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Neural Network Based Adaptive Control for
Spacecraft under Actuator Failures and Input

Saturations
Ning Zhou1, Member, IEEE, Yu Kawano2, Member, IEEE, Ming Cao3, Senior Member, IEEE

Abstract—In this paper, we develop attitude tracking control
methods for spacecraft as rigid bodies against model uncertain-
ties, external disturbances, subsystem faults/failures, and limited
resources. A new intelligent control algorithm is proposed using
approximations based on radial basis function neural networks
(RBFNN) and adopting the tunable parameter-based variable
structure (TPVS) control techniques. By choosing different adap-
tation parameters elaborately, a series of control strategies are
constructed to handle the challenging effects due to actuator
faults/failures and input saturations. With the help of Lyapunov
theory, we show that our proposed methods guarantee both finite-
time convergence and fault-tolerance capability of the closed-loop
systems. Finally, benefits of the proposed control methods are
illustrated through five numerical examples.

Index Terms—Attitude tracking, fault-tolerant control, input
saturations, neural network control, finite-time control.

I. INTRODUCTION

In the past decades, attitude control of spacecraft has
attracted intensive research attentions in order to accomplish
the various advanced space missions. Typically, attitude sta-
bilization, attitude tracking, and attitude synchronization have
been the central topics. More specifically for attitude tracking,
its objective is to design an effective control law such that
the motion of a spacecraft can track the desired attitude,
which can be applied in, for example, the high-speed attitude
reorientation of warning satellite in surveillance missions.
The performance requirements, such as rapid response, high
accuracy, and fault-tolerance, are essential to satisfy various
attitude maneuvering commands under significant challenges
caused by model uncertainties, external disturbances, sub-
system failures, and limited resources (e.g., energy, memory
space, and computing power) concurrently [1]. Moreover, in
actual operation, the harsh operating conditions (e.g., coronal
mass ejections from the Sun) may increase the possibility
of malfunctions in spacecraft actuators and further lead to

*This work of Zhou was supported in part by the National Natural
Science Foundation of China under Grant 61603095 and Grant 61972093,
by the Research Foundation for Outstanding Young Scholars in the Univer-
sity of Fujian Province, and by the Research Foundation for Outstanding
Young Scholars in Fujian Agriculture and Forestry University under Grant
XJQ201612. (Corresponding author: Ning Zhou.)

1Ning Zhou is with College of Computer and Information Sciences,
Fujian Agriculture and Forestry University, 350002 Fuzhou, P. R. China.
(zhouning2010@gmail.com).

2Yu Kawano is with the Graduate School of Engineering, Hiroshima Uni-
versity, Higashi-Hiroshima 739-8527, Japan. (ykawano@hiroshima-u.ac.jp).

3Ming Cao is with Faculty of Science and Engineering, Universi-
ty of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
(m.cao@rug.nl).

significant performance degradation or even task paralysis,
and several failed aerospace missions occurred due to actuator
faults and failures, e.g., the Kepler and FUSE space probes.
Thus, research on fault-tolerance control of spacecraft also
catches considerable attention of space engineers and scien-
tists.

Promising results have been reported to address some of
these problems, such as adaptive robust control [2], sliding
mode control [3], [4], [5], intelligent control [3], [5], [6],
[7], backstepping control [6], [8], hybrid control [9], active
disturbance rejection control (ADRC) [10], event-triggered
control [11], and optimal control [12]. However, it is still dif-
ficult to simultaneously handle finite-time convergence, model
uncertainties, external disturbances, subsystem faults/failures,
and input saturation at the same time, due to various strong
nonlinearity in spacecraft dynamics., since spacecraft is a
nonlinear system. For instance, there are some finite-time
algorithms for spacecraft attitude control (e.g. [4], [12], [13],
[14], [15], [16]), but [4], [12], [13], [14] and [15], [16] assume
that actuators are fault-free and failure-free, respectively. In
order to address undesirable actuator faults/failures, fault-
tolerant control (FTC) strategies have been adopted, which
can be classified into active FTC and passive FTC [17]. The
former requires reconfigurations of a controller after a fault is
found by a fault detection and diagnosis (FDD) scheme, while
the latter tries to design a robust controller which addresses
all expected faults a priori. Thus, the passive FTC is suitable
for implementation in practice because it can avoid the time
delay caused by online FDD and controller reconfiguration in
contrast to active FTC. For such a reason, we follow a passive
FTC approach.

In summary, our objective is to develop a passive FTC
algorithm which guarantees finite-time convergence and fault-
tolerance for attitude tracking under model uncertainties,
external disturbances, and input saturations. The main idea
is to employ two tools, namely radial basis function neu-
ral networks (RBFNN) approximations [18] and a tunable
parameter-based variable structure (TPVS). The first one is
to approximate unknown nonlinear functions of the spacecraft
and is already employed to design tracking controllers in [19],
[20], but we further develop computationally efficient methods.
The latter technique is a novel extension of nonsingular fast
terminal sliding mode (NFTSM) control [16] and is employed
to achieve finite time convergence under actuator failures and
input saturations, where these two realistic problem settings
for actuators are not addressed by [16].
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More detailed explanations for differences from exist-
ing finite-time fault-tolerant controllers and intelligent fault-
tolerant controllers are as follows.

Literature review: There are existing results on passive
finite-time FTC and intelligent FTC. In comparison, the main
contributions of our algorithm are clarified as follows. First, in
order to deal with an unknown inertia matrix and the nonlinear
characteristic of system, some finite-time FTC approaches
are built upon linearization techniques, e.g. the linearized
constraints associated with some scaled-up inequalities of
system models (see [14], [15], [21], [22], [23], [24], [25]) and
the linear regression (see [16], [26]). However, by applying
these approaches, only local problems around an equilibrium
point can be studied. Different from the linearization based
approaches, to handle the unknown parameters and nonlin-
earity, the intelligent FTC methods have been proposed, e.g.,
the neural network FTC approach [6] and the fuzzy FTC
approach [27]. However, these approaches lose the finite-time
convergence property. In this paper, we further improve the
neural network FTC method. In [6], the whole ideal weight
matrix W ∗ ∈ Rh×m (h × m parameters) of neural network
is estimated, which requires intense computation. In order to
solve this problem, we propose algorithms that only require
an estimation of the supremum supt≥0 ‖W ∗‖2, which signif-
icantly simplifies the design structure and reduces computa-
tional effort. Moreover, our approach guarantees finite-time
convergence. Second, some of the existing finite-time FTC
results and intelligent FTC results do not consider actuator
saturation constraints although every actuator of a spacecraft
has a saturation constraint in practice. For example, methods
not considering actuator saturation constraints are the finite-
time FTC approaches proposed in [14], [16], [23], [24], [25],
[26] and the intelligent FTC method developed in [27]. In
contrast, we also aim to design an algorithm that can handle
actuator saturation constraints.

Contribution: The main contributions are emphasized as
follows.

1) An RBFNN and TPVS based intelligent control algorith-
m is implemented to construct FTC strategies, which do
not require prior information of the system parameters
or faults/failures. In practice, both of them are difficult
to identify beforehand.

2) A series of FTC strategies are presented for attitude
tracking of spacecraft, which require less computation
than conventional neural network control approach. Al-
so, different from the existing intelligent FTC approach-
es, our method guarantees exponential or finite-time
convergence of the tracking errors for nonlinear models.

3) An adaptive NN-based finite-time FTC scheme is pro-
posed, and it accommodates undesirable actuator faults,
subsystem failures, and limited resources, which has not
been achieved for spacecraft attitude tracking by existing
methods.

A preliminary conference version is found in [28] in which
a controller taking into account actuation faults/failures, mod-
elling uncertainties, and external disturbances is proposed. In
this paper, we address, in addition, thrust limit for the actuator,

Fig. 1. A visualization of a rotation represented by unit quaternion, where
e = [ei, ej , ek]> is the unit Euler axis, ψ is the Euler angle.

and consequently develop control schemes further.
The rest of the paper is organized as follows: Section

II presents preliminaries and control problem formulations;
Section III elaborates the main results; Section IV provides
examples to illustrated the proposed methods; finally, Section
V concludes this paper.

Notation: The set of real numbers, positive real numbers,
and non-negative real numbers are denoted by R, R>0, and
R≥0, respectively. For a vector or matrix, ‖ · ‖ denotes its
Euclidean norm. The n-dimensional vector whose elements
are all 1 is denoted by 1ln ∈ Rn.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Spacecraft Attitude Dynamics and Kinematics

The orientations and rotations of rigid spacecraft in 3-
dimension can be represented by Euler angles, Cayley-
Rodrigues parameters (CRPs), modified Rodrigues parameters
(MRPs), or unit quaternion, etc. Compared with other mathod-
s, the unit quaternion has no inherent geometrical singularity
as do Euler angles, no singularities in the kinematical differen-
tial equations as do CRPs, and no requirement of solving the
continuity of the description when switch occurs from the set
to the shadow set at the singular point as do MRPs. As shown
in Fig. 1, the unit quaternion defines the spacecraft attitude as
an Euler-axis rotation in a unit sphere in the body reference
frame B with respect to the inertial reference frame I. The
mathematical description of a unit quaternion is

q :=
[
cos (ψ/2) , e> sin (ψ/2 )

]>
= [q0, q

>
v ]> ∈ S3,

where q0 : R≥0 → R3 and qv : R≥0 → R3 are the
scalar component and vector component of q, respectively,
and S3 := {(q0, qv) ∈ R × R3 : q>q = q2

0 + qv
>qv = 1}.

