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A B S T R A C T

In order to evaluate the toxicity of several different ionic liquids (ILs) towards the leukemia rat cell line (ICP-81),
an efficient and reliable quantitative structure-activity relationships (QSAR) model is developed based on de-
scriptors from COSMO-SAC (conductor-like screening model for segment activity coefficient) model. The dis-
tribution of screen charge density (σ-profile) of 127 ILs is calculated by GC-COSMO (group contribution based
COSMO) method. Two segmentation methods toward σ-profile are used to find out the appropriate descriptors
for the QSAR model. The optimal subset of descriptors is obtained by enhanced replacement method (ERM). A
multiple linear regression (MLR) and multilayer perceptron technique (MLP) are used to build the linear and
nonlinear models, respectively, and the applicability domain of the models is assessed by the Williams plot. It
turns out that the nonlinear model based the second segmentation method (MLP-2) is the best QSAR model with
an =R 0.9752 , =MSE 0.019 for the training set and =R 0.9382 , =MSE 0.037 for the test set. The reliability and
robustness of the presented QSAR models are confirmed by Leave-One-Out (LOO) cross and external validations.

1. Introduction

With their unique properties, such as negligible vapor pressure, high
thermal, chemical stability and wide liquid-phase range, ionic liquids
(ILs) have been researched for a diverse range of technologies and ap-
plications, including gas capture and separation (Bates et al., 2002;
Chen et al., 2015), extraction (Lyu et al., 2014; Song et al., 2016;
Wlazło et al., 2017; Zhou et al., 2012), organic synthesis (Eshetu et al.,
2016; Sanchez Zayas et al., 2016), etc. Moreover, because of their low
volatility, atmospheric pollution is unlikely; thus ILs are widely con-
sidered as “green” solvents compared to traditional volatile organic

compounds (VOCs). However, it is now realized that ILs have hazard
potentials for the human being and the environment (Ventura et al.,
2013). Due to their significant solubility in water, the possible in-
dustrial discharge of wastewater containing ILs into the environment
may have detrimental toxicological consequences for aquatic organisms
(Singh et al., 2014). On the other hand, the properties of ILs, such as
thermal stability and non-volatility, might also pose environmental
threats because of slow degradation characteristic (Cao et al., 2018). In
order to find environmentally friendly ILs for different using purposes,
evaluation of their toxicity has become very important.

In principle, there are approximately 1018 anion-cation
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combinations that can be synthesized (Huang et al., 2013). To avoid the
time and labor intensive experiment, many QSAR (quantitative struc-
ture-activity)/ QSPR (quantitative structure-property) prediction
models have been built to predict the thermophysical properties of ILs,
such as melting points (Lazzús, 2012), surface tensions (Gharagheizi
et al., 2012), viscosities (Lazzús and Pulgar-Villarroel, 2015), glass
transition temperature (Mirkhani et al., 2012), decomposition tem-
perature (Yan et al., 2012). As to the models for toxicity prediction,
they can be divided into two categories according to the descriptor used
to build the model. Group Contribution (GC) based methods directly
use the frequency of IL groups to predict the toxicity (Hossain et al.,
2011; Luis et al., 2010, 2007). The main advantage of GC is its sim-
plicity and capability to give a reasonable accuracy if all the necessary
group increments are obtained from the experimental data (Chen et al.,
2013). Moreover, GC-based methods can be directly integrated into the
computer-aided ionic liquid design (CAILD) framework.

Another category of models is based on the descriptors that have
certain connection to the characteristic of ILs rather than the frequency
of groups, e.g. the topological index (García-Lorenzo et al., 2008; Yan
et al., 2015), free energy relationship (Cho et al., 2013) and the dis-
tribution of screen charge density (Ghanem et al., 2017; Torrecilla
et al., 2010). The distribution of screen charge density distribution is
also referred as the σ-profile and can be achieved by COSMO compu-
tation. The σ-profile is considered as a characteristic property of the
molecule; it can be used to predict the possible electrostatic, hydrogen-
bonding, and dispersion interactions of the compound. Different de-
scriptors based on σ-profile of COSMO-RS model have been successfully
used to build the QSAR models for estimating the toxicity of ILs.
Ghanem et al. (2017) divided the σ-profile of cation and anion into four
regions separately. The area under each region is regarded as the de-
scriptor that is used to build the QSAR model for predicting the eco-
toxicity of 110 ILs towards bioluminescent bacterium Vibrio fischeri. The
squared correlation coefficient (R2) and mean square error (MSE) of the
nonlinear model using MLP model are 0.961 and 0.157, respectively.
Torrecilla et al. (2010) treated the charge distribution area (Sσ-profile)
below the σ-profile as the descriptor. Because the σ-profile of COSMO-
RS model is from -0.03 to 0.03 with a step size of 0.001, there are 61 Sσ-
profile descriptors for each cation and anion. After the regression model
selection (RMS) analysis, 10 out of 102 descriptors are chosen to build
the QSAR model for predicting the toxicity of 105 ILs towards leukemia
rat cell line (ICP-81) ( >R 0.9962 for the final MLP model). Although
these methods can achieve satisfying results, they still have room for
improvement. First, the quantum mechanical calculations for gen-
erating the σ-profile are very time-consuming and computationally
expensive (Mullins et al., 2006). Secondly, in these methods IL is
treated as an ion pair rather than individual functional groups, which
makes them hard to be integrated into the CAILD framework.

