
 

 

 University of Groningen

Inspecting Gradual and Abrupt Changes in Emotion Dynamics With the Time-Varying Change
Point Autoregressive Model
Albers, Casper J.; Bringmann, Laura F.

Published in:
European Journal of Psychological Assessment

DOI:
10.1027/1015-5759/a000589

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Albers, C. J., & Bringmann, L. F. (2020). Inspecting Gradual and Abrupt Changes in Emotion Dynamics
With the Time-Varying Change Point Autoregressive Model. European Journal of Psychological
Assessment, 36(3), 492-499. https://doi.org/10.1027/1015-5759/a000589

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-12-2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/345434105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1027/1015-5759/a000589
https://www.rug.nl/research/portal/en/publications/inspecting-gradual-and-abrupt-changes-in-emotion-dynamics-with-the-timevarying-change-point-autoregressive-model(4b7b05c4-1af6-4663-acbc-0aed2e4c9aa7).html
https://doi.org/10.1027/1015-5759/a000589


Special Issue: Capturing the Dynamics of Emotion and Emotion Regulation in Daily Life
With Ambulatory Assessment
Original Article

Inspecting Gradual and Abrupt
Changes in Emotion Dynamics
With the Time-Varying Change
Point Autoregressive Model
Casper J. Albers1 and Laura F. Bringmann1,2

1Department of Psychometrics and Statistics, Heymans Institute for Psychological Research, University of Groningen, The Netherlands
2University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation

(ICPE), University of Groningen, The Netherlands

Abstract: Recent studies have shown that emotion dynamics such as inertia (i.e., autocorrelation) can change over time. Importantly, current
methods can only detect either gradual or abrupt changes in inertia. This means that researchers have to choose a priori whether they expect
the change in inertia to be gradual or abrupt. This will leave researchers in the dark regarding when and how the change in inertia occurred.
Therefore in this article, we use a new model: the time-varying change point autoregressive (TVCP-AR) model. The TVCP-AR model can detect
both gradual and abrupt changes in emotion dynamics. More specifically, we show that the inertia of positive affect and negative affect
measured in one individual differs qualitatively in how it changes over time. Whereas the inertia of positive affect increased only gradually over
time, negative affect changed both in a gradual and abrupt fashion over time. This illustrates the necessity of being able to model both gradual
and abrupt changes in order to detect meaningful quantitative and qualitative differences in temporal emotion dynamics.

Keywords: dynamic modeling, change point detection, generalized additive modeling, inertia, emotion dynamics

Whereas your height will not change in a couple of days or
even years, your emotions will. In fact, both due to internal
(e.g., biological rhythms) and external factors (e.g., social
interactions), emotional fluctuations occur within a day or
even an hour (Kuppens & Verduyn, 2015). These fluctua-
tions or emotion dynamics call for methods that can assess
emotional experience across time at small enough intervals,
such as ambulatory assessment, experience sampling
method, and ecological momentary assessment (Houben,
Van Den Noortgate, & Kuppens, 2015; Trull & Ebner-
Priemer, 2013; Trull, Lane, Koval, & Ebner-Priemer,
2015). With these methods, one can measure emotional
fluctuations at different time intervals, for example, every
day, hour, or even every minute, leading to what is known
as intensive longitudinal data (Bolger & Laurenceau, 2013;
Ebner-Priemer & Trull, 2009; Walls & Schafer, 2006).

Importantly, this kind of intensive longitudinal data has
shown that not only how people feel on average (i.e., mean
level of one’s emotion) but also the temporal dynamics of
emotions is key information for a person’s well-being,

(Chow, Ram, Boker, Fujita, & Clore, 2005; Kuppens,
Champagne, & Tuerlinckx, 2012; Verduyn, Van Mechelen,
Tuerlinckx, Meers, & Van Coillie, 2009). Thus, while it is
certainly essential information to know if a person has on
average a high negative affect, the pattern of how negative
affect changes over time is also thought to give crucial
information about a person’s well-being (Trull, Lane, Koval,
& Ebner-Priemer, 2015).

