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Abstract As energy saving and emission reduction become a global action, the disparity in energy
intensity between different regions is a new rising problem that stems a country's or region's
energy‐saving potential. Here we collect China's provincial panel data (1995–2017) of primary and final
energy consumption to evaluate China's unequal and polarized regional pattern in energy intensity,
decompose the inequality index into contributing components, and investigate possible driving factors
behind the unequal pattern both regionally and structurally, for the first time. The results show that China's
interprovince disparities in energy intensity increase and are exacerbated by the enlarging disparities in
energy intensity between the least developed and most developed regions of China. The causes for this
phenomenon are as follows: (i) rather loose regulatory measures on mitigating coal consumption;
(ii) inferior energy processing technology in areas specializing in energy‐intensive industries; (iii) increasing
interregional energy fluxes embodied in trade; and (iv) separate jurisdictions at provincial administrative
levels. These factors can synthetically result in unintended spillover to areas with inferior green
technologies, suggesting an increasingly uneven distribution of energy‐intensive and carbon‐intensive
industries and usage of clean energy. The results reveal the necessities of regional coordination and
cooperation to achieve a green economy.

1. Introduction

Although there exist different opinions, energy intensity is one of the basic indicators that are widely
used for evaluating the efficiency of comprehensive energy utilization in a country (region) and reflect-
ing the resource and environmental costs of economic development (Bhattacharyya, 2011;
Proskuryakova & Kovalev, 2015; Voigt et al., 2014). With the rapid growth of China's energy consump-
tion and greenhouse gas emissions, the contradiction between energy demand and environmental pro-
blems has become increasingly prominent, causing problems ranging from ecological system instability
and agriculture loss (Kang & Eltahir, 2018; Mi et al., 2018) to physical and mental health declines
(Wang et al., 2017; Xue et al., 2019). With improving energy efficiency becoming a top priority (Shan
et al., 2017), China has launched a series of regulations that propose significant goals for future energy
intensity (Zhang et al., 2017), such as the Energy Development Strategic Action Plan, the U.S.‐China
Joint Presidential Statement on Climate Change, Made in China 2025, and the “Five‐Year Plan”
(FYP). Effective progress has been made toward achieving these targets: According to the
International Energy Agency's (2018) report Energy Efficiency 2018, the worldwide movement of eco-
nomic activities away from energy‐intensive industrial sectors has offset a more than 25% increase in
final energy use, 40% of which was due to China's contribution.
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While setting significant energy‐saving targets for the whole country, China also allocated different
energy‐saving quotas in different provinces, which resulted in increasing disparities in energy intensity.
The primary energy consumption of seven more developed provinces declined initially from 2011 to
2016, while the total primary energy consumption still increased at a rate of 3.46% (Ou et al., 2019).
Under the 12th FYP (a series of social and economic development initiatives implemented during
2010–2014), the regional allocation of energy intensity is based on the “common but differentiated”
burden sharing rules (Ringius et al., 1998) and is quite diverse across provinces according to their
economic development levels (Dong et al., 2018; Yi et al., 2011): Xinjiang, Tibet, and Qinghai, some
of the least developed and least energy‐saving provinces in China, are required to cut their energy
intensity by 10%, while Tianjin, Shanghai, Jiangsu, Zhejiang, and Guangdong, some of the most
developed and most energy‐saving provinces, are required to cut their energy intensity by 18%. Since
energy intensity targets are not allocated equally across regions, they may have triggered traditional
manufacturing transfer and amplified the energy intensity gap between different regions. This primary
energy intensity gap may hinder the achievement of a country's energy intensity target (Burnett &
Madariaga, 2017), given that some regions' energy‐saving potential is not fully exploited through
technological spillovers and interregional cooperation (Alcantara & Duro, 2004; De Groot &
Mulder, 2012).

The disparity in China's energy intensity receives much research attention. For example, Zhang et al. (2011)
and Jiang et al. (2017) analyzed that per capita energy use and energy intensity are higher in Middle and
West China. Jiang et al. (2018) applied convergence analysis to prove the interregional spillover effect of
energy intensity. The reasons for this interregional gap in energy consumption and energy efficiency include
technology heterogeneity (Zhang & Zhou, 2020), energy consumption structure (Wu, 2012), the develop-
ment of heavy industries (Jiang et al., 2014; Li et al., 2013), and urbanization (Ma, 2015). Usingmultiregional
input‐output (MRIO) analysis, several studies have also shownmore energy embodied products are exported
from West China to East China, accounting for enlarging disparities in energy intensity (Sun et al., 2017;
Zhang et al., 2016). Based on the significant interregional disparities in energy intensity, Dong et al. (2018)
divided China into three regions and analyzed the energy conservation potential for each of the three regions
in 2030.

However, most of the abovementioned studies aimed to investigate the spatial relationship between
different regions, instead of comprehensively revealing the extents of interregional disparities, or the
contribution of different regions and factors to the disparities. In this paper, we use the Zenga inequality
index to comprehensively measure the extent of interregional disparities. Based on the upper and lower
arithmetic means of each point of the distribution, one of the main advantages of the Zenga index is
that it can be used to reveal the contribution of each observation sample to the overall disparities
(Grossi & Mussini, 2017; Wang et al., 2020). Moreover, this paper combines the Zenga index with the
index decomposition analysis method proposed by Ang (2004) and Wang and Zhou (2018) and proposes
a novel and systematic method to decompose the Zenga index into multiple multiplicative and additive
contributors. To the best of our knowledge, this is the first study that proposes such a systematic
method to decompose the Zenga index. Therefore, using the Zenga inequality index helps us not only
to understand the interregional difference in energy intensity within China more comprehensively
but also to offer differentiated emission‐reduction strategies according to each region's development sta-
tus. We also present the measurement of disparity in energy intensity in China using the Theil index,
the Gini index, and the coefficient of variation (CV), which all yield similar results and help prove
the durative spatial separation of energy‐producing activities and final energy‐consuming activities in
China.

