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Causality and Network Graph in General Bilinear
State-Space Representations

Mónika Józsa , Mihály Petreczky , and M. Kanat Camlibel

Abstract—This article proposes an extension of the well-known
concept of Granger causality, called GB–Granger causality.
GB–Granger causality is designed to relate the internal structure of
bilinear state-space systems and statistical properties of their out-
put processes. That is, if such a system generates two processes,
where one does not GB–Granger cause the other, then it can be
interpreted as the interconnection of two subsystems: one that
sends information to the other, and one which does not send infor-
mation back.This result is an extension of earlier obtained results
on the relationship between Granger causality and the internal
structure of linear time-invariant state-space representations.

Index Terms—Interconnected systems, stochastic systems, sys-
tem realization.

I. INTRODUCTION

Detecting interactions among stochastic processes and relating them
to the internal structure of the generating systems can be of interest
for several applications, such as mapping interactions in the brain,
predicting economical price movements, or understanding social group
behavior. The first step toward detecting such interactions is to propose
a formal mathematical definition of the concept of interaction. In this
article, we propose two formalizations of one directional interactions
between two stochastic processes. The stochastic processes are assumed
to be outputs of a nonlinear dynamical system. Both formalizations
will try to capture causal interactions, i.e., that one process causes the
other one. The first formalization concentrates on the information flow
between the dynamical systems that generate the processes. The second
one focuses on statistical properties of the processes.
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More precisely, let y be a process that is partitioned into two
components, such as y = [yT

1 ,y
T
2 ]

T . For the first approach, assume
that y is the output of a dynamical system that can be represented as
an interconnection of two subsystems: the first generates y1, and the
second generates y2 as its output. Furthermore, assume that the first
subsystem sends information to the second, but there is no information
flowing in the opposite direction. In other words, the network graph1

of this dynamical system has two nodes and one directed edge. Then,
according to the first approach, we say that y1 influences y2.

This approach offers an intuitive mechanistic explanation of how
one component of the output process influences the other. However,
the same output process can be generated by systems with different
network graphs. As a result, the presence of an interaction between two
output components depends on the exact dynamical system representing
the output process.

The second approach is based on statistical properties of the joint
process y = [yT

1 ,y
T
2 ]

T . A widely used example of this approach is
Granger causality [3]. Intuitively,y1 Granger causesy2 if the best linear
predictions of y2 based on the past values of y are better than those
only based on the past values of y2. We then say that y1 influences
y2, if y1 Granger causes y2. Concepts that follow from this second
approach lead to definitions that depend only on properties of y and do
not depend on which dynamical system we use to representy. However,
they do not always offer an explanation of the mechanisms according
to which the interaction takes place.

In summary, the first approach focuses on the mechanism inside a
dynamical system but is too sensitive to the choice of the system itself.
The second approach solves the issue with the first; however, it generally
does not capture the inner mechanism of the interaction. It is thus of
interest to relate these approaches to benefit from the advantages of
both.

In [1], [3]–[5], Granger causality was formally related to the network
graphs of autoregressive (AR), moving-average (MA), and linear-time-
invariant state-space (LTI–SS) models. These results show that Granger
causality, despite being defined based on statistical properties of a
process, can be related to structural properties of linear models of
that process. In most of the fields, however, where Granger causality
is applied (e.g., econometrics and neuroscience), linear models are
insufficient to represent the observed process.

In this article, we extend the result on the relation between Granger
causality and linear systems to a more general concept of causality
and a class of nonlinear systems. That is, we define a new concept of
causality that can describe interaction between processes that relate to
each other in a nonlinear way. Compared to other reformulations of

1Informally, by the network graph of a system, we mean a directed graph,
whose nodes correspond to subsystems, such that each subsystem generates a
component of the output process. There is an edge from one node to the other,
if the subsystem corresponding to the source node sends information to the
subsystem corresponding to the target node (see also [2, Sec. 1.4]).
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Fig. 1. Illustration of the results: Cascade interconnection structure
in a GB–SS representation S with input u and output y. S is decom-
posed into subsystems S1 and S2 with outputs y1 and y2, when y2

GB–Granger causes y1 but y1 does not GB–Granger cause y2 with
respect to u.

Granger causality (see, e.g., [6]), our concept is designed to have a
structural interpretation in the chosen class of nonlinear systems.

In order to achieve the objective of this article, we will
1) focus on a specific class of nonlinear dynamical systems;
2) define a new concept of causality as interaction among the compo-

nents of a process generated by a system chosen in point 1) based
on statistical properties of the process at hand;

3) characterize the causality defined in 2) by properties of the internal
structure of the system generating the process at hand.

As a first step toward nonlinear systems, a natural choice is to
study bilinear systems, which include, e.g., LTI–SS, switched linear,
AR MA, and jump Markov linear models. Bilinear systems produce
richer phenomena than linear systems, yet many analytical tools for
linear systems are suitable to analyze them. In this article, we focus
on general bilinear state-space (GB–SS) representations for which
stochastic realization theory exists [7]. This theory serves as a basis
for the technicalities of the article.

To formalize causality for the outputs of GB–SS representations,
we introduce an extension of Granger causality, called GB–Granger
causality, that coincides with Granger causality, when applied to outputs
of stochastic LTI–SS models.

In the main results, we consider a GB–SS representation with
output process y = [yT

1 ,y
T
2 ]

T and input process u. Then, we show
that GB–Granger noncausality from y1 to y2 with respect to u is
equivalent to the decomposition of the GB–SS representation into the
interconnection of two subsystems, one generating y1, and another
one generating y2, where the former sends no information to the latter
(see Fig. 1).

The results of this article are based on realization theory of bilinear
systems [7]–[12] and results on Granger causality in linear systems [3],
[13]–[17]. We adopt the concept of GB–SS representation from [7] and
rely on the realization theory presented there. The advantage of GB–SS
representations in [7] is that, contrary to [10] and [12], the input process
is not necessarily white, which therefore includes, e.g., jump Markov
linear systems. However, contrary to [8]–[10], it does not allow additive
input terms in the system. Note that our results depend on realization
theory of GB–SS representations. Hence, in order to extend our results
to GB–SS representations with additive inputs, realization theory of the
latter system class has to be developed. This remains a topic of future
research.

Granger causality between stochastic processes was studied for AR,
MA models [3], transfer functions [4], [5], [18], and for stochastic
LTI–SS representations [1], [13]–[16], [19]. To extend the concept
of Granger causality in GB–SS representations, we rely on similar
methodology as in [1], [14], [15], and [17]. However, in contrast
to [1], [14], [15], and [17], which consider LTI–SS representations,

TABLE I
SUMMARY OF NOTATIONS

in this article, we consider the more general class of GB–SS
representations.