In order to take the advantage of using σ-profile as the descriptor
and provide a fast and reliable prediction method for the toxicity of ILs
towards ICP-81, which can be used for CAILD, GC-COSMO (Group
contribution based COSMO) is used in this work to predict the σ-profile
of ILs for COSMO-SAC model. Two segmentation methods for σ-profile
from literature are compared in order to find out the suitable de-
scriptors. The optimal set of descriptors are selected by ERM (Enhanced
replacement method) and used to build the linear and nonlinear QSAR
models using MLR (Multi-Linear Regression) and MLP (Multi-Layer
Perceptron technique), respectively. The performances of the obtained
QSAR models are then investigated and compared with previous stu-
dies.

2. Methodology

The strategy of the presented method is illustrated in Fig. 1. Firstly,
a database covering the information of σ-profile for different IL groups
is obtained from our previous work (Peng et al., 2017). Then, the σ-
profile of the ILs are calculated based on the GC-COSMO method. After

that, the descriptors are calculated by two segmentation methods for σ-
profile and the optimal set of descriptors are derived from ERM algo-
rithm. Finally, MLR and MLP are used to build the linear and nonlinear
QSPR models for each segmentation method.

2.1. Dataset

In order to compare with the recent research for the prediction of
toxicity of ILs, the same training and test set used by Cao et al. (2018)
are employed in this work. The toxicity data of the chosen ILs is from
the widely acknowledged ILs database (The UFT/ Merck Ionic Liquids
Biological Effects Database, 2020; Zhang et al., 2006). It is worth noting
that 7 ILs are excluded from the original dataset because their group
information is temporarily not included in the GC-COMSO database. In
addition, 15 new ILs from different databases (Ranke et al., 2004; The
UFT/ Merck Ionic Liquids Biological Effects Database, 2020; Torrecilla
et al., 2009) are added to the original dataset as an external validation
set to further evaluate the predictive ability of the developed models.
This choice is justified on one hand by the use of a common dataset for
the model development (see above) and on the other one by randomly
selecting 15 IL as the validation set. Therefore, 127 ILs are included in
the dataset with 93 ILs as the training set, 19 ILs as the test set and 15
ILs as the validation set. The name and the experimental EClog 50 value
of ILs are listed in Table 1.

2.2. GC-COSMO method

In the GC-COSMO method (Peng et al., 2017), ILs are decomposed
into three parts (Fig. 2): cation skeleton, substitutes in the cation ske-
leton and anion. As seen in Fig. 3a, for every group, the σ-profile is
defined as a vector of 51 elements from -0.025 to 0.025 with a step size
of 0.001. The σ-profile of anion can be directly acquired by GC-COSMO
method since it is regarded as one group. The σ-profile of cation is
defined as the accumulation of σ-profile from cation skeleton and its
substitutes (Fig. 3b):

Fig. 1. Framework of the proposed method for the prediction of toxicity of ILs.

D. Peng and F. Picchioni Journal of Hazardous Materials 398 (2020) 122964

2



Table 1
The experimental versus calculated log EC50 values using different models.