We first characterize China's disparities in energy intensity by adopting provincial annual data from the
China Energy Statistical Yearbook (1996–2018), the Zenga inequality index, and the Theil inequality index,
to decompose the drivers for disparities in energy intensity in terms of provinces, regions, energy transforma-
tion, energy consumption structure, sectoral energy intensity, and sectoral structure. The results provide
in‐depth insights into the present situation, potential causes, and future evolution of disparity and polariza-
tion in energy intensity in China. Finally, we conclude that the ongoing regional development plans should
be more reconciled with energy conservation and the development of renewable energy and green
technology.
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2. Materials and Methods
2.1. Measuring China's Interprovincial Energy Intensity Disparity

We adopt the Zenga inequality index (Zenga, 2007) to calculate China's interprovincial disparities in pri-
mary and final energy intensities, which can measure disparity at various points of the distribution and
reflect specific province's contribution to the overall disparity. The primary energy intensity of province
h can be decomposed to the product of the energy transformation rate and final energy intensity as
follows:

ph ¼
PEh

GDPh
¼ PEh

FEh
� FEh

GDPh
¼ th � f h (1)

where ph, th, and fh are the primary energy intensity, energy transformation rate, and final energy intensity
of province h, respectively; PEh, FEh, and GDPh are primary energy consumption, final energy consump-
tion, and gross domestic product (GDP) of province h, respectively. Mathematically, the Zenga inequality
index is based on the weighted ratio of the upper and lower arithmetic means. Thus, we sort the primary
energy intensity ph in ascending order and set the province with the highest primary energy intensity as
province r, and the upper and lower arithmetic means of the primary energy intensities can be calculated
as follows, respectively:

M−
h pð Þ ¼

∑
h

j¼1
PEj

∑
h

j¼1
GDPj

¼
∑
h

j¼1
PEj

∑
h

j¼1
FEj

�
∑
h

j¼1
FEj

∑
h

j¼1
GDPj

¼ M−
h tð ÞM−

h fð Þ (2)

Mþ
h pð Þ ¼

∑
r

j¼h þ 1
PEj

∑
r

j¼h þ 1
GDPj

¼
∑
r

j¼h þ 1
PEj

∑
r

j¼h þ 1
FEj

�
∑
r

j¼h þ 1
FEj

∑
r

j¼h þ 1
GDPj

¼ Mþ
h tð ÞMþ

h fð Þ; h ≤ r − 1

PEr

GDPr
¼ PEr

FEr
� FEr

GDPr
¼ Mþ

r tð ÞMþ
r fð Þ; h ¼ r:

8>>>>>>><
>>>>>>>:

(3)

whereM−
h pð Þ,M−

h tð Þ, andM−
h fð Þ are the average primary energy intensity, energy transformation rate, and

final energy intensity of provinces with primary energy intensities less than or equal to ph, respectively;
Mþ

h pð Þ, Mþ
h tð Þ, and Mþ

h fð Þ are the average primary energy intensity, energy transformation rate, and final

energy intensity of provinces with primary energy intensities higher than ph, respectively. Specifically,
since province r is the province with the highest primary energy intensity, Mþ

r tð Þ and Mþ
r fð Þ are equal

to the energy transformation rate and final energy intensity of province r, respectively. The primary energy
intensity disparity at each point of the distribution can be evaluated by the relative gap between the higher
arithmetic mean of primary energy intensity Mþ

h pð Þ and lower arithmetic mean of primary energy inten-
sity M−

h pð Þ as follows:

Ih pð Þ ¼ Mþ
h pð Þ −M−

h pð Þ
Mþ

h pð Þ ¼ Mþ
h tð ÞMþ

h fð Þ −M−
h tð ÞM−

h fð Þ
Mþ

h pð Þ

¼ Mþ
h tð Þ −M−

h tð Þ� � �M−
h fð Þ

Mþ
h pð Þ þ Mþ

h fð Þ −M−
h fð Þ� � �M−

h tð Þ
Mþ

h pð Þ

þ Mþ
h tð Þ −M−

h tð Þ� � � Mþ
h fð Þ −M−

h fð Þ� �
Mþ

h pð Þ ¼ Ith pð Þ þ I fh pð Þ þ Iinth pð Þ

(4)

where Ih(p) is the relative gap in primary energy intensity between the bottom h provinces and the top r‐h
provinces. It can be decomposed into the disparity in final energy intensity, the disparity in energy trans-

formation rate, and their cross‐multiplication term, denoted as Ith pð Þ, I fh pð Þ, and Iinth pð Þ, respectively. The
overall disparity in primary energy intensity, and its driving factors from the disparity in energy transfor-
mation rate, the disparity in final energy intensity, and the interaction between energy transformation rate
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and final energy intensity are the means of Ih(p), Ith pð Þ, I fh pð Þ, and Iinth pð Þ weighted by GDP as follows,
respectively:

I pð Þ ¼ ∑
r

h¼1
Ih pð Þ � GDPh

∑
r

h¼1
GDPh

(5)

It pð Þ ¼ ∑
r

h¼1
Ith pð Þ � GDPh

∑
r

h¼1
GDPh

(6)

I f pð Þ ¼ ∑
r

h¼1
I fh pð Þ � GDPh

∑
r

h¼1
GDPh

(7)

Iint pð Þ ¼ ∑
r

h¼1
Iinth pð Þ � GDPh

∑
r

h¼1
GDPh

(8)