The structure of this article is as follows, first, we introduce the
terminology in Section II, which is followed by a brief summary on
realization theory of GB–SS representations in Section III. Then, in
Section IV, the main results on GB–Granger causality and GB–SS
representations are presented. Finally, the proofs of the results can be
found in the Appendix.

II. PRELIMINARIES AND NOTATIONS

The terminology adopted from [7] that GB–SS representations rely
on is presented next; see Table 1 for the summary of notations.

We consider discrete-time, square-integrable, multivariate, wide-
sense stationary stochastic processes with real entries. Throughout the
article, we fix a probability space (Ω,F , P ) and all the random variables
and stochastic processes are understood with respect to (Ω,F , P ). The
random variable of a process z at time t is denoted by z(t), where t
is from the discrete-time axis of integers Z. Using standard notation,
the expected value of a random variable z(t) is written as E[z(t)]
and the covariance matrix between two random variables z1(t) and
z2(t) is denoted by E[(z1(t)−E[z1(t)])(z2(t)−E[z2(t)])

T ]. Note
that if the processes z1 and z2 are zero-mean, the latter simplifies
to E[z1(t)z

T
2 (t)]. The conditional expectation of a random variable

z to a σ-algebra F is denoted by E[z|F ]. When a process z or a
random variable z(t) takes its values from Rn, then we write z ∈ Rn

and z(t) ∈ Rn. Consider a process z and a present time t ∈ Z. The
σ-algebras generated by the random variables in the present, past,
and future of z are denoted by Fz

t = σ(z(t)), Fz
t− = σ({z(k)}t−1

k=−∞),
and Fz

t+ = σ({z(k)}∞k=t), respectively, where for a set Z of random
variables, σ(Z) denotes the smallest σ-algebra, which contains each
σ-algebra generated by an element of Z.

In the rest of this section, we will introduce tools that will help us to
define GB–SS representations in Section III.

Throughout this article, we denote the finite set {1, 2, . . . , d} by Σ,
where d is a positive integer.

Let Σ+ be the set of finite sequences of elements of Σ, i.e.,
an element of Σ+ is a sequence of the form w = σ1 · · ·σk, where
σ1, . . . , σk ∈ Σ, k > 0. We define the concatenation operation on Σ+:
if w = σ1 · · ·σk ∈ Σ+ and v = σ̂1 · · · σ̂l ∈ Σ+, then the concatena-
tion of w and v, denoted by wv, is defined by wv = σ1 · · ·σkσ̂1 · · · σ̂l.
It will be convenient to extend Σ+ by a formal unit element ε /∈ Σ+.
We denote this set by Σ∗ = Σ+ ∪ {ε}. The concatenation operation is
extended toΣ∗ as follows: εε = ε, and for anyw ∈ Σ+, εw = wε = w.
We define the length of a sequencew = σ1 · · ·σk ∈ Σ+ by |w| = k and
the length of ε by |ε| = 0. Consider a set of matrices {Mσ}σ∈Σ, where

Authorized licensed use limited to: University of Groningen. Downloaded on September 07,2020 at 07:03:53 UTC from IEEE Xplore.  Restrictions apply. 
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Mσ ∈ Rn×n, n ≥ 1 for all σ ∈ Σ and let w = σ1 · · ·σk ∈ Σ+. Then,
we denote the matrix Mσk

· · ·Mσ1
by Mw and we define Mε = I . In

addition, for a set of processes {uσ}σ∈Σ and for w = σ1 · · ·σk ∈ Σ+,
we denote the processuσk

(t) · · ·uσ1
(t− |w|+ 1)byuw(t) and define

uε(t) ≡ 1.
In order to describe the behavior of the processes of GB–SS repre-

sentations, we introduce the following processes.
Definition 1: Consider a process r and a set of processes {uσ}σ∈Σ.

Let σ ∈ Σ and w = σ1 · · ·σk ∈ Σ+. Then, we define the process
zrw(t) = r(t− |w|)uw(t− 1) which we call the past of r with re-
spect to {uσ}σ∈Σ along w, and we define the process zr+w (t) =
r(t+ |w|)uw(t+ |w| − 1) which we call the future of r with respect
to {uσ}σ∈Σ along w.2

Note that for w = ε, both the past zrε(t) and the future zr+ε (t) of r
w.r.t. {uσ}σ∈Σ equals r(t).

Next, we define admissible sets of processes, see [7, Definition 1],
which will help us to formulate a Markovianlike property of the input
processes of GB–SS representations.

Definition 2 (admissible set of processes): A set of processes
{uσ}σ∈Σ is called admissible if the following holds.
1) [uT

v ,u
T
w]

T is wide-sense stationary for all v,w ∈ Σ∗.
2) There exist {ασ}σ∈Σ ∈ R such that

∑
σ∈Σ ασuσ(t) ≡ 1.

3) There exist (strictly) positive numbers {pσ}σ∈Σ, such that
E[uv1σ1

(t)uv2σ2
(t)| ∨

σ∈Σ
Fuσ

t− ]

=

{
pσ1

uv1(t− 1)uv2(t− 1) σ1 = σ2 and v1v2 ∈ Σ+

0 σ1 	= σ2

for any σ1, σ2 ∈ Σ and v1, v2 ∈ Σ∗, where ∨
σ∈Σ

Fuσ
t− is the smallest

σ-algebra, s.t. ∨
σ∈Σ

Fuσ
t− ⊇ Fuσ

t− for all σ ∈ Σ.

The next definition is based on [7, Definitions 1and 5] and it intro-
duces a class of processes that the output, state, and noise processes of
GB–SS representations belong to. The definition involves the concept
of conditionally independent σ-algebras [20]: Two σ-algebras F1 and
F2 are conditionally independent w.r.t. a third one F3, if for every
A1 ∈ F1 and A2 ∈ F2, P (A1 ∩A2|F3) = P (A1|F3)P (A2|F3).

Definition 3 (ZMWSSI and ZMWSSI–SII processes): A stochastic
process r is called zero-mean wide-sense stationary w.r.t. an admissible
set of processes {u}σ∈Σ (ZMWSSI) if Fr

(t+1)− and Fu
t+ are condi-

tionally independent w.r.t. Fu
t−, and [rT , (zrv)

T , (zrw)
T ]T is zero-mean

wide-sense stationary for all v,w ∈ Σ+. Furthermore, a ZMWSSI
process r is said to be square integrable with respect to {uσ}σ∈Σ
(ZMWSSI–SII), if for allw ∈ Σ+, the process zr+w is square integrable.

