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ARTICLE INFO ABSTRACT

Handling editor; Professor K. Ritz Non-target effects of deliberately released organisms into a new environment are of great concern due to their
potential impact on the biodiversity and functioning of ecosystems. Whereas these studies often focus on invasive
species of macro-organisms, the use of microbial inoculants is often expected to have specific effects on particular
functions but negligible overall effects on resident microbial communities. Here, we posit that such introductions
often impact native microbial communities, which might influence ecosystem processes. Focusing on soil com-
munities, we used a literature search to examine the impact of microbial inoculation (often the release of
beneficial microorganisms in agricultural systems) on resident microbial communities. Of 108 studies analyzed,
86% showed that inoculants modify soil microbial communities in the short or long term. In addition, for studies
analyzing the consequences of microbial inoculants in the longer term, 80% did not observe the resilience (return
to the initial state) of the resident community following inoculation. Through the knowledge gathered from each
study, we propose a synthetic and mechanistic framework explaining how inoculants may alter resident mi-
crobial communities. We also identify challenges as well as future approaches to shed more light on this unseen

reality.

1. Microbial invasions

Fortuitous and deliberate introduction of non-native organisms
across biogeographic barriers by human activities can perturb and
subsequently alter biological diversity over space and time (Vitousek
et al., 1997; Gaston et al., 2003; Hulme, 2009). Ecologists have shown
that the invasion of habitats by exotic macro-organisms poses a signif-
icant threat, not only to the extinctions of resident species but also to
ecosystem functioning in various environments (Roy et al., 2019).
Human-mediated invasion (HMI) can decrease native species richness
and evenness (Blackburn et al., 2004) as well as change the composition
(Shiganova et al., 2001) and genetic diversity of resident communities
(Kreiser et al., 2000; Kawamura et al., 2006; Roman and Darling, 2007).
Many studies have focused on the impacts of introducing particular
species on resident plant or animal communities (Pysek et al., 2012;
Falcao et al., 2017; Wainwright et al., 2017). Well-known examples are

the effects of introducing predatory species to regulate prey populations
on islands, potentially leading to undesired impacts on the native
communities (Kenis et al., 2009; Bahlai et al., 2015). Aside from such
negative consequences, invasion could also render positive outcomes
and be perceived as beneficial. In particular, HMI can increase the
abundance of some taxa and promote key ecosystem services (Simberloff
et al., 2013).

Contrary to large organisms, studies on the impact of microbial in-
vasions are less frequent (Litchman, 2010), despite the fact that mi-
crobes have been intentionally released into open environments for a
long time. Some microorganisms are naturally released to the atmo-
sphere (Morris et al., 2014), aquatic (Amalfitano et al., 2015), and
terrestrial ecosystems (Weil et al., 2017), but for deliberate invasion, it is
mostly the case in the environmental/agricultural sector, where intro-
duced microorganisms are used for soil bioremediation, biocontrol, and
biofertilization purposes (Vejan et al., 2016; Ahmad, 2017). In addition,
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microbial releases into soil are emerging as an approach for the con-
servation or restoration of biodiversity (Harris, 2009; Sutherland et al.,
2019). Soil microbial introductions thus aim at regulating or improving
ecosystem processes and services such as the promotion of plant yield,
litter decomposition, nutrient cycling and the maintenance of soil
fertility (Ouahmane et al., 2007; Bounaffaa et al., 2018; Rodriguez-Ca-
ballero et al., 2018; Tamayo-Vélez and Osorio, 2018). However, the
effects sometimes deviate from the intended purposes. For instance, the
introduction of Fusarium and Rhizoctonia strains to control invasive
weeds can lead to a decline in the weed population and suppress the
native plant species, through synergistic interactions with
root-disrupting insects and other potentially growth-suppressive mi-
crobes (Kremer et al., 2006). Even though the soil microbial community
might have the ability to reorganize and return to the original state
(resilience) after the disturbance induced by inoculation, this result
highlights the potential ecological and evolutionary impacts of micro-
bial inoculation to soil resident communities, which remain largely
unknown. Understanding the effect of microbial inoculation on soil
microbial communities may be hampered by the overwhelming di-
versity of the latter and by hurdles in the methods used to characterize
this diversity (Allison and Martiny, 2008; Le Roux et al., 2011; Jurburg
and Salles, 2015). Moreover, the assumed ubiquity of microbial species,
their rapid growth, and high level of functional redundancy (Wertz
et al., 2007) may also explain why inoculant-induced changes in the
composition of soil microbial communities were either assumed to be
insignificant or just overlooked. However, as the use of microbial in-
oculants increases with the deployment of sustainable agricultural
practices (Verma et al., 2019), research needs to better evaluate to what
extent such introductions, successful or not, impact the resident mi-
crobial communities. Recently, Trabelsi and Mhamdi (2013) evaluated
15 studies addressing the impact of inoculation on those soil microbial
communities they considered mostly significant. Clearly, several of
these studies revealed substantial impacts of the inoculants on soil
microbiomes. In addition, Ambrosini et al. (2016) presented an over-
view of plant-inoculant interactions and their impacts on microbial
communities, indicating that these interactions might promote positive
effects on soil fertility. Given the relevance of the topic, we present here
the results of a systematic literature review on the extent to which soil
communities are influenced by microbial releases, whether the soil
microbiome is capable of returning to the original state after disturbance
(resilient) as well as the mechanisms driving these potential
inoculation-induced changes in soil microbial community.

