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Opinion Behavior Analysis in Social Networks
under the Influence of Coopetitive Media

Dong Xue, Member, IEEE, Sandra Hirche, Senior Member, IEEE, and Ming Cao, Senior Member, IEEE

Abstract—Both interpersonal communication and media contact are important information sources and play a significant role in
shaping public opinions of large populations. In this article, we investigate how the opinion-forming process evolves over social
networks under the media influence. In addition to being affected by the opinions of their connected peers, the media cooperate and/or
compete mutually with each other. Networks with mixed cooperative and competitive interactions are said to be coopetitive. In this
endeavor, a novel mathematical model of opinion dynamics is introduced, which captures the information diffusion process under
consideration, makes use of the community-based network structure, and takes into account personalized biases among individuals in
social networks. By employing port-Hamiltonian system theory to analyze the modeled opinion dynamics, we predict how public
opinions evolve in the long run through social entities and find applications in political strategy science. A key technical observation is
that as a result of the port-Hamiltonian formulation, the mathematical passivity property of individuals’ self-dynamics facilitates the
convergence analysis of opinion evolution. We explain how to steer public opinions towards consensus, polarity, or neutrality, and
investigate how an autocratic media coalition might emerge regardless of public views. We also assess the role of interpersonal
communication and media exposure, which in itself is an essential topic in mathematical sociology.

Index Terms—Social networks, media influence, opinion-forming processes, social corruption, port-Hamiltonian representation.

F

1 INTRODUCTION

SOCIAL entities share and aggregate thoughts, ideas, feel-
ings, experience, and observations over social networks,

and generate new thoughts, ideas, feelings, experiences,
and observations at the same time. In social science, nu-
merous efforts have been directed towards understanding
the relationship between individual behaviors and social
interaction among actors [1]–[3].

The conventional modeling methods of social networks
often postulate that a social actor communicates directly
with other connected peers. In practice, however, interac-
tion in the form of communication or observation between
social actors occurs not directly but rather through some
intermediates or a shared environment [4]. An analogy can
be found in biological systems [5], where bacteria produce,
release, and measure signaling molecules (known as autoin-
ducers) which disseminate in the environment, influencing
population coordination and bacterial infection processes.
This mechanism, termed quorum-sensing transitions [6] (see
Fig. 1(a)), appears to be “déjà vu” in social science. In reality,
aside from actor-to-actor communication, the messages de-
livered either through the traditional media, e.g., TV, radio,
and newspaper, or trendy socio-technical platforms, e.g.,
blogs, Facebook, and Twitter are also important sources
of formulating and changing people’s attitudes towards
relevant topics. For instance, according to a study of the
impact of media bias on US voting [7], Fox News, a cable
and satellite TV news channel, helps Republicans gain an
estimated 3 to 8 percent of additional votes between 1996
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and 2000. Meanwhile, media are affected to different extents
by their audiences and other presses. Nowadays, viewers no
longer passively receive messages but may behave proac-
tively. Another significant class of social networks where
quorum sensing can take place is the system of governance
in which a small deliberative group assembles in a large
organization. Those elected or appointed members coming
from different interest communities are authorized to deal
with issues in particular domains. Notable examples include
committees in universities or enterprises, School Boards in
public school districts, Boards of Directors in the organi-
zations, and elected officials and standing policy bodies
in the Congress [8]. The quorum-sensing communication
architecture (see Fig. 1(b)), despite arising from different
social contexts, motivates the in-depth study of opinion
dynamics. Along with this line of research, most literature
focuses on the understanding of the opinion-forming pro-
cesses under the exogenous influence which is often mod-
eled by a constant [9], time-varying [10], or noisy signal [11].
Other works [10], [12] take into account the importance of
media on audiences and suggest using a bounded confi-
dence model (BCM) to formulate the communication links.
The truncation effect of BCM, however, prevents the use of
commonly available tools for analyzing dynamical systems.

The recent developments in network science uncover
that many network-embedded dynamical systems might ap-
pear to persistent disagreement or even cleavage [1], not just
unanimous behavior [13]. Among others, one response to
opinion separation is the emergence of antagonistic relation-
ships between social entities including competition, distrust,
rebellion, and betrayal [14]. In comparison to manufacturing
consent in cooperative networks, numerous efforts have
been directed toward investigating mechanisms for polar-
ization on social networks with adversarial behaviors [3].
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Fig. 1: A schematic representation of the networks. (a). A bacterial quorum-sensing network. (b). A social network with
cooperative (in red) and competitive (in blue) interactions.

Meanwhile, competition happens in media industries for
political or commercial purposes, e.g., to attract the audi-
ence [12], motivating to re-examine the understanding of
opinion dynamics in cooperative scenarios. The aforecited
literature, however, primarily focuses on understanding the
connection between the opinion evolution and the inter-
actions via communication networks. In this article, we
emphasize the fundamental importance of individuals’ dy-
namical properties on opinion formation. This is rooted in
the psychological fact that social entities, primarily humans,
are not utterly rational and even ordinarily intentional [15].
Moreover, individual diversity has a significant impact on
the opinion formulation of social entities. Individuals, who
live in the same community, may still have different educa-
tional experience, dissenting political views, and contrasting
aesthetic standards, substantially affecting their decision
making. The existing methods including the gauge transfor-
mation [16] and lifting approach [17] base upon the discrete-
time DeGroot-type model or the continuous-time Abelson-
type model, and thus are only valid in the absence of self-
dynamics. Therefore, there is a great need for constructing
an appropriate methodology to study the opinion formation
problem of heterogeneous agents with self-cognition.

Contributions In this work, we elaborate on the study of
opinion formation problems in social networks under the
influence of media. A new mathematical model involving
local dynamics and interaction structures is introduced to
describe the evolving properties of opinion dynamics. On
the one hand, the modeling framework shows social entities
tend to timely update their beliefs through the received
messages from neighboring peers and social media. In
particular, the media competition is embodied explicitly
by assigning negative signs to the edges corresponding
to antagonistic interactions on graphs. On the other hand,
the developed mathematical formulation emphasizes the
existence and importance of the individual dynamics in
the opinion evolution process. Motivated by the market
segmentation and business concentration in media indus-
tries, we analyze the dynamical properties of the developed
model of opinion dynamics at the level of community archi-

tectures. By employing port-Hamiltonian (PH) formulation
to represent the opinion dynamics, we can gain insight
into how agents behave confronting a massive body of
external influences. In connection with the concept of in-
ternalization in psychological and sociological studies [18],
the PH formulation explains the external information or
message flow through social entities without relying on
detailed social psychological descriptions. Additionally, the
convergence analysis follows naturally from the PH system
theory, underlining the collective effect of local dynamic
natures and topological constraints on shaping public opin-
ion. Furthermore, the sociological postulate “iron law of
oligarchy” [19] motivates our further investigation on how
media dominate the opinion-pooling process in autocratic
societies. From a control-theoretic perspective, we explore
the intrinsic mechanisms and ruling strategies of dominant
groups controlling outcomes of social systems, which may
lead to new ideas for policy intervention or prevention.

Organization The remainder of the article is organized as fol-
lows. Section 2 develops the mathematical model of opinion
dynamics through interpersonal communication and media
influence and introduces some preliminary properties of this
system. Using networks based on communities, we study
in Section 3 the fundamental properties of the developed
framework and provide sufficient conditions for diverse
opinion forming patterns. Section 4 presents some necessary
modeling interpretations and steady-state analysis. Some
numerical examples are given in Section 5 to illustrate the
results. Finally, we conclude the article in Section VI together
with some discussions on future works.