One dynamic feature of emotions that has been of
special interest in recent emotion research is temporal
dependency or inertia (Kuppens et al., 2012; Suls, Green, &
Hillis, 1998; Suls & Martin, 2005). Inertia can be defined
as how resistant an emotion is to change. For instance, if
an emotion has a high predictability over time it is likely
that one stays in a certain emotion and thus that the
emotion has a high spillover from one moment to the next.
High inertia has therefore been defined as a decrease in the
ability of a person to have emotional changes and thus as
less well working (or maladaptive) emotion-regulation skills
(Kuppens, Allen, & Sheeber, 2010; Kuppens & Verduyn,
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2017). In line with this reasoning, several studies showed a
positive association between high inertia and depressive
symptoms or neuroticism (e.g., Brose, Schmiedek, Koval,
& Kuppens, 2015; Koval, Kuppens, Allen, & Sheeber,
2012; Koval, Pe, Meers, & Kuppens, 2013; Suls et al.,
1998; Wenze, Gunthert, Forand, & Laurenceau, 2009,
see, however, Dejonckheere et al. 2019).

Formally, inertia can be calculated through an autocorre-
lation of an emotion, or by fitting, as is commonly done, an
autoregressive (multilevel) model (Jahng, Wood, & Trull,
2008; Krone, Albers, Kuppens,&Timmerman, 2017; Rovine
& Walls, 2006; Schuurman, Ferrer, de Boer-Sonnenschein,
&Hamaker, 2016). The drawback of thesemodels, however,
is that they assume stationarity. This implies, for instance,
that the average value around which an emotion is fluctuat-
ing and its temporal dependency (i.e., autocorrelation or
inertia) is time-invariant (Chatfield, 2003; Hamaker,
Ceulemans, Grasman, & Tuerlinckx, 2015). This stationarity
assumption is problematic as studies have shown that inertia
does in fact change over time. For example, Koval and
Kuppens (2012) have shown that emotional inertia changes
due to a social stressor. Furthermore, Bringmann et al.
(2017) showed that inertia can change in an individual
brought into social isolation.

Even more significantly, current theories stemming from
dynamical systems theory (Scheffer et al., 2009) suggest
that changes in symptoms or emotion dynamics are crucial
for predicting and explaining how individuals develop psy-
chiatric disorders (van de Leemput et al., 2014). More
specifically, “critical slowing down” that is signaled by an
increase in the autocorrelation of the symptoms or emo-
tions of an individual could function as an “early warning
signal” before an individual transitions from a healthy state,
to, for instance, a state of depression (Nelson, McGorry,
Wichers, Wigman, & Hartmann, 2017; Wichers, Groot,
Psychosystems, ESM Group, & EWS Group, 2016). In this
case, the person has more difficulty in recovering from per-
turbations and thus regulating her/his emotions (Cabrieto
et al., 2019; Cramer et al., 2016). Importantly, the type of
change plays a key role in these hypotheses about how indi-
viduals develop psychiatric disorders. Specifically, a gradual
increase in the autocorrelation could be an important warn-
ing signal that precedes an abrupt change in which an indi-
vidual transitions into a depression. Wichers et al. (2016)
found initial support for such warning signals. An increase
in the autocorrelation of several mood states was found
before an individual transitioned into a depression after
medication reduction.

This shows the need for statisticalmethods that can detect
and model changes in the temporal emotion dynamics and
thus changes in the autocorrelation over time. Although
statistical developments have led tomethods that canmodel
changes in the autocorrelation, each of these methods can

model only one type of change; either gradual (e.g.,
Bringmann, Ferrer, Hamaker, Borsboom, & Tuerlinckx,
2018; Chow et al., 2005; Chow, Zu, Shifren, & Zhang,
2011; Haslbeck & Waldorp, in press; Molenaar, De Gooijer,
& Schmitz, 1992) or abrupt change (e.g., Cabrieto,
Tuerlinckx, Kuppens, Grassmann, & Ceulemans, 2017;
Cabrieto, Tuerlinckx, Kuppens, Hunyadi, & Ceulemans,
2018; Hamaker & Grasman, 2012). However, the models
mentioned here assume gradual change and will not be able
to detect or represent abrupt changes, and vice versa. This
will leave researchers in the dark regarding when and how
the change in autocorrelation occurred. Therefore, in order
for a model to be applicable to detect changes in emotion
dynamics, it is crucial that it is able to model both change
processes, gradual and abrupt.