No. Cations Anions Exp. MLR-1 MLP-1 MLR-2 MLP-2

1 1-(3-methoxypropyl)-1-methylpiperidinium chloride 4.40 3.93 4.13 4.08 4.56
2 1-(3-methoxypropyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide 3.27 3.18 3.26 3.49 3.36
3 1-benzyl-3-methylimidazolium tetrafluoroborate 2.97 3.05 2.93 3.32 2.95
4 1-butyl-1-methylpiperidinium bromide 4.03 3.63 3.76 3.91 4.22
5 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide 3.41 2.93 3.16 3.31 3.47
6 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethylsulfate 3.15 3.05 3.10 2.92 3.14
7 1-butyl-3-methylimidazolium bromide 3.43 3.50 3.51 3.39 3.33
8 1-butyl-3-methylimidazolium chloride 3.55 3.55 3.73 3.39 3.33
9 1-butyl-3-methylimidazolium iodide 3.48 3.43 3.21 3.39 3.33
10 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide 2.68 2.80 2.77 2.80 2.81
11 1-butyl-3-methylpyridinium tetrafluoroborate 3.30 3.17 3.17 2.86 3.12
12 1-butylpyridinium tetrafluoroborate 3.16 3.32 3.49 3.25 3.19
13 1-butylpyridinium bromide 3.90 3.55 3.70 3.66 3.69
14 1-butylpyridinium chloride 3.77 3.60 3.83 3.66 3.69
15 1-butylpyridinium methylsulfate 3.92 3.32 3.50 3.73 3.70
16 1-butylpyridinium trifluoromethanesulfonate 3.66 3.16 3.58 3.53 3.78
17 1-ethyl-3-methylimidazolium acetate 4.23 4.12 4.15 3.91 4.00
18 1-ethyl-3-methylimidazolium tetrafluoroborate 3.44 3.86 3.78 3.64 3.42
19 1-ethyl-3-methylimidazolium methanesulfonate 3.97 3.91 3.82 4.10 4.08
20 1-ethyl-3-methylimidazolium trifluoroacetate 4.00 3.81 4.03 3.98 4.08
21 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 4.09 3.69 3.80 3.93 4.15
22 1-heptyl-3-methylimidazolium chloride 2.53 2.67 2.35 2.50 2.51
23 1-hexadecyl-3-methylimidazolium chloride −0.24 −0.62 −0.19 −0.17 −0.37
24 1-hexyl-1-methylpyrrolidinium chloride 2.93 3.30 3.18 2.97 3.00
25 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 2.56 2.55 2.66 2.37 2.41
26 3-hexyl-1,2-dimethylimidazolium tetrafluoroborate 1.90 2.67 1.87 2.13 1.99
27 1-hexyl-3-methylpyridinium chloride 2.40 2.69 2.69 2.68 2.63
28 1-hexyl-4-methylpyridinium tetrafluoroborate 2.17 2.40 2.21 2.22 2.19
29 1-hexyl-4-methylpyridinium chloride 2.67 2.68 2.64 2.63 2.60
30 1-hexylpyridinium chloride 2.80 3.06 2.88 2.97 2.77
31 1-hexylpyridinium trifluoromethanesulfonate 2.54 2.62 2.65 2.84 2.54
32 3-methyl-1-nonylimidazolium chloride 1.40 2.01 1.44 1.91 1.60
33 1-methyl-1-octylpyrrolidinium chloride 2.59 2.55 2.46 2.38 2.31
34 3-methyl-1-octylimidazolium tetrafluoroborate 1.59 2.09 1.64 1.79 1.85
35 3-methyl-1-octylimidazolium chloride 2.00 2.37 1.84 2.21 2.08
36 3-methyl-1-octylimidazolium bis(trifluoromethylsulfonyl)amide 1.64 1.62 1.48 1.61 1.56
37 1-methyl-3-pentylimidazolium chloride 3.16 3.26 3.32 3.10 3.11
38 3-methyl-1-propylimidazolium tetrafluoroborate 3.45 3.57 3.51 3.29 3.40
39 1-octyl-4-methylpyridinium tetrafluoroborate 1.49 1.65 1.50 1.62 1.34
40 1-butyl-4-methylpyridinium chloride 3.32 3.43 3.29 3.23 3.31
41 1-(2-ethoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide 3.34 3.20 3.23 3.37 3.28
42 1-(2-ethoxyethyl)pyridinium bis(trifluoromethylsulfonyl)amide 3.26 3.09 3.29 3.19 3.31
43 1-(2-hydroxyethyl)-1-methylpiperidinium iodide 4.58 4.43 4.37 4.43 4.68
44 1-(2-hydroxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide 3.65 3.80 3.69 3.83 3.64
45 1-(2-hydroxyethyl)pyridinium iodide 4.16 4.28 4.31 4.25 4.20
46 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide 3.25 3.40 3.38 3.51 3.33
47 1-(3-hydroxypropyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 3.60 3.85 3.67 3.67 3.62
48 1-(3-hydroxypropyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 3.62 3.85 3.67 3.67 3.62
49 1-(3-methoxypropyl)pyridinium bis(trifluoromethylsulfonyl)amide 3.38 3.08 3.28 3.30 3.42
50 1-(cyanomethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide 3.95 3.80 3.59 3.92 3.93
51 1-(ethoxymethyl)-1-methylpiperidinium chloride 4.24 4.20 4.14 3.95 4.09
52 1-(ethoxymethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide 3.41 3.45 3.40 3.35 3.24
53 1-(ethoxymethyl)pyridinium chloride 3.32 4.09 3.26 3.83 3.71
54 1-pentylpyridinium bromide 3.15 3.28 3.27 3.32 3.27
55 1-pentylpyridinium bis(trifluoromethylsulfonyl)amide 2.85 2.58 2.55 2.72 2.83
56 1-propylpyridinium bis(trifluoromethylsulfonyl)amide 3.20 3.12 3.41 3.41 3.21
57 4-(2-ethoxyethyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)amide 3.69 3.36 3.52 3.55 3.60
58 4-(2-methoxyethyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)amide 3.81 3.55 3.70 3.69 3.69
59 4-(3-hydroxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)amide 3.53 3.72 3.93 3.78 3.80
60 4-(3-methoxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)amide 3.77 3.26 3.71 3.34 3.59
61 4-butyl-4-methylmorpholinium bis(trifluoromethylsulfonyl)amide 3.43 2.99 3.20 3.15 3.34
62 4-(ethoxymethyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)amide 3.36 3.63 3.58 3.62 3.62
63 4-ethyl-4-methylmorpholinium toluene-4-sulfonate 3.81 3.89 3.81 4.04 3.86
64 benzyltetradecyldimethylammonium chloride 0.16 −0.41 0.23 −0.20 0.12
65 1-(2-ethoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 3.20 3.44 3.26 3.24 3.33
66 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide 3.76 3.73 3.68 3.53 3.54
67 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 3.30 3.64 3.41 3.39 3.44
68 1-(2-methoxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide 3.25 3.30 3.24 3.21 3.34
69 1-butyl-1-methylpyrrolidinium bromide 3.77 3.86 3.83 3.64 3.75
70 1-butyl-1-methylpyrrolidinium dicyanamide 4.23 3.62 3.92 3.75 3.84
71 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 3.01 3.15 3.12 3.04 2.87
72 1-butyl-1-methylpyrrolidinium trifluorotris(pentafluoroethyl)phosphate 2.41 2.85 2.52 2.46 2.35
73 1-butyl-3-ethylimidazolium trifluoroacetate 3.31 3.01 3.26 3.06 3.32
74 1-butyl-3-ethylimidazolium trifluoromethanesulfonate 3.43 2.89 3.32 3.01 3.39

(continued on next page)
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Where p σ( )i m is the surface area of cation i with a charge density of σm

Table 1 (continued)