Notations Let (R≥0) R and (C≥0) C be the set of (non-
negative) real and (non-negative) complex numbers, respec-
tively. Vector 1n (0n) and matrix In represent respectively
the n-dimensional column vector of all ones (zeros) and
the n × n identity matrix with appropriate dimensions.
The notation |a| and sgn a denote the absolute value and
sign pattern of a scalar a, receptively. Moreover, |x| and
‖x‖ are the entry-wise absolute value and the 2-norm
of a vector x = (x1, . . . , xn), respectively. The notation
M � 0 (M � 0) represents that matrix M is positive (non-
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negative) definite. The spectrum of a square matrix M is
written by sp(M). Let ι be the imaginary unite, i.e., ι2 = −1
and ιR represent the imaginary axis containing the number
zero. An eigenvalue of a matrix is semi-simple if it possesses
equal algebraic and geometric multiplicities.

Throughout the article, we shall use the terminology
“agents” for all social entities living on a network and model
them by nodes in a graph. Among others, we shall refer
to “media” or “leaders” as the social entities who have
predominance in social activities, which correspond to the
dominant nodes in the graph. We shall adopt “actors” to
describe the entities that amount to the other ordinary nodes
in the graph.

2 PROBLEM FORMULATION

2.1 Basic Notions From Graph Theory

A signed graph is denoted by G = (V,E) where V =
{1, . . . , n} stands for the set of nodes and E ⊆ V×V is a set
of edges. Define the adjacency matrix by A = [aij ] ∈ Rn×n
such that an element (j, i) of E indicates that there exists
a directed edge from node j to i with the coupling weight
aij 6= 0. Throughout the article, we confine ourselves to
graphs that have no self-loops (i.e., aii = 0, ∀i ∈ V)
and are digon sign-symmetric [20], which means any pair of
opposite edges, if it exists, is identically signed aijaji > 0.
A signed digraph Gs = (Vs,Es) is called a subgraph of G
if Vs ⊆ V and Es ⊆ E. A signed graph is called balanced
if
∑

(j,i)∈E |aij | =
∑

(i,j)∈E |aji| for all i ∈ V. A path
connecting nodes i and j is a sequence of distinct nodes
i0 := i, i1, . . . , ip−1, ip := j (k > 1) such that (iq−1, iq) ∈ E
for q = 1, . . . , p. A signed graph is quasi-strongly connected
(QSC) if it has at least one node, called root, which can reach
any other nodes of the graph by a path. A signed graph is
strongly connected if any node can reach any other nodes of
the graph with a path.

Slightly different from the conventional definition of the
Laplacian matrix for unsigned graphs, the Laplacian L of a
signed graph is denoted by

[L]ij :=

{
−aij if j 6= i∑n
p=1 |aip| if j = i

According to the Gershgorin disk theorem, L has no eigen-
values in the closed left-half complex plane with the possible
exception of eigenvalue 0. Unlike the unsigned case, the
Laplacian of graphs with negative coupling may have no
eigenvalue 0. In many opinion dynamics literature [16],
[17], structural balance theory is widely used to characterize
the existence of eigenvalue 0 for the signed Laplacian. A
directed signed graph G with vertex set V is structurally
balanced (SB) if V can split into two disjoint subsets (i.e.,
V+ ∪ V− = V, V+ ∩ V− = ∅) such that the weights of
(i, j) ∈ E are positive ∀i ∈ V+, j ∈ V+ and ∀i ∈ V−, j ∈ V−
and, weights of (i, j) ∈ E are negative ∀i ∈ V+, j ∈ V− and
∀j ∈ V+, i ∈ V−. The above structural condition depicts
the scenario that a group separates into two subgroups
(such as advocates of two political parties), where an agent
cooperates with other group-mates while competing with
agents in the opposite group. The SB condition always holds
in graphs without negatively weighted edges (therein one of

the group is empty). As shown in [20], a quasi-strongly con-
nected signed graph G that is structurally balanced implies
that its Laplacian L has a simple eigenvalue at zero and
all other eigenvalues have a positive real part. Finally, the
associated unsigned graph of a signed graph G possesses
the same sets of nodes and edges as G and its associated
Laplacian L̂with [L̂]ij = −|[L]ij | for i 6= j and [L̂]ij = [L]ij
for i = j.

2.2 Port-Hamiltonian Representation and Passivity

We follow the convention introduced in [21]. Consider an
input-output dynamical system

ẋ(t) = f(x) + g(x)u(t), y(t) = h(x) (1)

where x ∈ Rn
x

, u ∈ Rn
u

and y ∈ Rn
y

are the state, control
and output, respectively. Let f , g be locally Lipschitz and h
be continuous, satisfying f(0) = 0, g(0) = 0 and h(0) =
0. Consequently, the solution to the system (1) is unique
for any locally bounded input u and the initial condition
x(0) ∈ Rn

x

.
The system (1) admits a port-Hamiltonian (PH) repre-

sentation (in a generalized sense) if there exist nx × nx

matrices J(x), R(x) satisfying J(x) = −JT(x) and
R(x) = RT(x) � 0, and a smooth function S(x), called
Hamiltonian, such that (1) can be rewritten in the form

ẋ(t) = (J(x)−R(x))
∂S

∂x
(x) + g(x)u(t),

y = gT(x)
∂S

∂x
(x).

(2)

An appealing feature of the PH formulation is the passivity
property when S(x) ≥ 0, namely

Ṡ(x) = −∂S
T

∂x
(x)R(x)

∂ST

∂x
(x) +

∂ST

∂x
(x)g(x)u(t)

≤ y(t)Tu(t).

(3)

An agent with dynamics (1) is passive if there exists a
smooth function S(x) ≥ 0 such that the passivity inequal-
ity (3) holds. In addition, we call the passive system (1) sat-
isfying the reformulation (2) a port-controlled Hamiltonian
(PCH) system, denoted by (J ,R, S).

The PH approach has prominent advantages in analysis
and modeling of systems from various physical domains
(e.g., mechanical, electrical, electromagnetic, and thermal
systems.). As one will see, the PH modeling is instrumental
in our dynamical behavior analysis of opinion dynamics
and information flow in social networks. Particularly, the
intrinsic passive nature provides a significant implication
into the convergence property of opinion systems. Much
effort has been devoted to using passivity-based technique
into the cooperative control of multi-agent systems with
nonlinear heterogeneous dynamics [22], [23].

2.3 Problem Formulation and Elementary Results

Consider a network of n ≥ 2 actors described by a signed
graph Ga = (Va,Ea) associated with the signed Laplacian
La ∈ Rn×n. Each actor i has a vector xi ∈ Rn

x

that rep-
resents its opinions on nx different subjects. In this article,
we focus on continuous-valued opinions like the degree of
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preference to issues or the tendency to change thoughts: sign
qualifies the current belief tendency -positive for support,
negative for protest and zero for neutrality-, and modulus
quantifies the magnitude. The time-evolution of the opinion
vector xi obeys the linear time-invariant (LTI) dynamics

ẋi(t) = F ixi(t) +Giui(t), yi(t) = Hixi(t) (4a)

ui(t) =
n∑
j=1

|aij |
(
yj(t) sgn aij − yi(t)

)
, (4b)

where ui, yi ∈ Rn
y

stand for the control inputs and the
outputs, respectively. The matrices F i, Gi and Hi with ap-
propriate dimensions denote the open loop system matrix,
the control input to the state map, and the state to output
map, respectively. Here, the coupling weights aij ∈ R can
accommodate antagonistic interactions. That is to say, there
may exist edges in graph Ga with coupling weights aij < 0
for (j, i) ∈ Ea.
Remark 1. In the recent literature, extensive works have
demonstrated that noise (e.g., communication uncertainty
between agents and exogenous disturbance due to an ex-
ternal environment) can indeed dramatically affect the col-
lective opinion formation processes. Noise, far from just a
nuisance, has begun to be noticed for its essential role in
social activities. In fact, injecting noise properly can drive
a network of agents toward desired collective behavior
patterns including opinion synchronization [24], neutraliza-
tion [4], and separation [25].