III. GB–SS REPRESENTATIONS

This section introduces GB–SS representations and innovation GB–
SS representations, see also [7]. To begin with, we define GB–SS
representations.

Definition 4 (GB–SS representation): A system of the form

x(t+ 1) =
∑

σ∈Σ
(Aσx(t) +Kσv(t))uσ(t)

y(t) = Cx(t) +Dv(t)

(1)

whereAσ ∈ Rn×n,Kσ ∈ Rn×m, C ∈ Rk×n,D ∈ Rk×m,x(t) ∈ Rn,
v(t) ∈ Rm, y(t) ∈ Rk, and uσ(t) ∈ R, σ ∈ Σ are called GB–SS
representation of ({uσ}σ∈Σ,y) if the following holds.

2We can obtain the processes in Definition 1 by multiplying the parallel
processes used in [7] with a scalar, see, e.g., [7, eq. (6)].

1) {uσ}σ∈Σ is admissible.
2) [xT ,vT ] is ZMWSSI with respect to {uσ}σ∈Σ.
3) For w ∈ Σ+, E[zvw(t)v

T (t)] = 0 and E[zxw(t)v
T (t)] = 0.

4) For σ̂, σ ∈ Σ, E[zxσ̂(t)(z
v
σ(t))

T ] = 0.
5)

∑
σ∈Σ pσAσ ⊗Aσ is stable, i.e., all its eigenvalues are inside the

open unit disk.
We refer to a GB–SS representation (1) as GB–SS representa-

tion ({Aσ,Kσ}σ∈Σ, C,D,v, {uσ}σ∈Σ,y) or as GB–SS represen-
tation ({Aσ,Kσ}σ∈Σ, C,D,v) of ({uσ}σ∈Σ,y), where note that
{Aσ,Kσ,uσ}σ∈Σ and v determine the state process. Furthermore,
notice that y is the linear combination of x and v and, thus, it is also
ZMWSSI w.r.t. {uσ}σ∈Σ.

Depending on the choice of the input processes, the behavior of
a GB–SS representation can significantly vary. The constraint on the
input, formulated in Definition 2, gives scope to choosing {uσ}σ∈Σ,
for example, in the following ways.
1) Σ = 1 and u1(t) ≡ 1, then u1 is admissible and the GB–SS

representation defines an LTI–SS representation.
2) uσ(t) is zero-mean, square-integrable, independent identically

distributed (i.i.d.) process for all σ ∈ Σ and uσ1
(t) and uσ2

(t)
are independent for all σ1, σ2 ∈ Σ, σ1 	= σ2, then {uσ}σ∈Σ is
admissible [7, Example 1].

3) uσ(t) = χ(Θ(t) = σ), where Θ is an i.i.d. process taking values
in Σ, then {uσ}σ∈Σ is admissible [7, Example 2].

More examples can be found in [7]. Note that Definition 2 gives a
stricter definition of admissible set of processes than [7, Definition 1].3

The results of this article remain valid with the definition of admissible
set of processes in [7]; however, we use Definition 2 in order to avoid
technicalities.

A. Innovation GB–SS Representations

Below, we define innovation processes and innovation GB–SS repre-
sentations. The latter class of representations plays a key role through-
out the rest of this article.

To this end, we recall from [7] the following notations. The real val-
ued zero-mean square integrable random variables form a Hilbert space
Hwith the covariance as the inner product (see [21] for details). Let r be
a ZMWSSI process w.r.t. a set of admissible processes {uσ}σ∈Σ. Then,
the one-dimensional components of r(t) and zrw(t) (see Definition 1)
belong to H for all t ∈ Z. We denote the Hilbert spaces generated by
the one-dimensional components of r(t) and of {zrw(t)}w∈Σ+ by Hz

t

and Hzrw
t,w∈Σ+ , respectively. The (orthogonal) linear projection of r(t)

onto a closed subspace M of H is meant elementwise and it is denoted
by El[r(t)|M]. If all the components of r(t) are in M ⊂ H, then we
write r(t) ∈ M.

Definition 5 (GB–innovation process): The GB–innovation pro-
cess of a ZMWSSI process y w.r.t. the processes {uσ}σ∈Σ is defined

by e(t) = y(t)−El[y(t)|Hz
y
w

t,w∈Σ+ ].
Definition 6 (innovation GB–SS representation): A GB–SS repre-

sentation (1) is called innovation GB–SS representation if the noise pro-

cessv is the GB–innovation process e(t) = y(t)−El[y(t)|Hz
y
w

t,w∈Σ+ ]

of y with respect to the input {uσ}σ∈Σ and the matrix D of (1) is the
identity matrix.

In the specific case, when Σ = {1} and u1(t) ≡ 1, innovation GB–
SS representations define innovation LTI–SS representations (called
Kalman representation in [1] and [2]).

Finally, we make a technical assumption that requires the definition
of full rank processes.

3The set of admissible words used in [7] is here the trivial Σ+ set.
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Definition 7: An output process y of a GB–SS representa-
tion is called full rank if for all σ ∈ Σ and t ∈ Z, the matrix
E[e(t)eT (t)u2

σ(t)] is strictly positive definite, where e is the GB–
innovation process of y w.r.t. the input {uσ}σ∈Σ.

Definition 7 is equivalent to that the random variable zeσ(t) has
positive definite variance matrix for all σ ∈ Σ and t ∈ Z. The next
assumption will be in force in the rest of this article.

Assumption 1: The output process y is ZMWSSI–SII with respect
to the input {uσ}σ∈Σ and it is full rank.

Among innovation GB–SS representations, we will focus on the
so-called minimal ones: We define the dimension of a GB–SS rep-
resentation as the dimension of its state process. Then, a GB–SS
representation is called minimal if it has minimal dimension among all
GB–SS representations of the same input–output processes. Minimal
innovation GB–SS representations have several advantageous proper-
ties as described in Remark 1 below.

Remark 1 (Realization theory): According to [7, Th. 3, 5, 6], if
Assumption 1 holds, then ({uσ}σ∈Σ,y) has a minimal innovation
GB–SS representation. The latter GB–SS representation can be cal-
culated from any GB–SS representation of ({uσ}σ∈Σ,y) using [7,
Algorithm 1], or from suitable high-order moments of ({uσ}σ∈Σ,y)
using [7, Algorithm 2]. Finally, any two minimal innovation GB–SS
representations of ({uσ}σ∈Σ,y) are isomorphic (see [7, Sec. III.B]) for
the formal definition of isomorphism. That is, without loss of generality,
we can restrict attention to minimal innovation GB–SS representations.