In this paper, we will introduce a new model that can
detect both gradual and abrupt change in temporal emotion
dynamics: the time-varying change point autoregressive
(TVCP-AR) model. As a starting point this uses the time-
varying autoregressive (TV-AR) model and combines it with
a change point (CP) modelling approach (Bringmann et al.,
2017; Hamilton, 1989).

The outline of this paper is as follows. In the next section,
we will discuss these TV-AR and CP models. This is
followed by an explanation of the TVCP-AR model. After
this, we will showcase the TVCP-AR model with an experi-
ence sampling study of a single patient who underwent
medication reduction. We end with a discussion of the pos-
sibilities and limitations of the TVCP-AR model for future
research in emotion dynamics. In Electronic Supplementary
Material 1, we provide technical details and show through an
extensive simulation that our model performs well in
circumstances common for psychological research.

The Two Models That Are the
Ingredients of the TVCP-AR Model

The TV-AR Model

The TV-AR model is an extension of the AR(1) model,
where the parameters can vary over time. Non-stationarity
can thus be explicitly dealt with, meaning that a person’s
inertia is allowed to change over time. This TV-AR model
is defined by:

yt ¼ β0;t þ β1;tyt�1 þ ɛt t > 1: ð1Þ

In this model, both the intercept, β0,t, and slope, β1,t, are
allowed to change gradually over time. There are various
ways to impose that changes of the parameters occur
gradually. This model is based on the generalized additive
model (GAM) framework (Bringmann et al., 2017;
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Dahlhaus, 1997; Giraitis, Kapetanios, & Yates, 2014; Wood,
2006). Here, the estimation of β0,t and β1,t is done via
nonparametric smooth functions based on regression
splines (Hastie & Tibshirani, 1990).

As in all models with smoothing, there is a trade-off
between model fit and smoothness of the resulting
estimates. In the TV-AR model, the optimal level of
smoothness is derived via generalized cross-validation
(Golub, Heath, & Wahba, 1979).

In practice, estimation is straightforward using the mcgv
package in R (Wood, 2006).

The Change Point Model

Especially within the econometric literature, there is an
abundance of models for modelling time series where the
values of the parameters depend on the state, or regime,
one is in. In the simplest case, one works with two regimes.
Following Hamilton (1989, 1994), this model has the form:

yt ¼
β0 þ β1yt�1 þ ɛt t � CP

β0 þ δþ β1yt�1 þ ɛt t > CP
:

�
ð2Þ

Thus, up to a certain change point (CP), the intercept of
this model is β0, and after the change point it is β0 + δ. Such
a model with one or more abrupt changes is known as a
structural change point model. In the formulation of Hamil-
ton, the regimes before and after the change point are only
different with respect to the value of the intercept, but it is
straightforward to extend this to also allow for differences
in the autoregressive effects. The model Hamilton specified
is the basis for a broad class of models, including change
point and regime switching models that are already applied
in emotion research (e.g., Cabrieto et al., 2017, 2018; de
Haan-Rietdijk, Gottman, Bergeman, & Hamaker, 2014;
Hamaker & Grasman, 2012).

The TVCP-AR Model

TheTV-ARmodel allows for smooth variation of the dynam-
ics in an AR(1) process, but not for sudden changes. The
structural change point model, on the other hand, does not
allow for smooth changes but does allow for sudden changes.
By combining these two models, we introduce the time-
varying change point AR(1) model (TVCP-AR(1)), that allows
for both smooth and sudden changes in the dynamics.

The sudden change can be either at an expected
moment, such as the start of treatment, or a specific
moment which can be pinpointed in hindsight, such as
the occurrence of a life event. In those cases, the confirma-
tory TVCP-AR model can be used to check whether there
was indeed a (significant) change at that time point and,
if so, how big the change was (see Electronic Supplemen-

tary Material 1). It is, however, also possible that the sudden
change takes place at some unexpected moment. In order
to find such a sudden change, the exploratory TVCP-AR
model can be used.