Taking the time derivative of each element of q, we get the
kinematical differential equations as follows:
2q̇0(t) = −ω1(t)qv1(t)− ω2(t)qv2(t)− ω3(t)qv3(t),
2q̇v1(t) = ω1(t)q0(t)− ω2(t)qv3(t) + ω3(t)qv2(t),
2q̇v2(t) = ω1(t)qv3(t) + ω2(t)q0(t)− ω3(t)qv1(t),
2q̇v3(t) = −ω1(t)qv2(t) + ω2(t)qv1(t) + ω3(t)q0(t),
where, ω : R≥0 → R3 with ω := [ω1, ω2, ω3]> denotes
the angular velocity with respect to the inertial frame I
and expressed in the body frame B. The above kinematical
equations can be rewritten as follows:

q̇0(t) =− 1

2
q>v (t)ω(t). (1)

q̇v(t) =
1

2
(q×v (t) + q0(t)I3)ω(t), (2)
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where the operators q×v : R≥0 → R3×3 denote skew sym-
metric matrix acting on the vector qv , which is given by

q×v :=

 0 −qv,3 qv,2
qv,3 0 −qv,1
−qv,2 qv,1 0

 .
Consider a spacecraft equipped with n > 3 actuators

rotating under the influence of body-fixed torquing devices.
The Euler equation of motion about the principal axes of
inertia is [29]:

J(t)ω̇(t) =− ω×(t)J(t)ω(t) +Dτ(t) + d(t), (3)

where τ : R≥0 → Rn denotes the control torque produced
by n actuators. d : R≥0 → R3 represents the external
disturbances. The matrix J : R≥0 → R3×3 denotes the inertia
matrix-valued function expressed in B, which is symmetric
and positive definite, also see Remark 1 below, and D ∈ R3×n

denotes the actuator distribution matrix. The operators ω× :
R≥0 → R3×3 denote skew symmetric matrices acting on the
vector ω, which is given by

ω× :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
Remark 1. According to [1], J depends on onboard payload,
solar arrays, and fuel consumption and thus can change
during an operation. Since it is difficult to identify J(t) under
each circumstance, this is assumed to be an unknown matrix-
valued function; note that it is positive definite and bounded
during the entire operation. In practice, it is reasonable to
assume the boundedness of J , which is formally stated as
Assumption 3 below.

B. Modeling Actuator Faults/Failures and Input Saturation
The control torque τ is generated by actuators, which can

be reaction wheels or thrusters. In general, actuators have
maximum allowable torques and may be burned out in the
middle of a mission. Therefore, a model of control torque
needs to consider saturations, faults and failures. According
to the definitions of faults and failures in [21] and [30],
respectively, the control torque of each actuator is modeled
as follows:

τi(t) = ei(t)uc,i(t) + ūi(t), i = 1, . . . , n, n > 3, (4)

and its compact form is

τ(t) = E(t)uc(t) + ū(t), (5)

where uc : R≥0 → Rn and ū : R≥0 → Rn denote the desired
torque signal of the ith actuator generated by the controller and
the uncertain faulty input entering the spacecraft in an additive
way, respectively; ei : R≥0 → [0, 1] denotes the effectiveness
factor of the ith actuator, and E := diag{e1, e2, . . . , en}.

According to [21], [30], there are four main possibilities of
faults/failures, which are summarized in Table I. Note that in
the fault-free case, ei = 1 and ūi = 0, and thus τi = uc,i,
i = 1, 2, . . . , n.

In general, the input saturation can be described as follows:
|uc,i(·)| ≤ umax, i = 1, . . . , n, with the constant umax > 0
being the maximum allowable input of the ith actuator control
torque.

TABLE I
RELATIONS BETWEEN MODEL PARAMETERS AND ACTUATOR FAULTS OR

FAILURES

Fault or Failure Type ei ūi
Fault 1 Partial loss of 0 < ei < 1 ūi = 0

effectiveness fault
Fault 2 Bias fault ei = 1 ūi 6= 0
Failure 1 Outage failure ei = 0 ūi = 0
Failure 2 Hardover failure ei = 0 ūi 6= 0

C. Attitude Tracking Error System

Our goal in this paper is to solve an attitude tracking prob-
lem to a reference denoted by (wd, qd0 , q

d
v) : R≥0 → R3 × S3,

where (qd0(·))2 + qdv(·)>qdv(·) = 1 with respect to the internal
frame I and expressed in the desired frame D. Now, we define
the attitude tracking error (q̃0, q̃v) : R≥0 → S3 as the relative
orientation between the body frame B and the desired frame D,
which satisfies q̃2

0(·) + q̃v(·)>q̃v(·) = 1 and can be calculated
by the quaternion multiplication rule in [31] as follows:

q̃v = qd0qv − q0q
d
v + q×v q

d
v , (6)

q̃0 = qd0q0 + (qdv)>qv. (7)

Assume that the desired angular velocity ωd is bounded
as
∥∥ωd(·)∥∥ ≤ ω̄1 and

∥∥ω̇d(·)∥∥ ≤ ω̄2 by some unknown
constants ω̄1 ≥ 0 and ω̄2 ≥ 0. The corresponding rotation
matrix-valued function is a proper orthogonal matrix given
by R =

(
q̃2
0 − q̃>v q̃v

)
I3 + 2q̃v q̃

>
v − 2q̃0q̃

×
v , and it satisfies

‖R(·)‖ = 1 and Ṙ = −ω̃×R. The angular velocity error
ω̃ : R≥0 → R3 in B with respect to D is represented as

ω̃ = ω −Rωd. (8)

From (3) – (8), the attitude tracking error dynamics and
kinematics can be derived as follows [29]:

J(t) ˙̃ω =− ω×J(t)ω + J(t)
(
ω̃×R(t)ωd −R(t)ω̇d

)
+DE(t)uc +DE(t)ū+ d, (9)

˙̃qv =
1

2

(
q̃×v + q̃0I

)
ω̃, (10)

˙̃q0 =− 1

2
q̃>v ω̃. (11)

In this paper, we impose the following practically reasonable
assumptions for controller design.

Assumption 1. [32] There exists an unknown nonnegative
constant dmax such that the external disturbance d is bounded
by ‖d(·)‖ ≤ dmax.

Assumption 2. There exists an unknown nonnegative constant
ūmax such that the additive fault ū in (5) is bounded by
‖ū(·)‖ ≤ ūmax.

Assumption 3. There exists positive constants Jmin, Jmax and
Jd such that Jmin ≤ ‖J(·)‖ ≤ Jmax and 0 ≤ ‖dJ(·)

dt ‖ ≤ Jd.

Assumption 4. [21] The number of totally failed actuators is
no more than n−3, i.e., the matrix DED> is positive definite,
and there exists a positive constant emin such that

emin ≤ λmin(DE(·)D>), (12)
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where λmin(·) denotes the minimum eigenvalue of a matrix.

Remark 2. If Assumption 4 does not hold, then the matrix
DED> becomes singular, and the system is under-actuated,
which is beyond the scope of our interest in this paper.
Furthermore, we only assume the existence of emin, and its
value is not needed for controller design.

D. Tunable Parameter-Based Variable Structures

In this paper, we design a sliding mode controller to stabilize
the tracking error in finite time under model uncertainties. The
main idea is to capture both error dynamics of ω̃ and q̃v by a
single variable S, and this idea is from the approach of using
a tunable parameter-based variable structure (TPVS). This is
possible because the dimensions of ω̃ and q̃v are the same.

To introduce a TPVS, we need to define several functions
by using ω̃ and q̃v . First, two functions σ̄1 : R3 × R3 → R3

and σ̄2 : R3 × R3 → R3 are defined as

σ̄1,i(ω̃i, q̃v,i) := ω̃i + c1q̃v,i + c2q̃
[r]
v,i,

σ̄2,i(ω̃i, q̃v,i) := ω̃i + c1q̃v,i + c2(l1q̃v,i + l2q̃
[2]
v,i),

l1 := (2− r)φqr−1, l2 := (r − 1)φq
r−2,

q̃
[s]
v,i := |q̃v,i|ssgn(q̃v,i), s > 0, i = 1, 2, 3,

where c1, c2, φq > 0, r ∈ (1/2, 1) and sgn(·) is the sign
function that returns −1, 0 or 1. Next, by using these σ̄1,i and
σ̄2,i, define a switching function σ : R3 × R3 → R3 as

σi(σ̄1,i, σ̄2,i)

:=

{
σ̄2,i(ω̃i, q̃v,i) if σ̄1,i(ω̃i, q̃v,i) 6= 0, |q̃v,i| ≤ φq,
σ̄1,i(ω̃i, q̃v,i) otherwise,

i = 1, 2, 3. (13)

Now, we are ready to introduce a TPVS S : R3 → R3 as a
function of σ:

Si(σi) := % (σi − ε̄sat(σi)) , i = 1, 2, 3, (14)

sat (σi) :=

{
sgn(σi), if |σi/ε̄| ≥ 1,
σi/ε̄, if |σi/ε̄| < 1,

(15)

where % > 0 and ε̄ ∈ (0, 1). Note that the constants
c1, c2, φq, % > 0, r ∈ (1/2, 1) and ε̄ ∈ (0, 1) are design
parameters.

One notices that Si(σi) = 0 if and only if |σi/εi| ≤ 1.
Therefore, if one designs a control law such that Si(σi) = 0,
then |σi| ≤ ε̄ is guaranteed, which implies that the tracking
errors ω̃i and q̃i,v are bounded from the definition of σi.
Moreover, according to the following lemma, the boundedness
of S implies those of ω̃ and q̃v . These facts suggest to design
a controller which stabilizes S.