IV. GB–GRANGER CAUSALITY IN GB–SS REPRESENTATIONS

In this section, we present the main results of this article on an
extended form of Granger causality, called GB–Granger causality and
properties of GB–SS representations. First, we introduce GB–Granger
causality, and then, we present its characterization by properties of GB–
SS representations. Throughout the rest of this article, y is partitioned
as y = [yT

1 ,y
T
2 ]

T , where yi ∈ Rki for some ki > 0, i = 1, 2.

A. Extending Granger Causality

Informally, y1 does not Granger cause y2, if the best linear predic-
tions of y2 based on the past values of y are the same as those based
only on the past values of y2. Recall that Hz

t− denotes the Hilbert space
generated by the past {z(t− k)}∞k=1 of z. Then, Granger causality is
defined as follows.

Definition 8 (Granger causality): [1, Definition 5] Consider a zero-
mean square integrable, wide-sense stationary processy = [yT

1 ,y
T
2 ]

T .
We say that y1 does not Granger cause y2 if for all t, k ∈ Z, k ≥
0El[y2(t+ k)|Hy

t−] = El[y2(t+ k)|Hy2
t− ]. Otherwise, we say thaty1

Granger causes y2.
Recall that a GB–SS representation defines an LTI–SS representa-

tion if Σ = {1} and u1(t) ≡ 1. Accordingly, the innovation process
of an output y in an innovation LTI–SS representations is e(t) =
y(t)−El[y(t)|Hy

t−]. It is easy to see that in an innovation LTI–SS
representation, the output process can be expressed by the linear com-
bination of its own past values. However, it is no longer true in the more
general class of GB–SS representations. In fact, an innovation GB–SS
representation defines a linear relationship between the future of its
output w.r.t. the inputs, denoted by zy+v (t) and the past of its output
w.r.t. the inputs, denoted by zyw(t), see Definition 1. This motivates our
extension of Granger causality, where we use the process zy+v (t) rather
than y(t+ |v|) and zy−v (t) rather than y(t− |v|).

Definition 9 (GB–Granger causality): Consider the processes
({uσ}σ∈Σ,y = [yT

1 ,y
T
2 ]

T ), where {uσ}σ∈Σ is admissible and y is
ZMWSSI w.r.t. {uσ}σ∈Σ. We say that y1 does not GB–Granger cause

y2 w.r.t. {uσ}σ∈Σ if for all v ∈ Σ∗ and t ∈ Z

El[z
y2+
v (t)|Hz

y
w

t,w∈Σ+ ] = El[z
y2+
v (t)|Hz

y2
w

t,w∈Σ+ ]. (2)

Otherwise, y1 GB–Granger causes y2 w.r.t. {uσ}σ∈Σ.
Informally, y1 does not GB–Granger cause y2, if the best linear

predictions of the future of y2 w.r.t. {uσ}σ∈Σ along v is the same
based on the past of y or based on the past of y2 w.r.t. {uσ}σ∈Σ along
{w}w∈Σ+ .

Remark 2: If y1 does not GB–Granger cause y2, then it implies
that y1 does not Granger cause y2. Moreover, in the specific case,
when Σ = {1} and u1(t) ≡ 1, the processes zy+v (t) and zyw(t) are
y(t+ |v|) and y(t− |w|), respectively, and thus Definitions 8 and 9
coincide. The relationship between GB–Granger causality and other
concepts of causality, such as conditional independence [6], seems to
be more involved and remains a topic of future research.

Notice that Granger causality is defined purely by statistical prop-
erties of a stochastic process. However, if this process is the output
of an LTI–SS representation, Granger causality can also be related
to the internal structure of the representation ([1, Th. 1]). In the next
section, we derive an extension of the latter results, on the relationship
between GB–Granger causality and the internal structure of GB–SS
representations.

B. Main Results

Next, we present the main results of this article on the relationship
between GB–Granger causality and network graphs of GB–SS rep-
resentations. The representations in question are minimal innovation
GB–SS representations that can be constructed algorithmically (see
Remark 1 and Algorithm 1 later on in this section).

Theorem 1: With Assumption 1, consider a GB–SS representa-
tion of ({uσ}σ∈Σ, y = [yT

1 ,y
T
2 ]

T ) and let e = [eT
1 , e

T
2 ]

T be the
GB–innovation process of y w.r.t. {uσ}σ∈Σ, where ei ∈ Rki , i =
1, 2. Then, y1 does not GB–Granger cause y2 w.r.t. {uσ}σ∈Σ if
and only if there exists a minimal innovation GB–SS representation
({Aσ,Kσ}σ∈Σ, C, I, e, {uσ}σ∈Σ,y) such that for all σ ∈ Σ

Aσ =

[
Aσ,11 Aσ,12

0 Aσ,22

]

Kσ =

[
Kσ,11 Kσ,12

0 Kσ,22

]

C =

[
C11 C12

0 C22

]

(3)

where for some n1, k1 ≥ 0, n2, k2 > 0 Aσ,ij ∈ Rni×nj , Kσ,ij ∈
Rni×kj , Cij ∈ Rki,nj , i, j = 1, 2, and ({Aσ,22,Kσ,22}σ∈Σ, C22, I,
e2) is a minimal innovation GB–SS representation of ({uσ}σ∈Σ,y2).

The proof can be found in the Appendix. If Σ = {1} and u1(t) ≡ 1,
the GB–SS representation reduces to an LTI–SS representation and
Definitions 8 and 9 coincide, see Remark 2. As a result, Theorem 3 re-
duces to earlier results on LTI–SS representations and Granger causality
(see [1, Th. 1]).

An innovation GB–SS representation ({Aσ,Kσ}σ∈Σ, C, I, e,
{uσ}σ∈Σ,y) that satisfies (3) can be viewed as a cascade intercon-
nection of two subsystems. Define the subsystems

S1

⎧
⎨

⎩

x1(t+ 1) =
∑

σ∈Σ(Aσ,11x1(t) +Kσ,11e1(t))uσ(t)
+
∑

σ∈Σ(Aσ,12x2(t) +Kσ,12e2(t))uσ(t)

y1(t) =
∑2

i=1 C1ixi(t)) + e2(t)

S2

{
x2(t+ 1) = (Aσ,22x2(t) +Kσ,22e2(t))uσ(t)
y2(t) = C22x2(t) + e2(t)

.
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Fig. 2. Cascade interconnection in a GB–SS representation
({Aσ ,Kσ}σ∈Σ, C, I,e, {uσ}σ∈Σ,y) with system matrices as in (3).