We start off by providing the mathematical descriptions
of collective behaviors emerging from opinion networks
with antagonism.

Definition 1. An opinion dynamic is said to establish output
modulus synchronization under a prescribed control protocol,
if for any initial states, the following statement

lim
t→∞

|yi(t)| − |yj(t)| = 0, lim
t→∞

‖yi(t)‖ <∞,

holds for all i, j ∈ Va. With additional conditions, the
output modulus synchronization can be further categorized:

1). if limt→∞ yi(t) = 0 for all i ∈ Va, then we say the
protocol establishes output neutralization,

2). otherwise, we say the protocol establishes output
bipartite synchronization. In particular,

2.1). if limt→∞ yi(t) − yj(t) = 0 for all i, j ∈ Va,
then we say the protocol establishes output
synchronization,

2.2). otherwise, it establishes output polarization.

Note that since we study the opinion discussion on
multiple issues, namely, the opinion variable is a vector
value rather than a scalar value; thus the case when some
(not all) of the entries of the opinion vector are 0 is also
allowed for output bipartite synchronization.
Remark 2. The aim of this article is only to investigate
whether or not the deviations between modular outputs
vanish, while the outputs themselves may or may not
converge to a static equilibrium vector. Consequently, we
use the term “modulus/bipartite synchronization” in Defi-
nition 1 by extending the relevant concepts of multi-agent
cooperative control with antagonistic interaction [26], [27].

It is different from the usual modulus/bipartite consensus
definition introduced in [16], [20], in which the outputs or
rather states of all social actors are required to converge
in modulus to a constant. Hence, the bipartite consensus
of opinion dynamics implies bipartite synchronization, but
not necessarily the other way around. See [3] and the
references therein for more discussions on the conceptual
definition of modulus consensus/synchronization/flocking.
Moreover, we use the terminology “neutralization” to char-
acterize the phenomenon where social actors increasingly
become getting used to indifference no matter what their
initial intentions were. As claimed in [28], it is a more
descriptive term in social science than the technical term
of stabilization used in Altafinis’ work [16].

Throughout this article, we primarily deal with dy-
namical systems of the PH formulation. More details on
the interpretation of the above model and its sociological
implications will be provided later.

Assumption 1. Actors with dynamics (4) admit representa-
tions in the form of PCH systems (Jai ,R

a
i , S

a
i ):

ẋi(t) = (Jai −R
a
i )
∂Sai
∂xi

(xi) +Giui, yi = GT
i

∂Sai
∂xi

(xi).

with a skew-symmetric matrix Jai = −(Jai )T, a positive
semi-definite matrix Ra

i = (Ra
i ) � 0, and a radially

unbounded Hamiltonian function Sai ≥ 0.

For cooperative networks, it is widely known that pas-
sive agents achieve output synchronization if the interac-
tion graph is strongly connected and balanced [22]. By
giving some sufficient conditions, we first provide a crite-
rion to establish output modulus synchronization of opin-
ion systems (4a) with the control law (4b) on coopetitive
(cooperative-competitive) networks.

Proposition 1. Consider the opinion dynamics (4) under As-
sumption 1 for all actors i ∈ Va. If the signed graph Ga is quasi-
strongly connected and balanced, then the protocol (4b) establishes
output modulus synchronization.

Proof. Due to the PH representation of actors, the Hamilto-
nian of the entire actor-to-actor network is the summation
of the individual Hamiltonian, i.e., Sa =

∑n
i S

a
i whose time

derivative along the trajectories of the system (4) satisfies

Ṡa(x) =
d

dt

n∑
i=1

Sai (xi) ≤
n∑
i=1

(
yT
i (t)ui(t)

)
=

n∑
i,j=1

aijy
T
i (t)yj(t)− |aij |yT

i (t)yi(t),

(5)

where x = [xT
1 , . . . ,x

T
n]T ∈ Rnn

x

. The balancedness of the
digraph Ga, i.e.,

∑n
j=1 |aij | =

∑n
j=1 |aji| implies that the

additive power is further equal to
n∑
i=1

yT
i (t)ui(t)

=
n∑

i,j=1

(
aijy

T
i (t)yj(t)−

1

2
|aij |

(
‖yi(t)‖2 + ‖yj(t)‖2

))
=− 1

2

n∑
i,j

|aij |
∥∥yj(t) sgn aij − yi(t)∥∥2 ≤ 0. (6)
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TABLE 1: Glossary of Terms

social network social entity social actor social media social community
graph theory node ordinary node dominant node subgroup
biological example living organism species intermediate cell
governance system people civilian legislator factor
election campaign citizen constituent elected official political parity
social movement participator common participator radical leader clique
factory, company staff worker, clerk managers, administrator office, department
information systems gossiper audience press cumulative audience
commercial market user customer advertiser user group

Since Sa is proper due to the local positive definiteness
and the radial unboundedness, the inequality (6) along
with (5) implies that the solution x(t) to the systems (4)
is bounded and stays in a compact set. The fact that Hi is a
real matrix for i ∈ Va indicates the output signals y(t) are
also bounded, i.e., limt→∞ ‖y(t)‖ < ∞. By the application
of LaSalle invariant principle and the fact sgn aij ∈ {±1},
x(t) converges to a ω-limit set in which |yi(t)| = |yj(t)| for
all i, j ∈ Va. It is known that a balanced graph is quasi-
strongly connected if and only if it is strongly connected.
Following by Theorem 8.5 of [22], for arbitrary initial states
x(0) ∈ Rnn

x

, the system (5) reaches output modulus syn-
chronization, i.e.,

lim
t→∞

|yi(t)| − |yj(t)| = 0, ∀ i, j ∈ Va.

The proof of Proposition 1 is complete.

In the real world, however, people are more or less ex-
posed to pervasive mass and electronic media in their social
surrounding. Hence, a natural question is how the opinion
of actors evolves under the influence of social media. To this
end, we first modify the model of opinion dynamics (4) in
the following way.

Consider the existence of m > 1 media in a social
network. Let Gm = (Vm,Em) be a graph describing the
underlying interconnection structure among media with
Vm = {1, . . . ,m} and Em ⊆ Vm × Vm. To capture market
segmentation in media industries, the appearance of m
media recasts the actor-to-actor communication network
Ga consisting of m subgraphs: Let Gak = (Vak,Eak) be the
subgraph characterizing the interconnection relation among
actors confronting medium k ∈ Vm, where |Vak| = nk and
(i, j) ∈ Eak if (i, j) ∈ Ea and i, j ∈ Vak. For convenience, we
label the first n1 nodes of the graph as the actors exposed to
medium 1 and so on. Therefore, one has n1 + · · ·+ nm = n,
Va1 ∪ · · · ∪ Vam = Va, and Ea1 ∪ · · · ∪ Eam = Ea. As such,
media influence and community-based architecture render
the actors the following opinion update rule

ẋi(t) = F γ(i)xi(t) +Gγ(i)ui(t),yi(t) = Hγ(i)xi(t),(7a)

ui(t) =
∑

j∈Va
γ(i)

aij
(
yj(t)− yi(t)

)
+ biγ(i)

(
ηγ(i)(t)− yi(t)

)
, (7b)

where aij ∈ R≥0 and bik ∈ R≥0 stand for the degree of
confidence or susceptibility to interactions. γ : Va → Vm
is a surjective function defined between two sets of indices
(not necessarily injective). Two actors i, j ∈ Va are said to be

in the same group iff γ(i) = γ(j). In the controller update
rule (7b), ηγ(i) is the output of medium γ(i) ∈ Vm whose
dynamical evolution obeys the following update rule

χ̇k(t) = Ψkχk(t) +Θkµk(t), ηk(t) = Ξkχk(t), (8a)

µk(t) =
∑
l∈Vm

|ckl|(ηl(t) sgn ckl − ηk(t))

+
∑
j∈Vak

dkj(yj(t)− ηk(t)), (8b)

where χk ∈ Rn
x

and µk,ηk ∈ Rn
y

respectively are state,
input, and output of medium k. In eq. (8b), ckl ∈ R
and dkj ∈ R≥0 are coupling strength of the interaction
from media and actors, respectively. In comparison to the
previous actor-to-actor network dynamics (4), we assume
no antagonism in interpersonal communication to avoid un-
necessary complexity, i.e., aij ≥ 0, whereas the interaction
coefficients ckl allow negative values, making possible the
representation of competition relationship among media.
Qualitatively, the development of the article can also be
adapted to the negative ties among actors.