Without knowledge of where the change takes place, one
should check all possible options. A change point model
partitions the data into two periods: the one up to the switch
and the one after the switch. For an exploratory search
toward the location of the change point, we use the follow-
ing algorithm.

First, fit a TV-ARmodel without change points and denote
the corresponding Akaike Information Criterion (AIC) value
by AIC0. As a next step, for each 2 < i < T � 1, perform the
following actions:

(1) Fit a model with a change point at location i to the data;
(2) Denote the AIC-value of this model by AIC1

i .

Let AIC1 ¼ argminiAIC1
i and denote the value i for which

this minimum is attained by j. Compute AIC1 � AIC0. If
the improvement in AIC is too small there is no indication
for a change point. If, however, the AIC1 score lies substan-
tially below AIC0, then location j will be denoted as the first
switch point.

The simulations in Electronic Supplementary Material 1
suggest that to avoid too many false positives, a reasonable
threshold for the AIC difference is somewhere between
�10 and �15. However, setting the threshold is in the end
a trade-off between power and false positive rate, and
depends on the number of time points and the expected
effect size.

Note that rather than the AIC, other information criteria,
such as the Bayesian Information Criterion (BIC), can be
also applied. In Electronic Supplementary Material 1, we
study model selection based on both AIC and BIC and pro-
vide advice on which one to choose and which threshold to
choose with it.

Note that it is undesirable to allocate change points at
extreme ends of the time series. When, for instance, a
change point would be allocated at t = 2, this implies that
the first regime only has a single observation. Putting a
TV-AR model on one or two observations is clearly
undesirable, thus rather than applying the approach above
for 2 < i < T � 1, it makes more sense to apply it only to
k < i < T � k + 1, for some small value of k (e.g., k = 3).

Once a change point has been found, the time series is
partitioned into two parts. For each part, a TV-AR model
is fitted, allowing also for a gradual change in the AR(1)
coefficients. Furthermore, the above strategy can be applied
again to find a new change point. This approach can be
repeated until no further change points are detected.
Figure 1 sketches the approach suggested here. A detailed
explanation of this model is provided in Electronic Supple-
mentary Material 1.
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Empirical Example

In order to illustrate the TVCP-AR model, we analyzed data
of one patient from an experience sampling study of 239
days (Wichers et al., 2016; see also Kossakowski, De Groot,
Haslbeck, Borsboom, & Wichers, 2017). During this study,
the patient (with major depression) underwent medication
reduction, and was beeped 10 times per day to report on
momentary experiences, resulting in 1,474 time points. First
there was a baseline period of 28 days. After this, the trial
period started (days 29–127), with medication reduction
starting at day 42. This was followed by a post-trial assess-
ment period (days 129–155), and finally an additional
assessment period (days 156–239; see Figure 2). In this
study, it was found based on the Symptom Checklist-90 –

Revised (SCL-90-R; Derogatis, Rickels, & Rock, 1976)
depression subscale that this patient had a sudden increase
in depression symptoms around day 127. Here we only ana-
lyze pre-processed data for variables positive affect and
negative affect (see Figures 2A and 2B). Besides Wichers
et al. (2016), the same data have been previously analyzed
by Cabrieto et al. (2018). Both studies indeed detected a
“critical slowing down” preceding the relapse, signaled by
an increase in the autocorrelation of positive and negative
effect. However, these studies used analyses that could
detect either gradual or abrupt changes in the autocorrrela-
tion, but not both kinds of change simultaneously.

In order to be able to compare our study with the studies
of Wichers et al. (2016) and Cabrieto et al. (2018), we used
the detrended version of the data, and excluded time points
for which lag 1 counterparts were not available, as well as
those that were preceded by a night. The data and R-code
to replicate the TVCP-AR analyses can be found in the

Electronic Supplementary Material 2–6. To get an indica-
tion of the robustness of our results we used both the
AIC and BIC for model selection. Following the recommen-
dation based on our simulation study in Electronic Supple-
mentary Material 1, we set a threshold of �15 on AIC or
BIC difference for labeling the finding as evidence for a
change point in the data. We used such a strict threshold
in order reduce the risk of discovering false positives. All
analyses of the empirical example can be found in the Elec-
tronic Supplementary Material 2–6.