Lemma 1. Consider the TPVS S(t) defined by (14). For any
δ̄1 > 0, q̃v(0) ∈ R3 with ‖q̃v(0)‖ ≤ 1, if ‖S(·)‖ ≤ δ̄1, then
there exists a settling time T∗(q̃v(0), δ̄1) > 0 such that

|q̃v,i(t)| ≤ max{δ̄2, φq}, (16)
|ω̃i(t)| ≤ δ̄1/%+ ε̄+ c1max{δ̄2, φq}+ c2(max{δ̄2, φq})r, (17)

δ̄2 := min

{
δ̄1/%

c1 − c̄1
,

(
δ̄1/%

c2 − c̄2

)1/r
}

(18)

for all i = 1, 2, 3 and t ≥ T∗(q̃v(0), δ̄1), where c̄1 and c̄2 > 0
are selected to satisfy c1 > c̄1 and c2 > c̄2.

The proof is given in Appendix A. In Lemma 1, for smaller
c̄1 and c̄2 > 0, δ2 is smaller. However, as shown in its proof
in Appendix A, for smaller c̄1 and c̄2 > 0, the convergence of
|q̃v,i(t)| and |ω̃i(t)| are slower, but are still within finite time.

Now, we compute the dynamics of S. Since ω̃ and q̃v are
functions of the time, S(σ(ω̃(t), q̃v(t))) is also a function
of the time. By abusing notation, we use S(t) to describe
S(σ(ω̃(t), q̃v(t))). By taking its time derivative, we have

1

%
J(t)Ṡ = F (t, z) +D(t)E(t)uc +D(t)ū+ d− 1

2%
J̇(t)S, (19)

F (t, z) := −ω×J(t)ω + J(t)(ω̃×R(t)ωd −R(t)ω̇d) +
1

2%
J̇(t)S

+
1

2
J(t)c1(q̃×v + q̃0I3)ω̃ + J(t)c2α̇, (20)

z :=
[
ω> (ωd)> (ω̇d)> q>v α> α̇>

]> (21)

for the region of (w̃, q̃v) such that |σi/ε̄| > 1, i = 1, 2, 3,
where α : R3×R3 → R3 is the following switching function:

αi(q̃v,i, σ̄1,i)

:=

{
l1q̃v,i + l2q̃

[2]
v,i if σ̄1,i(ω̃i, q̃v,i) 6= 0, |q̃v,i| ≤ φq,

q̃
[r]
v,i otherwise,

i = 1, 2, 3,

and this can be viewed as a function of the time like S. Note
that σ = ω̃ + c1q̃v + c2α and α = [α1, α2, α3]>.

Remark 3. The TPVS is a generalization of a nonsingular
fast terminal sliding mode (NFTSM) proposed by [16]. The
difference between the TPVS and the NFTSM is that the TPVS
has the parameter % and the boundary layer term ε̄sat(σi),
which can increase the degrees of freedom for robust controller
design. When % = 1 and ε̄ = 0, i.e. S(σ) = σ, the TPVS
reduces to the NFTSM. In function σi, the coefficients l1 and
l2 are selected to make dσi/dt, i = 1, 2, 3 as a continuous
function of the time, see [33].

E. Neural Networks Based Function Approximation

In this paper, we use the dynamics of TPVS (19) for
controller design. However, as mentioned in Remark 1, J
is an unknown function of the time, and so F in (20)
is unknown. The existence of these unknown parameters,
especially F makes control design challenging, since F also
depends on other functions such as w and qv nonlinearly. To
overcome this design difficulty arising from the nonlinearity
and uncertainty, the universal approximation property of radial
basis function neural networks (RBFNN) [18] is adopted for
controller design.

First, we review the universal approximation property of
RBFNN. Consider to represent a continuous nonlinear function
F̄ : Rl → Rm (that does not depend on t) by using a matrix
W̄ ∗ ∈ Rh×m and a basis function vector ϕ̄ : Rl → Rh,
where h is called the number of neurons, ϕ̄k(z) := exp[−(z−
µ̄k)>(z − µ̄k)/(2ψ̄2

k)] for k = 1, 2, . . . , h, µ̄k ∈ Rl denotes
the center of the receptive field, ψ̄k ∈ R denotes the width of
the Gaussian function, and 0 < ϕ̄k(z) ≤ 1. According to the
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universal approximation property of RBFNN, for any ε̄N > 0,
there exist a prefixed compact set Ωz ⊂ Rl that can be made
as large as desired, a positive integer h, a matrix W̄ ∗, and a
basis function vector ϕ̄ such that

F̄ (z) = (W̄ ∗)>ϕ̄(z) + ε̄(z), ∀z ∈ Ωz, (22)

where ‖ε̄(·)‖ ≤ ε̄N .
Now, by selecting l = 18, m = 3, we consider to

approximate the function F in (20). Even though it depends on
t, by using the time-dependent matrix W ∗ : R≥0 → Rh×3, for
any εN > 0, there exist a prefixed sufficiently large compact
set Ωz ⊂ R18, a positive integer h, a time-varying matrix
W ∗(t) ∈ Rh×3, and a basis function vector ϕ : R18 → Rh
such that F can be described as:

F (t, z) = (W ∗(t))>ϕ(z) + ε0(t, z), ∀t ∈ R≥0, z ∈ Ωz, (23)

where ‖ε0(·, ·)‖ ≤ εN . By substituting (23) into (19), we
have

1

%
J(t)Ṡ =(W ∗(t))>ϕ(z) + ε0(t, z)

+D(t)E(t)uc +D(t)ū+ d− 1

2%
J̇(t)S. (24)

In this paper, we design a controller based on equation (24).
In particular, the dynamics of uc is designed to achieve the
aforementioned control objectives. We further suppose that
|σi/ε̄| > 1, i = 1, 2, 3, and z is in a prefixed sufficiently
large compact set Ωz ⊂ R18 for all t ∈ R≥0. For the designed
controllers, we restrict our interest to solutions to the closed-
loop systems that satisfy the above two properties for σi
and z. We use symbol S∗ with the asterisk ∗ to denote S
corresponding to such solutions. Throughout the paper, the
asterisk ∗ stands for similar meanings for any variables.

Remark 4. In the conventional methods [19], [20], all the
elements of matrix W ∗ are estimated for controller design.
However, we only estimate supt≥0 ‖W ∗(t)‖, where this is
bounded from Assumption 3. Since we only estimate this upper
bound that is a constant instead of a matrix-valued function
of t, our methods simplify the controller design and reduce
computational burden.

F. Control Objectives

The overall control objective of this paper is to design
effective fault-tolerant attitude tracking control algorithms,
such that the following requirements are achieved progressive-
ly under actuation faults/failures, input saturation, modeling
uncertainties, and external disturbances.

1) For any positive constant δ̄1 > 0 and for any initial value
(S∗(0), θ̂∗1(0)) ∈ R3 × R, the error ‖S∗(t)‖ converges
to a value less than δ̄1 exponentially as t→ +∞, where
θ̂∗1(0) is the initial value of the adaptive design parameter
θ̂1 : R≥0 → R specified in (26). Note that as mentioned
before, if ‖Si(t)‖ = 0, then |σi| ≤ ε̄ is guaranteed for
given ε̄ ∈ (0, 1), which implies that the tracking errors
|ω̃i| and |q̃i,v| are within the allowed level.

2) For any positive constant δ̄1 > 0 and for any initial value
(S∗(0), θ̂∗(0), η̂∗(0)) ∈ R3×R×R, there exists a finite
T∗(q̃v(0), δ̄1) > 0 such that (16) and (17) hold for any

t ≥ T∗(q̃v(0), δ̄1) > 0, where θ̂, η̂ : R≥0 → R are the
adaptive design parameters specified in (28) and (29).
Therefore, the tracking errors |ω̃i| and |q̃i,v| are within
the allowed level in finite time.

3) The control objective 2) is achieved under the input sat-
urations |uc,i(·)| ≤ umax, i = 1, . . . , n, with umax > 0.

III. CONTROLLER DESIGN

We first take into account the situation in which there are
actuation faults/failures, modelling uncertainties, and external
disturbances, but there is no thrust limit for the actuators.
Then, we provide three controllers which achieve objectives
1), 2), and 3) in Section II-F, respectively. In our conference
version [28], the controller in Section III-A is proposed, but
the controllers in Sections III-B and III-C are new. Especially,
the controller in Section III-C addresses the actuation limit.

A. NN-based Controller for Exponential Convergence

To achieve the control objective 1) in Section II-F, we
employ the following dynamic controller:

uc =−
(
KS + θ̂1

‖Φ(z)‖
‖S‖

)
D>S, (25)

˙̂
θ1 =γS‖S‖‖Φ(z)‖ − γθ θ̂1, (26)

where θ̂ : R≥0 → R, Φ(·) := [ϕ>(·), 1]>, and the positive
constants KS , γS , and γθ are design parameters.

For the closed-loop system, we have the following conver-
gence result of the TPVS S. The proof is given in Appendix
B.

Theorem 1. Suppose that Assumptions 1–4 hold. Then, one
can design the parameters of a TPVS and controller dynamics
(25) and (26) such that the following holds: for any positive
constant δ̄1 > 0 and for any (S∗(0), θ̂∗1(0)) ∈ R3 × R, the
Euclidean norm of the solution to the closed loop system
consisting of (24)–(26), ‖S∗(t)‖ converges to δ̄1 exponentially.

The approach proposed in Theorem 1 only guarantees the
convergence of S, which does not guarantee the convergence
of the tracking errors ω̃ and q̃v . To pursue faster response and
higher control accuracy, we focus on developing finite-time
methods in the following sections, i.e., achieving the control
objective 2) in Section II-F.