Regarding microbial releases in an agricultural context, the Euro-
pean Regulation Number 1107/2009, Article 24, expects firms or
practitioners to demonstrate that there are no ‘unacceptable effects on
the environment’, and states that the objective to protect human, animal
and environmental health should predominate regarding the objective
to increase plant production (Commission, 2009). This is open to
interpretation, but lack of inoculant persistence in the environment and
of important effects of the inoculant on the soil microbiota are often
expected, in addition to a significant effect on the targeted agro-
ecosystem function. Actually, microbial releases into soil often result in
transient loads of inoculant that quickly fade away with time. For
instance, it has been shown that following maize seed inoculation with
Azospirillum lipoferum CRT1, the inoculant disappeared at the 6-leaves
stage (Florio et al., 2017). Given this transitory survival, many practi-
tioners and scientists assumed that microbial releases would have
negligible effects on the resident soil microbial communities. However,
quick disappearance of a bacterial inoculum in soil does not necessarily
imply a lack of lasting legacy on the soil resident community. For
example, the introduction of non-pathogenic Escherichia coli into soil
shifted the niche structure and increased the niche breadth of resident
bacterial communities, leading to changes in the relative abundances of
important bacterial genera in soil such as Bacillus, Pseudomonas, Bur-
kholderia, and Bradyrhizobium (Mallon et al., 2018).

In this review, we posit that the effect of microbial inoculation on soil
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resident microbial communities is often significant. In the first part, we
examine the significance of shifts in resident microbial composition in
response to inoculation and their potential to influence soil ecosystem
processes. We base our analyses on a systematic literature search and
more detailed presentation of selected examples, highlighting that mi-
crobial inoculants do not need to be long-lasting in soil to alter resident
communities. In the second part, we discuss microbial community
resilience and recovery time, i.e. we examine whether the inoculant-
induced shifts are transient or persistent. We then present our current
understanding of the mechanisms that underly the alteration in resident
microbial abundance, structure, and activities. Finally, we describe the
current challenges and recommend potential approaches to foster our
knowledge in this area.

2. Microbial releases can modify the structure of native soil
communities

To evaluate whether microbial inoculants alter soil microbial com-
munity composition, we reviewed studies that addressed the impact of
microbial inoculation on soil microbial communities. A search in Web of
Science on February 27, 2019 using the keywords (“impact’’, “inocul*”
and “microbial communit*’’) or (“effect”, “inocul*” and “microbial
communit*’’) in their titles, abstract, or subject words generated 855
references. Screening process on their abstracts and titles reduced the
855 hits to 125 relevant articles (Fig. 1a). Studies that were not con-
ducted in soil, did not employ microbial inoculation, and whose impact
did not refer to native soil microbial communities, were excluded. The
full text of each of these 125 articles was assessed; from these, 17 studies
that relied only on plate counts were excluded due to methodological
issues associated with cultivation constraints. From the remaining 108
studies, 86 used bacterial inoculants, 22 inoculated fungi, while only 2
used the combination of both. All included proper control samples and
when inoculation implied soil disturbance (e.g. sowing with seeds
coated with an inoculant in Florio et al., 2017), we verified that the
control included the same disturbance (e.g. sowing with non-inoculated
seeds). We further grouped the studies into three categories according to
the method used to measure the impact on resident soil microbial
communities: 26 studies used high throughput sequencing (HTS)
(Figs. 1b), 78 used profiling methods including molecular, fatty acid,
and physiological profiling (Fig. 1c), and 4 used quantitative PCR tar-
geting particular taxonomic or functional groups (Fig. 1d). Here, we
decided to group studies that used profiling methods along with HTS in
an HTS method cluster while studies that used sanger sequencing of
amplicon clone libraries derived from specific DGGE bands were
included in a profiling method cluster.