The compartmental model (7) of opinion dynamics re-
sembles the cell-based architecture in biological systems [29]
as shown in Figure 1, and is indeed ultimately related to
the emergence and prevalence of clustering phenomenon
among real-life groups typically consisting of like-minded
individuals [30]. For example, homophily (media are “heard”
only by persons with views being not too far away) provides
the sociological explanation for the appearance of social
agglomerations. Moreover, such social network models are
reminiscent of many paradigms in the biological world
and human society; see Table 1), but we will not expand
further. Compared with simple actor-to-actor networks, the
quorum-sensing interaction structure is, in some sense, far
more robust against local disturbance as media can some-
how “filter” out noise [4].

Remark 3. Notably, the developed results in this article are
independent of the specific community-detection algorithm,
especially of topological operations such as zoom in or
out of compartments, which do not change the collective
opinion evolution in social spaces. The topological structure
in which each group Gak connects to one medium k does not
represent a restriction and applies to a more general setup
wherein the opinions of media available for an actor group
are in the same phase. Throughout the article, we only focus
on the model (7) for simplicity of analysis and clarity of
presentation.
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In what follows, we study in depth the evolutionary
behavior of individual opinions under the joint influence
of the continuous communication with neighboring peers
and the assimilation of information advocated on media.

3 MAIN RESULTS

This section provides some fundamental properties and
convergence property for the proposed mathematical model
describing opinion dynamics.

3.1 Convergence Behavior Analysis
Before embarking on the detailed analysis, we first intro-
duce some notational conventions and topological proper-
ties of the graph modeling the social networks.

As a consequence of media description in (8), the signed
Laplacian matrix Lm ∈ Rm×m associated to graph Gm is
given by [Lm]kl := −ckl if k 6= l and

∑m
p=1 |ckp| if k = l. Let

Lak ∈ Rnk×nk≥0 be the Laplacian matrix of subgraph Gak for
k ∈ {1, . . . ,m}, so that La = diag(La1 , . . . ,L

a
m). Therefore,

we can formalize the interaction structure encoded in the
control protocol (7b) and (8b) by an (n + m) × (n + m)

Laplacian matrix Le ,

[
La +B −B̃
−D̃ Lm +D

]
where

B̃ ∈Rn×m≥0 = diag(b1, . . . , bm),

with bk =
[
b(

∑k−1
l=1 nl+1)k, . . . , b(

∑k
l=1 nl)k

]T
B ∈Rn×n≥0 = diag(B1, . . . ,Bm),

with Bk = diag
(
b(

∑k−1
l=1 nl+1)k, . . . , b(

∑k
l=1 nl)k

)
,

D̃ ∈Rm×n≥0 = diag(d1, . . . ,dm),

with dk =
[
dk(

∑k−1
l=1 nl+1), . . . , dk(

∑k
l=1 nl)

]
D ∈Rm×m≥0 = diag

∑
j∈Va1

d1j , . . . ,
∑
j∈Vam

dmj

 .
This Laplacian matrix Le designates an adjacency ma-
trix W = [wij ] ∈ R(n+m)×(n+m) with the elements
wpq = −[L]pq and wpp = 0 for p, q = 1, . . . , n + m. In
what follows, we use graph Ge = (Ve,Ee) to represent
the underpinning interconnection structure of the entire
social network consisting of actors and media, wherein
Ve = {1, . . . , n, n+ 1, . . . , n+m} is vertex set and the edge
set Ee ⊆ Ve × Ve has elements (q, p) ∈ Ee if wpq 6= 0 and
q 6= p. Without loss of generality, the media are labeled by
{n+ 1, . . . , n+m} in graph Ge.

Similar to the treatment of actor systems, we restrict
ourselves to the passive media dynamics satisfying the
following assumptions.

Assumption 2. For all k ∈ Vm, medium k with dynamics (8)
is of the PH representation (2) associated with a skew-
symmetric matrix Jmk = −(Jmk )T, a positive semi-definite
matrix Rm

k = (Rm
k )T � 0, and a radially unbounded

Hamiltonian Smk ≥ 0.

Assumption 3. In each actor subgroup, at least one actor is
listening to the medium, i.e.,

∑
i∈Vak

bik > 0 for all k ∈ Vm
and the actor-media interaction is equivalently reciprocal,
i.e., bik = dki for all i ∈ Va and k ∈ Vm.

Note that Assumption 3 is necessary to derive the pri-
mary results in this article. The following Lemma exposes
some elementary topological properties of graph Ge.

Lemma 1. For a social network with n actors and m media,

1). graph Ge is structurally balanced if and only if media
graph Gm is structurally balanced.

Furthermore, when Assumption 3 holds,

2). if media graph Gm and all actor subgraphs Gak (k ∈ Vm)
are respectively balanced, then graph Ge is balanced;

3). if graph Gm is quasi-strongly connected and all subgraphs
Gak (k = 1, . . . ,m) are strongly connected, then

3.1). graph Ge is quasi-strongly connected;
3.2). there is at least one dominant node (medium) being

a root of graph Ge;
3.3). there is at least one ordinary node (actor) being a

root of graph Ge.
Proof. Since each group of actors only listens to one specific
medium and the edges with negative weights only appear
in the interactions among media, one direction of claim
1). is obvious: if Ge is structurally balanced, media graph
Gm is structurally balanced. Similarly, if Gm is structurally
balanced, then Vm can be split into two hostile camps and
nodes in Va can be allocated at any one of them, leading to
the structural balance of graph.

Suppose that the media graph is quasi-strongly con-
nected, let medium 1 ∈ Vm (equivalently, node n + 1 ∈ V
in graph Ge) be the root of graph Gm, which has at least
one path to connect to any other media. Since Assump-
tion 3 is satisfied, the strong connectedness of each actor
subgraph Gak implies each medium k in Vm has a path to
communicate with all nodes in V ak . Consequently, one can
always find a path connecting from media 1 to all actors
and thus condition 3.2) holds. The implication 3.1). follows
straightforwardly from condition 3.3).

Moreover, there exists at least one actor in Va1 , supposed
the node with label 1 ∈ Va (equivalently, node 1 ∈ V in
graph Ge), satisfying d(n+1)1 = b1(n+1) > 0 according to
Assumption 3. Namely, both actor 1 and medium n + 1 on
graph Ge have a link connecting to another. The fact that the
media node 1 ∈ Vm is a root of graph Ge implies the actor
1 ∈ Va has a path on graph Ge to reach other nodes in Ve
by transiting though medium n+ 1 ∈ Ve. Therefore, actor 1
is also a root of graph Ge and the proof is finished.