B. Adaptive NN-Based Finite-time Control under Actuator
Failure

To achieve the control objective 2), we employ the following
adaptive NN-based controller:

uc = −
(
Kφ‖S‖2 +KS +

(Kρ + η̂)

‖S‖ +
‖ϕ(z)‖2

φθ
θ̂

)
D>S, (27)

˙̂
θ =

1

φθ
γS‖ϕ(z)‖2‖S‖2 − γθ θ̂, (28)

˙̂η =
1

α
‖S‖ − γη η̂. (29)

where θ̂, η̂ : R≥0 → R, and positive constants Kφ, KS , Kρ,
φθ, γS , γθ, α and γδ are design parameters.
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Then, we have the following convergence result. The proof
is given in Appendix C

Theorem 2. Suppose that Assumptions 1–4 hold. Then, one
can design a TPVS and controller dynamics (27)–(29) such
that the following holds: for any positive constant δ̄1 > 0,
there exists a finite T∗(q̃v(0), δ̄1) > 0 such that (16) and (17)
hold for any t ≥ T∗(q̃v(0), δ̄1) > 0.

C. Adaptive NN-Based Finite-Time Control under Actuator
Failure and Input Saturation

Finally, we also address the actuation limit on each actuator,
i.e. the control requirement 3). As the actuator limit, we
consider the case |uc,i(·)| ≤ umax, i = 1, . . . , n, with
umax > 0 mentioned in Section II-B. Therefore, we design
control inputs with saturations:

uc := ~(ūc)ūc, (30)

where ūc : R≥0 → Rn is needed to be further designed.
The function ~ is introduced to represent the saturation, where
~ := diag{~1, . . . , ~n}, and ~i : R → (0, 1], i = 1, . . . , n is
defined as

~i(ūc,i) :=

{ umax

ūc,i
sign(ūc,i) if |ūc,i| > umax,

1 if |ūc,i| ≤ umax.
(31)

From (30), the saturation of ūc, namely uc are the actual
control inputs. To achieve the control objective 3), we design
ūc as follows:

ūc =−D>
(
Kφ‖S‖2 +KS +

1

φθ
θ̂‖ϕ(z)‖2

)
S

−D>ξζ̂ (Kρ + η̂)S

‖S‖
, (32)

˙̂
θ =

1

φθ
γS‖S‖2‖ϕ(z)‖2 − γθ θ̂, (33)

˙̂η =α−1‖S‖ − γη η̂, (34)

˙̂
ζ :=

{
0 if ζ̂ = 1 and ζ~ < 0,
ζ~ otherwise,

(35)

ζ~ := βξζ̂3((Kρ + η̂)‖S‖ − γζ ζ̂), ζ̂(0) > 1
where θ̂, η̂ : R>0 → R, ζ̂ : R>0 → R>0 and positive constants
Kφ, KS , φθ, Kρ, ξ > 1, γS , γθ, α, γη , β and γζ are design
parameters.

Hereafter, we impose a reasonable assumption, which states
that the system remains full-actuated as discussed in Remark
2.

Assumption 5. The number of totally failed actuators is no
more than n− 3, i.e., the matrix DE~D> is positive definite,
and there exists a positive constant ēmin such that

ēmin ≤ λmin(DE(·)~(·)D>), (36)

where the ith element of ~ : R→ (0, 1]n×n is defined in (31).

From Assumption 5 and Lemma 5 in Appendix D, there
exists M > 0 such that −M ≤ ūc,i(·) ≤ M , i = 1, . . . , n.
Furthermore, there exists 0 < ζ ≤ 1 such that

ζ ≤ ~i(ūc,i), ∀ūc,i ∈ [−M,M ], ∀i = 1, . . . , n. (37)

In (35), we introduce a new adaptation parameter ζ̂. This can
be viewed as an estimation of 1/ζ ≥ 1, which is designed to
compensate the energy fading of ūc caused by actuator faults
and failures. Note that the adaptation law (35) guarantees that
ζ̂ ≥ 1 for ζ̂(0) ≥ 1, which corresponds to 1/ζ ≥ 1. Note that
the term −γζ ζ̂ in ζ~ is used to prevent the increase of adaptive
gain ζ̂.

Now, we are ready to propose the following result. The
proof is given in Appendix D.

Theorem 3. Suppose that Assumptions 1–3 and 5 hold. Then,
one can design a TPVS and controller dynamics (30)–(35)
such that the following holds: 1) for any positive constant
umax, the designed control input satisfies |uc,i(·)| ≤ umax,
i = 1, . . . , n; 2) for any positive constant δ̄1 > 0, there exists
a finite T∗(q̃v(0), δ̄1) > 0 such that (16) and (17) hold for any
t ≥ T∗(q̃v(0), δ̄1) > 0.

In Theorem 3, we have designed a controller which guar-
antees finite-time convergence and fault-tolerance for attitude
tracking under model uncertainties, external disturbances, and
input saturations. The proposed controller has the following
futures in comparison with the related existing controllers.

1) Different from the linearized based FTC approaches, our
methods can handle the unknown parameters and nonlin-
earity. Moreover, finite-time convergence is guaranteed
in contrast to existing nonlinear methods.

2) In addition, less computational effort is required than the
neural network based FTC, which does not guarantee
finite-time convergence. The reason is that our method
only tunes the estimation of the supremum of the ideal
weight matrix W ∗ ∈ Rh×m rather than the whole matrix
W ∗.

3) Compared with most of the existing finite-time FTC and
intelligent FTC results, the proposed algorithm handles
actuator saturation, which makes it more practical and
competitive than the related existing results.

Therefore, the proposed controller can handle more realistic
scenarios than existing ones.

Remark 5. Control laws (27) and (32) are discontinuous
due to the functions D> (Kρ+η̂)S

‖S‖ and D>ξζ̂
(Kρ+η̂)S
‖S‖ , which

may lead to undesirable control chattering. As discussed
in [34], this problem can be alleviated by replacing the
discontinuous terms with the continuous terms D> (Kρ+η̂)S

‖S‖+εc
and D>ξζ̂

(Kρ+η̂)S
‖S‖+εc , respectively, where εc is a sufficiently

small positive constant.

Remark 6. In our proposed algorithm, there are two phases in
the dynamics of the closed-loop systems, namely the reaching
and sliding phases. The reaching phase corresponds to the
dynamics before getting close to the sliding surface. The
sliding phase corresponds to the dynamics on the sliding
surface. The convergence speed and precision of the tracking
errors in the reaching phase can be adjusted by tuning KS ,
Kρ, ξ and %. When the other three parameters are fixed, the
greater KS (Kρ, ξ, %) is, the faster the convergence speed
and the better the convergence precision are. In the sliding
phase, the convergence speed and precision of the tracking
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Fig. 2. (a) Uncertain moment of inertia Ju; (b) Health indicator E(t).

errors can be adjusted by tuning c1, c2 and r. The greater c1
and c2 are, the faster the convergence speed and the better
the convergence precision are; the smaller r is, the faster the
convergence speed and the better the convergence precision
are. Therefore, by tuning these parameters, one can adjust the
convergence speed and precision of the tracking errors as fast
and accurately as desired.

IV. SIMULATIONS

To evaluate the performance of the proposed algorithms in
Theorems 2 and 3, simulations on a vehicle with six thrusters
are conducted.

First, we give the simulation data of the system model. The
unknown and time varying inertia matrix is J(t) = J0+Ju(t),
where J0 is given by

J0 =

 20 0 0.9
0 17 0

0.9 0 15

 kg ·m2,

and Ju(t) is shown in Fig. 2 (a). The thruster distribution
matrix D and the disturbance torque d are selected as in [1],

D =

 0.8 −0.8 0 0 0 0
0 0 0.7 −0.7 0 0
0 0 0 0 0.7 −0.7

 .
The health indicator E(t) is depicted in Fig. 2 (b). The additive
bias torque ū is chosen as in [16] and the maximum available
torque is considered to be umax = 2Nm. The time-varying
desired angular velocity is given by

ωd(t) = [0.1cos(0.1t),−0.1sin(0.1t), 0.1cos(0.1t)]>rad/s.

Second, the initial attitude qv(0) is selected as in [1]. The
initial angular velocity is ω(0) = [0, 0, 0]>. The initial value of
the tracking errors q̃v(0) and ω̃(0) can be calculated according
to (6) and (8).

Third, we use 6 neurons for each NN, and the sigmoid basis
functions are applied with the center of the receptive field
µk = k − 3 and the width of the Gaussian function ψk =

√
2

for k = 1, 2, . . . , 6.
Five examples are simulated in this section, which are 1)

thrusters with actuator faults/failures, 2) healthy thrusters with
limited thrusts, 3) thrusters with limited thrusts and actuator
faults/failures, 4) influence of design parameters on control
performance, and 5) comparison with other algorithms for
spacecraft attitude stabilization.
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Fig. 3. Time response of tracking errors using controller uc in Eq. (27). (a)
ω̃; (b) q̃v .

Fig. 4. (a) Time response of controller uc in (27); (b) Design parameters in
(28) and (29).

A. Thrusters with Actuator Faults/Failures

This subsection represents a severe case of the thrusters to
demonstrate the effectiveness and performance of the control
scheme designed in Theorems 2.

We select the design parameters % = 40, ε̄ = 10−4, c1 = 1,
c2 = 0.2, φq = 0.01 and r = 0.66, which are used to calculate
S in (14). Then we choose the design parameters Kφ = 0.01,
KS = 20, φθ = 0.1, Kρ = 0.01, εc = 0.007, which are used
to compute uc in (27). Next, we give the initial value of the
adaptive parameters θ̂(0) = 0.1, η̂(0) = 0.001 and select the
design parameters γS = 0.1, γθ = 0.003, α = 10, γη = 0.06,
which are used to calculate θ̂ and η̂ according to (28)–(29).

As illustrated in Fig. 2(b), the health level of each thruster
is generated by the same function given as in [1]. The angular
velocity and attitude tracking errors are presented in Fig.
3. It is obvious that the controller (27) can provide not
only high precision attitude tracking performance (|ω̃i| ≤
5 × 10−4deg/s, |q̃vi| ≤ 5.4 × 10−4deg, i = 1, 2, 3, during
the period of 20s∼50s) but also fault tolerance capability. Fig.
4(a) shows the driving torque of the spacecraft with the control
action beyond its maximum allowable limit 2Nm. The adaptive
parameters θ̂ and η̂ are shown in Fig. 4(b). It is observed that θ̂
and η̂ are bounded, thus the efficacy of the proposed adaptation
laws in (26)-(28) is verified.