As a robustness check, we also decompose the disparity in primary energy intensity using the Theil index.
According to Duro et al. (2010) and Duro and Padilla (2011), we first calculate two hypothetical vectors of
primary energy consumption per unit of GDP and let the value of each factor included in Equation 1 diverge
from the mean as follows, respectively:

pth ¼ th � f (9)

p f
h ¼ t � f h (10)

where f and t are the national averages of final energy intensity and energy transformation rate, respec-
tively. According to Duro and Padilla (2006), the Theil index, denoted as T(·), allows a synthetic decom-
position of national primary energy intensity disparity into three factors as follows:

T p; yð Þ ¼ T pt; yð Þ þ T p f ; y
� �þ log 1þ σt; f

p

� �
¼ Tt þ Tf þ intert; f (11)

where Tt, Tf, and intert,f are the disparity in energy transformation rate, the disparity in final energy intensity,
and their interaction term, respectively. σt,f is the covariance between energy transformation rate and final
energy intensity; p is the national average of pht; and y is the GDP share of province h in the national GDP.

We observe that the change direction of the Theil index is generally similar with that of the Zenga index. Due
to limited space, the decomposition results are plotted in supporting information Figure S1 and also listed in
our Data Set S1.

2.2. Measuring Drivers of the Disparity in Energy Intensity

Here we apply a different data set on energy inventory compiled by Shan, Guan, Zheng, et al. (2018) and
Shan et al. (2020), to more rigorously identify the influences of energy consumption structure, sectoral
energy intensity, and sectoral structure on the disparity in energy intensity. First, we sort the energy inten-
sity eh in ascending order and letM−

h eð Þ be the average energy intensity of provinces with energy intensities
less than or equal to eh. Thus, M−

h eð Þ can be further decomposed as follows:

M−
h eð Þ ¼ ∑

j
∑
k

M−
hjk Eð Þ

M−
hj Eð Þ

M−
hj Eð Þ

M−
hj Yð Þ

M−
hj Yð Þ

M−
h Yð Þ ¼ ∑

j
∑
k
M−

hjk esð ÞM−
hj eið ÞM−

hj ssð Þ (12)

whereM−
hjk Eð Þ,M−

hj Eð Þ,M−
hj Yð Þ, andM−

h Yð Þ denote the consumption of energy source k in sector j, the total

energy consumption of sector j, the value added of sector j, and the total value added in provinces with energy
intensities lower than or equal to eh, respectively. Their multiplication can be transformed into the multipli-
cation of M−

hjk esð Þ (the energy consumption structure of energy source k in sector j), M−
hj eið Þ (the energy
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intensity of sector j), andM−
hj ssð Þ (the sectoral structure of sector j) in pro-

vinces with energy intensities less than or equal to eh.

Aligned with M−
h eð Þ, Mþ

h eð Þ can also be decomposed into the following
multiplied terms:

Mþ
h eð Þ ¼ ∑

j
∑
k

Mþ
hjk Eð Þ

Mþ
hj Eð Þ

Mþ
hj Eð Þ

Mþ
hj Yð Þ

Mþ
hj Yð Þ

Mþ
h Yð Þ ¼ ∑

j
∑
k
Mþ

hjk esð ÞMþ
hj eið ÞMþ

hj ssð Þ

(13)

Then, we can decompose Mþ
h eð Þ −M−

h eð Þ using the index decomposition
analysis method proposed by Ang (2004) as follows:

Mþ
h eð Þ −M−

h eð Þ ¼ ∑
j
∑
k
L wþ

hjk;w
−
hjk

� 	
ln

Mþ
hjk esð Þ

M−
hjk esð Þ

 !
þ ∑

j
∑
k
L wþ

hjk;w
−
hjk

� 	
ln

Mþ
hj eið Þ

M−
hj eið Þ

 !

þ∑
j
∑
k
L wþ

hjk;w
−
hjk

� 	
ln

Mþ
hj ssð Þ

M−
hj ssð Þ

 !
¼ ∑

j
∑
k
Δhjkesþ ∑

j
Δhjeiþ ∑

j
Δhjss

(14)

where L wþ
hjk;w

−
hjk

� 	
¼

Mþ
hjk Eð Þ

Mþ
h Yð Þ −

M−
hjk Eð Þ

M−
h Yð Þ

ln
Mþ

hjk Eð Þ
Mþ

h Yð Þ − ln
M−

hjk Eð Þ
M−

h Yð Þ

.

We can insert the decomposedMþ
h eð Þ −M−

h eð Þ into Equations 15–17 to retrieve the drivers of the disparity in
energy intensity from the perspectives of energy consumption structure Iesk eð Þ, sectoral energy intensity Ieij eð Þ,
and sectoral structure Issj eð Þ, as follows:

Iesk eð Þ ¼ ∑
h

∑
j
Δhjkes

Mþ
h eð Þ � GDPh

∑
r

h¼1
GDPh

0
BB@

1
CCA (15)

Ieij eð Þ ¼ ∑
h

Δhjei
Mþ

h eð Þ �
GDPh

∑
r

h¼1
GDPh

0
BB@

1
CCA (16)

Issj eð Þ ¼ ∑
h

Δhjss
Mþ

h eð Þ �
GDPh

∑
r

h¼1
GDPh

0
BB@

1
CCA (17)

2.3. Decomposing Into Within‐Group and Between‐Group Components and
Evaluating Polarization
2.3.1. Evaluating Polarization With Exogenous Groups
The Zenga inequality index has the high quality of additive decomposability (Radaelli, 2010) and can be
decomposed into the sum of the within‐group disparity and the between‐group disparity without redundant
terms. Here we divide r provinces in China into k subgroups (k ¼ 3 in our case) and set their GDP and pri-
mary energy intensity as y1,y2, …, yr and p1, p2, …, pr respectively. In addition, nhg denotes the GDP of pro-
vince h if province h is within subgroup g as follows:

nhg ¼
yh; if province h is included in subgroup g

0; if province h is not included in subgroup g



(18)

The data structure is shown in Table 1.

