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Contraction Analysis of Monotone Systems via
Separable Functions

Yu Kawano, Member, Bart Besselink, Member, and Ming Cao, Senior Member

Abstract—In this paper, we study incremental stability of
monotone nonlinear systems through contraction analysis. We
provide sufficient conditions for incremental asymptotic stability
in terms of the Lie derivatives of differential one-forms or
Lie brackets of vector fields. These conditions can be viewed
as sum- or max-separable conditions, respectively. For incre-
mental exponential stability, we show that the existence of
such separable functions is both necessary and sufficient under
standard assumptions for the converse Lyapunov theorem of
exponential stability. As a by-product, we also provide necessary
and sufficient conditions for exponential stability of positive
linear time-varying systems. The results are illustrated through
examples.

Index Terms—Nonlinear systems; Contraction analysis; Mono-
tone systems; Separable functions

I. INTRODUCTION

A dynamical system is called monotone if its trajectory
preserves a partial order of the initial states [1], [2]. For
instance, biological systems [3], chemical reaction systems [4],
transportation networks [5], and social dynamics [6] are often
modeled as monotone systems. Moreover, monotonicity prop-
erties naturally arise in the analysis of interconnected large-
scale networks [7], [8]. In the linear time-invariant (LTI) case,
positive systems provide a typical example of monotone sys-
tems, and there are rich theoretical developments for stability
and gain analysis of positive LTI systems; see, e.g., [9], [10]
for basic results. These works are mostly motivated by the
fundamental observation that an asymptotically stable posi-
tive LTI system always admits linear (also called separable)
Lyapunov functions [9], [10], which is essentially related to
the Perron-Frobenius theorem on the dominant eigenvalue of
a positive matrix [11] and its variant on Metzler matrices [2].
Since almost all practical applications of monotone systems
mentioned above such as biological systems contain nonlin-
earity, stability analysis of monotone nonlinear systems using
separable functions has also been studied [12]–[16].

In this paper, we are also interested in stability analysis but
not in the standard Lyapunov framework. We pursue analysis
in the contraction framework [17]–[22]. Contraction theory is
a differential geometric framework for the analysis of a pair

Y. Kawano is with the Faculty of Engineering, Hiroshima University,
Higashi-Hiroshima, Japan (email: ykawano@hiroshima-u.ac.jp).

B. Besselink is with the Bernoulli Institute for Mathematics, Computer
Science and Artificial Intelligence, University of Groningen, Groningen, The
Netherlands (email: b.besselink@rug.nl).

M. Cao is with the Faculty of Science and Engineering, University of
Groningen, Groningen, The Netherlands (email: m.cao@rug.nl).

The work of Kawano and Cao was supported in part by the European
Research Council (ERC-StG-307207) and the Netherlands Organization for
Scientific Research (NWO-vidi-14134).

of trajectories of a given nonlinear system, which is applied
to, for instance, the tracking problem, observer design, and
synchronization. The main idea is to consider an infinitesimal
metric instead of a feasible distance function, and thus the so-
called variational system or prolonged system plays a key role.
In fact, this prolonged system naturally arises in monotonicity
analysis [1], [2]. A well known monotonicity condition, the
Kamke condition [1], [2], is described by using the prolonged
system, which motivates us to study monotone systems in this
contraction framework rooted in differential geometry.

In classical nonlinear systems and control theory, differen-
tial geometry is exploited for controllability and observability
analysis, and the Lie derivatives of differential one-forms and
the Lie brackets of vector fields play essential roles [23], [24].
Recently, the papers [25]–[27] provide concepts of eigenvalues
and eigenvectors for nonlinear systems via these Lie deriva-
tives and Lie brackets, and the papers [27], [28] apply these
nonlinear eigenvalues to contraction analysis. This suggests
the possibility of applying nonlinear eigenvalues to contraction
analysis of monotone systems. That is, the Perron-Frobenius
theorem on the dominant eigenvalues might be generalized to
monotone nonlinear systems as the Perron-Frobenius vector of
a positive LTI system has been successively extended in the
differential geometric framework [18], [29].

Partly motivated by the nonlinear eigenvalues and the
Perron-Frobenius theorem about dominant eigenvalues in lin-
ear algebra, we investigate incremental stability conditions of
monotone nonlinear systems in terms of the Lie derivatives
and Lie brackets. First, for incremental asymptotic stability,
we provide sufficient conditions, which can be viewed as
separable conditions. Next, for incremental exponential sta-
bility, we prove necessary and sufficient conditions under the
standard assumptions [30] for the converse Lyapunov stability
of exponential stability. Our incremental exponential stability
conditions can be viewed as a generalization of the well-
known separable conditions for positive LTI systems. In [16],
similar analysis can be found. However, our conditions are less
conservative as illustrated by a simple example, and we study
the converse for incremental exponential stability, which has
not been done in the literature. As a by-product of our results,
we also provide separable necessary and sufficient conditions
for exponential stability of linear time-varying (LTV) systems
based on the fact that variational systems can be viewed
as LTV systems along trajectories of the original nonlinear
systems.

The remainder of this paper is organized as follows. Sec-
tion II introduces monotone systems and incremental stabil-
ity. Section III provides sufficient conditions for incremental
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asymptotic stability in terms of the Lie derivative of differ-
ential one-forms or the Lie bracket of vector fields. From
their structures, the proposed conditions are called sum- or
max-separable conditions, respectively. In Section IV, we
study incremental exponential stability by sum- and max-
separable functions. Based on our sum- and max-separable
results, we also provide an alternative proof for the existence
of a diagonal contraction Riemannian metric [15]. Next, the
application of our results to positive LTV systems yields
separable exponential stability conditions. In Section V, as
applications of our sufficient conditions, we mention exten-
sions of the stabilizing controller design for systems that are
not necessarily monotone [31], [32] to monotone systems; we
also perform partial stability or so-called partial contraction
analysis [33], [34]. The proof of each theorem is presented in
the Appendix.

Notation: Let In := {1, . . . , n}. The sets of real numbers
and non-negative real numbers are denoted by R and R+,
respectively. The n-dimensional vector of which the i-th
element is 1 and the others are 0 is denoted by ei. The n-
dimensional vector of which all elements are 1 is denoted by
1ln. For x, y ∈ Rn, a partial order � is defined by writing
x � y if and only if xi ≤ yi for all i ∈ In, where xi
denotes the i-th component of x. Similarly, x ≺ y if and only
if xi < yi. For x ∈ Rn, |x| ∈ Rn+ is the vector consisting of the
absolute values of elements of x, i.e., |x| = [|x1|, . . . , |xn|]T.
Also, vector norms are denoted as |x|1 :=

∑
i∈In |xi|, |x|2 :=

(
∑
i∈In x

2
i )

1/2, and |x|∞ := maxi∈In |xi|. A continuous
function α : [0, a) → R+ is said to be of class K if it
is strictly increasing and α(0) = 0. A continuous function
β : R+ × R+ → R+ is said to be of class KL if for each
fixed s, the mapping β(r, s) belongs to class K with respect to
r and, for each fixed r > 0, the mapping β(r, s) is decreasing
with respect to s and β(r, s)→ 0 as s→∞.

II. PRELIMINARIES

A. Nonlinear Monotone Systems

Consider the nonlinear system

Σ : ẋ(t) = f(x(t)), (1)

where f : Rn → Rn is of class C2. The unique solution x(t)
to the system Σ at time t ∈ R+ starting from x(0) = x0 is
denoted by φ(t, x0) if it exists. Let X ⊂ Rn be a convex sub-
set, e.g., X = Rn+, and suppose that there exists a connected
and forward invariant subset S ⊂ X , i.e., φ(t, x0) ∈ S for any
x0 ∈ S and t ∈ R+.

In contraction analysis, we use the so called prolongation
of the system Σ, which consists of the system Σ and its
variational system along the trajectory φ(t, x0) given as

δẋ(t) :=
dδx(t)

dt
=
∂f(φ(t, x0))

∂x
δx(t). (2)

If S is forward invariant and x0 ∈ S, the variational system
(2) has a unique solution δx(t) for any δx(0) = δx0 ∈ Rn,
which reads

δx(t) = Φ(t, x0)δx0, Φ(t, x) :=
∂φ(t, x)

∂x
. (3)

The variational system can be viewed as a linear time-
varying (LTV) system along the trajectory φ(t, x0) of the
original system Σ with the transition matrix Φ(t, x0). Indeed,
one can confirm that Φ(0, x0) = In and

Φ(t2, x0) =
∂φ(t2, x0)

∂x0

=
∂φ(t2 − t1, x)

∂x

∣∣∣∣
x=φ(t1,x0)

∂φ(t1, x0)

∂x0

= Φ(t2 − t1, φ(t1, x0))Φ(t1, x0), (4)

for any t2 ≥ t1.
In this paper, we assume that the nonlinear system Σ is

monotone [1] on X , i.e., the implication

x1 � x2 =⇒ φ(t, x1) � φ(t, x2), ∀t ≥ 0,

holds for any x1, x2 ∈ X . The monotonicity property of Σ is
directly related to the properties of the variational system (2),
as stated next.

Proposition 2.1 (Kamke condition, [1], [2]): The system
Σ in (1) is monotone on a convex set X ⊂ Rn if and only if

∂fi(x)

∂xj
≥ 0, ∀i 6= j (5)

for any x ∈ X . C
Remark 2.2: Condition (5) implies that the variational sys-

tem (2) is a positive system when regarded as an LTV system
along φ(t, x0) ∈ S, i.e.,

Φi,j(t, x) =
∂φi(t, x)

∂xj
≥ 0, ∀i, j ∈ In,∀t ∈ R+, (6)

and for all x ∈ S with being S ⊂ X forward invariant.
Therefore, S×Rn+ is a forward invariant set of the prolongation
of Σ. C

The objective of this paper is to derive incremental stability
conditions for monotone systems. In particular, by exploiting
the variational system (2), we aim to extend the following
conditions for positive (i.e., monotone) linear time-invariant
(LTI) systems to monotone nonlinear systems.