B. Healthy Thrusters with Limited Thrusts

Applying the control scheme designed in Theorem 3, we
aim to demonstrate the effectiveness and performance of the
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Fig. 5. (a) Time response of tracking errors using controller uc in Eq. (30).
(a) ω̃; (b) q̃v .
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adaptive parameters θ̂, η̂, and ζ̂ in (33) and (34).

method with all thrusters functioning healthily. The involved
controller parameters, adaptation parameters and initial values
are given as Section IV-A. As shown in Fig. 5, the angular
velocity and attitude tracking errors converge to |ω̃i| ≤ 3 ×
10−5deg/s and |q̃vi| ≤ 5.6 × 10−5deg during the period
of 20s∼50s respectively for i = 1, 2, 3. One can observe
higher control precision and better tracking process in Fig.
5 than in Fig. 3. This indicates that the influence of actuator
faults/failures is more significant on control precision than the
influence of actuator input saturation. The control torques uc
produced by six thrusters and the adaptive parameters θ̂, η̂,
and ζ̂ are depicted in Fig. 6. One can observe that the control
torques in Fig. 6(a) and the adaptive parameters θ̂, η̂, and ζ̂
in Fig. 6(b) are all bounded, which verified the efficacy of the
proposed control scheme in Theorems 3.

C. Thrusters with Limited Thrusts and Actuator Fault-
s/Failures

In this subsection, we aim to examine the effectiveness
and performance of the control scheme designed in Theorem
3 while considering the actuator failure and input saturation
simultaneously.

We select the design parameters % = 40, ε̄ = 10−4, c1 = 1,
c2 = 0.2, φq = 0.01, and r = 0.66, which are used to calculate
S in (14). Then we choose the design parameters Kφ = 0.01,
KS = 40, φθ = 0.1, ξ = 1.1, Kρ = 0.01, and εc = 0.007,
which are used to compute ūc in (32). Next, we give the initial
value of the adaptive parameters θ̂(0) = 0.1, η̂(0) = 0.001,
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Fig. 7. Time response of tracking errors using controller uc in Eq. (30). (a)
ω̃; (b) q̃v .

Fig. 8. (a) Time response of controller uc in (30); (b) Time response of
adaptive parameters θ̂, η̂, and ζ̂ in (33) and (34).

ζ̂(0) = 1.1, and select the design parameters γS = 0.1, γθ =
0.003, α = 10, γη = 0.06, β = 0.08, γζ = 0.08, which are
used to calculate θ̂, η̂, and ζ̂ according to (33)–(35).

Fig. 7 shows the angular velocity and attitude tracking
errors which can converge to |ω̃i| ≤ 1.8 × 10−4deg/s and
|q̃vi| ≤ 2.3 × 10−4deg during the period of 20s∼50s respec-
tively for i = 1, 2, 3. The convergence precision of ω̃i and q̃vi
in this subsection is worse than that in Subsection IV-C due to
the adverse effect from actuator faults/failures. Fig. 8 shows
the control torques uc produced by six thrusters (Fig. 8(a))
and the adaptive parameters θ̂, η̂, and ζ̂ (Fig. 8(b)), which
are all bounded. Thus the efficacy of the proposed method in
Theorems 3 is verified.

D. Influence of Design Parameters on Control Performance
To investigate effects of several key design parameters, we

use the following three control performance indices.
CPI1 = ‖q̃v‖, CPI2 = ‖ω̃‖, CPI3 = ‖uc‖.

From the simulation data in Tables II and III, we observe that,
when the other parameters are fixed, the greater % (c1, c2, KS ,
ξ, Kρ) is, the higher control precision we get. Furthermore,
the smaller ε̄ (Kφ) is, the better control precision we obtain.
These results are consistent with our analysis in Remark 6.

E. Comparison with Other Algorithms for Spacecraft Attitude
Stabilization

In this subsection, we adopt the three indices to study the
control performance of the proposed algorithm comparing with
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TABLE II
RESPONSE OF THE THREE INDICES AT 200S USING DIFFERENCE

PARAMETERS IN (14)

% ε̄ c1 c2 CPI1 CPI2 CPI3

10 10−4 1 0.2 3.768× 10−4 5.32× 10−4 0.4985
20 10−4 1 0.2 1.048× 10−4 1.26× 10−4 0.494
20 10−2 1 0.2 1.466× 10−4 1.356× 10−4 0.5274
20 10−4 0.1 0.2 4.547× 10−4 4.4622× 10−4 0.5108
20 10−4 1 0.1 1.803× 10−4 1.889× 10−4 0.4933

TABLE III
RESPONSE OF THE THREE INDICES AT 200S USING DIFFERENCE

PARAMETERS IN (32)

Kφ KS ξ Kρ CPI1 CPI2 CPI3

0.01 20 1.1 0.01 1.048× 10−4 1.26× 10−4 0.494
0.1 20 1.1 0.01 1.077× 10−4 1.307× 10−4 0.4923

0.01 40 1.1 0.01 7.928× 10−5 9.481× 10−5 0.4756
0.01 20 1.7 0.01 7.687× 10−5 9.434× 10−5 0.4794
0.01 20 1.1 0.1 1.006× 10−4 1.244× 10−4 0.4831

the two finite-time FTC algorithms given in [21] and [22],
which are built upon linearization technique for spacecraft
attitude stabilization. Since the algorithms in [21] and [22]
can only be applied to the problem of spacecraft attitude
stabilization, we choose qdv = [0, 0, 0]> and ωd = [0, 0, 0]>

in the proposed algorithm. Using the system model data in
this paper, all the design parameters in this comparison are
selected the same as the original data in the corresponding
algorithms except the sliding mode control gains α = 1 and
β = 0.2 in [21]. Using the same computer and selecting the
same sampling period, the running time and the response of the
indices of the three algorithms are shown in Table IV and Figs.
9–11, respectively. By observing and comparing the simulation
results, it concludes that the proposed approach provides faster
convergence and better control precision of the indices than
the algorithms in [21] and [22].

TABLE IV
RUNNING TIME OF THREE ALGORITHMS

Controller (32) (42) in [21] (17) in [22]
Runing time 5.0637×10−3s 5.075×10−3s 5.0877×10−3s

V. CONCLUSION

This paper studied finite-time attitude tracking control
problems for rigid spacecraft under model uncertainty, fault-
tolerance, and thrust limits. A series of control strategies
were proposed by implementing the RBFNN and TPVS based
intelligent control algorithms. The proposed control schemes
were independent of any accurate model information. The
control performances are analyzed based on Lyapunov stability
theory. Numerical simulations on three severe actuation cases
have shown the effectiveness of the proposed approaches.

In this paper, we developed a state-dependent approach. To
seek methods requiring only sensor output information, one
can design observers as Laplace `1 Huber based Kalman filter
[35] and sliding mode observers [36], [37]. Currently, we are
working on developing observer based algorithms.
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APPENDIX A
LEMMAS

Some instrumental lemmas are introduced here.

Lemma 2. For any e ∈ R>0 and θ, θ̂ ∈ R, the following
inequality holds.

(θ − eθ̂)θ̂ ≤ − 1
2e (θ − eθ̂)2 + 1

2eθ
2.

Proof: Define θ̃ := θ − eθ̂. Then, compute
(θ − eθ̂)θ̂ = θ̃(θ − θ̃)/e

= −θ̃2/e+ θ̃θ/e ≤ −θ̃2/e+ |θ̃||θ|/e.
From Young’s inequality, |θ̃||θ| ≤ θ̃2/2 + θ2/2.
Therefore, we have (θ − eθ̂)θ̂ ≤ −θ̃2/(2e) + θ2/(2e).
By substituting θ̃ = θ−eθ̂ into the above inequality, we obtain
the statement of the lemma.

Lemma 3. [38] Let x = 0 be an equilibrium point of system
ẋ = f(x), i.e., f(0) = 0, where x ∈ R3, and f : R3 → R3

is continuous. Let Ωx ⊂ R3 be a domain containing x = 0
in its interior. Let V : R≥0 × Ωx → R be a continuously
differentiable function such that

W1(x) ≤ V (t, x) ≤W2(x), (38)
∂V

∂t
+
∂V

∂x

∂x

∂t
≤ −µ1V − µ2V

ν (39)

for all t ≥ 0 and x ∈ Ωx, where W1(x) and W2(x) are
continuous positive definite functions on Ωx, µ0, µ1, µ2 > 0,
and ν ∈ (0, 1). Then x = 0 is finite-time stable. The settling
time can be calculated by
Treach ≤ [1/(µ1 (1− ν))] ln (µ1V

1−ν
0 /µ2 + 1) for (39),

where V0 := V (t0, x(t0)) and t0 is the initial time.

Finally, we prove Lemma 1 in Section II.
Proof of Lemma 1: For any δ̄1 > 0, if ‖S(·)‖ ≤ δ̄1, then

|Si(·)| ≤ δ̄1, |σi| ≤ δ̄0 hold with δ̄0 := δ̄1/%+ ε̄. Three cases
are considered based on the definition of σi(σ̄1i, σ̄2i) in (13).
Case 1 If σ̄1,i(·) = 0 for all i = 1, 2, 3, then there exists
a finite T01(q̃v(0), δ̄1) > 0 such that limt→T01

ω̃(t) = 0,
limt→T01 q̃v(t) = 0, see Lemma 3.3 in [13].
Case 2 If σ̄1,i(·) 6= 0 and |q̃v,i| ≤ φq for some i, then it
follows from |σi| ≤ δ̄0 and definition of σi in (13) that

|ω̃i + c1q̃v,i + c2(l1q̃v,i + l2q̃
[2]
v,i)| ≤ δ̄0,

and consequently, from the definitions of l1 and l2 and
|q̃v,i| ≤ φq ,
|ω̃i| ≤ δ̄0 + c1|q̃v,i|+ c2|l1q̃v,i|+ c2|l2q̃[2]

v,i|
≤ δ̄0 + c1φq + c2φ

r
q.