Table 1
Data Structure of Primary Energy Intensity of k Subgroups

Primary
energy
intensity

Subgroups

Total1 … g … k

p1 n11 … n1g … n1k n1•
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ph nh1 … nhg … nhk nh•
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
pr nr1 … nrg … nrk nr•
Total n•1 … n•g … n•k N

Note. Primary energy intensity ph is sorted in ascending order.
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Thus, we have

∑
k

g¼1
n•g ¼ ∑

r

h¼1
nh• ¼ N (19)

∑
r

h¼1
nhg ¼ n•g (20)

∑
k

g¼1
nhg ¼ nh• (21)

The Zenga inequality index for the disparity in primary energy intensity can be decomposed into
within‐group component Iw(p) and between‐group component Ib(p) as follows:

I pð Þ ¼ Iw pð Þ þ Ib pð Þ (22)

Iw pð Þ ¼ ∑
k

l¼1
∑
r

h¼1

Mþ
hl pð Þ −M−

hl pð Þ
Mþ

h• pð Þ
� �

b ljhð Þu ljhð Þnh•
N


 
(23)

Ib pð Þ ¼ ∑
k

l¼1
∑

g: g ≠ l
∑
r

h¼1

Mþ
hg pð Þ −M−

hl pð Þ
Mþ

h• pð Þ

" #
b ljhð Þu gjhð Þnh•

N

( )
(24)

In these equations,Mþ
hl pð ÞandM−

hl pð Þare higher and lower average primary energy intensities for subgroup l,

respectively, and Mþ
h• pð Þ is the higher average energy intensity in all subgroups. Variable b(l|h) ¼ Phl/Ph•

represents the relative GDP of subgroup l to all subgroups with lower energy intensities than ph, where
Phl denotes summed GDP for provinces with energy intensities lower than or equal to ph in subgroup l
and Ph• stands for summed GDP for provinces with energy intensities less than or equal to ph in all sub-
groups. Variable u(l|h) represents the relative GDP of subgroup l to all subgroups with higher energy inten-
sities. When h ¼ r, u(l|h) ¼ nrl/nr•; when h ¼ 1, 2, …, r − 1, u(l|h) ¼ (n•l − Phl)/(n − Ph•).

The magnitude of polarization reveals the convergence of energy intensity within each exogenous grouped
region and divergence of primary energy intensity between the grouped regions. The polarization index can
be measured by the comparison between within‐group component Iw(p) and between‐group component
Ib(p). According to Zhang and Kanbur (2001), we adopt the Z‐K index to construct the energy intensity polar-
ization index as follows:

Z‐K ¼ Ib pð Þ
Iw pð Þ (25)

The Z‐K index being greater than 1 indicates a strong multipolarization of the tested sample.
2.3.2. Evaluating Polarization With Endogenous Groups
An alternative way to evaluate polarization is to apply the endogenous grouping standards, in which groups
are formed optimally to minimize concealed energy intensity gap (Aghevli & Mehran, 1981). We use the
EGR index proposed by Esteban et al. (2007) to measure the polarization in energy intensity with endogen-
ous groups as follows (Duro & Padilla, 2013):

EGR α; βð Þ ¼ ∑
r

i¼1
∑
r

j¼1

yi
∑yi

� �1 þ α yj
∑yj

pi
p
−
pj
p

����
����

" #
− β G − Gbð Þ ¼ ER − ε (26)

where
yi
∑yi

and
yj
∑yj

are the GDP proportions of regions i and j, respectively; pi and pj are the primary

energy intensities of regions i and j, respectively; p is the average primary energy intensity of China; α
and β are the parameters that measure the sensitivity of the index to polarization; G is the Gini index of
the observation sample; and Gb is the between‐group Gini index measuring between‐group inequality. The
measure has two parts, which are the ER index (proposed by Esteban and Ray, 1994, and denoted as ER in
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this study) and the error term (denoted as ε). ER is axiomatically derived using a behavioral model and is
formally defined as follows:

ER ¼ ∑
r

i¼1
∑
r

j¼1

yi
∑yi

� �1 þ α yj
∑yj

pi
p
−
pj
p

����
�����

"
(27)

ε is a measurement of between‐group inequality and is defined as follows:

ε ¼ β G − Gbð Þ: (28)

Following Duro (2005), we set α¼ 1 or 1.3, and β¼ 1. Aligned with the number of exogenous groups, we set
the number of endogenous groups as 3 and use the endogenous grouping algorithms proposed by Davies and
Shorrocks (1989), in which the loss of distributional detail is minimized.

2.4. Test for Significant Difference in the Z‐K and EGR Indexes

We model the Z‐K and EGR indexes as a function of a dummy variable denoting whether the polarization
index is measured within the ith FYP period as follows:

POLt ¼ αi0 þ αi1D
i
t (29)

where POLt denotes the polarization index at period t and Di
t denotes if t belongs to the ith FYP period. Di

t

equals to 1 if t belongs to the ith FYP period and equals to 0 otherwise. In order to show if there exists a
significant change in the Z‐K and EGR indexes in each FYP period, we run the model for eight times and
let i ¼ 8, 9, 10, 11, 12, and 13.

2.5. Data

The data collected initially in this study concern provincial primary and final energy consumption (physical
units), which are from provincial energy balance sheets in the China Energy Statistical Yearbook
(1996–2018). Since provincial energy balance sheets do not include information on energy consumption
in very specific industries, we also use energy inventories compiled by Shan, Guan, Zheng, et al. (2018)
and Shan et al. (2020) to more rigorously decompose the drivers of the disparity in energy intensity. We con-
vert these data into coal equivalent using conversion factors (see Table S1) from related yearbooks.

