, biomarkers displaying higher levels in healthy
women (NPs and galectin-3) do not consistently exhibit higher
levels in women with HF. Although these observations may be
intriguing from a biological point of view, their clinical relevance
is likely to be limited.

Two potential exceptions could be NPs and cTns, in which
sex-specific differences have been repeatedly observed, but these

Table 3 Future directions: potential research questions

HF biomarkers Knowledge gaps
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Natriuretic peptides (NPs) • What are the mechanisms through which testosterone lowers plasma cardiac NP levels?
• What is the role of female sex hormones in modulating plasma NP levels?
• How do sex hormones affect neprilysin levels/activity?
• When NPs are used to rule out HF, are sex-specific cutpoints relevant?
• In HF patients, are baseline sex-related differences in NP levels absent (or present) when HF subtypes

are separately considered?
• Does obesity-associated lowering of NP levels in HF patients have a significant sex-related component?

Cardiac troponins (cTns) • Are sex-specific cTn cutpoints relevant in predicting incident HF, and in predicting outcomes in HF?
• Do obesity-related myocardial injury mechanisms differ between men and women?

Galectin-3 • Do longitudinal changes in galectin-3 predict incident HF and outcomes related to HF differentially in
men and in women? Is the predictive value of galectin-3 different in lean vs. overweight individuals?

sST2 • Why are sST2 levels consistently higher in men than in women? What is the role of sex hormone levels
in determining sST2 levels?

• Will sex-specific sST2 cutpoints improve HF risk prediction?

HF, heart failure; sST2, soluble interleukin-1 receptor-like 1.

Table 4 Reporting template for sex-specific biomarker analysis

Recommendations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Sex-specific plasma
concentrations

• Sex-specific plasma biomarker concentrations should be provided, even if significant baseline differences
are not observed

• Age-adjusted biomarker concentrations should be provided where necessary

2. Sex-specific cutpoints • In biomarkers displaying (clinically relevant) baseline sex differences, optimal sex-specific cutpoints to
predict heart failure, diagnose (rule in/rule out) heart failure, or prognosticate outcomes in heart failure
should be identified

• If no sex-specific cutpoint was identified, this should also be mentioned

3. Sex-specific risk ratios • Crude and age-standardized event rates in men and women should be mentioned
• When comparing risk ratios, studies should not only provide P-values for sex*biomarker interaction on a

multiplicative scale, but also hazard ratios or odds ratios of the interaction term along with the
corresponding 95% confidence intervals

• Sex-stratified coefficients should be provided (at least in the supplementary information) for future
meta-analysis of results185

4. Sex-specific prediction models
using biomarkers

• Sole reliance on improvement in C-statistic (discrimination) to identify sex-specific predictive utility of
biomarkers (beyond an established clinical model) is not advised due to its limited sensitivity186–188

• Other often ignored measures such as the Wald statistic, likelihood ratio test, chi-squared statistic and
Akaike/Bayesian information criteria are more powerful in assessing model improvement,188 and should
also be considered in sex-specific biomarker selection
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differences have not (yet) been used in sex-specific diagnostic or
prediction models. In this context, we would like to reiterate that
in the general population, male sex explains lower cardiac NP
levels to a greater extent than obesity. Therefore, using sex-specific
cutpoints (i.e. lower cutpoints in men) may (theoretically) rule
out HF more accurately in men and this deserves further study.
In contrast to NPs, circulating cTn levels are lower in women
than in men. Although the clinical relevance of sex-specific cTn
cutpoints in HF prevention is currently under-recognized, the
development of ultra-sensitive cTn assays may unmask subtle
sex-related differences. This, together with the generation of
high-quality data, could potentially lead to the clinical application
of sex-specific cutpoints (i.e. lower cutpoints in women), which
may help to identify future HF risk, as well as risk associated with
HF more effectively in women.

In summary, we have reviewed sex-specific aspects of key HF
biomarkers, and highlighted the fact that our current understanding
of factors contributing to sex-related differences in HF biomarkers,
and the clinical relevance of these findings, is insufficient. We have
identified several knowledge gaps that could potentially serve as
“focus points” for future research on sex-related differences in
HF biomarkers (Table 3). We also provide key recommendations
for sex-specific biomarker analyses in Table 4,185–188 and strongly
advocate that future studies should examine the clinical value of HF
biomarkers in men and women separately. Such an approach may
uncover important sex-related differences,185 and may ultimately
improve HF management and patient care.
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