Case 3 If σ̄1,i(·) 6= 0 and |q̃v,i| > φq , then |ω̃i + c1q̃v,i +

c2q̃
[r]
v,i| ≤ δ̄0. Two cases should be discussed.

(i) ω̃i + c1q̃v,i + c2q̃
[r]
v,i ≥ 0.

First, we show that there exists a positive constant δ̄2 such
that |q̃v,i| ≤ δ̄2 if ω̃i + c1q̃v,i + c2q̃

[r]
v,i = δ̄0. We rewrite this

equality in the following two forms:
ω̃i + (c1 − δ̄0/q̃v,i)q̃v,i + c2q̃

[r]
v,i = 0,

ω̃i + c1q̃v,i + (c2 − δ̄0/q̃[r]
v,i)q̃

[r]
v,i = 0.

For any given positive constants c̄1 < c1 and c̄2 < c2, there
exist ¯̄c1 ∈ [c̄1, c1) and ¯̄c2 ∈ [c̄2, c2) such that
ω̃i + ¯̄c1q̃v,i + c2q̃

[r]
v,i=0 if |q̃v,i(t)| ≥ δ̄0

c1−c̄1 > 0,

ω̃i + c1q̃v,i + ¯̄c1q̃
[r]
v,i=0 if |q̃v,i(t)| ≥ r

√
δ̄0

c2−c̄2 > 0.

From Lemma 3.3 in [13], for any |q̃v,i(0)| > 0, there exists a
finite time T02(q̃vi(0), δ̄1) > 0 such that

|q̃v,i(t)| ≤ min

{
δ̄0

c1−c̄1 ,
(

δ̄0
c2−c̄2

)1/r
}

=: δ̄2

for all t ≥ T02(q̃vi(0), δ̄1).
Even if δ̄a := |ω̃i + c1q̃v,i + c2(l1q̃v,i + l2q̃

[2]
v,i)| < δ̄0. One

can show that there exists a finite time T0a(q̃vi(0), δ̄a) > 0
such that

|q̃v,i(t)| ≤ min

{
δ̄a

c1−c̄1 ,
(

δ̄a
c2−c̄2

)1/r
}
≤ δ̄2

for all t ≥ T02(q̃vi(0), δ̄1).
Next, from the definition of σ1,i, we get

|ω̃i| ≤ δ̄1/%+ ε̄+ c1δ̄2 + c2δ̄
r
2.

(ii) ω̃i + c1q̃v,i + c2q̃
[r]
v,i < 0.

First, we show that if −ω̃i − c1q̃v,i − c2q̃[r]
v,i = δ̄0 then there

exists a positive constant δ̄2 such that |q̃v,i| ≤ δ̄2. We rewrite
it in the following two forms:

ω̃i + (c1 + δ̄0/q̃v,i)q̃v,i + c2q̃
[r]
v,i = 0,

ω̃i + c1q̃v,i + (c2 + δ̄0/q̃
[r]
v,i)q̃

[r]
v,i = 0.

For any given positive constants c̄1 < c1 and c̄2 < c2, there
exist ¯̄c1 ∈ [c̄1, c1) and ¯̄c2 ∈ [c̄2, c2) such that
ω̃i + ¯̄c1q̃v,i + c2q̃

[r]
v,i=0, if |q̃v,i(t)| ≥ δ̄0

c1−c̄1 > 0,

ω̃i + c1q̃v,i + ¯̄c2q̃
[r]
v,i=0, if |q̃v,i(t)| ≥ r

√
δ̄0

c2−c̄2 > 0.

which shows the same solution as case (i), thus we omit the
same proof procedure.
Combining the result in Cases 1-3, we have
|q̃v,i(·)| ≤ max{δ̄2, φq},
|ω̃i(·)| ≤ δ̄1/%+ ε̄+ c1max{δ̄2, φq}+ c2(max{δ̄2, φq})r.
for all i = 1, 2, 3 and t ≥ T∗(q̃v(0), δ̄1), where
T∗(q̃v(0), δ̄1) = max{T01(q̃v(0), δ̄1), T02(q̃v(0), δ̄1)}. That
completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Proof of Theorem 1: Consider the following Lyapunov
candidate:

V1(t, S, θ̂1) := VS(t, S) + Vρ(θ̂1), (40)

VS(t, S) := 1
2%S

>J(t)S,

Vρ(θ̂1) := 1
2γSemin

(θ1 − eminθ̂1)2,
where emin > 0 is defined in Assumption 4, and

θ1 := sup
t≥0,z∈Ωz

∥∥∥[(W ∗(t))>, ε0(t, z) +D(t)ū(t) + d(t)
]∥∥∥ , (41)

which is upper bounded from Assumptions 1–3, Remark 4
and ‖ε0(·, ·)‖ ≤ εN .

First, by taking the time derivative of VS along (24) with
(25), it follows from (41) and Assumption 4 that

V̇S =S>((W ∗)>ϕ(z) + ε0 +Dū+ d)

−
(
KS + θ̂1

‖Φ‖
‖S‖

)
SDED>S

≤− eminKS‖S‖2 + (θ1 − eminθ̂1)‖S‖‖Φ‖. (42)

Next, by taking the time derivative of Vρ along the solution
to (26), it follows that

V̇ρ = −(θ1 − eminθ̂1)‖S‖‖Φ‖+ γθ
γS

(θ1 − eminθ̂1)θ̂1.



11

Then, by taking the time derivative of V1 it follows from
Lemma 2 that
V̇1 ≤ −eminKS‖S‖2 + γθ

γS
(θ1 − eminθ̂1)θ̂1

≤ −eminKS‖S‖2 − γθ
2γSemin

(θ1 − eminθ̂1)2 + ω0,

ω0 :=
γθ

2γSemin
θ2

1. (43)

Denote λ1 = min{2%eminKS/Jmax, γθ} for Jmax in Assump-
tion 3. Then, from (40) and (43)

V̇1 ≤ −λ1V1 + ω0.
By taking the time integration, it follows that

V1(t) ≤ ω0/λ1 + (V1(0)− ω0/λ1) e−λ1t.
From the definition of V1,

‖S(t)‖ ≤ (2%/Jmin)
1
2

(
ω0/λ1 + (V1(0)− ω0/λ1)e−λ1t

) 1
2
. (44)

Define a positive constant

δ̄1 := (2%/Jmin)
1
2 (ω0/λ1)

1
2 , (45)

where δ̄1 can be made arbitrary small by making γS or a pair of
KS and γθ sufficiently large, see the definitions of ω0 and λ1,
respectively. Then, for any V1(0) ≥ 0, limt→∞ ‖S∗(t)‖ = δ̄1.

APPENDIX C
PROOF OF THEOREM 2

Theorem 2 is based on the following lemma.

Lemma 4. Suppose that Assumptions 1–4 hold. Then, one
can design the parameters of a TPVS and controller dynam-
ics (27)–(29) such that the following holds: for any positive
constant δ̄1 > 0 and (S∗(0), θ̂∗(0), η̂∗(0)) ∈ R3×R×R, there
exists a finite T̄2 := T̄2(S∗(0), θ̂∗(0), η̂∗(0), δ̄1) > 0 such that
the solution S(t) to the closed loop system consisting of (24)
and (27)–(29) satisfies ‖S∗(·)‖ ≤ δ̄1 for all t ≥ T̄2.

Proof: Consider the following Lyapunov function candi-
date:

V2(t, S, θ̂, η̂) := VS(t, S) + Vρ(θ̂, η̂), (46)

VS(t, S) := 1
2%S

>J(t)S,

Vρ(θ̂, η̂) := 1
2γSemin

(θ−eminθ̂)
2 + α

2emin
(η−eminη̂)2,

where emin > 0 is defined in Assumption 4, and

θ := sup
t≥0
‖(W ∗(t))>‖2, (47)

η := sup
t≥0,z∈Ωz

‖ε0(t, z) +D(t)ū(t) + d(t)‖ , (48)

which are upper bounded from Assumptions 1 and 2, Re-
mark 4, and ‖ε0(·, ·)‖ ≤ εN .

First, by taking the time derivative of VS along the solution
to (24) with (27) gives
V̇S = S>((W ∗)>ϕ(z) + ε0 +Dū+ d)

−
(
Kφ‖S‖2 +KS +

(Kρ+η̂)
‖S‖ + ‖ϕ(z)‖2

φθ
θ̂
)
S>DED>S

≤ −eminKφ‖S‖4 − eminKS‖S‖2 − eminKρ‖S‖
+(η − eminη̂)‖S‖+

√
θ‖ϕ(z)‖‖S‖ − eminθ̂

‖ϕ(z)‖2
φθ
‖S‖2.

Note that
√
θ‖S‖‖ϕ(z)‖ ≤ θ‖S‖2‖ϕ(z)‖2/φ0 + φ0 for any

φ0 > 0, and thus
V̇S ≤ −eminKφ‖S‖4 − eminKS‖S‖2 − eminKρ‖S‖+ φθ

+
1

φθ
(θ − eminθ̂)‖ϕ(z)‖2‖S‖2 + (η − eminη̂)‖S‖. (49)

Next, by taking the time derivative of Vρ along the solutions
to (28) and (29), it follows that

V̇ρ = − 1
γS

(θ − eminθ̂)
(

1
φθ
γS‖ϕ(z)‖2‖S‖2 − γθ θ̂

)
−α(η − eminη̂)

(
1
α‖S‖ − γη η̂

)
.