In analogy with Proposition 1 in simple actor-to-actor
communication structure, we can provide a criterion for
output modulus synchronization over the network Ge.

Theorem 1. Consider n actors of dynamics (7) under Assump-
tion 1 and m media of dynamics (8) under Assumption 2. If the
following topological conditions hold:

1). Assumption 3 holds;
2). subgraphs Gak are balanced and strongly connected for all

k ∈ Vm;
3). subgraph Gm is balanced and quasi-strongly connected;

then all actors (7) reach output modulus synchronization.

Proof. Obviously, graph Ge is quasi-strongly connected and
balanced as a result of Lemma 1.
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Let the Hamiltonian of the entire social network be

S(x,χ) =
n∑
i=1

Sai (xi) +
m∑
k=1

Smk (χk), (9)

where x = [xT
1 , . . . ,x

T
n]T and [χT

1 , . . . ,χ
T
m]T are the stacked

vectors of actors and media, respectively. By treating media
as members of the actor-to-actor network, Proposition 1
with the Hamiltonian function (9) implies the protocol (7b)
synchronizes the outputs of systems (7a) in modulus for
every choice of the initial conditions, i.e.,

lim
t→∞

|yi(t)| − |yj(t)| = 0, ∀ i, j ∈ Va,

for all initial conditions x(0) ∈ Rnn
x

, χ(0) ∈ Rmn
x

. Thus,
the proof is complete.

Although not explicit in Theorem 1, the media (8a)
also establishes output modulus synchronization under the
control rule (8b), i.e., limt→∞ |ηk(t)| − |ηl(t)| = 0, for all
k, l ∈ Vm, independently of the initial conditions. More sig-
nificantly, one can also check that limt→∞ |yi(t)|−|ηk(t)| =
0 for all i ∈ Va and k ∈ Vm. That is to say, all of the social
entities in the social network Ge asymptotically reach output
modulus synchronization at the end of the issue discussion.

In cooperative networks [22], no explicit extraction of the
trivial case that the synchronous trajectories asymptotically
vanish independent of initial states is made on the notion
of synchronization. Yet, it is important to highlight such
distinction of synchronous behavior in opinion dynamics,
since the “degenerate” case implies all of the opinions
become neutralized in the end and is of essential interest
in its own right.

Before getting into the details, we define an equivalence
relation ∼s on system matrices F i and F j by F i ∼s F j if
they satisfy the properties

1). sp(F p) ∩ ιR 6= ∅ (p = i, j) and those eigenvalues are
semi-simple;

2). sp(F i) ∩ ιR = sp(F j) ∩ ιR;
3). the eigen-spaces corresponding respectively to

sp(F i) ∩ ιR and sp(F j) ∩ ιR are the same.

Note that the definition of this equivalence relation implies
the matrix Fp (p = i, j) has at least one eigenvalue 0 or a
pair of purely imaginary eigenvalues whose geometric mul-
tiplicity is equal to their algebraic multiplicity. In particular,
those eigenvalues on the imaginary axis and the associated
eigenspace are the same for all elements in the equivalence
class [F i]∼s .

Then, the following theorem serves as the investigation
of the non-trivial case where output modulus synchroniza-
tion implies output synchronization or output polarization.

Theorem 2. Let the assumptions and conditions of Theorem 1
hold. If the following conditions are satisfied:

1). media graph Gm is structurally balanced;
2). F i ∼s F j ∼s Ψk for all i, j ∈ Va and k ∈ Vm;
3). HT

iHi � 0 for all i ∈ Va;

then the actor dynamics (7) reaches output bipartite synchro-
nization for any non-zero initial conditions: if ckl ≥ 0 for all
k, l ∈ Vm, then the synchronization of output opinion is reached;
otherwise, output opinions polarize.

Proof. As graph Ge = (Ve,Ee) is structurally balanced
thanks to statement 1) of Lemma 1, we may denote Ve− and
Ve+ as two “antagonistic camps” such that Ve− ∩ Ve+ = ∅
and Ve− ∪ Ve+ = Ve. Without loss of generality, let πp = 1
if p ∈ Ve+ and πp = −1 if p ∈ Ve−. After denoting the
augmented variable

z := [zT1 , . . . ,z
T
n+m]T = [yT,ηT]T,

the time-derivative of the Hamiltonian S in (9) becomes

Ṡ ≤
n+m∑
p,q

(
wpqz

T
pzq −

1

2
|wpq|(zTpzp + zTq zq)

)
(10)

= −1

2

n+m∑
p,q

|wpq|
∥∥zq sgnwpq − zp∥∥2 (11)

= −1

2

n+m∑
p,q

|wpq|
∥∥πqzq − πpzp∥∥2, (12)

where the inequality (10) is similar in the spirit to (5) and
the last equation (12) comes from the fact sgnwpq = πpπq
for (q, p) ∈ Ee as graph Ge is structurally balanced.

According to LaSalle invariance principle, [xT,χT] thus
converges to the ω-limit set Ω(x(0),χ(0)) in which one
has πqzq = πpzp for all p, q ∈ Ve. On this controlled in-
variant subspace Ω(x(0),χ(0)), the dynamics of actors (7a)
reduce to an unforced system ẋi(t) = F γ(i)xi(t). Moreover,
the zero vector is not an asymptotic equilibrium of this
autonomous system since sp(F γ(i)) contains at least one
simply stable eigenvalue according to condition 2) except
the zero initial condition. The equivalence relation among
all matrices sp(F i) (i ∈ Va) guarantees that the unforced
systems perform the same long-term dynamical behavior.
Thus, any actor i ∈ Va must obey limt→∞ |yi(t)| 6= 0
due to Hixi 6= 0 for all xi ∈ Rn

x

/{0}. Combining with
Theorem 1, one can conclude that the actor-to-actor network
reaches polarization of output opinions if there exists at
least one negatively weighted edge in graph Gm; otherwise,
output synchronization occurs. The proof is complete.

Remark 4. It is already known that the structural balance
condition endows the network topology with symmetries
and drives network dynamics towards a desired synchro-
nization or polarization pattern [16]. In addition to symme-
tries of network topology, the authors of [31] have shown
that the symmetries of the nodes’ vector fields are also of key
importance to attain the specific synchronization pattern in
opinion dynamics with the generalized ODE model (1). The
rationale behind the idea is to examine Γ-equivariance of the
intrinsic node dynamics. Specifically, there exist or not or-
thogonal matrices that commute with system matrices [32].
For structurally balanced networks, the opinion dynamics
of LTI systems (4) is naturally Γ-equivariant thanks to the
fact that πiI commutes with every system matrix F i where
i ∈ Va. For more results on symmetries and equivariance in
collective behavior analysis of networked systems, readers
are referred to [31], [32].
Remark 5. It is worthy to note that when the system matrices
F i for all i ∈ Va have no purely imaginary eigenvalue ex-
cept one or multiple semi-simple zero eigenvalues satisfying
condition 2) of Theorem 2, the opinion-evolving process
collapses to the stationary equilibrium setting, similar to



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

the study in [16], [20]. That is, all opinion states converge
asymptotically to a constant vector in a cooperative con-
text or two opposing constant vectors when antagonism
occurs. Otherwise, some components of the opinion trajec-
tories steered by dynamics (7a) exhibit a simple harmonic
oscillation as time progresses. The phenomenon that the
opinion-forming process either collapses to an equilibrium
state or shows permanent oscillation is related to bifurcation
of dynamical systems [33]. For simplicity of presentation,
we focus on the agent dynamics with the uniform system
matrix F for all agents p ∈ Ve as an illustrative example.
With the emergence of output bipartite synchronization,
we present the computation of the bifurcation value for
a family of system matrices. According to Theorem 2, the
system matrix F in the homogeneous case is required to
have at least one semi-simple eigenvalue with the zero real
part. The number of these eigenvalues which are nonzero
but purely imaginary plays, to some extent, the role of a
bifurcation parameter and the bifurcation occurs when the
number becomes zero. If the value is equal to zero, the
asymptotic behavior of opinion dynamics falls into a steady-
state consensus; otherwise, the system exhibits oscillatory
behavior. Our statement of bifurcation phenomenon can
also be generalized to a setting with heterogeneous agents.
For more discussions on bifurcation analysis in multi-agent
systems, see [33], [34].