Proposition 2.3 ( [9]): Let ẋ = Ax with x ∈ Rn be a
positive system, i.e., A is Metzler (Ai,j ≥ 0 for all i 6= j).
Then, the following statements are equivalent:

1) A is Hurwitz;
2) there exists v ∈ Rn+ such that v � 0 and vTA ≺ 0;
3) there exists w ∈ Rn+ such that w � 0 and Aw ≺ 0;
4) there exists a diagonal positive definite matrix P ∈

Rn×n+ such that PA+ATP is negative definite. C

Conditions 2), 3), and 4) correspond to Lyapunov functions
of the forms

∑
i∈In vi|xi|, maxi∈In |xi|/wi, and

∑
i∈In pix

2
i ,

respectively [9]. That is, stability is evaluated with respect to
different distances induced by 1-,∞-, and 2-norms. From their
structures, the first two Lyapunov functions are referred to as
sum- and max-separable functions.

It is worth mentioning that even for linear time-varying
(LTV) systems, Conditions 2) and 3) have not been gener-
alized. As a byproduct of our results, similar connections as
in Proposition 2.3 are established for exponential stability of
positive LTV systems.
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Remark 2.4: Conditions 2) and 3) have strong connections
with the Perron-Frobenius theorem [2], [11] in linear alge-
bra. Suppose that the Metzler matrix A has a negative real
eigenvalue λ < 0 whose corresponding left eigenvector v has
strictly positive components, i.e., v � 0 then vTA = λvT ≺ 0.
Then, Condition 2) holds. A similar conclusion holds for the
right eigenvector. Then, the question is when such a pair
of eigenvalue and eigenvector exists. The Perron-Frobenius
theorem gives a partial answer. Namely, this theorem shows
that a real square matrix with positive entries has a unique
largest eigenvalue, called the dominant eigenvalue, and that
the corresponding eigenvector can be chosen to have strictly
positive components. There is a variant of this theorem for a
Metzler matrix under the condition of irreducibility [2]. C

B. Incremental Stability and Induced Distances

In this paper, we study incremental stability with respect to
a distance1 d : S × S → R+, which leads to the following
definitions of incremental stability studied in this paper.

Definition 2.5 ( [17], [35]): The system Σ in (1) is said to
be

1) incrementally stable (IS) on S (with respect to distance
d) if there exists a class K function α defined on the
range of d such that

d(φ(t, x1), φ(t, x2)) ≤ α(d(x1, x2)), ∀t ∈ R+

for any (x1, x2) ∈ S × S;
2) incremental asymptotically stable (IAS) on S if it is IS

and

lim
t→∞

d(φ(t, x1), φ(t, x2)) = 0

for any (x1, x2) ∈ S × S;
3) incrementally exponentially stable (IES) on S if there

exist positive constants k and λ such that

d(φ(t, x1), φ(t, x2)) ≤ ke−λtd(x1, x2), ∀t ∈ R+

for any (x1, x2) ∈ S × S . C
If S contains an equilibrium point, IS, IAS and IES re-

spectively imply the Lyapunov, asymptotic, and exponential
stability of the equilibrium point. In contraction analysis, the
paper [17] has established a connection between incremental
stability and the prolongation of the system Σ via a Finsler-
Lyapunov function. On the other hand, as mentioned in the
previous subsection, for stability analysis of positive LTI
systems, separable functions are commonly used. In this paper,
the concepts of Finsler-Lyapunov functions and separable
functions will be combined.

Consider the vector-valued function v : S → Rn+ such that
v(x) � 0 on S. In our analysis, we use the following non-
negative functions defined on S × Rn:
• the sum-separable function

M1(x, δx) =
∑
i∈In

vi(x)|δxi|; (7)

1A non-negative function d : S × S → R+ is said to be a distance if
it satisfies 1) d(x1, x2) = d(x2, x1) = 0 if and only if x1 = x2 for any
x1, x2 ∈ S, and 2) d(x1, x3) ≤ d(x1, x2)+d(x2, x3) for any x1, x2, x3 ∈
S. Note that symmetry is not required.

• the diagonal Riemannian metric

M2(x, δx) =

(∑
i∈In

(vi(x)δxi)
2

)1/2

; (8)

• and the max-separable function

M∞(x, δx) = max
i∈In

(vi(x)|δxi|). (9)

At each (x, δx) ∈ S×Rn, these functions can be viewed as the
1-, 2-and ∞-norms of the vector [v1(x)δx1 · · · vn(x)δxn]T,
respectively, where we recall that vi(x) > 0 on S for any
i ∈ In.

Next, we show the definitions of the distances induced by
these functions. For any pair (x1, x2) ∈ S × S, let Γ(x1, x2)
be the collection of piecewise C1 paths γ : [0, 1] → S such
that γ(0) = x1 and γ(1) = x2. Then, we define non-negative
functions di : S × S → R+, i = 1, 2,∞ as

di(x
1, x2) := inf

γ∈Γ(x1,x2)

∫ 1

0

Mi

(
γ(s),

dγ(s)

ds

)
ds. (10)

As d1, d2, and d∞ all satisfy the definition of distance, they
will be referred to as induced distances.

Note that M2(x, δx) is a Riemannian metric, and thus a
Finsler metric. If S is connected, by applying the Hopf-Rinow
theorem [36], [37], it can be shown that for any (x1, x2) ∈
S × S there exists a geodesic γ∗ ∈ Γ(x1, x2) on S × S , i.e.,

d2(x1, x2) =

∫ 1

0

M2

(
γ∗(s),

dγ∗(s)

ds

)
ds. (11)

Moreover, since γ∗ is piecewise C1, for any given ε > 0 and
(x1, x2) ∈ S × S, there exists a class C1 path γ̄ ∈ Γ(x1, x2)
such that∫ 1

0

M2

(
γ̄(s),

dγ̄(s)

ds

)
ds ≤ (1 + ε)d2(x1, x2). (12)

In our incremental stability analysis, we will use this class C1

path γ̄(s) as is done for systems that are not necessarily mono-
tone in [17]. In contrast to d2(·, ·), it is not clear whether the
Hopf-Rinow theorem, a sufficient condition for the existence
of a geodesic, is applicable for d1(·, ·) or d∞(·, ·) because they
do not satisfy the definition of the Finsler metric [36], [37] (in
particular, strict convexity). The existence of the geodesic is
purely a mathematical question and is not the target of this
paper. Not to spend efforts on this question, we establish the
following equivalence for the induced distances, the proof of
which is given in Appendix A-A.

Proposition 2.6: Let S ⊂ Rn be connected. Consider the
induced distances di, i = 1, 2,∞ by v(x) � 0 on S. Then,
for any i, j ∈ {1, 2,∞}, there exist positive constants ai,j and
ai,j such that

ai,jdi(x
1, x2) ≤ dj(x1, x2) ≤ ai,jdi(x1, x2) (13)

for all (x1, x2) ∈ S × S .
This proposition implies that incremental stability properties

with respect to the three distances are equivalent. Exploiting
this equivalence, one can use the path γ̄(s) also for incremental
stability analysis with respect to d1(·, ·) or d∞(·, ·).
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III. SUFFICIENT CONDITIONS FOR INCREMENTAL
ASYMPTOTIC STABILITY

A. Sum-Separable Conditions

In this section, we derive sufficient conditions for IAS of
monotone systems based on sum-and max-separable functions.
Then, in the next section, we focus on IES.

First, we extend the relation 1) =⇒ 2) in Proposition 2.3
to nonlinear monotone systems by using the sum-separable
function (without taking absolute values)

vT(x)δx =
∑
i∈In

vi(x)δxi.

This is a differential one-form. In differential geometry, the
Lie derivative of a differential one-form along the vector field
f , defined as

Lf (vT(x)δx) :=

(
vT(x)

∂f(x)

∂x
+

(
∂v(x)

∂x
f(x)

)T)
δx, (14)

plays an essential role for analyzing the system Σ, especially
its observability [23], [24].

Now, we establish a connection between contraction anal-
ysis and the Lie derivatives of differential one-forms (14) for
monotone systems. The proof is given in Appendix A-B.

Theorem 3.1: Let S ⊂ X be a connected and forward
invariant set of the monotone system Σ in (1) on a convex
set X . Let v : S → Rn+ be a class C1 vector-valued function
such that

1) v(x) � 0 for any x ∈ S.
Then, the monotone system Σ is IAS on S with respect to
d1(·, ·) induced by the sum-separable function vT(x)|δx| if

2) there exists a continuous positive definite function α
such that

Lf (vT(x)δx) ≤ −α(vT(x)δx) (15)

for any (x, δx) ∈ S × Rn+.
Loosely speaking, the condition (15) implies that vT(x)|δx|

can be regarded as a Lyapunov function for contraction anal-
ysis. In [17, Theorem 2], the LaSalle invariance principle (for
not-necessarily monotone systems), e.g., [30, Theorem 4.4],
has been extended to contraction analysis, which can also be
applied in our case. The proof of the following corollary is
omitted because it follows from [17, Theorem 2] and our
Theorem 3.1.