3. Results
3.1. Evolution of Disparity and Polarization in Energy Intensity

Here we evaluate the interprovincial disparity in primary energy intensity adopting the Zenga inequality
index and decompose it into three components: the disparity in final energy intensity, the disparity in energy
transformation rate, and the interaction between disparities in final energy intensity and energy transforma-
tion rate. The disparity in primary energy intensity and its decomposition, along with the temporal evolution
of energy intensity, are depicted in Figure 1.

Figure 1 clearly demonstrates that the growth trend of energy consumption in China corresponds with the
national economic, energy, and environmental policies. Primary energy consumption started to surge in
2002, when China joined the World Trade Organization (WTO) and advocated developing an open eco-
nomic system and expanding manufacturing, with an 11.87% growth rate of primary energy consumption
on average from 2002 to 2009. However, in late 2009, with the targets and actions pledged under the
Copenhagen Accord, the Chinese government committed to enhancing energy conservation and allocated
this target to the provincial level. This energy‐saving trajectory has been effective since the growth of
China's primary and final energy consumption has slowed down: From 2010 to 2017, primary and final
energy consumption increased by only 5.53% and 4.51% per year, on average, respectively.

However, at the same time, we find that the interprovincial gap in primary energy intensity (plotted as col-
umns, sum of disparity in final energy intensity, disparity in energy transformation, and their interaction) is
rising, while the growth of energy intensity is slowing down. Before 2007, the disparity in energy intensity
within China remained below 0.62 in all years. In contrast, after 2008, disparity in primary energy intensity
is generally higher and fluctuates with an average of 0.6749.
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The main contributor to the disparity in primary energy intensity is the disparity in final energy intensity,
contributing for 47.59% on average, although its influence has shrunk from 63.69% in 1995 to 35.73% in
2017. Meanwhile, the contribution of the disparity in energy transformation rate increased to 37.28% in
2017. The energy transformation rate is expressed as the quotient of primary energy consumption and final
energy consumption, which is inversely proportional to the energy transformation efficiency. The enlarging
gap between provincial primary and final energy consumption indicates unequal interprovincial energy
transfer and diverse energy conversion technology during transformation (Shan, Guan, Hubacek,
et al., 2018).

The interaction between final energy intensity and the energy transformation rate is always positive, indicat-
ing that provinces with higher final energy intensities tend to have lower energy transformation efficiency.
This is because primary energy produced by provinces with the highest energy intensities is usually trans-
ferred to and consumed by provinces with lower energy intensities. For instance, about 20% of the coal used
in the Jing‐Jin‐Ji region, a city cluster with relatively low energy intensity in China, is produced by the
nearby provinces with higher energy intensities, Shanxi and Inner Mongolia (Shan, Guan, Zheng,
et al., 2018).

Figure 2 shows the distribution of primary and final energy intensity in different years (GDP deflated to
1995) and verifies the Zenga inequality index in energy intensity in Figure 1 mutually. Figure 2a reveals that

Figure 2. Energy intensity distribution. (a) Primary energy intensity distribution. (b) Final energy intensity distribution.

Figure 1. Evolution of disparity in energy intensity and energy consumption. Interaction in the legend denotes the
interaction between energy transformation rate and final energy intensity disparities. Total disparity in energy
intensity is plotted as the columns (sum of disparity in energy transformation rate, disparity in final energy intensity, and
their interaction).
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while the lowest level of primary energy intensity among the 30 provinces remains almost the same, the
highest level of primary energy intensity increases from 9.04 to 30.72 tonnes of coal equivalent (tce) per
104 Renminbi (RMB) yuan at the 1995 constant price from 1995 to 2017. The disparity in final energy inten-
sity is also increasing but with a much smaller extent. The difference between the highest and lowest final
energy intensities increased from 3.57 tce per 104 RMB in 1995 to 10.06 tce per 104 RMB in 2009 and
10.62 tce per million RMB in 2017.

One of the most obvious advantages of the Zenga inequality index is that it can clearly show which part in
the distribution contributes most to the overall disparity (Langel & Tillé, 2012; Pasquazzi & Zenga, 2018). We
create disparity curves of energy intensity from 1995 to 2017 to show this property. Since the shape of the
disparity curves of energy intensity is similar in adjacent years, only 1 in 3 years is shown in this paper
(Figure 3). The x‐axis denotes the accumulated share of provincial GDP ordered in ascending primary energy
intensity. The contribution of the energy transformation rate, final energy intensity, and their interaction to
disparity in primary energy intensity is almost unchanged in the early years. However, in recent years, dis-
parities in the energy transformation rate and the interaction between the energy transformation rate and
final energy intensity play a greater part in the disparity in primary energy intensity (shown as year ¼ 2013
and year¼ 2016 in Figure 3). We can intuitively see that energy intensity in China is strongly polarized. The
left and right ends of each of the disparity curve are rising, indicating provinces with the highest and lowest
primary energy intensities contribute more to the disparity in energy intensity. Simultaneously, provinces
with moderate energy intensity levels contribute less than those at the bottom and the top. The disparity
curves in 2013 and 2016 rise as the accumulated share of provincial GDP approaches 1. This shows that
the provinces with the highest energy intensities, such as Gansu, Qinghai, Shanxi, Shaanxi, and Guizhou,
have less advanced green technology and bear more heavy industrial transfer from other more developed
provinces.