Algorithm 1: Block Triangular Minimal Innovation GB–SS
Representation.

Input Ãσ ∈ Rn×n, K̃σ ∈ Rn×m, σ ∈ Σ, C̃ ∈ Rk×n

Output ({Aσ,Kσ}σ∈Σ, C)
Step 1 Define the submatrix consisting of the last k2 rows of C̃
by C̃2 ∈ Rk2×n and take the observability matrix ÕM(n) of
({Ãσ}σ∈Σ, C̃2) up to n. If ÕM(n) is not of full column rank

then define the non-singular matrix T−1 =
[
T1 T2

]
such

that T1 ∈ Rn×n1 spans the kernel of ÕM(n). If ÕM(n) is of
full column rank, then set T = I .

Step 2 Define the matrices Aσ = TÃσT
−1, Kσ = TK̃σ for

σ ∈ Σ and C = C̃T−1.

Notice that S2 sends its state x2 and noise e2 to S1 as an external
input, whereas S1 does not send information to S2. The corresponding
network graph is illustrated in Fig. 2.

The necessity part of the proof of Theorem 1 is constructive, and it is
based on calculating an innovation GB–SS representation described in
Theorem 1. For this calculation, we present Algorithm 1 below, along
with the statement of its correctness.

Before presenting Algorithm 1, we define a (complete) lexicographic
ordering (≺) on Σ∗: v ≺ w if either |v| < |w| or if v = ν1 . . . νk,
w = σ1 . . . σk, and ∃ l ∈ {1, . . . , k} such that νi = σi, i < l and
νl < σl. Let the ordered elements of Σ∗ be v1 = ε, v2 = σ1, . . . and
define M(j) as the number of words of length at most j. We then
define the observability matrix Ol up to l of ({Aσ}σ∈Σ, C) as Ol =
[(CAv1)

T · · · (CAvl)
T ]T , where {Aσ}σ∈Σ ∈ Rn×n and C ∈ Rk×n.

Lemma 1: Denote the GB–innovation process of y by e. As-
sume that ({Ãσ, K̃σ}σ∈Σ, C̃, I, e) is a minimal innovation GB–SS
representation of ({uσ}σ∈Σ,y) of dimension n. Let {Aσ,Kσ}σ∈Σ
and C denote the matrices returned by Algorithm 1. Then,
({Aσ,Kσ}σ∈Σ, C, I, e) is a minimal innovation GB–SS representation
of ({uσ}σ∈Σ,y), and the matrices {Aσ}σ∈Σ and C are in the form of

Aσ =

[
Aσ,11 Aσ,12

0 Aσ,22

]

C =

[
C11 C12

0 C22

]

(4)

where Aσ,ij∈Rni,nj and Cij ∈ Rki,nj , i, j=1, 2 for some n1, k1≥0,
n2, k2 > 0. In addition, if y1 does not GB–Granger cause y2, then the
matrices {Kσ}σ∈Σ are in the form of

Kσ =

[
Kσ,11 Kσ,12

0 Kσ,22

]

(5)

whereKσ,ij ∈ Rni×kj , i, j ∈ {1, 2} and ({Aσ,22,Kσ,22}σ∈Σ, C22, I,
e2) is a minimal innovation GB–SS representation of ({uσ}σ∈Σ,y2).

The proof of Lemma 1 can be found in the Appendix.
Remark 3: From Lemma 1, it follows that if y1 does not GB–

Granger cause y2, then Algorithm 1 calculates the system matrices
of the GB–SS representation described in Theorem 1. A minimal

innovation GB–SS representation can be calculated from any GB–SS
representation of ({uσ}σ∈Σ,y) using [7, Algorithm 1], see Remark 1.
Having a minimal innovation GB–SS representation as the input, Algo-
rithm 1 provides a constructive proof of the necessity part of Theorem 1
by calculating a minimal innovation GB–SS representation in the form
of (3) that characterizes GB–Granger noncausality.

Remark 4 (Checking GB–Granger causality): Algorithm 1 can be
used for checking GB–Granger causality as follows. Apply Algorithm 1
and check if the matrices {Aσ,Kσ}σ∈Σ andC returned by Algorithm 1
satisfy (4) and (5), and if S2 = ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is
a minimal innovation GB–SS representation of ({uσ}σ∈Σ,y2). By
Lemma 1 and Theorem 1, both tests are positive if and only if y1

does not GB–Granger cause y2. We check whether S2 is a minimal
innovation GB–SS representation as follows. We use [7, Algorithm 1]
to compute a minimal innovation GB–SS representation S̄2 of
({uσ}σ∈Σ,y2) and the covariances Q̄σ = E[v(t)vT (t)u2

σ(t)], σ ∈ Σ
of the innovation process v of y2. Then, S2 is a minimal innovation
GB–SS representation, if and only ifS2 and S̄2 have the same dimension
and the same noise process, i.e., v = e2. To check the latter, we can
use the following lemma.

Lemma 2: v(t) = e2(t) if and only if for all i = 1, . . . , k2,∑
σ∈Σ α2

σQ̄σ,ii =
∑

σ∈Σ α2
σQσ,(k1+i)(k1+i), where {ασ}σ∈Σ are as

in Definition 2, and Qσ,rl and Q̄σ,kl denote the (k, l)th entry of the
matrices Qσ and Q̄σ , respectively.

The proof of Lemma 2 is presented in the Appendix. Since a minimal
innovation GB–SS representation can be calculated from suitable high-
order moments of ({uσ}σ∈Σ,y) using [7, Algorithm 2], and the latter
moments can be estimated from sampled data, the procedure above
could be a starting point of a statistical test for checking GB–Granger
causality, similar to the one of Granger causality in [2]. This remains a
topic of future research .