No. Cations Anions Exp. MLR-1 MLP-1 MLR-2 MLP-2

75 1-butyl-3-methylimidazolium dicyanamide 3.15 3.27 3.27 3.51 3.43
76 1-butyl-3-methylimidazolium hydrogensulfate 3.29 3.28 3.29 3.55 3.23
77 1-butyl-3-methylimidazolium methylsulfate 3.21 3.27 3.27 3.46 3.33
78 1-butyl-3-methylimidazolium 1-octylsulfate 3.23 2.92 3.36 2.85 3.21
79 1-butyl-3-methylimidazolium hexafluorophosphate 3.10 3.26 3.45 3.39 3.33
80 1-butyl-3-methylimidazolium thiocyanate 3.42 3.33 3.24 3.66 3.30
81 1-butyl-3-methylimidazolium trifluorotris(pentafluoroethyl)phosphate 1.81 2.49 2.05 2.22 1.97
82 1-decyl-3-methylimidazolium tetrafluoroborate 0.77 1.36 0.93 1.20 0.86
83 1-ethyl-3-methylimidazolium bis(pentafluoroethyl)phosphinate 2.83 3.76 3.80 3.40 2.84
84 1-ethyl-3-methylimidazolium 1-ethylsulfate 3.93 3.79 3.81 3.94 3.93
85 1-ethyl-3-methylimidazolium hydrogensulfate 3.99 3.86 3.79 4.21 3.93
86 1-ethyl-3-methylimidazolium hexafluorophosphate 3.92 3.84 3.90 4.06 3.96
87 1-ethyl-3-methylimidazolium thiocyanate 4.23 3.92 3.94 4.32 4.09
88 1-ethyl-3-methylimidazolium toluene-4-sulfonate 3.81 3.67 3.81 3.74 3.87
89 1-ethyl-3-methylimidazolium trifluorotris(pentafluoroethyl)phosphate 3.23 3.07 2.85 2.88 3.17
90 1-heptyl-3-methylimidazolium tetrafluoroborate 2.58 2.39 2.20 2.09 2.40
91 1-hexyl-3-methylimidazolium tetrafluoroborate 2.98 2.69 2.68 2.39 2.88
92 1-hexyl-3-methylimidazolium hexafluorophosphate 2.91 2.68 2.69 2.80 2.85
93 1-hexyl-3-methylimidazolium trifluorotris(pentafluoroethyl)phosphate 1.53 1.91 1.33 1.63 1.46
94 ethyl(2-ethoxyethyl)dimethylammonium bis(trifluoromethylsulfonyl)amide 3.28 3.27 3.12 3.29 3.35
95 1-heptyl-3-methylimidazolium hexafluorophosphate 2.30 2.38 2.26 2.50 2.51
96 1-butyl-4-methylpyridinium tetrafluoroborate 2.98 3.16 3.16 2.81 3.04
97 3-methyl-1-octylimidazolium hexafluorophosphate 1.96 2.08 1.76 2.21 2.08
98 ethyl(3-methoxypropyl)dimethylammonium bis(trifluoromethylsulfonyl)amide 3.54 3.49 3.27 3.42 3.40
99 1-ethyl-3-methylimidazolium chloride 3.86 4.13 4.26 4.06 3.96
100 (cyanomethyl)ethyldimethylammonium bis(trifluoromethylsulfonyl)amide 3.87 3.93 3.70 4.11 3.99
101 1-(2-ethoxyethyl)pyridinium bromide 4.24 3.80 4.03 3.79 3.71
102 1-butyl-3-methylimidazolium methanesulfonate 3.51 3.33 3.19 3.44 3.37
103 1-hexyl-3-methylimidazolium chloride 2.82 2.97 2.84 2.80 2.85
104 1-(ethoxymethyl)pyridinium bis(trifluoromethylsulfonyl)amide 3.12 3.34 3.20 3.23 3.31
105 1-butyl-3-methylimidazolium tetrafluoroborate 3.11 3.28 3.26 2.98 3.37
106 1-ethyl-3-methylimidazolium methylsulfate 4.20 3.85 3.78 4.12 4.15
107 1-(2-hydroxyethyl)pyridinium bis(trifluoromethylsulfonyl)amide 3.79 3.65 3.55 3.65 3.61
108 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)amide 3.55 3.49 3.63 3.62 3.61
109 1-butyl-3-methylimidazolium toluene-4-sulfonate 3.29 3.09 3.35 3.08 3.25
110 1-(2-ethoxyethyl)-1-methylpiperidinium bromide 4.31 3.91 4.17 3.96 4.17
111 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide 2.24 2.22 1.96 2.20 2.23
112 1-decyl-3-methylimidazolium hexafluorophosphate 1.50 1.35 1.22 1.61 1.15
113 benzyldodecyldimethylammonium chloride 0.28 0.35 0.71 0.39 0.45
114 ethyl(3-hydroxypropyl)dimethylammonium bis(trifluoromethylsulfonyl)imide 3.83 3.67 3.66 3.52 3.50
115 Ethyl(2-hydroxyethyl)dimethylammonium bis(trifluoromethylsulfonyl)imide 3.70 3.93 3.65 3.86 3.85
116 1-(ethoxymethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide 3.26 3.68 3.41 3.28 3.33
117 (ethoxycarbonylmethyl)ethyldimethylammonium bis(trifluoromethylsulfonyl)imide 3.53 3.45 3.66 3.65 3.70
118 1-methyl-3-pentylimidazolium hexafluorophosphate 3.07 2.97 2.68 3.10 3.11
119 1-ethylpyridinium chloride 4.22 4.14 3.93 4.35 4.29
120 1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 3.66 3.48 3.69 3.47 3.53
121 1-(3-methoxypropyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide 3.40 3.42 3.33 3.31 3.43
122 1-(3-methoxypropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 3.34 3.04 3.33 3.03 3.29
123 1-Hexyl-3-ethylimidazolium bromide 2.01 2.52 2.32 2.55 2.44
124 1-(ethoxymethyl)-3-methylimidazolium chloride 3.60 4.10 3.64 3.71 3.68
125 Ethyl(3-methoxypropyl)dimethylammonium bis(trifluoromethylsulfonyl)imide 3.54 3.23 3.08 3.08 3.24
126 1-butyl-3,5-dimethylpyridinium chloride 3.42 3.23 3.23 2.95 2.99
127 1-(ethoxymethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 3.20 3.35 3.26 3.11 3.22

No. 1-93: training set.; No. 94-112: test set. ; No.113-127: validation set.