Then, the time derivative of V2 satisfies
V̇2 ≤ −eminKφ‖S‖4 − eminKS‖S‖2 − eminKρ‖S‖+ φθ

+ γθ
γS

(θ − eminθ̂)θ̂ + αγη(η − eminη̂)η̂

≤ −eminKS‖S‖2 + φθ − γθ
2γSemin

(θ − eminθ̂)
2

+ γθ
2γSemin

θ2 − αγη
2emin

(η − eminη̂)2 +
αγη

2emin
η2,

where Lemma 2 is used. Let λ2 := min{2emin
%KS
Jmax

, γθ, γη}
and λ3 := γθ

2γSemin
θ2 +

αγη
2emin

δ2 + φθ. Then it follows that
V̇2 ≤ −λ2V2 + λ3,

which implies that for any (S∗(0), θ̂∗(0), η̂∗(0)) ∈ R3 × R×
R, there exist positive constants ε0, ε1, ε2 (depending on
(S∗(0), θ̂∗(0), η̂∗(0))) such that ‖S(·)‖ ≤ ε0, |θ−eminθ̂(·)| ≤
ε1, and |η − eminη̂(·)| ≤ ε2.

To show the finite-time convergence of S, we again consider
inequality (49). From the definition of ϕ, we have ‖ϕ(·)‖ ≤ h.
From this inequality, it follows that
V̇S ≤ −eminKφ‖S‖4 − eminKS‖S‖2 − eminKρ‖S‖+ φθ

+ ε1h
2

φθ
‖S‖2 + ε2‖S‖

≤ −eminKφ‖S‖4 − eminKS‖S‖2 − eminKρ‖S‖+ φθ

+ φ1

2φθ
‖S‖4 + φ2

2 ‖S‖
2 +

ε21h
4

2φθφ1
+

ε22
2φ2

,

where φ1, φ2 > 0, and the inequalities ε1h
2‖S‖2 ≤ φ1

2 ‖S‖
4 +

ε21h
4

2φ1
and ε2‖S‖ ≤ φ2

2 ‖S‖
2 +

ε22
2φ2

are used. Choose Kφ ≥
φ1

2φθemin
and KS > φ2

2emin
, and denote KS1 := KS − φ2

2emin
.

Then we have
V̇S ≤ −eminKS1‖S‖2 − eminKρ‖S‖+ φ̄θ,

φ̄θ := φθ +
ε21h

4

2φθφ1
+

ε22
2φ2

.

Let 0 < λ4 <
2emin%KS1

Jmax
and λ5 := eminKρ

√
2%
Jmax

. If

‖S‖ ≥ δ̄1,1 :=
√

2%
Jmin

φ̄θ
2%eminKS1/Jmax−λ4

,

then we have
VS ≥ φ̄θ

2emin%KS1/Jmax−λ4
, V̇S + λ4VS + λ5V

1
2

S ≤ 0.

Also, let λ6 := 2%eminKS1

Jmax
and 0 < λ7 < eminKρ

√
2%
Jmax

. If

‖S‖ ≥ δ̄1,2 :=
√

2%
Jmin

φ̄θ

eminKρ
√

2%/Jmax−λ7

,

then we have
V

1/2
S ≥ φ̄θ

eminKρ
√

2%/Jmax−λ7

, V̇S + λ6VS + λ7V
1
2

S ≤ 0.

Define δ̄1 := min{δ̄1,1, δ̄1,2}. Note that this δ̄1 can be made ar-
bitrary small by making KS , Kρ sufficiently large. According
to Lemma 3, for any positive constants δ̄1, ε1 and ε2, and any
‖S∗(0)‖, there exists T̄2 := T̄2(S∗(0), θ̂∗(0), η̂∗(0), δ̄1) > 0
such that ‖S∗(t)‖ ≤ δ̄1 for all t ≥ T̄2.

Remark 7. One notices that the controller in the previous
section given by (25) and (26) can achieve a finite time
convergence of S∗(t) to a given bounded set. Indeed, for any
ω0/λ1 > 0 in (45) and V1(0) ≥ 0, there exists a finite time
T̄1 := T̄1(V1(0), ω0/λ1) > 0 such that

(V1(0)− ω0/λ1)e−λ1t ≤ ω0/λ1, ∀T̄1 ≥ t.
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From (44), ‖S(t)‖ ≤ 2δ1 for all T̄1 ≥ t. As mentioned in the
proof of Theorem 1, δ1 > 0 can be made arbitrary small. Note
that the convergence speed is upper bounded on exponential.
However, the controller designed in this section guarantees a
faster convergence speed because of the finite time stability
result of Lemma 3 in Appendix A.

Theorem 2 follows from Lemmas 1 and 4, and thus its
proof is omitted.

APPENDIX D
PROOF OF THEOREM 3

Theorem 3 is based on the following lemmas.

Lemma 5. Suppose that Assumptions 1–5 hold. Then, one can
design a TPVS and controller dynamics (30)–(35) such that the
following holds: for any (S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0)) ∈ R3 ×
R×R×R, there exist four positive constants θ̄, η̄, ζ̄ and M
such that |θ̂(·)| ≤ θ̄, |η̂(·)| ≤ η̄, |ζ̂(·)| ≤ ζ̄, and |ūc,i| ≤M .

Proof: In a similar manner as the proof of Lemma 4, one
can show that there exists a positive constant δv such that
‖S(·)‖ ≤ (2%/Jmin)

1
2 δ

1
2
v , |θ − ēminθ̂(·)| ≤ 2γS ēminδ

1
2
v ,

|η − ēminξη̂(·)| ≤ 2ēminξ
α δ

1
2
v ,

where θ and η are defined by (47) and (48), respectively.
From the triangular inequality, we have |θ̂(·)| ≤ θ̄ with
θ̄ := 2γSδ

1
2
v + θ

ēmin
and |η̂(·)| ≤ η̄ with η̄ := 2

αδ
1
2
v + η

ēminξ
.

Next, we move on to find the upper bound of ζ̂. Based on
(35), we consider the following two cases:
Case 1. If ζ~ ≥ 0, then |ζ̂(·)| ≤ (Kρ + η̄) (2%/Jmax)

1
2 δ

1
2
v /γζ ;

Case 2. If ζ~ < 0, then ˙̂
ζ ≤ 0, which mean-

s that |ζ̂(·)| ≤ ζ̂(0). Then, |ζ̂(·)| ≤ ζ̄ for ζ̄ :=

max
{

(Kρ + η̄) (2%/Jmax)
1
2 δ

1
2
v /γζ , ζ̂(0)

}
.

From (32), it follows that ‖ūc‖ ≤ M , where M :=

‖D‖
(

2%δvKφ
Jmin

+KS + θ̄h2

φθ

)(
2%δv
Jmin

) 1
2

+ ‖D‖ξζ̄(Kρ + η̄).
Therefore, we conclude from |ūc,i| ≤ ‖ūc‖ that |ūc,i| ≤ M .

Lemma 6. Suppose that Assumptions 1–5 hold. Then, one
can design a TPVS and controller dynamics (30)–(35)
such that the following holds: 1) for any positive constant
umax, the designed control input satisfies |uc,i(·)| ≤ umax,
i = 1, . . . , n; 2) for any positive constant δ̄1 > 0 and
(S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0)) ∈ R3×R×R×R, there exists a
finite T̄3 := T̄3(S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0), δ̄1) > 0 such that
the solution S(t) to the closed loop system consisting of (24)
and (32)–(35) satisfies ‖S∗(·)‖ ≤ δ̄1 for all t ≥ T̄3.

Proof: Consider the following Lyapunov function candi-
date:

V3(t, S, θ̂, η̂, ζ̂) := VS(t, S) + Vρ(θ̂), (50)

VS(t, S) := 1
2%S

>J(t)S ,
Vρ(θ̂, η̂, ζ̂) := 1

2γSeminζ
(θ − eminζθ̂)

2

+ α
2eminζξ

(η − eminζξη̂)2 +
eminζ

2β

(
ζ̂−1 − ζ̄−1

)2

,

where emin > 0 is defined in Assumption 4, ξ > 1 is a
design parameter, ζ is given in (37), ζ̄ is the upper bound

of ζ̂ in Lemma 5, and θ and η are defined by (47) and (48),
respectively.

First, by taking the time derivative of VS along the solution
to (24) with (32) gives
V̇S ≤ S>((W ∗)>ϕ(z) + ε0 +Dū+ d)− ζ

(
Kφ‖S‖2

+KS + ‖ϕ(z)‖2
φθ

θ̂ + ξζ̂
(Kρ+η̂)
‖S‖

)
S>DED>S

≤ −eminζKφ‖S‖4−eminζKS‖S‖2−eminζξζ̂(Kρ+η̂)‖S‖
+η‖S‖+

√
θ‖ϕ(z)‖‖S‖ − eminζθ̂

‖ϕ(z)‖2
φθ
‖S‖2.

Note that
√
θ‖S‖‖ϕ(z)‖ ≤ θ‖S‖2‖ϕ(z)‖2/φ0 + φ0 for any

φ0 > 0, and thus

V̇S ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 + η‖S‖+ φθ−

eminζξζ̂(Kρ + η̂)‖S‖+
‖ϕ(z)‖2

φθ
(θ − eminζθ̂)‖S‖2. (51)

Next, by taking the time derivative of Vρ along the solutions
to (33)-(34), it follows that

V̇ρ =− ‖ϕ(z)‖2

φθ
(θ − eminζθ̂)‖S‖2 +

γθ
γS

(θ − eminζθ̂)θ̂

− (η − eminζξη̂)‖S‖+ αγη(η − eminζξη̂)η̂

−
eminζ

βζ̂2

(
ζ̂−1 − ζ̄−1

)
˙̂
ζ. (52)

Then two cases are discussed based on the adaptation law (35).
Case 1 If ζ̂ > 1 or if ζ̂ = 1 and ζ~ ≥ 0, then

˙̂
ζ = βξζ̂3[(Kρ + η̂)‖S‖ − γζ ζ̂].