Example 1: Consider a GB–SS representation ({Āσ, K̄σ}σ∈Σ,
C̄, D̄, v̄, {uσ}σ∈Σ,y), where Σ = {1, 2}, uσ(t) = χ(θ(t) = σ) with
χ being the characteristic function and θ(t) ∈ {1, 2} being an i.i.d.
process; v(t) is a normalized Gaussian white noise process, s.t. the
σ-algebras generated by {v(t)}t∈Z and {θ(t)}t∈Z are independent.
The system matrices are given by

Ā1 =

⎡

⎢
⎢
⎢
⎣

0.8 0.9 −0.8 0.3

1.9 0.4 −1.4 1.5

2.9 1.7 −2.3 0.9

0.9 0.4 −0.6 0

⎤

⎥
⎥
⎥
⎦

K̄1 =

⎡

⎢
⎢
⎢
⎣

1.1 1.5

1.1 0.9

2.3 3

0.6 0.7

⎤

⎥
⎥
⎥
⎦

Ā2 =

⎡

⎢
⎢
⎢
⎣

−1.38 −0.42 1.24 −1.64

−0.66 −0.58 0.68 −0.52

−2.76 −1.08 2.48 −2.84

−0.68 −0.32 0.6 −0.56

⎤

⎥
⎥
⎥
⎦

K̄2 =

⎡

⎢
⎢
⎢
⎣

0.2 1.24

0.2 0.84

0.44 2.52

0.12 0.56

⎤

⎥
⎥
⎥
⎦

C̄ =

[
8.5 5.5 −8 11

3.5 −1.5 −2 4

]

D̄ =

[
1 0

0 1

]

= I2.

By [7, Example 2], {uσ(t)}2σ=1 satisfies Definition 2 with ασ =
1, pσ = P (θ(t) = σ), σ ∈ Σ. Notice that E[v(t)vT (t)u2

σ(t)] =
pσI2, σ ∈ Σ. We assume that p1 = 0.3 and p2 = 0.7. We trans-
form this GB–SS representation to a minimal innovation GB–SS
representation using [7, Algorithm 1] and then we apply Algo-
rithm 1 with the partitioning of the output y=[yT

1 ,y
T
2 ]

T , yi∈R.
The output matrices of Algorithm 1 define an innovation
GB–SS representation ({Aσ,Kσ}σ∈Σ, C, I, e, {uσ}σ∈Σ,y), where
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Qσ = E[e(t)eT (t)u2
σ(t)] = pσI2, and the matrices are

A1 =

⎡

⎢
⎢
⎢
⎣

−1.72 −2.64 −2.75 −0.68

0.86 1.42 2.45 0.76

0 0 −0.62 −0.03

0 0 1.11 −0.18

⎤

⎥
⎥
⎥
⎦

A2 =

⎡

⎢
⎢
⎢
⎣

0.98 1.53 4.23 1.32

−0.56 −0.9 −2.47 −0.89

0 0 −0.26 −0.02

0 0 1.04 0.14

⎤

⎥
⎥
⎥
⎦

K1 =

⎡

⎢
⎢
⎢
⎣

2.33 3

−1.63 −1.83

0 −0.09

0 0.45

⎤

⎥
⎥
⎥
⎦

K2 =

⎡

⎢
⎢
⎢
⎣

0.45 2.5

−0.3 −1.59

0 −0.02

0 0.32

⎤

⎥
⎥
⎥
⎦

C =

[
−2.24 −5.39 −14.41 −6.76

0 0 −5.86 0.43

]

.

Hence, they satisfy (4) and (5) withn1 = n2 = 2. Following Remark 4,
we can check that ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2, {uσ}σ∈Σ,y2) is a
minimal innovation GB–SS representation: the condition of Lemma 2
is satisfied, minimal innovation GB–SS representations of y2 have
dimension 2, and the variance of their noise process is 1. From this,
we can conclude that y1 does not GB–Granger cause y2.

V. CONCLUSION

In this article, we proposed a new concept, called GB–Granger
causality for defining causality in a statistical manner between pro-
cesses that are outputs of GB–SS representations. We showed that
GB–Granger causality can be characterized by structural properties
of GB–SS representations, namely, we showed that the absence of
GB–Granger causality is equivalent to the existence of a GB–SS
representation, which is a cascade interconnection of two subsystems.
Moreover, we proposed an algorithm for calculating such a GB–SS
representation. When applied to LTI–SS representations, these results
boil down to the known correspondence between Granger causality and
structural properties of LTI–SS representations [1], [14], [17].

The results could be used for developing statistical hypothesis testing
for GB–Granger causality, in a similar manner as it was done for linear
systems and Granger causality [2]. This extension, which would have
potential applications in, e.g., neuroscience and econometrics, remains
a future work.

APPENDIX

PROOF

Proof of Lemma 1: In order to prove Lemma 1, we use the following
result.

Lemma 3: Consider an innovation GB–SS representation ({Aσ,
Kσ}σ∈Σ, C, I, e, {uσ}σ∈Σ,y) with state process x. Then, El[z

y+
v (t)|

Hz
y
w

t,w∈Σ+ ] = CAvx(t), for all v ∈ Σ+.

Proof: Recall that Hz
y
w

t,w∈Σ+ is the Hilbert space generated by the
past {zyw}w∈Σ+ of y w.r.t. {uσ}σ∈Σ. From [7, eq. (38)], we know
that E[zy+v (t)(zyσw(t))

T ] = E[y(t)(zyσwv(t))
T ] = CAvAwGσ for

all σ ∈ Σ, v ∈ Σ+, w ∈ Σ∗, where for σ ∈ Σ Gσ = AσPσC
T +

KσQσ andPσ = E[x(t)(x(t))Tu2
σ(t)]. Also, from [7, Lemma 12], we

know that E[x(t)(zyσw(t))
T ] = AwGσ for all σ ∈ Σ, w ∈ Σ∗. Hence,

E[zy+v (t)(zyσw(t))
T ] = CAvE[x(t)(zyσw(t))

T ] for all v, σw ∈ Σ+.

Considering that x(t) ∈ Hzew
t,w, and that Hzew

t,w ⊆ Hz
y
w

t,w, we obtain that

El[z
y+
v (t)|Hz

y
w

t,w∈Σ+ ] = CAvx(t). �
Cont. proof of Lemma 1: The following statements should be proven:

1) C is of the form (4);
2) Aσ is of the form (4);
3) if y1 does not GB–Granger cause y2, then first, Kσ is of the form

(5);
4) second, ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is a minimal innovation

GB–SS representation of ({uσ}σ∈Σ,y2).
Below, we prove statements 1)–4) one by one. Throughout the proof,
T = [T1 T2]