According to Theorem 2, the output bipartite synchro-
nization of opinion evolution is determined by two factors.
On the one hand, the constraint is on the communication
structure among participating entities. In this work, the
graph-theoretic conditions (strong connectedness and bal-
ancedness) for asymptotic synchronization of passive multi-
agent systems [22] are customized distributively to sub-
graphs of social networks. Besides, the structurally balanced
condition is a significant source of the opinion cleavage in
society. Specifically, the network of media with different
memes might split into two disjoint camps such that media
in the same club mimic the memes with each other while
media coming from distinct groups confront each other for
some reasons, e.g., grabbing higher audience ratings. On
the other hand, the dynamic characteristics of agents are in
close relation with the (nontrivial) synchronous behaviors
of opinions in a population. The basic requirement on their
dynamic intersection is necessary to achieve bipartite output
synchronization for issue discussions. Indeed, everyday ex-
perience suggests that individuals who may be unmatched
in many aspects, e.g., age, height, color, etc., should have
some commonalities such as the moral compass of society,
in the hope of participating collective group behaviors. In
mathematics, it is of importance to strike a bargain of the
spectral intersection of system matrices on complex axis.

Evidently, it is not challenging to produce a counterpart
of Theorem 2 in actor-to-actor interaction networks.

Corollary 1. Consider n actors of system dynamics (4) under
Assumption 1 and the simple actor-to-actor network Ga being
quasi-strongly connected and balanced. If the following conditions
are satisfied:

1). graph Ga is structurally balanced;
2). F i ∼s F j for i, j ∈ Va;
3). HT

iHi � 0 for all i ∈ Va;

then actor systems (4) achieve output bipartite synchronization:
if aij ≥ 0 for all i, j ∈ Va, then output opinions become
synchronization; otherwise, output opinions polarize.

Since the structural balance and imbalance of graphs are
two mutually exclusive properties, a criterion concluding
output neutralization in a coopetitive organization can be
deduced from Theorem 1 and Theorem 2.

Theorem 3. Let the conditions of Theorem 1 hold. If the media
graph is strongly connected and structurally unbalanced, then
actors (7a) reach output neutralization under protocol (7b) for all
initial condition x(0) ∈ Rnn

x

, i.e.,

lim
t→∞

yi(t) = 0, ∀ i ∈ Va.

In addition, if the system (7a) is zero-state detectable, then the
actors attain state neutralization for all initial condition.

Proof. Inequality (11) in the proof of Theorem 2 implies that

Ṡ(x,χ) ≤ −zT(t)Lez(t) ≤ −ε
n+m∑
p=1

‖zp(t)‖2,∃ ε > 0 (13)

where the balanced condition of graph Ge is used due to
Lemma 1, i.e.,

∑n+m
q wpq =

∑n+m
q wqp for all p ∈ Ve.

Moreover, inequality (13) also follows from Corollary 3 of
[16]; in other words, if the strongly connected signed graph
Ge is structural unbalance, then all of the eigenvalues of
Laplacian matrix Le have positive real parts.

The application of LaSalle invariance principle to the
inequality (13) shows that [xT,χT]T converges to the ω-limit
set Ω(x(0),χ(0)) in which one can deduce zp(t)→ 0. That
is, the social network is asymptotically neutral for arbitrary
initial conditions, much fewer actors, i.e., limt→∞ yi(t) = 0
whatever the initial conditions are.

Furthermore, the zero-state detectability of systems leads
to the reasoning that if ui ≡ 0 and yi = 0 in the ω-limit set
Ω(x(0),χ(0)), one has limt→∞ xi(t) = 0 for all i ∈ Va.

Remark 6. So far, the quest for a global criterion to identify
bipartite synchronization from modulus context is an open
problem for more general nonlinear systems. Although the
nonlinear case is beyond the scope of this work, it is worth
mentioning that by linearizing of the nonlinear dynamics in
the vicinity of the original and by using Theorem (2) rooted
in the linear case, one may explore some local criteria as a
stepping stone.

Before closing this subsection, we provide some nec-
essary remarks on the modeling methodology in this ar-
ticle. The mathematical model (7) describing opinion dy-
namics more generally contributes to the rapidly growing
sociophysical literature [35]. Indeed, the major focus in
sociophysics concerns three phenomena: the compromising
process (the internal interactions between actors), the effects
of external influence (e.g., propaganda through media), and
the self-thinking of individuals (actors are likely to change
of their opinions spontaneously). Beyond that, the output-
feedback mechanism in the control law design rather than
state concern features the discrepancies in the private and
expressed opinions of individuals on given topics. In our
daily life, individuals may perform preference falsification
of their real veiws for many reasons, e.g., social pressure or



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

political future. We refer the reader to [36], [37] for empirical
observations of the inconsistency between inner self-attitude
and expressed opinions.

Furthermore, the adoption of the port-Hamiltonian rep-
resentation to identify a prominent class of opinion dynam-
ics provides substantial benefits in the mathematical analy-
sis due to the natural passivity. In particular, the developed
methodology allows for the interpretation of internalization,
a concept studied in social psychology and sociology [18],
from system and control theory. The first message is that the
PH picture captures how the message (information) flow
derived from the external communication with other peers
and the exposure to media gets through each social actor.
The passivity inequality Ṡai (xi) ≤ yT

i (t)ui(t) is consistent
with the common intuition that the abandonment rate of
in-coming knowledge or ideas never excesses information
potential available for actors. What’s more, the PH modeling
of social actors illustrates that the vector field generating
an opinion flow inside individuals involves a conservative
and a dissipative component. Among them, the dissipa-
tive system concerning a non-negative definite matrix Ra

i

governs the convergence performance of opinion dynamics,
since the opinion Hamiltonian (Lyapunov-like function) de-
creases (gradient-descent) along the dissipative vector field.
Instead, the conservative system associated with the skew-
symmetric matrix Jai determines the equilibrium behavior
after converging, agreeing with the spectral feature of the
self-dynamics as revealing in Theorem 2 and Corollary 1.

3.2 Autocratic Media Controlling Opinion Discussions

In the system of governance, one pitfall of the representative
democracy mechanism is that elected officials are in no
need to fulfill promises made before being elected, and even
promote their self-interests once elected. Besides, informa-
tion broadcasters like, e.g., television, newspapers, celebrity
blogs, are supposed to propagate informative messages to
their audiences, while they may mislead the public attitudes
towards political or social events by using deliberate manip-
ulations or even lies [38].

Those undesirable instances suggest the appearance of
colluding sub-groups in social networks. More formally,
they fall into a broad topic, what the sociologists call
“corruption” meaning the misuse of authorized power
(by heritage, education, marriage, election, appointment or
whatever else) to acquire private benefits or reach ulterior
purposes, e.g., in politics, economics, and culture [39]. If
corruption happens in the minority, its damages include the
loss of democracy, deprivation of liberty, demagoguery of
public opinions, etc., necessitate the rigorous examination
of the interaction organization and intrinsic mechanism in
those scenarios.