Fig. 2. Group segmentation exemplified for [BMIM]
[CH3SO3].

D. Peng and F. Picchioni Journal of Hazardous Materials 398 (2020) 122964

4



calculated by DMol3; Q i j( , ) is the frequency of group j in cation i.
To acquire the σ-profile by DMol3, the molecular structures of ca-

tions and anions are firstly optimized to the lowest energy in the ideal
gas phase using the density functional theory (DFT) with VWN-BP
functional at the DNP v4.0 basis set (Delley, 2000). After the structural
optimization, COSMO files of cations and anions can be acquired by
single-point quantum COSMO calculation with the dielectric constant
set to infinity. Based on the information in COSMO file, the σ-profile of
cations and anions can be obtained.

It is worth mentioning that, the σ-profile of groups is already ac-
quired in our previous work, so in this work, the regression mentioned
above is no need to be repeated.

2.3. Descriptor

After generating the σ-profile for all the cations and anions in the
dataset, two segmentation methods are used to calculate the descriptors
for developing the QSAR model. For the first method (method-1), as
seen from Fig. 4a, the σ-profile of both cation and anion are dived into 6
parts: − ∼−sσ ( 0.025 0.02) , − ∼−sσ ( 0.02 0.01) , − ∼sσ ( 0.01 0) , ∼sσ (0 0.01) , ∼sσ (0.01 0.02) ,

∼sσ (0.02 0.025) . The area under each region is calculated and their nu-
merical value is treated as the descriptor, and thus there are 12 de-
scriptors altogether.

For the second method (method-2), the descriptor is the surface area
with a charge density of σm (p σ( )m ). Because the σ-profile for both ca-
tion and anion are defined as a vector of 51 elements (Fig. 2), there are
102 descriptors in total. For the cation, they are denoted as −sσ C0.025 ,

−sσ C0.024 , …, sσ C0.024 , sσ C0.025 , and for the anion as −sσ A0.025 , −sσ A0.024 , …,
sσ A0.024 , sσ A0.025 .

2.4. ERM

It is already been proved that molecular descriptors play vital roles
in building models (Zhao et al., 2015). In this work, ERM (Mercader
et al., 2008) is used to find out the best subset d from the pool of de-
scriptors Dwith ≪d D which reaches the minimal standard deviation S
of MLR model.

∑=
− − =

S
N d

res1
( 1) i

N
i1
2

(3)

Where N is the number of IL in the training set; resi is the residual for IL
i.

ERM is a modified version of the replacement method (Duchowicz
et al., 2006), it exhibits less propensity for remaining in local minima
and at the same time is less dependent on the initial solution. Moreover,
it requires a smaller number of linear regressions than a time-con-
suming Full Search (FS) method while obtaining identical results. This
technique approaches the minimum of S by judiciously taking into
account the relative errors of the coefficients of the least-squares model
given by a set of d descriptors. The ERM gives models with better sta-
tistical parameters than the Forward Stepwise Regression procedure
(Kumar et al., 2011; Simon and Abdelmalek, 2012) and the more ela-
borated Genetic Algorithms (Jouyban et al., 2014; Mercader et al.,
2010). It has been utilized with satisfactory results in many QSAR/

Fig. 3. The σ-profile of (a) groups and (b) total σ-profile of [BMIM][Cl] cal-
culated by GC-COSMO.

Fig. 4. The segmentation (a) method-1 and (b) method-2 for σ-profile of ILs
exemplified for [BMIM][Cl].
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QSPR reports (Abooali and Sobati, 2014; Rybka et al., 2014; Sun et al.,
2009).

2.5. MLR

After acquiring the optimal subset of descriptors, MLR is applied to
establish the linear relationship of the chosen descriptors and the
toxicity of ILs, the generalized expression for the MLR can be written as
follows,

∑= +
=

EC c x clog ( ) *
i

p
i i10 50 0 1 (4)

Where c0 is the constant term, and ci is the estimated coefficient of the
corresponding descriptor xi; p denotes the number of descriptors.

The sign of the coefficient of Eq. 4 can help us to understand the
influence of each descriptor on the toxicity. The positive value means
parameters are positively-related to the toxicity while the negative
values mean parameters are negatively-related to the toxicity. It should
be noted that a lower logarithmic value corresponds to the higher
toxicity of ILs. Moreover, the importance of every descriptor can be
illustrated from the t and p value of the MLR model.

2.6. MLP

MLP method was used to build the non-linear QSAR model by the
Neural Network Toolbox in Matlab (R2016b version). A MLP is a class
of feedforward artificial neural network (NN ), it consists of three layers
of nodes: an input layer, a hidden layer and an output layer. The input
neuron number equal to the number of descriptors while the output
neuron number is one in this work. The hidden neuron number (HNN )
is related to the converging performance of the output error function
during the training process. Too few HNN values would hamper the
learning capability of the NN , while too many can cause over-fitting or
memorization of the learning sample. Each neuron receives information
of all the neurons from the previous layer, and every connection is
controlled by parameters called weights, which are optimized by Back-
propagation (BP) training function. During the training procedure,
learning coefficient (LC), which define the learning capability of a
neural network, is used to control the degree at which connection
weights are modified in the learning phase. In order to design the best
MLP model with the minimum MSE for the training set, the parameters
HNN and LC are optimized. The robustness of the final model is tested
by Leave-One-Out (LOO) cross validation and the external validation.