3.2. Multipolarization Trend of Energy Intensity

Polarization is a relative but distinctive concept from disparity and inequality (Autor et al., 2008; Motiram &
Sarma, 2014). Knowledge of energy intensity polarization is very effective in guiding reductions agreements
and mitigating potential instability (Duro, 2015). Figure 4 presents the kernel density estimation of the dis-
tribution of energy intensity in China during 1995–2017. We sample data with weights in a normal distribu-
tion (i.e., using normal kernel), and the optimal bandwidth is selected through a data‐driven method that
maximizes the log likelihood with the leave‐one‐out cross‐validation. We find that the distribution of energy
intensity in China in most years is unimodal and positively skewed, implying that the bulk of regions have
relatively lower energy intensities. Over our research period, the mode and the peak of primary energy

Figure 3. Disparity curve of energy intensity of selected years. The contribution of energy transformation rate (brown),
final energy intensity (yellow), and their interaction (green) to disparity in primary energy intensity in different
provinces. The x‐axis denotes the accumulated share of provincial GDP ordered in ascending primary energy intensity.
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intensity increasingly become higher and lower, respectively, indicating that primary energy intensities in
most regions get higher and more dispersed. Moreover, the characteristic of heavy‐tailed distribution is
observed in 2012 and 2017. Specifically, in these 2 years, the energy intensities of some provinces reached
an unprecedented level, with the highest primary energy intensities reaching 20 tce per 104 RMB and
30 tce per 104 RMB, respectively.

Polarization in energy intensity can also be evaluated quantitatively. According to Zhang and
Kanbur (2001), the energy intensity polarization can be evaluated as the quotient of the sum of
between‐group energy intensity disparity and the sum of within‐group energy intensity disparity. We divide
China into three economic regions according to exogenous geographical factors (the East, the Middle, and
the West; see Figure S2), to construct the between‐group and within‐group Zenga inequality indexes (see
Table 2). We find that our geographically based region classification can explain around 70% of the disparity
in energy intensity, indicating that our classification criteria capture the essential characteristics of the polar-
ization in primary energy intensity within China.

Furthermore, we sort China's provinces into three endogenous groups and measure the polarization with
the EGR index (see Table 3). The FYP in China is a series of economic, environmental, and social develop-
ment guidelines issued once in 5 years, which provides the predominant development targets in China.
Considering that China's targets and efforts in mitigating energy consumption vary a lot during different
FYP periods, we further divide our whole evaluated period into six FYP periods, measure the average Z‐K
and EGR indexes during each FYP period, and use an ordinary least squares regression model to test
whether the Z‐K and EGR indexes during each FYP period is significantly different.

From the decomposition results, we observe that the polarization indexes evolve in the same direction as the
inequality indexes. This implies that the distribution of primary energy intensity centralizing around distant
poles is a substantial contributor for enlarging disparities. During every FYP period, the average Z‐K index is
higher than 2.0, validating our observation in Figure 4 that provincial energy intensities within China are
strongly polarized. The provincial energy intensity gaps between the East and the Middle (Between 1 & 2),
between the East and the West (Between 1 & 3), and within the East (Within 1) are the largest during most

Figure 4. Kernel density estimation of the distribution of energy intensity in China.

Table 2
Z‐K Index Within China During Six FYP Periods

FYP Period I(E) Between 1 and 2 Between 1 and 3 Between 2 and 3 Within 1 Within 2 Within 3 Z‐K index

8th 1995 0.5988 0.2222 0.1481 0.0488 0.1307 0.0304 0.0187 2.3309
9th 1996–2000 0.5911 0.1859 0.1784 0.0527 0.1241 0.0273 0.0228 2.4463
10th 2001–2005 0.5806 0.1378 0.1673 0.0558 0.1381 0.0275 0.0252 2.0485**
11th 2006–2010 0.6446 0.1071 0.2192 0.1108 0.1025 0.0197 0.0853 2.1024*
12th 2011–2015 0.6538 0.1969 0.2072 0.0785 0.0966 0.0463 0.0283 2.8267***
13th 2016–2017 0.6935 0.2147 0.2130 0.0747 0.1186 0.0482 0.0244 2.6278

Note. “Between” and “Within” denote between‐group disparity and within‐group disparity, respectively. Numbers 1, 2, and 3 denote three exogenous groups (the
East, the Middle, and the West, respectively; see Figure S1). The whole results for the Z‐K index are displayed in Table S1.
*The Z‐K index during this FYP period is statistically different at the significance level of 10%. **The Z‐K index during this FYP period is statistically dif-
ferent at the significance level of 5%. ***The Z‐K index during this FYP period is statistically different at the significance level of 1%.
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FYP periods, showing that provincial energy intensities in the East are generally lower than those of the
Middle and the West, but still quite diversified. The EGR index also indicates that the polarization in energy
intensity in China is generally getting higher and is mainly contributed by the increase in its component ER,
while the value of component ε is relatively stable. Another interesting finding is that the Z‐K and EGR
indexes are relatively high during the 11th, 12th, and 13th FYP periods, when China attached importance
to energy‐saving and low‐carbon development. The greatest and most significant decrease in the Z‐K and
EGR indexes occurred during the 9th and 10th FYP periods, respectively, when the central authorities trans-
formed China's industrial sector into re‐heavy‐industrialization and set no official energy‐saving target (Qi
et al., 2013). The between‐group disparity in energy intensity is relatively increasing, indicating that different
economic zones are at different development stages; hence, economic activities and energy conservation
actions are diverse across regions.