First, we endow a mathematical framework to corrup-
tion in social networks, whereby one has

∑n
i=1

∑m
k=1 dik =

0 which means no medium is affected by actors in an
autocratic society. To this end, we consider the input signals

for actors and media in the following pattern

ui(t) = Λγ(i)χγ(i)(t) +
∑

j∈Va
γ(i)

aij(yj(t)− yi(t))

+ biγ(i)

(
Hγ(i)Πγ(i)χγ(i)(t)− yi(t)

)
, (14)

µk(t) =
m∑
l=1

|ckl|(ηl(t) sgn ckl − ηk(t))

where Πγ(i) and Λγ(i) are solutions to the equations

F γ(i)Πγ(i) +Gγ(i)Λγ(i) = Πγ(i)Ψγ(i), (15)
Hγ(i)Πγ(i) = Ξγ(i), (16)

for i = 1, . . . , n. Next, we begin to examine the convergence
behavior of opinion formation in a corrupted social context.

Theorem 4. Consider the entire social network Ge satisfying∑n
i=1

∑m
k=1 dki = 0. If the following conditions hold,

1). media graph Gm is quasi-strongly connected, balanced and
structurally balanced;

2). the medium-to-actor couplings are lower bounded away
from zero, i.e., biγ(i) > ε > 0, for all i ∈ Va;

3). Ψk ∼s Ψ l for all k, l ∈ Vm;
4). ΞT

kΞk � 0, for all k ∈ Vm;

then the control laws (14)-(16) solve the output bipartite syn-
chronization problem for the passive actor systems (7a) with
detectable (Hi,F i) for all i ∈ Va. More importantly, the stably
synchronized output trajectories of actors rely entirely on the
output of media.

Proof. To promote the analysis, we introduce an auxiliary
variable ei(t) = xi(t) − Πγ(i)χγ(i)(t) for i ∈ Va, whose
time-derivative follows by (7a) as

ėi(t) =
(
F γ(i) − biγ(i)Gγ(i)Hγ(i)

)
ei(t)

−Πγ(i)Θγ(i)µγ(i)(t),
(17)

where (14)-(16) are taken into account. In equation (17), the
first term F γ(i) − biγ(i)Gγ(i)Hγ(i) on the right-hand side is
Hurwitz as a consequence of the passivity assumption and
detectability of (Hi,F i). By adopting Corollary 1 to the
media network Gm, the media states χγ(i) asymptotically
reach the output bipartite synchronization for any non-zero
initial conditions, as well as µγ(i) → 0 when time goes
to infinity. Then, the auxiliary variables ei obeying time
evolution rule (17) converge to an asymptotically stable
equilibrium state, i.e., limt→∞ ei(t) → 0 for all i ∈ Va.
Combining with condition (16), one can immediately obtain
that limt→∞ yi(t)− ηγ(i)(t) = 0.

Note that media asymptotically achieve the output bi-
partite synchronization at their own risk without the in-
volvement of actors. In a more abstract setting, the outputs
of media play a virtual role of the external references for
the dynamical systems (7a), which are tracked by actors
under the control law (14). Therefore, one can conclude that
actors asymptotically follow a non-zero synchronization
trajectory which does not depend on dynamical properties
of actors.

Remark 7. In control theory, equations (15) and (16) resem-
ble Francis equations in the output regulation problem. For
this reason, the solvability conditions suggested by [40] are
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available to examine the existence of matrices Πγ(i) and
Λγ(i) such that equations (15) and (16) hold. Theorem 4
claims that members of media networks ignore the ideas
of actors while forming opinions. The medium, which pro-
duces the reference-synchronization signal, plays the role of
an exosystem for actors within its influence scope. Thus, one
can apply the internal model principle to media systems by
following the classical namesake in the control field [41].
By exploring an internal model in media dynamics, we
can explicitly derive the analytic expression of equilibrium
opinion trajectories of agents. See [42] of internal-model-
based synchronization problem on cooperative networks
and the references therein for more details.

We now provide some valuable remarks and sociological
narratives on the proposed theoretical results. The overar-
ching point is that the influence of information exchanging
among actors vanishes in this case. That is, the diffusion-
like term

∑
j∈Va

γ(i)
aij(yj − yi) in (14) degenerates implic-

itly to zero since the outputs of actors belonging to the
same subgroup become identical with each other, owing
to (16). Such a nullification phenomenon of interpersonal
communication is commonly seen in the autocracy where
self-interested dictators prefer information control for po-
litical survival purposes [43]. With the technical revolu-
tion in communication, especially the recent penetration
of social-networking tools, such as Facebook and Twitter,
the autocratic phenomenon can be dramatically mitigated
by the enhancement of interpersonal communication [39].
In comparison to the relatively democratic controller (7b),
the actual opinions (the state variables) of media appear in
the opinion protocol (14). As such, the propaganda strategy
based on a mix of inner attitudes and expressed ideas
allows the media to manipulate public opinions, creating
an autocratic circumstance [44].

On the network interconnection structure, condition 2)
given in Theorem 4 guarantees that every medium has a
direct influence on its own viewers. Moreover, topological
constraints, including connectivity and (structural) balance,
are imposed only on the media graph, but the explicit
knowledge of the interaction relationships among actors is
not required. That is to say, the results are valid for any
interconnection configuration of actor subgraphs Gaγ(i). We
even allow the extreme case in which actors do not commu-
nicate with one another and only believe information spread
through public media, i.e.,

∑n
i,j=1 aij = 0.

4 ALGEBRAIC GRAPH-THEORETICAL INTERPRE-
TATIONS

In this section, we restrict our attention to the investigation
of the underlying interconnection topology of the entire so-
cial network from the perspective of algebraic graph theory.

To illustrate the developed ideas in further depth, we
conduct the following investigation in the context of Lapla-
cian dynamics [

ẋ(t)
χ̇(t)

]
= −Le

[
x(t)
χ(t)

]
, (18)

whereby actors and media are of single-integrator dynamics
with state-feedback control laws. Therefore, the modulus

(bipartite) output synchronization problem reduces to mod-
ulus (bipartite) state consensus problem as typically studied
in the majority of publications on opinion formation prob-
lems, e.g., [16], [17]. Evidently, the spectral properties of
the Laplacian Le are of central importance to characterize
the convergence behavior of the closed-loop system (18).
In analogy with the analysis of the above section, let actor
graphs Ga be strongly connected and media graph Gm
be quasi-strongly connected and structurally balanced. At
slight different with the generic model investigated in The-
orem 2, the Assumption 3 is relaxed to

∏m
k=1

∑n
i=1 bik > 0

and
∏m
k=1

∑n
i=1 dki > 0, meaning there exists at least one

member in each actor-subgroup Vak connecting to and being
connected from the medium k for all k ∈ Vm. This relax-
ation arises from the fact that the balance precondition can
be discarded when the self-dynamics term is absent. With
the help of Lemma 1, the entire graph Ge is quasi-strongly
connected and structurally balanced. Hence, the Laplacian
Le has a simple zero root, and other non-zero eigenvalues
have a positive real part. Moreover, there exist vectors
νe := [νe1 , . . . , ν

e
n+m] ∈ Rn+m and ρe := [ρe1, . . . , ρ

e
n+m] ∈

{±1}n+m such that νe ∈ ker (Le)T and ρe ∈ ker Le. In
terms of the node classification of Ve, these eigenvectors
can be decomposed respectively into νe = [(νa)T, (νm)T]T

and ρe = [(ρa)T, (ρm)T]T, such that

(La +B)ρa = B̃ρm, (Lm +D)ρm = D̃ρa. (19)

According to the properties of SB theory and the decom-
position of eigenvector ρ, the relations in (19) expose that
ρa ∈ ker La, ρm ∈ ker Lm, and the entries of ρa satisfy
ρai = ρmγ(i) for all i ∈ Va. In other words, the mode of the
attitude (support or oppose) of media is in accordance with
actors’ within their influence scope.