Corollary 3.2: Let S ⊂ X be a connected and forward
invariant set of the monotone system Σ in (1) on a convex
set X . Also, let v : S → Rn+ be a class C1 vector-valued
function satisfying Condition 1) in Theorem 3.1. If there exists
a non-negative function ᾱ : S × Rn+ → R+ such that

Lf (vT(x)δx) ≤ −ᾱ(x, δx) (16)

on S × Rn+, then the monotone system Σ is IS on S × S .
Suppose in addition that Σ has at least one bounded solution in
S. Then, any solution (φ(t, x0),Φ(t, x0)δx0) of its prolonged
system starting from (x0, δx0) ∈ S × Rn+ converges to the
largest invariant set ∆ in

Π := {(x, δx) ∈ S × Rn+ : ᾱ(x, δx) = 0}. (17)

If ∆ = S × {0}, the system Σ is IAS on S with respect to
the distance d1(x1, x2) induced by vT(x)|δx|. C

Remark 3.3: We note that condition (15) in Theorem 3.1
as well as condition (16) in Corollary 3.2 only needs to be
verified for states δx (of the variational system) in the positive
orthant. Despite not considering the entire state space, the in-
cremental stability properties in Theorem 3.1 and Corollary 3.2
hold for any (pair of) trajectories of the system Σ. C

Based on this invariance principle, it is possible to give
a sufficient condition for IAS in terms of local observabil-
ity [23], [24]. Suppose that f is of class C∞, and there exists
a class C∞ function h : Rn → R+ such that (16) holds for

ᾱ(x, δx) =
∂h(x)

∂x
δx,

where ∂h(x)/∂x � 0 on S. Then, the largest invariant set
contained in Π defined in (17) is

∆ = {(x, δx) ∈ S × Rn+ : d(Lifh(x)) = 0, i = 0, 1, . . . },

where d(Lifh(x)) = (∂Lifh(x)/∂x)δx and with L0
fh(x) :=

h(x), Li+1
f h(x) := (∂Lifh(x)/∂x)f(x), i = 0, 1, . . . . There-

fore, Π = S × {0} if and only if the system Σ with output

y = h(x)

satisfies the observability rank condition [23], [24] at each
x ∈ S. This observation extends the well-known connection
between the Lyapunov equation and observability of linear
systems.

Remark 3.4: In [16], a condition similar to that in The-
orem 3.1 is obtained based on matrix measures. However, in
contrast to [16, Theorem 1], Theorem 3.1 does not require that
v(x) > c1ln on S for some constant c > 0. In addition, our vi
is not restricted to depend on xi only. If vi depends on only xi,
the differential one-form vT(x)δx is integrable. In this case, a
path integral does not depend on the path, i.e., every piecewise
C1 path is a geodesic. This makes analysis simpler because
one can avoid the discussions preceding Proposition 2.6. At the
same time, our result Theorem 3.1 has a direct extension using
LaSalle’s invariance principle, which is difficult to obtain on
the basis of matrix measures as in [16]. Finally, the paper [16]
does not proceed with the converse analysis. In contrast, we
provide the converse proof for IES in the next section. C

The following simple example demonstrates the difference
between the results in [16] and ours.

Example 3.5: Consider the one-dimensional system

ẋ = −x3.

It is monotone on R, and the origin is globally asymptotically
stable. Take S = R and compute

Lf (v(x)δx) = −
(
dv(x)

dx
x3 + v(x)x2

)
δx.

Regardless of the choice of v(·), Lf (v(x)δx) = 0 at x = 0.
As a result, the conditions in [16, Theorem 1] do not hold.
Instead, we apply Corollary 3.2. For v(x) = 1, we have

Lf (v(x)δx) = −x2δx (18)
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and Π is

Π = ({0} × R+) ∪ (S × {0}).

By the LaSalle invariance principle, the omega limit set of a
trajectory of the prolonged system, denoted by L+, satisfies
L+ ⊂ Π. In addition, we have that limt→∞ v(x(t))δx(t) = c
for some c ∈ R+ and with v(x) = 1, again by LaSalle’s
invariance principle.

According to Corollary 3.2, the system is IS, and the origin
is a unique equilibrium point, which means that all solutions
of the original system starting from S are bounded. We denote
the omega limit set of the original system by X+ ⊂ S.
Then, L+ = X+ × {c} ⊂ Π. From the structure of Π,
if c 6= 0 then X+ × {c} ⊂ {0} × R+. Therefore, for any
trajectory of the prolonged system of which the omega limit
point is in X+ × {c}, c 6= 0, the trajectory of the original
system converges to the origin. On the other hand, if c = 0
then X+ ×{0} ⊂ S × {0}. In this case, Corollary 3.2 (or the
argument of [17, the proof of Theorem 2]) is applicable. Since
the origin is an equilibrium point, any trajectory converges to
the origin. In summary, the origin is asymptotically stable. C

B. Max-Separable Conditions

In this section, we extend relation 3) =⇒ 1) in Proposi-
tion 2.3 by using the max-separable function (without taking
absolute values)

W (x, δx) := max
i∈In

δxi
wi(x)

. (19)

Since W is not differentiable, we use its upper-right Dini
derivative along trajectories of the prolonged system of Σ,
defined as

D+W (x, δx)

:= lim sup
h→0+

W
(
x+ hf(x), δx+ h∂f(x)

∂x δx
)
−W (x, δx)

h
.

Specifically, if each wi(x) (i ∈ In) is of class C1, this upper-
right Dini derivative satisfies (see [38])

D+W (x, δx)

= max
j∈J (x,δx)

1

w2
j (x)

(
∂fj(x)

∂x
wj(x)δx− ∂wj(x)

∂x
f(x)δxj

)
,

(20)

with J (x, δx) = {j ∈ In : δxj/wj(x) = W (x, δx)}.
In the previous section, we have derived the incremental sta-

bility conditions in terms of the Lie derivatives of differential
one-forms. Its dual is given by the following Lie bracket [23],
[24] along a vector field f ,

[w, f ](x) :=
∂f(x)

∂x
w(x)− ∂w(x)

∂x
f(x). (21)

For ease of notation, we denote the j-th element of the
vector-valued function [w, f ](x) by [w, f ]j(x). The above Lie
brackets are typically used for accessibility analysis [23], [24].

In the following theorem, we use the Lie bracket for IAS
analysis, similar to what was done through the Lie derivative of
the differential one-form. The proof is given in Appendix A-C.

Theorem 3.6: Let S ⊂ X be a connected and forward
invariant set of the monotone system Σ in (1) on a convex
set X . Let w : S → Rn+ be a class C1 vector-valued function
such that

1) w(x) � 0 for any x ∈ S.
Then, the monotone system Σ is IAS on S with re-
spect to d∞(·, ·) induced by the max-separable function
maxi∈In |δxi|/wi(x) if

2) there exists a continuous positive definite function α
such that

δxi
w2
i (x)

[w, f ]i(x) ≤ −α
(

δxi
wi(x)

)
, ∀i ∈ In (22)

for any (x, δx) ∈ S × Rn+.
Remark 3.7: The LaSalle invariance principle is also appli-

cable in the max-separable case. If there exists a non-negative
function ᾱ : S × Rn+ → R+ such that

δxi
w2
i (x)

[w, f ]i(x) ≤ −ᾱ(x, δx)

for all i ∈ In and (x, δx) ∈ S × Rn+, then the monotone
system Σ is IS. Suppose that the monotone system Σ has
at least one bounded solution in S . Then, any solution to its
prolonged system starting from S×Rn+ converges to the largest
invariant ∆ set in

Π := {(x, δx) ∈ S × Rn+ : ᾱ(x, δx) = 0}.

If ∆ = S × {0}, the monotone system Σ is IAS on S. C
Example 3.8: Inspired by a Lorenz chaotic system and an

example for incremental stability analysis in [35], consider the
system  ẋ1

ẋ2

ẋ3

 =

 −βx1 + x2x3

−σx2 + σx3

−x3

 ,
where β, σ > 0. This system is monotone on the positive
orthant and we take S = R3

+. It can be seen that the system
is in an upper triangular form, and the subsystem consisting
of the second and third elements,

ẋ23 =

[
−σ σ
0 −1

]
x23,

is linear. In order to find w(x) and α satisfying Conditions 1)
and 2) in Theorem 3.6, we consider to use an eigenvalue and
eigenvector of the linear part. An eigenvalue is −1, and a
corresponding eigenvector is [σ/(σ − 1) 1]T. Now, if there
exists w1(x) such that −β x3 x2

0 −σ σ
0 0 −1

 w1(x)
σ/(σ − 1)

1


−

 ∂w1(x)
∂x1

∂w1(x)
∂x2

∂w1(x)
∂x3

0 0 0
0 0 0

 −βx1 + x2x3

−σx2 + σx3

−x3


� −

 w1(x)
σ/(σ − 1)

1

 , (23)
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then the conditions hold for α(z) = z and

w(x) =

 w1(x)
σ/(σ − 1)

1

 .
It can be verified that such w1(x) is obtained as

w1(x) = 1 +
(σ − 1)(β − 2)x2 + σ(β − 2σ)x3

(σ − 1)(β − 2)(β − σ − 1)
.

In fact, w1(x) − 1 is a solution to (23) with the equality.
In order to satisfy the requirement w(·) � 0, we use w1(x)
instead of w1(x) − 1. For β > σ + 1 and σ > 1, all the
conditions are satisfied, and therefore, the system is IAS on
R3

+ (In fact, Proposition 4.6 in the next section concludes IES).
Note that w1 depends on x2 and x3, which demonstrates the
utility of considering each wi as a function of x instead of
only xi as in [16]. C

IV. EXPONENTIAL STABILITY

A. Incremental Exponential Stability for Monotone Systems

In this section, we focus on IES of monotone systems.
To establish necessary conditions for IES in terms of sum-
or max-separable functions, we need the following technical
conditions on the set S ⊂ X .

Assumption 4.1: The set S is convex and both forward and
backward invariant for (1) , i.e., φ(t, x0) ∈ S for all t ∈ R for
any x0 ∈ S. In addition, for any x0 ∈ S, there exists a 6= 0
such that x0 + aei ∈ S for all i ∈ In. C

Remark 4.2: We note that the latter assumption on the set
S is trivially satisfied when S is open. However, as the sign
of a can be chosen freely, this condition also holds when S
is a cone, e.g., the positive orthant Rn+. C

In Appendix B, we prove the following necessary and
sufficient condition for IES as an extension of Proposition 2.3
towards nonlinear monotone systems. This result can also be
viewed as an extension of the Lyapunov converse theorem [30,
Theorem 4.14] for exponential stability to IES of monotone
systems.