Results

As the TVCP-AR is a univariate model, we analyzed posi-
tive affect and negative affect separately. Starting with pos-
itive affect, the TVCP-AR model clearly shows that there is
hardly any difference in AIC from the model without to the
model with change point (see Figures 2A and 2C). The lar-
gest difference in AIC is 1.68, which is clearly less than 15.
Figure 2D shows the final model, which is in essence a TV-
AR(1) model with a slow gradual change in autocorrelation,
with no evidence of an abrupt change. Using the BIC led to
the same results.

In contrast, in the negative affect data both gradual and
abrupt changes can be found. Both the AIC and BIC
indicated a change point at day 47 (with an AIC difference
of �20.33 and a BIC difference of �20.26; see also Electro-
nic Supplementary Material 2). A second change point
was also detected, but its exact timing was less robust.
Using the AIC, the change point was found around 120 days
(with an AIC difference of�22.81; see Figure 2E), but also a
further change point was detected around day 127, thus the
same day around which the patient relapsed into depres-
sion. This change point was extremely close to the change
point at day 120. Therefore, there were not enough time
points between the change points at day 120 and day 127
to perform the next step of the TVCP-AR(1) model, in
which the gradual change in the autocorrelation is
modelled.1 The BIC, on the other hand, indicated a BIC
difference of �17.90 for a change point at day 106.

As a general pattern, the change points occurred after
the medication dose reduction. There was a gradual
increase of the autocorrelation before day 47, after which
the autocorrelation abruptly dropped. A second increase
in autocorrelation was detected before the patient relapsed
into depression. The exact timing of this increase in the
autoregressive parameter, however, could not be robustly
determined. Based on Figure 2F, a gradual increase seemed
to have started around day 80, whereas an abrupt change
was detected around day 106, 120, or 127. This overall

Figure 1. The exploratory procedure for finding multiple change
points. Step 1 starts with the full time series 1, . . ., T and excludes
a few observations at each end (depicted by a thin grey line) and
searches for a change point in the remaining observations. One is
found at location CP1. In Step 2 the time series is partitioned into two:
1, . . ., CP1 and CP1 + 1, . . ., T. Both partitions have their buffer zones
and in both partitions new change points are sought. No change point
is found in 1, . . ., CP1, but one is found in CP1 + 1, . . ., T at location CP2.
This subdivides this second partition into two partitions and in Step 3
these are searched for a change point. In neither of them one is found,
thus the model splits the time series into three states.

1 Both patterns show first an increase and then a decrease in autocorrelation.
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period overlaps with the timing where Cabrieto et al. (2018)
detected a change point (day 86).

Discussion

There is increasing evidence that emotion dynamics such
as inertia change over time. Especially the literature on
complex system dynamics in psychopathology calls for

methods that can detect early warning signals, such as
when and how changes in inertia or autocorrelation occur
(Wichers, Schreuder, Goekoop, & Groen, 2019). Whereas
current methods can only detect either gradual or abrupt
changes in autocorrelation, we showed in this article how
the TVCP-AR model can detect both gradual and abrupt
changes in emotion dynamics. More specifically, we
showed that in the empirical example the autocorrelations
of positive and negative affect differ qualitatively in how
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Figure 2. (A) Raw detrended Positive Affect scores; (B) raw detrended Negative Affect scores; (C) AIC difference, positive affect; (D) final model for
inertia of positive affect; (E) AIC difference of negative affect for the first change point; (F) final model of inertia for negative effect. I = Baseline, II =
Before Dose Reduction, III = Dose Reduction; IV = Post Assessment; V = Follow-up. The blue vertical line represents the week in which the clear
increase in the severity of the symptoms occurred. Note that the days on the horizontal axis are not equally spaced. This reflects the missingness
in the data: For example, between day 100 and day 150 there were more missing values than between day 50 and day 100.
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they change over time. Whereas the autocorrelation of pos-
itive affect increases only gradually over time, negative
affect changes both in a gradual and abrupt fashion. This
application, thus, illustrates the necessity of modeling
both gradual and abrupt changes in order to detect mean-
ingful quantitative and qualitative differences in temporal
emotion dynamics.