Following the resutls on Lemma 1 and Lemma 2 in [20],
for any initial conditions x(0) ∈ Rn, χ(0) ∈ Rm, the
Laplacian dynamics (18) yields that

lim
t→∞

x(t) = [(ν̄a)Tx(0) + (ν̄m)Tχ(0)]ρa,

lim
t→∞

χ(t) = [(ν̄a)Tx(0) + (ν̄m)Tχ(0)]ρm,
(20)

where ν̄a := νa/||ν|| and ν̄m := νm/||ν||. Equations in (20)
imply that the right-eigenvector ρe determines to which
phase the opinions of agents belong, while normalized left-
eigenvector ν̄e characterizes the total (direct and indirect)
relative influence of each agents’ initial impressions to the
settled outcome of group discussion.

In cooperative networks without negative weighted
edges, Perron-Frobenius theorem and (quasi-)strong con-
nectedness of unsigned graphs entail the existence of a
unique (non-negative) positive real left-eigenvector of graph
Laplacian [45]. When graphs have negative edges, however,
there is rarely counterpart result in the existed literature.
A primary challenge is that the uniform positiveness (non-
negativeness) may not be preserved in a graph with nega-
tive weighted edges. The next lemma which makes progress
on this problem is quite apparent, and the proof is omitted
here.

Lemma 2. Consider a quasi-strongly connected and structurally
balanced signed graph G associated with a Laplacian matrix
L ∈ Rn×n. If there exist vectors ν = [ν1, . . . , νn]T and
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ρ = [ρ1, . . . , ρn]T ∈ {±1}n such that ν ∈ ker LT and
ρ ∈ ker L, then one can obtain

ν̂ := [ν1ρ1, . . . , νnρn]T ∈ ker L̂
T
, and |ρ| ∈ ker L̂

where L̂ is the Laplacian of the associated unsigned graph of G.

Lemma 2 enables us to furnish a signed graph with a
counterpart of Perron-Frobenius left eigenvector by search-
ing on its associated unsigned graph. In particular, Kirch-
hoff’s Matrix-Tree theorem [46] provides a constructive way
to find the vector ν̂e in the cokernel of Le as follows:
ν̂ep := νepρ

e
p ≥ 0 (p ∈ Ve) is equal to the sum, over all

spanning tree rooted at node p in graph G(L̂e). In relation
to the topological configuration of the entire social network,
the condition 3.3). of Lemma 1 means that there exists at
least one non-zero entry of νa corresponding to the ordinary
node that is the root of a spanning tree of graph Ge. In other
word, actors make a direct contribution to the collective
decision making rather than merely media dominating.

In the corruption case with autocratic media where∑n
i=1

∑m
k=1 dik = 0, it is evident that no actor has a

spanning tree rooted from it on the social networks Ge.
Consequently, the counting spanning tree method gives rise
to ρai ∈ {±1} and νai ρ

a
i = 0 for all i ∈ Va, i.e., νa = 0.

In reference to the equilibrium opinion vector of (20), the
autocratic media control the outcome of collective debates
in a corrupt society and ordinary actors eventually forget
their initial attitudes.

5 NUMERICAL ILLUSTRATIONS

In this section, we provide some numerical tests to qualita-
tively and quantitatively demonstrate the developed results.

The paradigmatic example of social networks is illus-
trated in Fig. 2 comprising three media and nine ordinary
actors which self-organize into three separate groups. Note
that the color configuration of the nodal border is applied
correspondingly to colorize their state trajectories.

Clearly, this network structure satisfies the connected-
ness requirement and is structurally balanced. Namely,
the entities of the social network split into two hostile
camps. The associated Laplacian matrix has a single eigen-
value 0, and all other non-zero eigenvalues have a pos-
itive real part. Additionally, one can immediately verify
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Fig. 2: Paradigmatic social network

ρe = [1, 1, 1, 1, 1,−1,−1,−1,−1, 1, 1,−1]T ∈ ker Le, evi-
dencing that the group of actors has the same sign as the
medium to which they connect.

In the society with autocratic media, the network decom-
position into two opposed subgroups remains unchanged,
but one can compute that νa = 0, agreeing with the analysis
developed in Section 4. That is, ordinary citizens are entitled
little power in public opinion discussion and oligarchs or
centralized factions possess social dominance exclusively.

Consider the social entities (actors and media) discuss
and form opinions about four issues. To save cliché, let all
of input-to-state and state-to-output maps in dynamics (7)
and (8) be the identity matrix and let the system matrices be

ΨVm =


−2 1 11
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which commonly have a pair of purely imaginary eigen-
values ±ι and the others belong to open left-half complex
plane. In particular, the eigenspaces associated with ±ι
share in common for all social entities in Ve. In response
to Theorem 2, the opinions of actors in the network reach
polarization under the protocol (7b), as shown in Fig. 3(a).
From this figure, the opinion polarity is achieved as time
evolves, whereas the asymptotic states of agents fall into
two opposing stable trajectories rather than a static value.
To visualize the opinion neutralization, we set the weight of
link (10, 12) to be −2, thus violating the structural balance
of graph Ge. According to Theorem 3, the public opinions
asymptotically turn into neutrality whatever their initial
attitudes were. The trajectory curves of opinion variables
in the neutralization case are plotted in Fig. 3(b).

In the last test, we modify the system matrices by

ΨVm =


− 5

2
1 − 3

2
−1

1 1 −1 −4
− 3

2
−1 − 5

2
1

1 1 −1 −4

 , F Va1 =

−1 0 −1 0
6 2 4 −6
−2 −2 −4 2
3 0 −1 −4

 ,

F Va2 =

 2 3 −3 −11
5 3 −5 −16
−2 −3 1 9
3 3 −3 −12

 , F Va2 =


− 7

2
4 1

2
−4

−1 4 1 −6
0.5 −4 − 7

2
4

−1 4 1 −6

 ,

whose eigenvalues all have negative real parts except a
common semi-simple eigenvalue at zero associated with
an isomorphic eigenspace. As discussed in Remark 5, the
opinions of actors split into two polarized camps with two
stable equilibrium values whose signs are opposite. See
Fig. 3(c) for graphic illustration.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we develop a model of opinion dynamics
governed by endogenous (self-dynamics) and exogenous
(inflowing information) factors. Our focus is to examine
how mass media formulate and change public opinions.
While our initial results are mathematical, we provide exten-
sive analysis and interpretation to show that the developed
opinion protocols align well with what one would expect
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Fig. 3: State trajectories of opinion dynamics: x-axis is the time scale and y-axis is the opinion variables.

in a sociological context. By exploring the structural balance
in interaction networks, analysis techniques from the PH
system theory provide theoretical results on the formation of
agent opinions in the environment of interpersonal chatting
and media competition. Aside from the topological require-
ment on interaction networks, a certain degree of homo-
geneity among agents is necessary to establish polarization
or synchronization in public opinions. We also provide a
criterion for the neutralization of opinion dynamics in terms
of a sufficient condition. Furthermore, by drawing a connec-
tion to the output-regulation problem in control theory, we
identify the intrinsic mechanism of opinion manipulation in
an autocratic society. Our findings illustrate how ideas from
system and control engineering can aid the understanding
of opinion formation on real social networks, providing
some insights into mathematical sociology.

The directions for future research include the nonlinear
extension of opinion dynamics, the time- or state-dependent
topology in social interaction, and the communication delay
between any pair of individuals in the case that agents can
only access others individuals’ earlier opinions.
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