Theorem 4.3: Let S satisfy Assumption 4.1 and consider
the monotone system Σ in (1) on S. Suppose that ∂f(x)/∂x is
bounded on S . Then, the following statements are equivalent:

a) the monotone system Σ is IES on S with respect to one
of the distances d1(x1, x2) = |x1 − x2|1, d2(x1, x2) =
|x1 − x2|2, and d∞(x1, x2) = |x1 − x2|∞;

b) there exist a class C1 vector-valued function v : S →
Rn+ and positive constants c, c and cv such that c1ln �
v(x) � c1ln and

Lf (vT(x)δx) ≤ −cvvT(x)δx (24)

on S × Rn+;
c) there exists a class C1 vector-valued function w : S →

Rn+ and positive constants c, c and cw such that c1ln �
w(x) � c1ln and

[w, f ](x) � −cww(x) (25)

on S;

d) there exist a class C1 vector-valued function p : S →
Rn+ and positive constants c, c and cp such that

c1ln � p(x) � c1ln (26)

on S, and V (x, δx) :=
∑
i∈In pi(x)δx2

i satisfies

∂V (x, δx)

∂x
f(x) +

∂V (x, δx)

∂δx

∂f(x)

∂x
δx

≤ −cpV (x, δx) (27)

on S × Rn+.
Note that in Condition a), IES with respect to d1(·, ·),

d2(·, ·), and d∞(·, ·) are equivalent owing to the equivalence
of norms on Rn (recall that S ⊂ Rn).

Remark 4.4: For not-necessarily monotone systems and
not-necessarily diagonal Riemannian metrics, a similar relation
to a) ⇐⇒ d) is shown in a different way in [21, Proposition 4]
for a class C3 vector field f . In Theorem 4.3 however,
owing to monotonicity, the existence of a diagonal Riemannian
metric is guaranteed for the class C2 vector field f . In
fact, the paper [15] gives a different proof for d) =⇒ a)
based on results on positive LTV systems [39]. However, the
papers [15], [39] have not studied the sum- or max-separable
condition. In fact, we provide an alternative proof for d) =⇒
a) based on these sum- and max-separable functions, which
is a natural extension of the proof for positive LTI system,
see [10, Theorem 15]. C

In Theorems 3.1 and 3.6, sufficient conditions for IAS
are provided without assuming backward invariance of S or
boundedness of ∂f(x)/∂x, v(x), or w(x). In fact, it is possible
to derive sufficient conditions for IES without these assump-
tions, which are formally stated as the following propositions.
The proofs are given in Appendices A-B and A-C.

Proposition 4.5: Let S ⊂ X be a connected and forward
invariant set of the monotone system Σ in (1) on a convex
set X . Let v : S → Rn+ be a class C1 vector-valued
function which satisfies Condition 1) in Theorem 3.1. Then,
the monotone system Σ is IES on S with respect to d1(·, ·)
induced by the sum-separable function vT(x)|δx| if (24) holds
for any (x, δx) ∈ S × Rn+.

Proposition 4.6: Let S ⊂ X be a connected and forward
invariant set of the monotone system Σ in (1) on a convex
set X . Let w : S → Rn+ be a class C1 vector-valued
function which satisfies Condition 1) in Theorem 3.6. Then,
the monotone system Σ is IES on S with respect to d∞(·, ·)
induced by the max-separable function maxi∈In |δxi|/wi(x)
if (25) holds for any (x, δx) ∈ S × Rn+.

Boundedness of ∂f(x)/∂x is the standard assumption for
the converse proof of exponential stability; see, for instance,
[30, Theorem 4.14]. As shown in Appendix B, under this
standard assumption, IES of monotone systems implies the
existence of the bounded functions v(x), w(x), and p(x).
Therefore, boundedness of ∂f(x)/∂x and v(x) are imposed
for establishing the converse statements.

B. Connection with Differentially Positive Systems

In [18], [29], an infinitesimal approach to monotonicity is
introduced leading to the notion of differential positivity as a
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generalization of monotonicity. In this section, we discuss the
relation between the results in [18], [29] and our incremental
stability analysis.

Differential positivity relies on the introduction of a so-
called cone field, which associates a cone to every point in the
state space. A differentially positive system is then the one that
makes this cone field invariant. For the system Σ in (1) and a
constant cone field Rn+, this amounts to Φ(t, x0)Rn+ ⊂ Rn+
for any t ≥ 0 and x0 ∈ S, i.e., condition (6) holds and
differential positivity and monotonicity are equivalent (see [18,
Theorem 1]).

Even though [18] does not explicitly analyze incremental
stability properties, the asymptotic behavior of trajectories
is studied under the stronger notion of strict differential
positivity. Again the constant cone field Rn+ as an example,
this property can be stated as Φ(t, x0)Rn+ ⊂ R for any t ≥ 0
and x0 ∈ S and with R a cone satisfying R ⊂ int(Rn+)∪{0}
(for simplicity, R is taken to be constant here). Loosely
speaking, strict differential positivity calls for trajectories of
the variational system to converge to the interior of the cone; a
property that is made explicit in [18] as the contraction of the
so-called Hilbert metric. In fact, [18, Theorem 2] shows that
such trajectories satisfy (assuming backward invariance of S)

lim
t→∞

Φ
(
0, φ(−t, x)

)
δx ∈ {λw(x) : λ ≥ 0}, (28)

for any (x, δx) ∈ S × Rn+, where w is the Perron-Frobenius
vector field which satisfies w(x) ∈ int(Rn+) for all x ∈ S. For
linear systems, the Perron-Frobenius vector field reduces to
the well-known Perron-Frobenius vector of the system matrix.
As the trajectories of the variational system converge to the
Perron-Frobenius vector field, this can be thought of as a type
of partial (or horizaontal) contraction.

In the current paper, however, we study incremental sta-
bility properties without requiring strict differential positivity.
Moreover, as shown in Appendices A-B and A-C, our IAS
conditions in Theorems 3.1 and 3.6 guarantee the convergence
property to the origin for the variational systems (rather than
to the Perron-Frobenius vector).

C. Nonlinear Eigenvalues

As mentioned in Remark 2.4, Proposition 2.3 for stability
analysis of positive LTI systems has a strong connection with
the Perron-Frobenius theorem and the dominant eigenvalue. In
this subsection, we establish a similar connection among non-
linear eigenvalues [25]–[27], Perron-Frobenius vector fields
(as in Section IV-B), and contraction analysis.

Eigenvalues and eigenvectors of the system matrix play an
important role in the analysis and control of LTI systems. In
order to generalize these results, the concept of eigenvalues
and eigenvectors are extended to nonlinear systems and used
for stability, controllability, and observability analysis, as
well as for solving a so called differential Riccati equation
which appears in controller design [25]–[27]. Extensions of
eigenvalues and eigenvectors are based on the interpretation
that an eigenvector of a matrix A is an element of a one-
dimensional A-invariant subspace. In differential geometry, the
concept of A-invariant subspace is extended as an invariant

codistribution or distribution [23], [24]. Therefore, one can
interpret an element of a one-dimensional invariant codistri-
bution or distribution as a nonlinear version of an eigenvector.

A vector-valued function v : Rn → Rn corresponds to
the one-dimensional invariant codistribution if there exists a
function λv : Rn → R such that

Lf (vT(x)δx) = λv(x)vT(x)δx, (29)

where span{vT(x)δx} is a one-dimensional invariant codis-
tribution. We call the above λv(·) and v(·) a nonlinear left
eigenvalue and eigenvector, respectively [25]–[27]. Similarly,
a vector valued function w : Rn → Rn corresponds to a
one-dimensional invariant distribution if there exists a function
λw : Rn → R such that

[w, f ](x) = λw(x)w(x), (30)

where span{w(x)} is a one-dimensional invariant distribution.
We call the above λw(·) and w(·) a nonlinear right eigenvalue
and eigenvector, respectively [25]–[27]. In the linear case, the
definition (29) and (30) corresponds to the eigenvalue and left
and right eigenvector, respectively. As expected as a property
of eigenvalues, nonlinear eigenvalues are invariant under a
nonlinear change of coordinates [25]–[27].

Now, we are ready to investigate the connection among
nonlinear eigenvalues, Perron-Frobenius vector fields, and con-
traction analysis. First, as shown in [18], the Perron-Frobenius
vector field of a strictly differential positive system always
satisfies (30) for some λw(x). That is, the Perron-Frobenius
vector field is a nonlinear eigenvector. Recall that the Perron-
Frobenius vector field w(x) is in int(Rn+), i.e., w(·) � 0.
Therefore, by comparing (30) and (25), it can be seen that if
λw(x) is uniformly negative, then Proposition 4.6 concludes
IES. That is, one can evaluate IES of a strictly differentially
positive system by checking the nonlinear eigenvalue corre-
sponding to the Perron-Frobenius vector field.

Remark 4.7: Although there are various applications of
nonlinear eigenvalues, their computation remains challenging
as it requires solving a nonlinear partial differential equation.
However, it may be possible to use numerical computational
results of the Koopman operator [40]. A Koopman eigenvalue
and eigenfunction can be respectively viewed as a complex
number λ ∈ C and scalar valued function φ : S → C
satisfying

∂φ(x)

∂x
f(x) = λφ(x).

By computing partial derivatives with respect to x, we have(
∂v(x)

∂x
f(x)

)T

+ vT(x)f(x) = λvT(x),

where vT(x) := ∂φ(x)/∂x. This is nothing but (29); re-
call (14). Therefore, λ and ∂φ(x)/∂x are respectively a
nonlinear left eigenvalue and eigenvector, and it is possible
to apply numerical methods for Koopman eigenvalues and
eigenfunctions to a nonlinear eigenvalue and eigenvector. C
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D. Remark on Positive Linear Time-Varying Systems

As mentioned in Remark 2.2, the variational system (2) of
the monotone system Σ in (1) can be viewed as a positive LTV
system. Therefore, Theorem 4.3 is applicable for exponential
stability analysis of positive LTV systems.

To make this explicit, consider the positive LTV system

ẋ(t) = A(t)x(t), (31)

where A : R → Rn×n is continuous. Suppose that each off-
diagonal element of A(t) is non-negative for all t ∈ R. From
Theorem 4.3, we have the following extension of Proposi-
tion 2.3, where Conditions 2) and 3) are our contribution while
Condition 4) is established in a different way in [39]. The
proof is similar to that of Theorem 4.3; for more details, see
Appendix C.