3. Results and discussion

ERM is used to search the best subset of descriptors for developing
the QSAR models. The contribution of different groups to the toxicity of
ILs are calculated and discussed to validate the reliability of the chosen
descriptors. In order to design the best MLP model, the hidden neuron
number and the learning coefficient are optimized to minimize the MSE
for the training set. To assess the robustness of both linear and non-
linear models and avoid overfitting, internal and external validation are
performed. The internal validation using the LOO cross-validation
technique, while the external validation predicting the EClog 50 value of
15 new ILs which are excluded from the training and test set.

3.1. Descriptor selection and validation

To determine the optimum number of descriptors for the two seg-
mentation methods mentioned above, a variety of subset sizes are in-
vestigated. The best-correlations with experimental toxicity ( EClog 50)
are selected on the basis of the MSE and R2 of train and test set using
MLR model (Appendix A).

As shown in Fig. 5a, for the training set of method-1, R2 increases
while MSE decreases with the increasing number of the descriptors.

When the number of the descriptor increased to 7, the change for both
R2 and MSE can be neglected. In the case of the test set, R2 begins to
decrease while MSE begins to increase when the number of descriptors
over 7. Thus, the optimal subset is obtained when the number of de-
scriptors is 7, and the coefficient of the final MLR model for method-1
(MLR-1) are listed in Table 2 and ranked by p value in ascending order.
The lower the value of p value means the more important of the de-
scriptor. It can be seen from Table 2 that cations have the major effect
on the toxicity of ILs since x2 to x4 are all cation-related items and their
p value are close to that of the anion-related item x1.

For method-2, as shown in Fig. 5b, the same variation tendency of
R2 and MSE of training and test set can be found when the number of
descriptors is over 9. The coefficient of the final MLR model for model-2
(MLR-2) is listed in Table 3. It is found that p value of the descriptor of
Sσ C0.003 is much lower than other descriptors, which means it has a
dominant effect on the toxicity of ILs in method-2. Moreover, x1 to x3

Fig. 5. MSE and R2 of the (a) MLR-1 model and (b) MLR-2 model versus the
number of descriptors for the training and test sets.

Table 2
The results of MLR-1 model

Description* Coefficient t value p value

x0 Constant 7.6896 11.7900 1.42E-19
x1 Sσ(-0.01A∼0A) −0.0057 −5.8393 9.34E-08
x2 Sσ(-0.01C∼0C) −0.0163 −5.2013 1.35E-06
x3 Sσ(0.01C∼0.02C) 0.0674 4.6482 1.21E-05
x4 Sσ(-0.02C∼-0.01C) −0.0362 −4.3050 4.45E-05
x5 Sσ(0A∼0.01A) −0.0083 −2.4006 1.86E-02
x6 Sσ(0C∼0.01C) −0.0109 −2.0967 3.90E-02
x7 Sσ(0.02C∼0.025C) −12.2490 −2.0463 4.38E-02

* subscripts A and C mean anions and cations, respectively.
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are all cation-related descriptors, it again proves that cations have a
remarkable effect on the toxicity of ILs. Additionally, the p values in
Table 2 and 3 are all lower than 0.05, which means all the selected
descriptors have significant contributions to the toxicity of ILs.

In order to validate the reliability of the selected descriptors, the
contribution of diverse groups to the toxicity of ILs are systematically
analysed by GC-COSMO method and MLR model. The contribution of
each group to the toxicity is calculated using the selected descriptors
and the corresponding parameters listed in Table 2 and 3. For example,
the cation-related descriptors x2, x3, x4, x6 and x7 in method-1 (Table 2)
for CH3 are 56.12, -1.40, 4.72, 9.37 and -0.03, respectively. Therefore,
the contribution of CH3 can be calculated as

× − + − × + × −

+ × − + − × − = −

(56.12 0.0162) ( 1.4 0.0674) (4.72 0.0362)

(9.37 0.0109) ( 0.03 12.2486) 0.95

. By this

method, the contribution of different groups can be calculated, the re-
sults being listed in Table 4. As it can be seen, the contributions of CH2

are -0.37 and -0.30 calculated by method-1 and method-2, respectively.
This indicates that increasing the number of CH2 will lower the EClog 50
value and make IL more toxic towards the IPC-81. This can be explained
by the fact that longer alkyl chains may be incorporated into the polar
head groups of the phospholipid bilayer, which is the major structure of
membranes, thus the cell membrane can be easily damaged (Singh
et al., 2014). To investigate the influence of the presence of oxygen on
the toxicity, the contribution of OH and OCH2 are calculated and
compared with CH3 and (CH2)2, respectively. As it can be seen from
Table 4, the contribution value of all oxygenated groups are higher than
the alkyl groups and consequently result in higher EClog 50 value,
which indicates that introduction of oxygen groups into the alkyl side
chain significantly reduced the toxicity of ILs (Tot et al., 2018).

The influence of the cation skeleton MIM, MPYO and MPI on the
toxicity of ILs is also investigated, the contribution value calculated by
method-2 is presented in the following order MIM<MPYO<MPI. The
imidazolium ILs are the most toxic may be due to the specific character
of the imidazolim head group including the hydrogen bonding
(Smirnova and Safonova, 2010). The result is consistent with

experimental data where the EClog 50 value for [C4MIM][Br],
[C4MPYO][Br] and [C4MPI][Br] are 3.43, 3.77 and 4.03, respectively.
By contrast, the results from method-1 is inconsistent with the experi-
mental data. Considering the performance of MLR-2 is significantly
better than MLR-1, method-2 is more suitable for building the QSAR
model for the prediction of toxicity of ILs.