3.3. Driving Factors for Disparity in Energy Intensity

What are the possible causes of the disparity in energy intensity? Here we first adopt the Zenga inequality
index to identify the contributions of energy consumption structure, sectoral energy intensity, and sectoral
structure to the disparity in energy intensity in 1997 and 2016 (see Figure 5). The categorization of six sectors
and five energy sources is shown in Tables S3 and S4. The results show that the discrepancy in energy‐saving
efforts, the differences in regional consumption of energy sources, energy efficiency, and economic structure
greatly enlarge the regional gap in energy intensity. As the predominant energy for the West, coal consump-
tion is one of the main factors driving up the disparity in energy intensity, and the impact of coal consump-
tion increased in the last 20 years. However, due to lack of law and effective management, measures for
mitigating coal consumption are currently limited (Guan et al., 2018). For instance, coal usage for heating
during the winter is a great contribution of loose coal consumption in rural China (Tao et al., 2018) but is
difficult to be tracked because of the geographically disperse consumption pattern of loose coal. On the other
hand, energy sources more commonly used in the East (oil, natural gas, and nuclear and renewable energy)
reduce the disparity, partly because their usage is more centralized and easier to be tracked and regulated. In
addition, as China's oil, gas, and nuclear and renewable energy power industries are under administrative
monopoly by the central government, these industries have more incentives to reinforce efforts to reduce
environmental and climate change impacts of their products.

From the perspective of sectoral energy intensity, we find that the energy intensities of all the six sectors are
higher in regions with higher energy intensities, which is the West in our case. Specifically, differences in
energy intensity in heavy manufacturing sectors (denoted as heavy in Figure 5) contribute 49.69% and
69.46% to the disparity in regional energy intensity in 1997 and 2016, respectively, and differences in energy
intensity in all the sectors account for more than 60% of the disparity in energy intensity in these 2 years.
Thus, the enlarging disparity in energy intensity is indeed a problem of the enlarging disparity in regional
energy processing efficiency. Furthermore, China's continuously increasing energy consumption may be
exacerbated by the fact that regions with the most inferior energy processing technology are specified in
energy‐intensive production sectors. This indicates that energy sources are heavily misallocated across
regions, and thus, energy‐intensive industries prosper in regions with the lowest energy efficiencies. We

Table 3
EGR Index Within China During Six FYP Periods

FYP Period

α ¼ 1 α ¼ 1.3

ER ε EGR ER ε EGR

8th 1995 0.5656 0.2662 0.2994 0.2133 0.2662 −0.0530
9th 1996–2000 0.5600 0.2820 0.2779* 0.2111 0.2820 −0.0709**

10th 2001–2005 0.5458 0.2508 0.2950 0.2083 0.2508 −0.04249
11th 2006–2010 0.6166 0.2618 0.3548 0.2364 0.2618 −0.02533
12th 2011–2015 0.6834 0.2625 0.4209** 0.2519 0.2625 −0.01061
13th 2016–2017 0.7523 0.2616 0.4907** 0.2777 0.2616 0.0161*

Note. The EGR index of each year is displayed in Data Set S1.
*The EGR index during these FYP periods is statistically different at the significance level of 10%. **The EGR index
during these FYP periods is statistically different at the significance level of 5%. ***The EGR index during these FYP
periods is statistically different at the significance level of 1%.
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will soon discuss a source of the misallocation, which is a command‐and‐control energy policy that assigns
different energy intensity reduction targets for different provinces.

From the perspective of sectoral structure, sectors that are the most conducive to the convergence in energy
intensity are ones with relatively lower energy intensities, such as light manufacturing (denoted as light in
Figure 5), high‐tech manufacturing (denoted as high‐tech in Figure 5), and service sectors. Meanwhile, agri-
culture and heavy manufacturing sectors have relatively higher energy intensities, thus prohibiting this con-
vergence trend. The contribution of the disparity in sectoral structure to the disparity in energy intensity
increasingly shrank in our research period, indicating that regional economic structure in China tended
to be more coordinated.

The significantly enlarging disparities in the energy transformation rate are also due to frequent interregio-
nal energy flows within China, including both secondary energy trade (energy transfer between provinces)
and cement product trade (nonenergy use). As the Middle and the West become specialized in heavy indus-
tries (Gasim, 2015), these regions become net exporters of embodied primary energy from interregional bilat-
eral trade andmay consumemore energy producing these products. Evidence of the expanding interregional
trade in energy consumption can be found in existing literature based on the MRIO model (Gao et al., 2018;
Zhang et al., 2016). The use of MRIO analysis has proved that the interregional trade triggered energy con-
sumption tripled at the national level between 2002 and 2007, with relatively large structural changes among
regions.

The enlarging gap in energy intensity may also be due to a portfolio of energy‐saving policies. Under the 12th
FYP, China allocated different quotas to provinces in regard to cutting their energy consumption per GDP
unit by 2015. The target and actual energy intensity reduction are shown in Figure 6. In this plan, provinces
with the highest energy intensities, i.e., Gansu, Qinghai, Shanxi, Shaanxi, and Guizhou, are only regulated to
cut their energy intensity by 16%, 15%, 16%, 15% and 10%, respectively, which are less stringent targets than
those of provinces with lower energy intensities: The five provinces with the lowest energy intensities in
2010 all had an energy‐saving target of 17% or higher. The only three provinces that failed to achieve their
energy‐saving goals, i.e., Guizhou, Ningxia, and Xinjiang, were all provinces with high energy intensities

Figure 5. Driving factors of disparity in energy intensity (in percent of disparity in energy intensity). (a) Disparity
contributed by energy consumption structure, energy intensity, and sectoral structure in 1997. (b) Disparity
contributed by energy consumption structure, energy intensity, and sectoral structure in 2016
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located in western China. The regional allocation of energy intensity goals is now based on the “common but
differentiated” burden sharing rules (Ringius et al., 1998). While theMiddle and theWest may have the obli-
gation to save more energy due to their higher accumulated energy consumption in the past, they still need
to focus on achieving economic development (Dong, Sun, et al., 2018; Yi et al., 2011). Due to energy techno-
logical progress and structural shifts toward the manufacturing of processed products (Organisation for
Economic Co‐operation and Development, 2012), the energy intensity in the East is controlled under the
12th FYP period, while the Middle and the West have undertaken energy‐intensive industrial transfer from
the East and focused more on economic development. Since the raw‐material‐intensive industrial transfer
within China is untraceable because the enterprises may change their names and legal codes, we can only
find news articles on industrial transfer: Many high‐emission enterprises have been reported to relocate to
the regions with lower energy‐saving and environmental standards or to be shut down, due to stricter
energy‐saving requirements.