Corollary 4.8: Suppose that A(t) is bounded on R. The
following statements are equivalent:

1) the positive LTV system (31) is exponentially stable;
2) there exist a class C1 vector-valued function v : R →

Rn+ and positive constants c, c and cv such that c1ln �
v(t) � c1ln and

vT(t)A(t) +
dvT(t)

dt
� −cvvT(t)

for any t ∈ R;
3) there exist a class C1 vector-valued function w : R →

Rn+ and positive constants c, c and cw such that c1ln �
w(t) � c1ln and

A(t)w(t)− dw(t)

dt
� −cww(t)

for any t ∈ R;
4) there exists a class C1 vector-valued function p : R →

Rn+ and positive constants c, c and cw such that

c1ln � p(t) � c1ln

for any t ∈ R, and V (t, x) :=
∑
i∈In pi(t)x

2
i satisfies

∂V (t, x)

∂t
+
∂V (t, x)

∂x
A(t)x ≤ −cpV (t, x)

for any t ∈ R and x ∈ Rn+. C

V. EXAMPLES AND APPLICATIONS

A. Example

Consider a nonlinear single-integrator multi-agent system
on an undirected graph given by

ẋ1 = −L1(x1) +
∑
j∈N1

L1,j(xj − x1),

ẋi =
∑
j∈Ni

Li,j(xj − xi), i 6= 1,

where xi ∈ R+ with i ∈ In, Ni is the set of neighbors of
agent i, and i /∈ Ni. The first agent will be referred to as the
leader and dL1(x1)/dx1 > 0 for any x1 ∈ R+. The coupling
functions satisfy Li,j(0) = 0 and ∂Li,j(x̄)/∂x̄ ≥ 0 for all
i ∈ In, j ∈ Ni. In addition, they are taken to be pairwise odd,
meaning that Li,j(x) = −Lj,i(−x) for all x ∈ R, i ∈ In, and

j ∈ Ni [41]. We note that these assumptions are automatically
satisfied for linear multi-agent systems on undirected graphs.

We study incremental stability under the assumption that
the system with output y = L1(x1) satisfies the observability
rank condition (see the discussion below Corollary 3.2) at each
x ∈ Rn+ \D, where

D := {x ∈ S : x1 = x2 = · · · = xn}. (32)

Denote the compact form of the system by

ẋ = −L(x).

Then, from the assumption for the couplings and L1(·), the
system is monotone on Rn+ and satisfies

−1lTn
∂L(x)

∂x
= −

[
dL1(x1)
dx1

0 · · · 0
]
� 0.

Therefore, (16) holds for v(x) = 1ln and ᾱ(x, δx) =
(dL1(x1)/dx1)δx1. From Corollary 3.2, the system is IS.

Next, suppose that the system has a bounded solution in
Rn+. For instance, this is true if the system has an equilibrium
point in Rn+. From the observability assumption, the largest
invariant set contained in Π of (17) is

∆ = (Rn+ × {0}) ∪ (D × {δx ∈ Rn+ : δx1 = 0}),

given as the union of two sets. In a similar manner as Ex-
ample 3.5, stability analysis can be decomposed into analysis
of two different subset. For the first set, i.e., (Rn+ × {0}), we
have for any (x1, x2) ∈ Rn+ × Rn+ that

lim
t→∞

d1(φ(t, x1), φ(t, x2)) = 0.

For the second set, from the definition of D in (32), for any
(x1, x2) ∈ Rn+ × Rn+, we have

lim
t→∞

φ1(t, x1) = lim
t→∞

φ2(t, x1) = · · · = lim
t→∞

φn(t, x1),

lim
t→∞

φ1(t, x2) = lim
t→∞

φ2(t, x2) = · · · = lim
t→∞

φn(t, x2),

lim
t→∞

d1([ φ1(t, x1) 0 · · · 0 ]T,

[ φ1(t, x2) 0 · · · 0 ]T) = 0.

In both cases, any pair of trajectories converge to each other,
i.e., the system is IAS on Rn+ × Rn+ but not necessarily IES.

B. Stabilizing Controller Design

In the contraction framework, the stabilization problem is
studied by using so-called control contraction metrics in [31],
[32], and these techniques have recently been applied to
distributed control of monotone systems with the diagonal
Riemannian metric [42]. The concept of control contraction
metrics can be extended to sum- or max-separable functions
of monotone systems using the results of Sections III and IV,
which also suggests the distributed controller design based on
separable functions as future work. To make this explicit, we
consider the closed-loop system

ẋ(t) = f(x(t)) +Bk(x(t)), (33)

where f is the same function considered for the monotone
system Σ on convex X , and B ∈ Rn×m+ . Our objective is
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to characterize feedback control laws k : Rn → Rm that
guarantee IES of the closed-loop system. In a similar manner
to [31, Theorem 1], we have the following proposition for
stabilizability of monotone system.

Proposition 5.1: Consider a monotone system Σ in (1) on a
convex set X . Let S ⊂ X be connected. Also, let v : S → Rn+
be a class C1 vector-valued function such that

1) v(x) � 0 for any x ∈ S;
2) there exist a class C1 matrix-valued function K : Rn →

Rm×n and positive constant cv such that each off-
diagonal element of BK(x) is non-negative for any
x ∈ X , and

vT(x)
∂f(x)

∂x
+BK(x) +

(
∂v(x)

∂x
f(x)

)T
≤ −cvvT(x),

∂v(x)

∂x
B = 0,

for any x ∈ S;
3) K(x) is integrable, i.e., there exists a vector-valued

function k : Rn → Rm such that ∂k(x)/∂x = K(x).
If S is a forward invariant set of the closed-loop system (33)
then the closed loop system is monotone on X and is IES
on S.

Proof: First, we show that the closed-loop system (33) is
monotone. To this end, note that

∂(f(x) +Bk(x))

∂x
=
∂f(x)

∂x
+BK(x).

From monotonicity of Σ, f satisfies the Kamke condition (5).
Combining this with the requirement for BK(·) in Condi-
tion 2), it can be concluded that the closed-loop system (33)
satisfies the Kamke condition in Proposition 50. Thus, the
closed-loop system is monotone on X .

Next, Conditions 1) and 2) in the statement of this theorem
imply that the closed-loop system (33) satisfies all conditions
of Proposition 2.1. As a result, the closed-loop system is IES
on S.

As in [31], the integrability condition ∂k(x)/∂x = K(x)
can be relaxed by using a path integral. We also note that
non-negativity for each off-diagonal element of BK(x) is
only a sufficient condition to preserve monotonicity. In fact, as
long as the closed-loop system is monotone, Proposition 5.1
is valid. In other worlds, even if the original system is not
monotone, Proposition 5.1 may still apply.

One can extend Proposition 5.1 to IAS based on Theo-
rem 3.1. Also, the LaSalle invariance principle argument can
be extended as demonstrated by the following example.

Example 5.2 (Revisit the example in Section V-A):
Consider the controlled single-integrator multi-agent system

ẋ1 =
∑
j∈N1

L1,j(xj − x1) + u,

ẋi =
∑
j∈Ni

Li,j(xj − xi), i 6= 2,

where each function and symbol are defined in the example in
Section V-A except for the input variable u ∈ R. Its compact
form is denoted by

ẋ = −L+ bu.

Now, we consider stabilizing controller design. For v(x) =
1ln and K = −[1 0 · · · 0], the conditions in Proposition 5.1
hold except for the first inequality of Condition 2). Instead of
this inequality, we have

−1lTn

(
∂L(x)

∂x
+ bK

)
= −

[
1 0 · · · 0

]
� 0.

By applying the LaSalle invariance principle argument, it is
possible to show that the closed-loop system with k(x) = −x1

is IAS on R2
+ × R2

+. C
It is also possible to obtain a max-separable version of the

stabilizability condition based on Proposition 4.6. Since the
proof is similar, it is omitted.

Proposition 5.3: Consider the monotone system Σ in (1) on
a convex set X . Let S ⊂ X be connected. Also, let w : S →
Rn+ be a class C1 vector-valued function such that

1) w(x) � 0 for any x ∈ S;
2) there exist a class C1 matrix-valued function K : Rn →

Rn×m and positive constant cw such that each off-
diagonal elements of BK(x) is non-negative for any
x ∈ X , and(
∂f(x)

∂x
+BK(x)

)
w(x)− ∂w(x)

∂x
f(x) ≤ −cwwT(x),

[w, bi] = 0, i ∈ Im,

for any x ∈ S, where B = [b1 · · · bm];
3) K(x) is integrable, i.e., there exists a vector-valued

function k : Rn → Rm such that ∂k(x)/∂x = K(x).
If S is a forward invariant set of the closed-loop system (33),
then the closed loop system is monotone on X and is IES
on S. C

C. Partial Incremental Stability

The concept of partial stability [43] has been extended
towards contraction analysis in the notions of partial contrac-
tion [33], [34] or horizontal contraction [17]. For instance,
partial contraction is applied to observer design [19], [21],
[44] and tracking control [45], [46]. Propositions 4.5 and 4.6
can be extended for partial contraction analysis.

Consider the following system with the state z and the
input x,

ż(t) = g(z(t), x(t)), (34)

where g : Rn ×Rn → Rn is of class C2, and g(x, x) = f(x)
for all x ∈ Rn. The latter implies that, if the initial state is
z0 = x0, then z(t) = x(t) for all t ∈ R+. Therefore, if the
system (34) is IES with respect to z(t), then z(t) → x(t) as
t → ∞. For instance, if g(z, x) = f(z) + k(z, h(x)) with
k(x, h(x)) = 0, then the system (34) becomes an observer for
the system Σ with output y = h(x). The system (34) is called
a virtual system of Σ. The unique solution z(t) to the virtual
system (34) at time t ∈ R+ starting from z(0) = z0 with input
x(t) = φ(t, x0) is denoted by φ̄(t, z0, φ).