Concerning to the anion effect in ILs toxicity, five anions with the
same cation [C4MIM]+ are compared ([Cl]- (3.55), [TOS]- (3.29),
[MDEGSO4]- (3.15), [Tf2N]- (2.68), [eFAP]- (1.81)). As seen from
Table 4, for both methods, the contribution value of anions to the
toxicity of ILs follows the order: [Cl]-> [TOS]-> [MDEGSO4]-
> [Tf2N]-> [eFAP]-. The toxicity of the fluorine-containing anions is
obviously higher than other kinds of anion (Costa et al., 2015), which is
consistent with the experimental data.

These findings validate that the selected descriptors are highly
correlated with the toxicity of ILs, and it is reasonable to using them to
develop the QSAR models.

3.2. The QSAR models based on method-1

The corresponding plots of experimental data versus calculated
values by MLR-1 and MLP-1 (MLP model for method-1, =HNN 6 and

=Lc 0.0065) are presented in Fig. 6 and the statistical parameters are
listed in Table 6. It can be seen that good correlation relationship
( =R 0.867 and 0.9592 for the training set, respectively) can be found

Table 3
The results of MLR-2 model

Description* Coefficient t value p value

x0 Constant 5.4003 31.3080 9.90E-48
x1 Sσ0.003C −0.2353 −24.6110 6.80E-40
x2 Sσ-0.004C −0.0710 −8.2541 2.03E-12
x3 Sσ0.004C 0.2324 6.3200 1.24E-08
x4 Sσ0.012A −0.0202 −5.3679 7.09E-07
x5 Sσ0.019C 20.7320 5.1204 1.94E-06
x6 Sσ0.003A −0.0099 −4.4959 2.23E-05
x7 Sσ0.013A 0.0289 4.3570 3.75E-05
x8 Sσ0.002A −0.0082 −4.2382 5.81E-05
x9 Sσ-0.003A −0.0307 −3.7222 3.59E-04

* subscripts A and C mean anions and cations, respectively.

Table 4
The contribution of different groups to the toxicity of ILs.

Categories Groups method-1 method-2

Substituent CH3 −0.95 −0.94
CH2 −0.37 −0.30
OH −0.18 −0.32
OCH2 0.14 0.04

Cation skeleton MPI −1.34 0.34
MPYO −1.12 −0.01
MIM −1.30 −0.17

Anion Cl 0.00 0.00
TOS −0.87 −0.32
MDEGSO4 −0.88 −0.47
Tf2N −1.52 −0.60
eFAP −2.15 −1.17

Fig. 6. Calculated versus experimental toxicity values calculated by: (a) MLR-1
(b) MLP-1.
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between the chosen descriptors and the toxicity value of ILs. The sa-
tisfactory results of cross-validation (Table 5) indicate the developed
model is not over fitted or a result of by-chance. In terms of external
validation, the R2 and MSE are all close to the results of the training and
the test set, which confirmed the predictive ability of the proposed
models.

To define the application domain, Williams plot of the MLR-1 and
MLP-1 are presented in Fig. 7. It can be seen that the majority of ILs are
located within the application domain (Appendix B) and are predicted
accurately, which further confirmed the reliability of the prediction
models. The h value of 1-hexadecyl-3-methylimidazolium chloride (23,
-0.24), benzyltetradecyldimethylammonium chloride (64, 0.16) and
benzyldodecyldimethylammonium chloride (113, 0.28) are greater
than the threshold leverage value h* and the standized residuals of these
three ILs are also higher than 3. This is because these ILs all have very
long alkyl groups which are different from other ILs in the training
dataset. Moreover, the prediction error of GC-COSMO will be slightly
increased when it comes to ILs have an extremely long alkyl chain.

3.3. The QSAR models based on method-2

The experimental data versus calculated values by MLR-2 and MLP-
2 (MLP model for method-2 ( =NN 8 and =Lc 0.0014) are presented in
Fig. 8. Compared to the results of method-1, better correlation re-
lationship can be found with R2 for the training set of 0.923 and 0.975,
respectively. The LOO cross-validation (RLOO

2 and MSELOO are 0.923
and 0.975, respectively) and external validation (R2 and MSE are 0.915
and 0.944, respectively) confirmed the reliability of the QSAR models
based on method-2.

Williams plot of the MLR-2 and MLP-2 are given in Fig. 9. It can be
seen that the standized residual of compounds with long alky chain (23,
64 and 113) are still greater than 3. In terms of the leverage value, the h
of compounds 1-benzyl-3-methylimidazolium tetrafluoroborate (3,
2.97) and 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethylsul-
fate (6, 3.15) are higher than h*. This is because the ILs containing the
benzyl group or 2-(2-methoxyethoxy)ethylsulfate anion are different
from other ILs in the training set. Considering their low standized re-
sidual, compounds 3 and 6 can be considered as structurally influential
materials in the dataset (Ma et al., 2015).

3.4. Comparisons

Favorable results are obtained for four QSAR models with high R2

and low MSE values (Table 6). The performance of the four QSAR
models can be ranked as following order: MLP-2>MLP-1>MLR-
2>MLR-1. The performance of the nonlinear model based on the
second segmentation method (MLP-2) is better than others, the R2 va-
lues of the training set, test set and validation set are 0.975, 0.938 and
0.970, respectively. It can be seen from Table 6, the second segmen-
tation method is more suitable for generating the descriptors for the
prediction of toxicity of ILs. Furthermore, the nonlinear model MLP
exhibits better results compared to the linear model MLR.