4. Discussion and Conclusion

In recent years, China's energy consumption has grown continuously, causing the contradiction between
natural resources and economic growth to become increasingly prominent. Many measures are taken to
reduce China's energy intensity, which have achieved remarkable results, but, at the same time, amplified
disparity in energy intensity. United national energy intensity is largely hindered by provinces with the high-
est energy intensities. In 2017, on average, 31.18%, 31.63%, and 37.19% disparities in energy intensity are con-
tributed by the least 10, middle 10, and top 10 energy‐intensive provinces, respectively. What is more, the
energy intensity gap is enlarging between different economic clubs. The disparity in energy intensity across
the East, the Middle, and the West is almost three times as large as the disparity in energy intensity within
these economic clubs, indicating that the energy intensity distribution in China is getting polarized.

The disparity in energy intensity is more and more contributed by the disparity in energy transformation
rate. This reflects four facts: The first is rather loose regulatory measures on mitigating coal consumption.
Our decomposition results reveal that the discrepancy in energy‐saving efforts and the regional

Figure 6. Energy intensity reduction (%) during the 12th FYP period. Provincial actual reduction (green, %) and target
reduction (red, %) during the 12th FYP period.
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consumption of different energy sources greatly enlarges the regional gap in energy intensity. The main dri-
ver of energy intensity disparity is coal consumption, while oil, natural gas, and electricity consumption are
currently inhibiting this trend. However, as a main factor driving up the disparity in energy intensity, coal
consumption has been underregulated, thus leading to a continuously high level of the disparity in energy
intensity. The second is inferior energy processing technology in areas specializing in energy‐intensive
industries. From our decomposition results, the disparity in sectoral energy intensity accounts for more than
90% of the disparity in energy intensity. Furthermore, provinces with the highest energy intensities in China
are generally in the West, which more relies on energy‐intensive industries. This indicates that the
command‐and‐control energy policies (such as unbalanced energy‐saving goals in the FYP) in China cause
the misallocation of production factors across regions, leading to continuously rising energy consumption
and potential total factor productivity losses (Hsieh & Klenow, 2009). The third is increasing interregional
energy fluxes embodied in trade. The significantly enlarging disparities in the energy transformation rate
are due to frequent interregional secondary energy flows within China. The Middle and the West gradually
become energy base in China and consume more energy for producing these products. Besides, the disparity
in energy intensity is a result of increasing net embodied energy flows from the middle and western regions
of China to the coastal regions through closer interregional trade in domestic supply chains. The fourth is
separate jurisdictions at provincial administrative levels. Another plausible explanation for increasing dis-
parity in energy intensity is the regionally unbalanced allocation of energy‐saving goals in the FYP. The mid-
dle and western regions of China are less motivated to cut their energy intensities as these regions not only
bear a lighter burden to reduce their energy intensities but also are located upstream in the domestic supply
chain. The four factors mentioned above can synthetically intrigue unintended spillover effects, in which
some energy‐intensive and carbon‐intensive enterprises relocate to the regions with severe energy problems
and inferior green technologies (i.e., the Middle and the West in our case). In the short term, the disparity
and polarization in energy intensity within China is very likely to continue to increase. According to the
13th FYP (2016–2020), carbon emission control for different provinces will still be categorized, which may
lead to the gaps in energy intensity. The intention of categorized constraint is to promote economic growth
and optimize resource allocation efficiency (Guo et al., 2017). However, as our study shows, this may also
result in a rigescent energy consumption structure and heavy industry agglomeration in regions with less
advanced green technologies, thus leading to disparity and polarization in energy intensity and resulting
in an overall obstructive effect on energy saving.

Therefore, more attention should be paid to the balanced development of energy efficiency and structure
across different regions, in order for low‐carbon energy transitions and energy intensity convergence
(Fang et al., 2019; Geels et al., 2017). First, regional development strategies should comprehend energy con-
servation and emission reduction and mix more efforts in green policy. The Middle and the West should
adapt to local conditions and promote the upgrading of industrial structure, the optimization of the energy
structure, and the synergy of interregional technological innovation. The East should promote energy pro-
cessing technology spillovers, eliminate high‐energy‐consuming enterprises instead of transferring them,
and develop clean and renewable energy sources (Kivimaa & Kern, 2016). In particular, the Carbon
Emission Trading System and the Certified Emission Reduction scheme can be conducted more to promote
clean energy use and energy processing technology spillover in less developed regions. Second, more
market‐based energy and environmental policies, e.g., financial support and carbon pricing, are needed to
incentivize energy transformation toward clean and renewable energy. Unlike conventional energy, renew-
able energy is more available of local resources (Ma et al., 2009) and can be applied in final services directly
without fuels or power generation, transport, and import. The command‐and‐control energy and environ-
mental policies, on the other hand, should be used with caution. Third, consumption‐based emission‐
reduction targets should be adopted. In consumption‐based emission‐reduction targets, the West are subsi-
dized by final consumers in the East that have greater ability to pay. Therefore, the West can achieve
low‐carbon transition without undercutting their economic core. Ongoing work involves deeper research
on the requirements for success in these pathways.

Data Availability Statement

All data sets are available online from China Emission Accounts and Datasets at http://www.ceads.net/ and
China Statistical Yearbooks Database at http://tongji.oversea.cnki.net/oversea/engnavi/navidefault.aspx.
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