Suppose that this system is monotone on convex X × X
with the state z and the input u(t) = φ(t, x0) [1], i.e., the
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implication

z1 � z2, u1 � u2

=⇒ φ̄(t, z1, u1) � φ̄(t, z2, u2), ∀t ∈ R+ (35)

holds for any z1, z2 ∈ X and continuous u1(t), u2(t) ∈ X
for all t ∈ R+. In (35), u1 � u2 means u1(t) � u2(t) for
all t ∈ R+. Note that since the system Σ is monotone on
convex X , x1 � x2 implies φ(·, x1) � φ(·, x2). Consequently,
if z1 � z2 and x1 � x2 then φ̄(·, z1, φ1) � φ̄(·, z2, φ2), where
φi := φ(·, xi), i = 1, 2.

Now, we formally define incremental stability of the virtual
system.

Definition 5.4: The virtual system (34) is said to be IES
on S with respect to z uniformly in x if there exist positive
constants k and λ such that

d(φ̄(t, z1, φ1), φ̄(t, z2, φ2)) ≤ ke−λtd(z1, z2), ∀t ∈ R+

for any (z1, z2), (x1, x2) ∈ S × S. C
Definition 5.4 is an extension of partial stability [43] to IES,

and a similar property is called partial contraction [33], [34].
As simple applications of Propositions 4.5 and 4.6, we have
the following conditions for partial stability. Since the proofs
are similar to those propositions, they are omitted.

Proposition 5.5: Let S ⊂ X and S × S be connected and
forward invariant sets of the monotone system (1) on convex
X and the virtual monotone system (34) on convex X × X ,
respectively. Let v : S → Rn+ be a class C1 vector-valued
function such that

1) v(z) � 0 for any z ∈ S;
2) there exists a positive constant cv such that

vT(z)
∂g(z, x)

∂z
+

(
∂v(z)

∂z
g(z, x)

)T
≤ −cvvT(z)

for any x, z ∈ S.

Then, the monotone virtual system (34) is IES on S with
respect to z uniformly in x. C

Proposition 5.6: Let S ⊂ X and S × S be connected and
forward invariant sets of the monotone system (1) on convex
X and the virtual monotone system (34) on convex X × X ,
respectively. Let w : S → Rn+ be a class C1 vector-valued
function such that

1) w(z) � 0 for any z ∈ S;
2) there exists a positive constant cw such that

∂g(z, x)

∂z
w(z)− ∂w(z)

∂z
g(z, x) � −cww(z)

for any z, x ∈ S.

Then, the monotone virtual system (34) is IES on S with
respect to z uniformly in x. C

In a similar manner, one can define IS and IAS with respect
to z uniformly in x and extend Theorems 3.1 and 3.6, which
is demonstrated by the following example.

Example 5.7 (Revisit the example in Section V-A): We
consider the design of an observer for the single-integrator

multi-agent system in Example 5.2 with u = 0 and output
y = x1, i.e.,

ẋi =
∑
j∈Ni

Li,j(xj − xi), i ∈ In,

y = x1.

Then, from Corollary 3.2, the system is IS on Rn+ with v(x) =
1ln. Suppose that the system has a bounded solution. Then,
from IS, any solution to the system φ(t, x0) is bounded for
any t ∈ R+ and x0 ∈ Rn+.

Here, we consider the following virtual system

ż1 =
∑
j∈N1

L1,j(zj − z1)− (z1 + y),

żi =
∑
j∈Ni

Li,j(zj − zi), i 6= 1.

According to Example 5.2, this system with y = 0 is IAS on
Rn+ × Rn+. Note that ∂g(z, x)/∂z does not depend on y and
thus x. Therefore, for any bounded y, it is possible to conclude
that the virtual system is IAS on Rn+ × Rn+ with respect to
z uniformly in x. This implies that the virtual system is an
observer of the multi-agent system. C

VI. CONCLUSION

In this paper, we have presented sum- and max-separable
incremental stability conditions for monotone systems in terms
of Lie derivatives of differential one-forms and Lie brackets
of vector fields. In particular, for incremental asymptotic
stability, we have given sufficient conditions, and for incre-
mental exponential stability, we have provided necessary and
sufficient conditions under several assumptions. Moreover, we
have shown that a diagonal contraction Riemannian metric
can be constructed on the basis of those sum- and max-
separable functions. In other words, we have provided natural
extensions of separable conditions for stability of positive LTI
systems. Finally, based on the fact that variational systems
can be viewed as LTV systems, we have established separable
exponential stability conditions for positive LTV systems.
Future work includes the converse analysis of IAS, contraction
analysis on general cones, and the development of methods
for finding vector-valued functions that satisfy sum- or max-
separable conditions.

APPENDIX A
PROOFS FOR IAS

Here, our goal is proving Theorems 3.1 and 3.6. The proofs
are based on Proposition 2.6. Therefore, first we prove this
proposition and then each theorem.

A. Proof of Proposition 2.6

Proof: We only prove for the case i = 2, j = 1 as the
proofs for the other combinations are similar.

Recall that, for a given (x, δx) ∈ S × Rn, each sep-
arable function can be viewed as a norm of the vector
[v1(x)δx1 · · · vn(x)δxn]T ∈ Rn. In fact, M1(x, δx) and
M2(x, δx) correspond to its 1 and 2 vector norms, respectively.
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From the equivalence of norms on Rn, there exist positive
constants a2,1 and a2,1 such that, for all (x, δx) ∈ S × Rn,

a2,1M2(x, δx) ≤M1(x, δx) ≤ a2,1M2(x, δx). (36)

To show that these inequalities are preserved for the induced
distances d1 and d2, let

E1(x1, x2) :=

{∫ 1

0

M1

(
γ(s),

dγ(s)

ds

)
ds : γ ∈ Γ(x1, x2)

}
.

Then, by the above definition, for any ε ∈ E1(x1, x2), there
exists a piecewise C1 path γ ∈ Γ(x1, x2) such that

ε =

∫ 1

0

M1

(
γ(s),

dγ(s)

ds

)
ds. (37)

For this γ, we obtain from (36) that

a2,1M2

(
γ(s),

dγ(s)

ds

)
≤M1

(
γ(s),

dγ(s)

ds

)
, (38)

for any s ∈ [0, 1]. Integrating the above (for s ranging over
the interval [0, 1]) preserves the inequality. Moreover, we note
that the path γ does not necessarily achieve the infimum in
the induced distance d2, see (10) for i = 2. As a result, (38)
and (37) lead to

a2,1d2(x1, x2) ≤ ε.

Since ε is arbitrary, a2,1d2(x1, x2) is a lower bound for
E1(x1, x2). Therefore, a2,1d2(x1, x2) ≤ d1(x1, x2). In a
similar manner, it is possible to show the second inequality
of (13) for i = 2 and j = 1.

B. Proofs of Theorem 3.1 and Proposition 4.5

Proof: As a preliminary step, we analyze stability of the
prolongation of Σ. From (14) and (15), the time-derivative of
vT(x(t))δx(t) along solutions to the prolonged system of Σ
satisfies

d(vT(x(t))δx(t))

dt
= Lf (vT(x(t))δx(t))

≤ −α(vT(x(t))δx(t)) (39)

for any (x(t), δx(t)) ∈ S ×Rn+ and t ∈ R+. Then, the use of
the comparison principle (e.g., [30, Lemma 3.4]) leads to

vT(x(t))δx(t) ≤ vT(x0)δx0, (40)

for any t ∈ R+ and (x0, δx0) ∈ S × Rn+. In fact, as α is
positive definite, it follows from [30, Lemma 4.4] that (39)
implies the existence of a class KL function β such that

vT(x(t))δx(t) ≤ β(vT(x0)δx0, t) (41)

for any t ∈ R+ and (x0, δx0) ∈ S × Rn+. Note that (40) and
(41) do not necessarily hold for any (x0, δx0) ∈ S ×Rn, i.e.,
δx0 is required to be in Rn+.

We are ready to prove Theorem 3.1 for IAS. Take any
ε > 0 in (12). Since v(x) � 0 on S , there exists a
class C1 path γ̄(s) ∈ Γ(x1, x2) satisfying (12) (note that
the induced distance d2(·, ·) is considered here). We choose

(γ̄(s), |dγ̄(s)/ds|) as the initial state (x0, δx0) of the prolon-
gation of Σ. From (3), the corresponding solution is

(x(t), δx(t)) =

(
φ(t, γ̄(s)),

∂φ(t, γ̄(s))

∂x

∣∣∣∣dγ̄(s)

ds

∣∣∣∣) . (42)

Note that (γ̄(s), |dγ̄(s)/ds|) is in S × Rn+ for any (x1, x2) ∈
S × S and s ∈ [0, 1]. According to Remark 2.2, the so-
lution (42) is in S × Rn+ for any t ∈ R+, which implies
δx(t) = |δx(t)| and, consequently,

∂φ(t, γ̄(s))

∂x

∣∣∣∣dγ̄(s)

ds

∣∣∣∣ =

∣∣∣∣∂φ(t, γ̄(s))

∂x

∣∣∣∣dγ̄(s)

ds

∣∣∣∣∣∣∣∣ . (43)

At this point, observe that φ(t, γ̄(s)) (when regarded as a
function of s) is a path in Γ(φ(t, x1), φ(t, x2)). Then, consider

a2,1M2

(
φ(t, γ̄(s)),

dφ(t, γ̄(s))

ds

)
≤M1

(
φ(t, γ̄(s)),

dφ(t, γ̄(s))

ds

)
, (44a)

= M1

(
φ(t, γ̄(s)),

∣∣∣∣∂φ(t, γ̄(s))

∂x

dγ̄(s)

ds

∣∣∣∣) , (44b)

≤M1

(
φ(t, γ̄(s)),

∣∣∣∣∂φ(t, γ̄(s))

∂x

∣∣∣∣dγ̄(s)

ds

∣∣∣∣∣∣∣∣) , (44c)

where (44a) follows from (36) and (44b) is the result of the
chain rule and the observation that M1(x, δx) = M1(x, |δx|)
for all (x, δx) ∈ S×Rn. Finally, (44c) is a consequence of (6).