The comparisons of the QSAR models in the literature developed for
prediction of the toxicity of ILs towards IPC-81 are summarized in
Table 7. It can be seen that, in general, the best model MLP-2 developed
in this work ( =R 0.9752 for training set) is better than the most of
models in the literature. However, the results of MLP-2 do not show
great improvement compare to the work of Cao et al. (2018) using a
similar dataset ( =R 0.9742 for training set), and inferior to the models
presented by Torrecilla et al. (2010) and Fatemi and Izadiyan (2011)
with =R 0.9962 and =R 0.992 , respectively. Compared to the models
also using σ-profile as the descriptor (Torrecilla et al., 2010; Cao et al.,
2018), the method used in this work is more efficient because the time-
consuming quantum mechanical calculations for the σ-profile can be
avoided. Moreover, the influence of every group on the toxicity of ILs

Table 5
The MSE and R2 of LOO Cross-Validation for training set.

MLR-1 MLP-1 MLR-2 MLR-2

MSECV 0.1004 0.0423 0.0583 0.0187
R2
CV 0.8669 0.9439 0.9228 0.9753

Table 6
Comparisons of the statistical parameters by different QSAR models.

Model Dataset No. R2 R2
adjust AARD% MSE RMSE

MLR-1 Training 93 0.867 0.856 14.357 0.101 0.317
Test 19 0.926 0.879 5.235 0.044 0.209
Total 112 0.875 0.867 12.810 0.091 0.302
Validation 15 0.914 0.827 8.551 0.071 0.267

MLP-1 Training 93 0.959 0.956 4.663 0.031 0.176
Test 19 0.913 0.857 6.385 0.052 0.228
Total 112 0.953 0.950 4.955 0.034 0.186
Validation 15 0.932 0.863 15.157 0.056 0.238

MLR-2 Training 93 0.923 0.914 9.628 0.058 0.242
Test 19 0.939 0.879 4.949 0.036 0.190
Total 112 0.925 0.918 8.835 0.055 0.234
Validation 15 0.915 0.763 9.129 0.070 0.264

MLP-2 Training 93 0.975 0.973 4.493 0.019 0.137
Test 19 0.938 0.876 5.091 0.037 0.192
Total 112 0.970 0.968 4.595 0.022 0.147
Validation 15 0.944 0.844 9.047 0.046 0.214

Fig. 7. Williams plot of the training, test and validation sets : (a) MLR-1 and (b)
MLP-1.
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can be evaluate by the σ-profile of every group. Compared to the model
developed by Fatemi and Izadiyan (2011) using GATEWAY (GEometry,
Topology and Atom-Weights AssemblY) descriptors, the model pre-
sented in this work is more simple, the descriptors can be easily ac-
quired by GC-COSMO method. Another advantage of the presented
QSPR model is that since it is GC-based it can be directly used for
CAILD.

4. Conclusion

In this work, the σ-profile of 127 ILs are calculated by GC-COSMO
method and the corresponding descriptors are acquired by two seg-
mentation methods. In order to acquire the optimal subset of the de-
scriptors, an algorithm called EMR is used, and the best descriptor
number for method-1 and method-2 are 7 and 9, respectively. The re-
liability of the selected descriptors is validated by detailed analysis of
the relationship between the structure and the toxicity of ILs and cation
is found to have a major effect on the toxicity of ILs. Based on the
chosen descriptors, linear and nonlinear QSAR models are established
to estimate the toxicity of 127 ILs towards IPC-81. The LOO cross-va-
lidation together with the external validation confirmed that all the
presented model are reliable and not overt fitter. Among the four pro-
posed QSAR models, the nonlinear model based on the second

segmentation method (MLR-2) yielded the best toxicity-structure re-
lationship with =R 0.9752 , =MSE 0.019 for the training set and

=R 0.9382 , =MSE 0.037 for the test set. Compared to other QSAR
models in the literature, the QSAR method developed in this work is
more efficient, and moreover it can be used to design green ILs with low
toxicity by CAILD method.
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Appendix A. Evaluation

The performance of the QSAR model is measured by different metrics, i.e. squared correlation coefficient (R2), adjusted squared correlation
coefficient (Radj

2), average absolute relative deviation (AARD%), mean square error (MSE), root mean square error (RMSE), the squared correlation
coefficient (RLOO

2) and mean square error (MSELOO) of Leave-One-Out cross validation for training set, the corresponding equations are listed below,
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=
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(A.7)

where yi
cal is the calculation value of IL i, while yi

exp is the experimental value. N is the number of IL in the data set. ytrain
¯

and Nt is the mean value of
experimental EClog 50 and the number of ILs in training set, respectively. Routi

2 and MSEouti denote the R2 and MSE after leaving the i th IL out of the
training set, respectively.

Appendix B. Application domain

The application domain is a theoretical spatial region defined by the values of molecular descriptors and the modelled response. In the presented
study, the application domain was verified by using the leverages (Williams plot) (Gramatica, 2007) and standardization approach (Roy et al., 2015).
The leverage value of compound i (h )i is calculated from the descriptors matrix (X ),

= −h X X X x( )i i i
T T 1 (B.1)

where xi is a row vector of descriptors for compound i and X is the matrix of descriptors for the training set.
The boundary of the application domain is defined by the critical value of leverage, h* and the values of the standardized residuals differing by

more than±3 standard deviation units. The critical value of leverage can be calculated as

=h p n3 /* (B.2)

where p is the number of variables used in the model and n is the number of the training data.
Those values of hi higher than threshold value h* mean that the structure of a compound significantly differs from other compounds in the

training data.
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