−1 denotes the matrix defined in Step 1 of Algorithm 1.
1) Since the first k2 rows of ÕM(n) equal C2 and the columns of T1

span ker ÕM(n), we have that C2˜T
−1 = [0 C22] with some C22 ∈

Rn2×n2 , 0 < n2 ≤ n.
2) We first show that ker ÕM(n) = ker ÕM(n+1). Define Xk =

ker ÕM(k) for k = 0, . . .. . .n+ 1, where ÕM(k) is the observabil-
ity matrix of ({Ãσ}σ∈Σ, C̃2) up to k. Then, either C̃2 = 0, in
which case ker ÕM(n) = ker ÕM(n+1) trivially holds, or dim(X0) =

dim(ker C̃2) < n. Notice that Xk−1 ⊇ Xk for k = 1, . . .. . .n+ 1,
which together with that dim(X0) < n implies that there exists an
l ∈ {1, . . . , n}, such that for all k = l, . . ., n dim(Xk) = dim(Xk+1)
and Xk = Xk+1. By using that Xn = Xn+1 and that the rows of
ÕM(n) and ÕM(n)Ãσ are rows of ÕM(n+1), we obtain that Xn is
Aσ-invariant for all σ ∈ Σ. Hence, considering that the columns of
T1 span Xn, we obtain that ÃσT1 = T1N ∈ Xn for a suitable matrix
N ∈ Rn1×n1 . Let

Aσ = TÃσT
−1 =

[
Aσ,11 Aσ,12

Aσ,21 Aσ,22

]

where Aσ,ij ∈ Rni×nj and notice that

TÃσT
−1 =

[
TÃσT1 ÃσT2

]
=

[
TT1N ÃσT2

]
.

Then, (TT1N)T = [N0] implies that Aσ,21 = 0.
3) In order to see that the matrices {Kσ}σ∈Σ are as in (5), we prove

a sequence of statements 3a–3b–3c–3d–3e and 3f, in the following,
where 3f states that {Kσ}σ∈Σ satisfy (5).

a) x2(t) ∈ Hz
y2
w

t,w∈Σ+ .

b) E[zyw(t)(z
e
v(t))

T ] = 0 for all |v| < |w|, w, v ∈ Σ+.
c)

Hz
y2
w

t,w∈Σ+ = ⊕
σ∈Σ

(
Hz

y2
wσ

t+1,w∈Σ+ ⊕Hz
e2
σ

t+1

)

where ⊕ denotes the direct sum of orthogonal closed subspaces

and Hz
y2
wσ

t+1,w∈Σ+ denotes the Hilbert space generated by {zy2
wσ(t+

1)}w∈Σ+ , see also 3d in the following.

d) There exist {Nσ}σ∈Σ ∈ Rn2×k2 , r ∈ ⊕
σ∈Σ

Hz
y2
wσ

t+1,w∈Σ+ , such that

x2(t+ 1) = r+
∑

σ∈Σ
Nσz

e2
σ (t+ 1).

e) Let Kσ = [Kσ,21Kσ,22], such that Kσ,21 ∈ Rn2×k1 , Kσ,22 ∈
Rn2×k2 . Then, for σ ∈ Σ

[Kσ,21Kσ,22]E[zeσ(t+ 1)(zeσ(t+ 1))T ]

= NσE[ze2σ (t+ 1)(zeσ(t+ 1))T ].

f) Kσ,21 = 0 for all σ ∈ Σ.
Next, we prove 3a–3f, one-by-one.
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Proof of 3a: By using (4), for any v ∈ Σ+

CAv =

[
C11(Av)11 N

0 C22(Av)22

]

(6)

where (Av)11 ∈ Rn1×n1 and (Av)22 ∈ Rn2×n2 are the upper and
lower block diagonal submatrices of Av , and N ∈ Rk1×n2 is an appro-
priate matrix. From this, it is easy to see that by choosing an appropriate
permutation matrix P , we have that

POM(n) =

[
N1 N2

0 OM(n)

]

where OM(n) is the observability matrix of ({Aσ,22}σ∈Σ, C22) up to
n and N1, N2 are appropriate matrices. Notice now that x(t) =

O+
M(n)El[Z

y
n(t)|Hz

y
w

t,w], where Zy
n(t) = [(zy+v1 (t))T , . . . , (zy+vM(n−1)

(t))T ]T is a vector of the future ofy(t)w.r.t. the input (see Definition 1).
Since PTP = I , and hence, (POM(n))

+ = O+
M(n)P

T , it follows that

x(t)= (PO+
M(n))El[PZy

n(t)|Hz
y
w

t,w].Note thatPZy
n(t)= [(Zy1

n (t))T

(Zy2
n (t))T ]T where Zyi

n (t) = [(zyi+
v1

(t))T , . . . , (zyi+
vM(n−1)

(t))T ]T ,

i = 1, 2, and thus, for x2, we have that x2(t) = O+
M(n)El[Z

y2
n (t)|

Hz
y
w

t,w∈Σ+ ]. Then, the GB–Granger noncausality condition El[Z
y2
n (t)|

Hz
y
w

t,w∈Σ+ ] = El[Z
y2
n (t)|Hz

y2
w

t,w∈Σ+ ] implies that x2(t) ∈ Hz
y2
w

t,w∈Σ+ .

Proof of 3b: From [7, Lemma 14], it follows that [yT , eT ]T is
ZMWSSI. Hence, we can apply [7, Lemma 7] for [yT , eT ]T : Let
w = w1 . . . wk ∈ Σ∗ and v = v1 . . . vl ∈ Σ∗, s.t. |v| < |w|. If wk−i 	=
vl−i for some i = 0, . . . , l − 1, then [7, Lemma 7] implies that the co-
variance E[zyw(t)(z

e
v(t))

T ] = 0. If wk−i = vl−i for all i = 0, . . . , l −
1, then E[zyw(t)(z

e
v(t))

T ] = pv2...vlE[zyw1...wk−l−1
(t)(zev1(t))

T ] =

pvE[zyw1...wk−l−1
(t)eT (t)] = 0 where for the last equation, we used

that from Definition 4, E[zyw1...wk−l−1
(t)eT (t)] = 0.

Proof of 3c: Consider an innovation GB–SS representation of
({uσ}σ∈Σ,y2) and note that by the GB–Granger noncausality con-
dition, the GB–innovation process of y2 is e2. Then, by [7, Lemma

16], we can decompose Hz
y2
w

t,w∈Σ+ as in 3c.

Proof of 3d: From 3a, we have thatx2(t+ 1) ∈ Hz
y2
w

t+1,w∈Σ+ . Then,
by using 3c, x2(t+ 1) = r+

∑
σ∈Σ Nσz

e2
σ (t+ 1) for some r ∈

⊕
σ∈Σ

Hz
y2
wσ

t+1,w∈Σ+ and {Nσ}σ∈Σ ∈ Rn2×k2 .

Proof of 3e: To shorten the expressions, define k = t+ 1.
Notice that by using the block triangular form of {Aσ}σ∈Σ, we
obtain that x2(k) =

∑
σ∈Σ

∑
Aσ,22z

x2
σ (k) + [Kσ,21Kσ,22]z

e
σ(k).