Observing that the arguments in M1 in (44c) are x(t) and
δx(t), respectively (recall (42) and (43)), it follows from (40)
and (x0, δx0) = (γ̄(s), |dγ̄(s)/ds|) that

a2,1M2

(
φ(t, γ̄(s)),

dφ(t, γ̄(s))

ds

)
≤M1

(
γ̄(s),

∣∣∣∣dγ̄(s)

ds

∣∣∣∣) , (45a)

≤ a2,1M2

(
γ̄(s),

∣∣∣∣dγ̄(s)

ds

∣∣∣∣) , (45b)

where (45a) again follows from (36). We recall that φ(t, γ̄(s))
is a path in Γ(φ(t, x1), φ(t, x2)), but not necessarily a
geodesic. Thus, by taking path integrals in (45), hereby using
(10) for i = 2 and (12), we have

d2(φ(t, x1), φ(t, x2)) ≤ (a2,1/a2,1)(1 + ε)d2(x1, x2)

for any t ∈ R+ and (x1, x2) ∈ S × S. Thus, the monotone
systems is IS.

Following a similar reasoning, but applying (41) (instead of
(40)) after (44), we obtain

d2(φ(t, x1), φ(t, x2)) ≤ 1

a2,1

∫ 1

0

β

(
vT(γ̄(s))

dγ̄(s)

ds
, t

)
ds,

after taking path integrals. Consequently, as β is of class KL,
limt→∞ d2(φ(t, x1), φ(t, x2)) = 0 and the monotone system
Σ is IAS with respect to d2(·, ·) on S. From the equivalence of
induced distances (recall Proposition 2.6), we also have IAS
with respect to d1(·, ·).

Finally, we prove Proposition 4.5 for IES. From (24),

vT(x(t))δx(t) ≤ e−cvtvT(x0)δx0, (46)
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such that the application of this result to (44c) gives

a2,1M2

(
φ(t, γ̄(s)),

dφ(t, γ̄(s))

ds

)
≤ e−cvtM1

(
γ̄(s),

∣∣∣∣dγ̄(s)

ds

∣∣∣∣) , (47a)

≤ a2,1e
−cvtM2

(
γ̄(s),

∣∣∣∣dγ̄(s)

ds

∣∣∣∣) , (47b)

where again (36) is used to obtain (47b). Then, taking path
integrals, using (10) for i = 2 and (12) as in the proof of IS,
we obtain

d2(φ(t, x1), φ(t, x2)) ≤ a2(1 + ε)

a1
e−cvtd2(x1, x2).

Therefore, the monotone system Σ is IES with respect to
d2(·, ·), and consequently d1(·, ·) from Proposition 2.6.

C. Proofs of Theorem 3.6 and Proposition 4.6

Proof: First, we consider Theorem 3.6 for IAS. From the
definition of J (x, δx) below (20) and w(x) � 0, we have

δxi
wi(x)

≤ δxj
wj(x)

⇐⇒ wj(x)δxi ≤ wi(x)δxj (48)

on S ×Rn+ for any j ∈ J (x, δx) and i ∈ In. In addition, due
to the Kamke condition for monotonicity (5), (48) leads to

∂fj(x)

∂xi
wj(x)δxi ≤

∂fj(x)

∂xi
wi(x)δxj

on S ×Rn+ for any j ∈ J (x, δx) and i ∈ In. As a result, we
obtain

∂fj(x)

∂x
wj(x)δx =

∑
i∈In

∂fj(x)

∂xi
wj(x)δxi,

≤
∑
i∈In

∂fj(x)

∂xi
wi(x)δxj

=
∂fj(x)

∂x
w(x)δxj (49)

on S × Rn+ for any j ∈ J (x, δx).
In the evaluation of the Dini derivative of W (·, ·), let

l ∈ J (x, δx) be an index that achieves the maximum in (20).
Then, by recalling that w(x) � 0 by assumption and the use
of (49), we obtain

D+W (x, δx) ≤ δxl
w2
l (x)

[w, f ]l(x), (50)

where the definition of the Lie bracket in (21) is used. As a
result of (22), this leads to

D+W (x, δx) ≤ −α
(

δxl
wl(x)

)
= −α

(
W (x, δx)

)
(51)

where the equality is a result of l ∈ J (x, δx). Then, by
applying applying the comparison principles [30, Lemma 3.4]
and [30, Lemma 4.4], respectively, we get

max
j∈In

δxj(t)

wj(x(t))
≤ max

i∈In

δx0,i

wi(x0)
, (52)

max
j∈In

δxj(t)

wj(x(t))
≤ β

(
max
i∈In

δx0,i

wi(x0)
, t

)
, (53)

for any t ∈ R+ and (x0, δx0) ∈ S × Rn+. In the above, β is
a function of class KL. In a similar manner to the proof of
Theorem 3.1, it is possible to show IS and IAS, respectively.

Next, we consider Proposition 4.6 for IES. By multiplying
δxi/w

2
i (x) to each element of (25), we have

δxi
w2
i (x)

[w, f ]i(x) ≤ −cw
δxi
wi(x)

, ∀i ∈ In. (54)

The use of this result in (50), together with the definition of
J (x, δx) and (19), yield

D+W (x, δx) ≤ −cw
δxl
wl(x)

= −cwW (x, δx)

for any (x, δx) ∈ S×Rn+. Thus, IES can be proven in a similar
manner to the proof of Theorem 3.1.

APPENDIX B
PROOFS FOR IES

We provide the proof of Theorem 4.3 in the following order:
a) =⇒ both b) and c) =⇒ d) =⇒ a).

A. a) =⇒ b)

The proof of a) =⇒ b) is given below. Note that we do
not assume backward invariance of S.

Proof of a) =⇒ b): Let γ̂(s) = x1 + s(x2 − x1),
s ∈ [0, 1] be a line segment that connects x1, x2 ∈ S.
For a given s ∈ [0, 1], consider the solution φ(t, γ̂(s)) of
the monotone system Σ and note that, due to convexity and
forward invariance of S, φ(t, γ̂(s)) ∈ S for any t ∈ R+.
Since φ(t, γ̂(s)) is a (not necessarily straight) path connecting
φ(t, x2) and φ(t, x1), for any t ∈ R+ and x1, x2 ∈ S, we have

φ(t, x2)− φ(t, x1) =

∫ 1

0

dφ(t, γ̂(s))

ds
ds,

=

∫ 1

0

∂φ(t, γ̂(s))

∂x

dγ̂(s)

ds
ds,

=

∫ 1

0

Φ(t, γ̂(s))(x2 − x1)ds, (55)

where (3) and the definition of the straight line γ̂(s) are used
to obtain the last equality. The positive invariance of S and
(6) imply φ(t, x2)− φ(t, x1) � 0 for x2 − x1 � 0. Then,

d1(φ(t, x1), φ(t, x2)) = |φ(t, x2)− φ(t, x1)|1
= 1lTn (φ(t, x2)− φ(t, x1)) (56)

for any t ∈ R+ and (x1, x2) ∈ S × S such that x2 � x1.
Therefore, the definition of IES, (56) and (55) yield∫ 1

0

1lTnΦ(t, γ̂(s))(x2 − x1)ds = 1lTn (φ(t, x2)− φ(t, x1))

≤ ke−λt1lTn (x2 − x1). (57)

Suppose that a in Assumption 4.1 is positive for some
standard basis vector ei, i.e. x ∈ S implies x + aei ∈ S;
the negative case will be discussed later. From convexity of
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S , x + hei ∈ S for any 0 < h ≤ a. Then, by substituting
x1 = x and x2 = x+ hei into (57), it follows that∫ 1

0

1lTnΦ(t, x+ hsei)eids ≤ ke−λt1lTnei = ke−λt.

After the change of variables s̃ = hs, this yields

φ(h) :=
1

h

∫ h

0

1lTnΦ(t, x+ s̃ei)eids̃ ≤ ke−λt. (58)

Notice that this holds for any 0 < h ≤ a. Since 1lTnΦ(t, x +
s̃ei)ei is continuous at s̃ = 0, it follows from the fundamental
theorem of calculus [47, Theorem 6.20] that

φ(0) = lim
h→0

1

h

∫ h

0

1lTnΦ(t, x+ s̃ei)eids̃ = 1lTnΦ(t, x)ei.

Moreover, as a result of (58) and continuity of φ, we obtain

1lTnΦ(t, x)ei ≤ ke−λt.

Then, the monotonicity property (6) implies that we
have Φi,j(t, x) ≤ ke−λt for any j ∈ In, t ∈ R+ and x ∈ S .
Next, even if a is negative, one has the same conclusion by
substituting x1 = x+hei for a ≤ h < 0 and x2 = x into (57)
and using the change of variables s̃ = h(1− s). In summary,
we obtain

Φi,j(t, x) ≤ ke−λt, ∀i, j ∈ In (59)

Now, we are ready to construct a function v(·) satisfying
the conditions in this lemma. Inspired by the converse proof
for IES of positive LTI systems in [10, Theorem 15], define

v(x) :=

∫ t

t−δ
ΦT(t− τ, x)1lndτ, (60)

for some δ > 0. The definition (60) does not depend on t as,
by changing variables r = t− τ , we have

v(x) =

∫ δ

0

ΦT(r, x)1lndr. (61)

From (61), it can be observed that v(x) is of class C1 (as a
function of x) for any δ > 0, since ΦT(r, x) is.

This v(x) is upper bounded. From (59), we obtain∫ δ

0

Φ(r, x)dr �
∫ δ

0

ke−λr1ln1lTndr

=
k

λ
(1− e−λδ)1ln1lTn �

k

λ
1ln1lTn , ∀x ∈ S.