Substituting it into (52) and combining (51) and (52), the time
derivative of V3 satisfies
V̇3 ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 + η‖S‖

−eminζξζ̂(Kρ + η̂)‖S‖+ γθ
γS

(θ − eminζθ̂)θ̂
−(η − eminζξη̂)‖S‖+ αγη(η − eminζξη̂)η̂ + φθ

−eminζξζ̂
(
ζ̂−1 − ζ̄−1

) [
(Kρ + η̂)‖S‖ − γζ ζ̂

]
, (53)

and consequently, from the definition of ζ̄ in Lemma 5 in
Appendix, (ζ̄−1 − 1) ≤ 0. Thus we derive

− eminζξζ̂(Kρ + η̂)‖S‖ − eminζξζ̂(ζ̂−1 − ζ̄−1)(Kρ + η̂)‖S‖
= (ζ̄−1 − 1)eminζξζ̂(Kρ + η̂)‖S‖ − eminζξ(Kρ + η̂)‖S‖
≤ −eminζξ(Kρ + η̂)‖S‖. (54)

By combining η‖S‖ in (53) and −eminζξη̂‖S‖ in (54), the
time derivative of V3 becomes
V̇3 ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 − eminζξKρ‖S‖

+ γθ
γS

(θ − eminζθ̂)θ̂ + αγη(η − eminζξη̂)η̂

+eminζξζ̂
(
ζ̂−1 − ζ̄−1

)
γζ ζ̂ + φθ, (55)

where the term (η − eminζξη̂)‖S‖ is counteracted. From
Lemma 2, the following inequalities hold.

γθ
γS

(θ − eminζθ̂)θ̂ ≤ −
γθ(θ − eminζθ̂)

2

2γSeminζ
+

γθθ
2

2γSeminζ
, (56)

αγη(η − eminζξη̂)η̂ ≤ −αγη(η−eminζξη̂)2

2eminζξ
+

αγηη
2

2eminζξ
.

Furthermore, the following equation is true

eminζξζ̂(ζ̂
−1 − ζ̄−1)γζ ζ̂ = −eminζξγζ ζ̄

−1[(ζ̂ − ζ̄

2
)2 − ζ̄2

4
]. (57)
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Note that −eminζξγζ ζ̄
−1(ζ̂ − ζ̄

2 )2 ≤ 0. Then by adding and
subtracting eminζξγζ(ζ̂

−1− ζ̄−1)2, and substituting (56)–(57)
into (55), it follows that
V̇3 ≤ −eminζKS‖S‖2 − γθ

2γSeminζ
(θ − eminζθ̂)

2 + φθ

− αγη
2eminζξ

(η − eminζξη̂)2 +
αγη

2eminζξ
η2 + γθ

2γSeminζ
θ2

+ eminζξγζ

[
(ζ̂−1 − ζ̄−1)2 + ζ̄

4

]
− eminζξγζ(ζ̂

−1 − ζ̄−1)2.

Invoking the fact ζ̂−1 ≥ ζ̄−1 > 0 and ζ̂−1 ∈ (0, 1], it has
eminζξγζ

[
(ζ̂−1 − ζ̄−1)2 + ζ̄/4

]
≤ eminζξγζ(1 + ζ̄/4).

Let λ8 = min{ 2%eminζKS
Jmax

, γθ, γη, 2ξγζβ}, λ9 = γθ
2γSeminζ

θ2 +
αγη

2eminζξ
η2 + eminζξγζ(1 + ζ̄/4) + φθ. Then it follows that

V̇3 ≤ −λ8V2 + λ9,
which implies that for any (S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0)) ∈
R3 × R × R × R, there exist positive constants ε3, ε4,
ε5, ε6 (depending on (S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0))) such that
‖S(·)‖ ≤ ε3, |θ− eminζθ̂(·)| ≤ ε4, |η− eminζξη̂(·)| ≤ ε5, and
|ζ̂−1(·)− ζ̄−1| ≤ ε6.

To show the finite-time convergence of S, we again consider
inequality (51). According to ζ̂ ≥ 1 in (35) and ‖ϕ(·)‖ ≤ h
and η̄ ≥ η̂ from Lemma 5, it follows that
V̇S ≤ −eminζKφ‖S‖4 − eminζKS‖S‖2 − eminζξKρ‖S‖

+ 1
2φθφ3

(θ − eminζθ̂)
2‖ϕ(z)‖4 + φ3

2φθ
‖S‖4

+ 1
2φ4

(η − eminζξη̂)2 + φ4

2 ‖S‖
2 + φ5

2 ‖S‖
2 + φθ,

where φ3, φ4 > 0, and the following inequalities are used.
‖ϕ(z)‖2
φθ

(θ − eminζθ̂)‖S‖2 ≤
1

2φθφ3
(θ − eminζθ̂)

2‖ϕ(z)‖4 + φ3

2φθ
‖S‖4,

(η − eminζξη̂)‖S‖ ≤ 1
2φ4

(η − eminζξη̂)2 + φ4

2 ‖S‖
2,

−eminζξζ̂Kρ‖S‖ ≤ −eminζξKρ‖S‖,
−eminζξζ̂η̂‖S‖ ≤ −eminζξη̂‖S‖.
Choose Kφ ≥ φ3

2φθζemin
, KS > φ4

2ζemin
, and denote KS2 >

KS − φ4

2ζemin
. Then we have

V̇S ≤ −eminζKS2‖S‖2 − eminζξKρ‖S‖+ φ̄1,

φ̄1 := φθ +
ε24h

4

2φθφ3
+

ε25
2φ4

.

Let 0 < λ8 <
2%eminζKS2

Jmax
and λ9 := eminζξKρ

√
2%
Jmax

. If

‖S‖ ≥ δ̄1,3 :=
√

2%
Jmin

φ̄1

2%eminζKS2/Jmax−λ8
,

then we have
VS ≥ φ̄1

2%eminζKS2/Jmax−λ8
, V̇S + λ8VS + λ9V

1
2

S ≤ 0.

Also, let λ10 :=
2%eminζKS2

Jmax
and 0 < λ11 < eminζξKρ

√
2%
Jmax

.

If ‖S‖ ≥ δ̄1,4 :=
√

2%
Jmin

φ̄1

eminζξKρ
√

2%/Jmax−λ11

,

then we have
V

1/2
S ≥ φ̄θ

eminζξKρ
√

2%/Jmax−λ11

, V̇S + λ10VS + λ11V
1
2

S ≤ 0.

Denote δ̄c1 := min{δ̄1,3, δ̄1,4}. Note that this δ̄c1 can be
made arbitrary small by making KS , Kρ sufficiently large.
According to Lemma 3, for any positive constants δ̄c1, ε4, and
ε5, and any (S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0)) ∈ R3 × R × R × R,
there exist a T̄c1 := T̄c1(S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0), δ̄c1) > 0
such that ‖S∗(t)‖ ≤ δ̄c1 for all t ≥ T̄c1.
Case 2 If ζ̂ = 1 and ζ~ < 0, then ˙̂

ζ = 0 can be obtained
from the adaptation law Eq. (35). In this situation, the input
saturation does not exist and ζ̂ = 1. Substituting ζ̂ = 1 into
(32), it has

uc = −D>(Kφ‖S‖2 +KS + 1
φ0
θ̂‖ϕ(z)‖2)S−D>ξ (Kρ+η̂)S

‖S‖ ,
which is similar to the control law (27) except for the
constant gain ξ. Following the proof of Lemma 4, one
can also proof that for any positive constant δ̄c2 > 0
and (S∗(0), θ̂∗(0), η̂∗(0)) ∈ R3 × R × R, there ex-
ists a T̄c2 := T̄c2(S∗(0), θ̂∗(0), η̂∗(0), δ̄c2) > 0 such
that ‖S∗(·)‖ ≤ δ̄c2 for all t ≥ T̄c2, where δ̄c2 :=

max
{
δ̄1,5, δ̄1,6

}
, δ̄1,5 :=

√
2%
Jmin

φ̄2

2%eminKS1/Jmax−λ4
, δ̄1,6 :=√

2%
Jmin

φ̄2

eminξKρ
√

2%/Jmax−λ12

, φ̄2 := φθ+
ε21h

4

2φθφ1
+

ε27
2φ2

, λ12 :=

eminξKρ

√
2%
Jmax

, ε7 > 0 satisfied |η − eminξη̂(·)| ≤ ε7.

Define δ̄1 :=
{
δ̄c1, δ̄c2

}
, T̄3 := max{T̄c1(S∗(0), θ̂∗(0), η̂∗

(0), ζ̂∗(0), δ̄c1), T̄c2(S∗(0), θ̂∗(0), η̂∗(0), δ̄c2)} which is related
to the initial values S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0) and δ̄1.

Finally, summarizing Cases 1 and 2, it can be con-
cluded that for any positive constant δ̄1 > 0 and
(S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0)) ∈ R3 × R × R × R, there exists
a finite T̄3 := T̄3(S∗(0), θ̂∗(0), η̂∗(0), ζ̂∗(0), δ̄1) > 0 such that
the solution S(t) to the closed loop system consisting of (24)
and (32)–(35) satisfies ‖S∗(·)‖ ≤ δ̄1 for all t ≥ T̄3.
That completes the proof.

The proof of Theorem 3 follows from Lemmas 1 and 6, and
thus is omitted.
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