From [7, Lemma 14], it follows that [eT ,yT ,xT ]T is ZMWSSI,
and hence, [eT ,xT

2 ]
T is also ZMWSSI w.r.t. {uσ}σ∈Σ. By

applying [7, Lemma 7] for [eT ,xT
2 ]

T , we have that if σ 	= σ∗,
then E[zeσ(k)(z

x2
σ∗ (k))T ] = E[zeσ(k)(z

e
σ∗(k))T ] = 0. Also, by

Definition 4, E[zeσ∗(k)(zxσ(k))
T ] = 0 for σ = σ∗, and since for

any σ ∈ Σ, zx2
σ is formed by a component of zxσ , we have that for

σ = σ∗, E[zeσ∗(k)(zx2
σ (k))T ] = 0. Hence, E[x2(k)(z

e
σ(k))

T ] =
[Kσ,21Kσ,22]Qσ, where Qσ = E[zeσ(k)(z

e
σ(k))

T ]. By using
3d, we also obtain that E[x2(k)(z

e
σ∗(k))T ] = E[rzeσ∗(k))T ] +∑

σ∈Σ NσE[ze2σ (zeσ∗(k))T ]. Notice that from 3b and from

r ∈ ⊕
σ∈Σ

Hz
y2
wσ

k,w∈Σ+ , we know that E[rzeσ∗(k))T ] = 0. Hence, E[x2(k)

(zeσ(k))
T ] = NσE[ze2σ (k)(zeσ(k))

T ], which equals [Kσ,21Kσ,22]Qσ .
Substituting k = t+ 1, we obtain 3e.

Proof of 3f: Since e2 is formed by the last k2 components of
e, we have that NσE[ze2σ (t+ 1)(zeσ(t+ 1))T ] = [0 Nσ]Qσ , and
hence, [0 Nσ]Qσ = [Kσ,21 Kσ,22]Qσ . By Assumption 1, Qσ is

positive definite, which implies that [0 Nσ] = [Kσ,21 Kσ,22], hence
Kσ,21 = 0.

4) Denote the state process of the minimal innovation GB–SS repre-
sentation G of ({uσ}σ∈Σ,y), that the output matrices of Algorithm 1
define, by [xT

1 ,x
T
2 ]

T , where x1 ∈ Rn1 and x2 ∈ Rn2 . To see that
G2 = ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2), with state process x2, defines
a minimal innovation GB–SS representation of ({uσ}σ∈Σ,y2), notice
that from the GB–Granger noncausality condition, and from Defini-
tion 4, it follows thatG2 is an innovation GB–SS representation. Assume
indirectly thatG2 is not minimal, i.e., that there exists a minimal innova-
tion GB–SS representation G̃2 = ({Ãσ,22, K̃σ,22}σ∈Σ, C̃22, I, e2) of
({uσ}σ∈Σ,y2) with state x̃2 ∈ Rñ2 , where ñ2 < n2.

From Lemma 3, it follows that El[Z
y2
n2

(t)|Hz
y2
w

t,w∈Σ+ ] = ÕM(n2)

x̃2(t),where ÕM(n2) is the observability matrix of ({Ãσ,22}σ∈Σ, C̃22)

up to n2. Then, by defining L = O+
M(n2)

ÕM(n2), where OM(n2) is
the observability matrix of ({Aσ,22}σ∈Σ, C22) up to n2, we have that
x2 = Lx̃2.

By using L, we can transform G into an innovation GB–SS repre-
sentation G̃ of ({uσ}σ∈Σ,y) with state process [xT

1 , x̃
T
2 ]

T .
However, G̃ has dimension n1 + ñ2 < n1 + n2 = n, which is a

contradiction since n is the dimension of a minimal innovation GB–SS
representation. �

Proof of Theorem 1: The sufficiency part of the proof follows
Lemma 1.

To prove the necessity part, let ({Aσ,Kσ}σ∈Σ, C, I, e) be a mini-
mal innovation GB–SS representation of ({uσ}σ∈Σ,y = [yT

1 ,y
T
2 ]

T ),
such that (3) holds and that G2 = ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is a
minimal innovation GB–SS representation of ({uσ}σ∈Σ,y2). To prove
that y1 does not GB–Granger causes y2, we need to see that

El[z
y2+
v (t)|Hz

y
w

t,w∈Σ+ ] = El[z
y2+
v (t)|Hz

y2
w

t,w∈Σ+ ] (7)

for all v ∈ Σ∗. For v = ε, (7) directly follows form that e2 is the GB–
innovation process of y2 w.r.t. {uσ}σ∈Σ.

By (3), the matrices {Aσ}σ∈Σ and C are block triangular, hence
CAv is as in (6). It then follows from Lemma 3 that

El[z
y2+
v (t)|Hz

y
w

t,w∈Σ+ ] = C22(Av)22x2(t). (8)

By projecting both side of (8) onto Hz
y2
w

t,w∈Σ+ , and by using that

x2(t) ∈ Hz
y2
w

t,w∈Σ+ (see [7, Th. 5]), we get thatEl[z
y2+
v (t)|Hz

y2
w

t,w∈Σ+ ] =

C22(Av)22x2(t). By considering (8), the latter implies (7), i.e., that
there is no GB–Granger causality from y1 to y2. �

Proof of Lemma 2: Notice that Hz
y2
w

t,w∈Σ+ ⊆Hz
y
w

t,w∈Σ+ , v(t)=y2(t)

−El[y2(t) | Hz
y2
w

t,w∈Σ+ ], and e2(t) = y2(t)− El[y2(t) | Hz
y
w

t,w∈Σ+ ],
hence by the minimal distance property of orthogonal projections,
e2(t) = v(t) if and only if E[(v(t))2i ] = E[(e2(t))

2
i ], i = 1, . . . , k2,

where (v(t))i and (e2(t))i are the ith entry of v(t) and
e2(t), respectively. Note that e2(t) =

∑
σ∈Σ ασe2(t)uσ(t),

v(t) =
∑

σ∈Σ ασv(t)uσ(t). As e2,v are ZMWSSI processes,
E[e2(t)e

T
2 (t)uσ(t)uσ

′ (t)] = 0, E[v(t)vT (t)uσ(t)uσ
′ (t)] = 0 for

all σ 	= σ
′
, σ, σ

′ ∈ Σ. Hence, E[(v(t))2i ] =
∑

σ∈Σ α2
σ(t)(Q̄σ)i,i,

E[(e2(t))
2
i ] =

∑
σ∈Σ α2

σ(t)(Qσ)k1+i,k1+i. �
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