As a result, v(x) � c1ln, c = kn/λ on S for any δ > 0.
Next, we show the lower boundedness of v(x) for suffi-

ciently large δ > 0. From the boundedness of ∂f(x)/∂x and
the forward invariance of S, there exists a positive constant cf
such that −cf ≤ ∂fi(φ(t, x))/∂xj for any i, j ∈ In, x ∈ S
and t ∈ R+. From (3), (6) and this lower bound, we have

1l>n
dΦ(t− τ, x)

dτ
= −1l>n

∂f(φ(t− τ, x))

∂x
Φ(t− τ, x)

� cfn1lTnΦ(t− τ, x), t ≥ τ,

where � is the element-wise inequality for matrices. Integra-
tion with respect to τ from t− δ to t yields

1l>n − 1l>nΦ(δ, x) � cfnv>(x), (62)

where the definition (60) of v(x) is used. From (59), the left
hand side satisfies

1l>n − nkeλδ1l>n � 1l>n − 1l>nΦ(δ, x). (63)

Therefore, for any c satisfying 0 < c < 1, there exists a
sufficiently large δ > 0 such that

c1ln � 1l>n − nke−λδ1l>n . (64)

Thus, we have c1ln � v(x), c := c/cfn on S.
It remains to show that v satisfies (24) for sufficiently

large δ > 0. To do so, substitute x = φ(r, x̄) into (60) to
obtain

v(φ(r, x̄)) =

∫ t

t−δ
ΦT(t− τ, φ(r, x̄))1lndτ (65)

for r ∈ R+ and x̄ ∈ S . From (4) and non-singularity of the
transition matrix, (65) can be written as

v(φ(r, x̄)) = Φ−T(r, x̄)

∫ t

t−δ
ΦT(t+ r − τ, x̄)1lndτ. (66)

To simplify notation, fix x̄ ∈ S and define

Gt(r) :=

∫ t

t−δ
Φ(t+ r − τ, x̄)dτ. (67)

Then, taking derivatives with respect to r on both sides of (66)
yields

∂v(φ(r, x̄))

∂x̄
f(φ(r, x̄))

=
∂Φ−T(r, x̄)

∂r
GT
t (r)1ln + Φ−T(r, x̄)

dGT
t (r)

dr
1ln. (68)

We will show that (68) implies (24) by rewriting the two terms
on the right-hand side. For the first term, we will use that (3)
leads to

∂Φ−1(r, x̄)

∂r
= −Φ−1(r, x̄)

∂Φ(r, x̄)

∂r
Φ−1(r, x̄)

= −Φ−1(r, x̄)
∂f(φ(r, x̄))

∂x̄
. (69)

For the second term, note that the use of (3) and (67) leads to

dGt(r)

dr
=

∫ t

t−δ

∂Φ(t+ r − τ, x̄)

∂r
dτ,

= −
∫ t

t−δ

∂Φ(t+ r − τ, x̄)

∂τ
dτ,

= −Φ(r, x̄) + Φ(r + δ, x̄). (70)

Returning to (68), the substitution of the results (69) and (70),
as well as the use of the definitions (66) and (67), can be
shown to lead to

∂v(φ(r, x̄))

∂x̄
f(φ(r, x̄)) =− ∂Tf(φ(r, x̄))

∂x̄
v(φ(r, x̄))− 1ln

+ Φ−T(r, x̄)ΦT(r + δ, x̄)1ln. (71)

for any r ∈ R+ and x̄ ∈ S. Especially, when r = 0, this
simplifies (with Φ(0, x̄) = In) to

∂v(x̄)

∂x̄
f(x̄) +

∂Tf(x̄)

∂x̄
v(x̄) = −1ln + ΦT(δ, x̄)1ln.
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From (63) and (64), for any c satisfying 0 < c < 1, there
exists a sufficiently large δ > 0 such that

∂v(x̄)

∂x̄
f(x̄) +

∂Tf(x̄)

∂x̄
v(x̄) � −c1ln. (72)

Since v(x) � c1ln, i.e., −c1ln � −(c/c)v(x), the condi-
tion (24) holds for cv = c/c.

B. a) =⇒ c)
For the proof of a) =⇒ c), we require the backward

invariance of S.
Proof of a) =⇒ c): From the equivalence of distances,

the monotone system Σ is IES with respect to the distance
d1(x1, x2) = |x1 − x2|1. According to the proof of a) =⇒
b), we have (59), i.e., the system

δλ̇(t) =
∂f(φ(t, x))

∂x
δλ(t)

is exponentially stable with respect to δλ. To construct a max-
separable function, we use its dual LTV system [48] given as

δṗ(t) =
∂fT(φ(−t, x))

∂x
δp(t). (73)

From the backward invariance assumption, this system is
defined for any x ∈ S, and its solution reads

δp(t) =

(
∂φ(−t, x0)

∂x

)−T

δp0.

For LTV systems, it is known that exponential stability
of a system and its dual are equivalent [48]. Therefore, the
system (73) is exponentially stable, i.e., there exist positive
constants k and λ such that(

∂φ(−t, x)

∂x

)−T

≤ ke−λt1ln1lTn . (74)

Now, define

w(x) :=

∫ t

t−δ

(
∂φ(−t+ τ, x)

∂x

)−1

1lndτ, (75)

where δ > 0. Note that Remark 2.2 is also applicable to system
(73), i.e., each element of (∂φ(−t, x0)/∂x)−1 is non-negative
for any t ∈ R+. Therefore, similar to the proof of a) =⇒
b), by changing variables r = t− τ , one can show from (74)
that this w(·) satisfies c1ln � w(x) � c1ln for some 0 < c ≤ c
for sufficiently large δ > 0. Moreover, w(x) is of class C1 for
any x ∈ S and δ > 0.

Next, substitute x = φ(−r, x̄), r ∈ R+, x̄ ∈ S into (75) to
obtain

w(φ(−r, x̄)) =

∫ t

t−δ

(
∂φ(−t+ τ, x)

∂x

)−1 ∣∣∣∣
x=φ(−r,x̄)

1lndτ.

By computing its derivative with respect to r, again following
a similar approach as in the proof of a) =⇒ b), we have

− ∂w(φ(−r, x̄))

∂x̄
f(φ(−r, x̄))

= −∂f(φ(−r, x̄))

∂x̄
w(φ(−r, x̄))− 1ln

+
∂φ(−r, x)

∂x

(
∂φ(−r − δ, x)

∂x

)−1

for any r ∈ R+ and x̄ ∈ S. Especially, for r = 0, this can be
written as

[w, f ](x) = −1ln +

(
∂φ(−δ, x)

∂x

)−1

, ∀x ∈ S,

In a similar manner as the proof of a) =⇒ b), from
exponential stability, one can conclude that for any 0 < c < 1,
there exists a sufficiently large δ > 0 such that

[w, f ](x) � −c1ln (76)

where the definition (21) is used. The proof can then be
completed by again following the same ideas as in the proof
of a) =⇒ b).

C. b) and c) =⇒ d)

Proof: Define pi(x) := vi(x)/wi(x) (i ∈ In). Then, it
is clear that there exist positive constants c and c such that
c1ln � p(x) � c1ln. By using (72) and (76), it can be shown
that

∂V (x, δx)

∂x
f(x) +

∂V (x, δx)

∂δx

∂f(x)

∂x
δx

= −
∑
i∈In

(
vi(x)

w2
i (x)

+
1

wi(x)

)
δx2
i

−
∑
i 6=j

wi(x)vj(x)
∂fj
∂xi

(
δxi
wi(x)

− δxj
wj(x)

)2

≤ −c
∑
i∈In

(
vi(x)

w2
i (x)

+
1

wi(x)

)
δx2
i ,

where (5) and v(x), w(x) � 0 are used to obtain the inequality.
From boundedness and uniformly positive definiteness of v(x),
w(x), and p(x), it is clear that there exists a positive constant
cp such that (27) holds.

D. d) =⇒ a)

Proof: For not-necessarily monotone systems, the pa-
per [17] shows that Condition d) implies IES with respect to
the distance in (11) with v(·) = p(·) in (8), which we denote
by d̄2(x1, x2). Next, from (26), it is possible to show that

c|x1 − x2|2 ≤ d̄2(x1, x2) ≤ c|x1 − x2|2

for any (x1, x2) ∈ S×S. The proof is similar to that of Propo-
sition 2.6 and thus is omitted. Therefore, IES with respect to
d̄2(x1, x2) and |x1−x2|2 are equivalent. In summary, we have
d) =⇒ a).

APPENDIX C
PROOFS OF COROLLARY 4.8

The proof of Corollary 4.8 is similar to that of Theorem 4.3,
and we prove it in the following order: 1) =⇒ both 2)
and 3) =⇒ 4) =⇒ 1). Note that 4) =⇒ 1) is a
specific case of a Lyapunov theorem for LTV systems; see,
e.g. [30, Example 4.21], and thus the proof is omitted. Also,
the proof of both 2) and 3) =⇒ 4) is similar to the
proof in Appendix B-C. Namely, p(t) in Condition 4) can
be constructed as pi(t) := vi(t)/wi(t) (i ∈ In) from v(t)
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and w(t) in Conditions 2) and 3), respectively. Therefore, we
also omit its proof. Then, it remains to show 1) =⇒ both 2)
and 3).

Proof of 1) =⇒ both 2) and 3): Let use Ψ(t, τ)
to denote the transition matrix of the positive LTV system
(31). Since this system is exponentially stable, the following
functions are defined.

v(t) =

∫ t+δ

t

Ψ>(τ, t)1lndτ,

w(t) =

∫ t

t−δ
Ψ(t, τ)1lndτ,

where δ > 0. By taking their time derivatives, we have

dv(t)

dt
= −A>(t)v(t)− 1ln + ΨT(t+ δ, t)1ln,

dw(t)

dt
= A(t)w(t) + 1ln −Ψ(t, t− δ)1ln.

Similar to the proof of a) =⇒ b) for IES, from the
exponential stability of the LTV system and the boundedness
of A(t), it is possible to show that for sufficiently large δ > 0,
functions v(t) and w(t) satisfy all requirements in 2) and 3),
respectively.
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[7] S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, “Small gain theorems
for large scale systems and construction of ISS lyapunov functions,”
SIAM Journal on Control and Optimization, vol. 48, no. 6, pp. 4089–
4118, 2010.
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