Importantly, the TVCP-AR is not suitable for all kinds of
qualitative changes. Change point analysis as such is espe-
cially suited when abrupt changes happen several times, but
unsuited when the emotion dynamics are shifting fre-
quently between different regimes for short times. In this
case, regime switching models should be used (see, e.g.,
Hamaker, 2009). Additionally, TVCP-AR model is a dis-
crete time model, which limits its ability to deal with
unequally spaced time points (Ryan, Kuiper, & Hamaker,
2019; Voelkle & Oud, 2013). Developing continuous forms
of the TVCP-AR model would be a fruitful endeavor (e.g.,
along the lines of Chen, Chow, & Hunter, 2019).

Another limitation of the TVCP-AR model is that an
extensive number of time points is needed in order to find
gradual and abrupt changes. In general, when the effect of
the abrupt change is pronounced, around 100 time points
are needed (see Electronic Supplementary Material 1).
However, this number increases when there is both a grad-
ual and abrupt change or if the change in dynamics is not
pronounced. A related issue is that a TVCP-AR can indi-
cate, as in the empirical example, that two change points
are fairly close to one another. In this case, the TVCP-AR
could not give information on the period between these
change points.

An advantage of the TVCP-AR model is that, in contrast
to, for example, the method suggested by Cabrieto et al.
(2018), one can distinguish between changes in the mean
or the autocorrelation of the process. In the empirical exam-
ple, the data were already detrended, but with the TCVP-AR
model such detrending as a preprocessing step is not neces-
sary. Instead, the TVCP-AR model can distinguish whether
changes happen in the mean or the autocorrelation of the
process under study (or in both). This is an important advan-
tage, as recently there has been debate regarding the predic-
tive value of dynamic measures such as the autoregressive
coefficient over and above the mean in the context of emo-
tion dynamic research (Dejonckheere et al., 2019).

On top of allowing for dynamic changes in mean level
and inertia, our model allows for abrupt changes in the vari-
ability: for each segment (see Figure 1) a separate variance
is modelled for the error terms ɛt. Changes in intraindivid-
ual variability can be indicators of psychopathological
importance (Du & Wang, 2018). Within the current GAM-
framework, it is unfortunately not possible to allow for
gradual changes in the variation on top of the modelled
abrupt changes.

The idea of early warning signals has also been incorpo-
rated into the psychological network approach (Cramer
et al., 2016). In this approach, the main focus of interest
is not on the inertia or autocorrelation of an emotion, but
rather on the interaction between emotions or symptoms
(Borsboom & Cramer, 2013). For instance, Wichers et al.
(2016) showed using the same empirical dataset that not
just the autocorrelations of the mental states, but also inter-
actions between the mental states (i.e., the dynamic net-
work) increased in strength near the transition. Current
network models, however, are either based on a vector
autoregressive model (Pe et al., 2015; Wigman et al.,
2015), in which no change over time can be modeled, or
on time-varying vector autoregressive models that can only
model gradual change over time (Bringmann et al., 2018;
Haslbeck, Bringmann, & Waldorp, in press; Haslbeck &
Waldorp, in press). A multivariate extension of the TVCP-
AR with which also the dynamics between emotions can
be modeled in a gradual and abrupt is currently under
development. In sum, the TVCP-AR is a powerful method
for modeling and detecting different types of changes in
emotion dynamics.

Electronic Supplementary Material

The electronic supplementary material is available with
the online version of the article at https://doi.org/
10.1027/1015-5759/a000589
1. Technical details and simulation results for the TVCP-
AR model
2. The dataset used for the empirical example
3. The R code to run the analyses using AIC as the model
selection criterion
4. The functions needed to run the code in #3
5. The R code to run the analyses using BIC as the model
selection criterion
6. The functions needed to run the code in #5
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