The complete list of HTS method-based studies with all related in-
formation and parameters is displayed in Table 1. The lists of the 78
studies using profiling methods and of the 4 qPCR-based studies can be
found in the supplementary document (Tables S1 and S2). The result
showed that, in over 96% of the HTS studies, microbial release led to
changes in microbial community composition. For studies using
profiling methods, 82% showed an impact following inoculation
whereas 18% did not report any significant effect. Those corresponded
to 14 studies based on molecular profiling such as DGGE and [T]RFLP.
Regarding studies using qPCR targeting taxonomic or functional groups,
all of them reported a significant impact (Fig. 2). In general, 30% of the
studies using DGGE, TGGE, or [T]RFLP did not report any significant
effect of inoculation whereas the other methods did, highlighting that
the outcome might be associated with the method used to characterize
inoculant effect of the soil resident community. Furthermore, studies
that used HTS in combination with other methods (11%) indicate that
impact was observed for all methods tested. Keeping in mind these
methodological limitations, the data presented in the 108 studies allow
us to draw a few generalizations.

First, changes in microbial composition in response to microbial
release were observed in different conditions and through diverse
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1.1 Flow diagram explaining the initial selection of studies from literature search
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1.2 Flow diagram for studies employing high-throughput sequencing (HTS) method

Studies selected
(n=108)

HTS method

(n=26)
The impact on native soil
microbial community e |
[ |
| |

Profiling method GPCR method
(n=78) (n=4)

Absence of impact Presence of impact
(n=1) (n=25)

Multiple measurement of
| | communitystatus

———————

+ Studies did not employ (n=730) (n=125] | | | |
microbial inoculation; -
+ Thelepack did not. \ Single measurement >2measurements | Single measurement 22 measurements
apply to native soil J (n=0) (n=1) (n=14) (n=11)
microbial community. r \ Resilience
A | asesment
Reasons: These 17 Records excluded Records selected ( \
studies relied only on (n=17) (n=108) | |
plate count method to
measure the inoculation Not showing resilience Showing resilience
impact. (n=9) (n=2)
1.3 Flow diagram for studies employing profiing method 1.4 Flow diagram for studies employing GPCR method
Studies selected Studies selected
(n=108) (n=108)
Profiling method qPCR method HTS method QPCR method Profiling method HTS method
(n=78) (n=4) (n=26) (n=4) (n=78) (n=26)
The impact on native soil The impact on naf
‘microbial community s A ‘microbial community |
[ \ (
| | |
Absence of impact Presence of impact Absence of impact Presence of impact
(n=14) (n=64) (n=0) (n=4)
Multiple measurement of Multiple measurement of
| A community status ’}‘ OSSR community status.
f \ - \
[ \ ( \
[ | | | | |
single > single 22 Single measurement >2 measurements
n=1) (n=13) (n=24) (n=40) (n=1) (n=3)
| Resilience | i Resilience
A assessment \ assessment
[ \ \
[ | [ \
Not showing resilience Showing resilience Not showing resilience Showing resilience
(n=30) (n=10) (n=3) (n=0)

Fig. 1. Flow diagrams describing the process of article selection and screening of selected articles based on the presence/absence of impact, multiple measurement of
impact, and evaluation of post-inoculation resilience. Fig. 1a describes the selection process of studies which consist of abstract screening and full text assessment,
providing the reasons of possible exclusion of a given study. Fig. 1b describes the identification of studies employing high-throughput sequencing (HTS). Studies that
used profiling methods along with HTS were included in HTS method. Fig. 1c describes the identification of studies employing profiling methods, including molecular
(i.e. DGGE, TRFLP, ARISA), fatty acid (i.e. FAME, PLFA) and physiological (CLPP) profiling methods. Studies that used Sanger sequencing of amplicon clone libraries
derived from specific DGGE bands were included in profiling method. Fig. 1d describes the identification of studies employing qPCR methods.

methodological approaches. For example, using amplified ribosomal
RNA gene restriction analysis (ARDRA) and 16S rRNA gene amplicon
sequencing, the release of Sinorhizobium meliloti L33 was found to reduce
the diversity of beneficial Pseudomonas spp, including Pseudomonas
putida in the rhizosphere (Schwieger and Tebbe, 2000). Furthermore,
the release of biofertilizer containing B. amyloliquefaciens W19 and
Trichoderma guizhounse NJAU 4742 enhanced the abundance of taxa
with potentially antagonistic effect towards plant pathogens (Lysobacter
spp, Gp4 and Gp6 of the Acidobacteria, Bacillus, as well as Nitrospira spp),
as determined by amplicon sequencing of the 16S rRNA gene (Xiong
et al., 2017). This result might be caused by a synergism effect or the
ability of inoculants to recruit microbes with such traits (for detail of
mechanisms, see next section). In this sense, the release of an inoculant
can potentially affect the structure of the resident soil communities.
Microbial invasion might also impact the genetic diversity of indigenous
resident communities through interactions and horizontal gene transfers
(HGT) favoring genetic changes. Transfer of a mobilizable plasmid was
found in the wheat rhizosphere in the field, from Pseudomonas fluo-
rescens to Gram-negative bacteria with dominance of Enterobacter spp
(Van Elsas et al., 1998). HGT has also been observed in Brazil, where
massive inoculation of soybean specific Bradyrhizobium strains takes
place every cropping season (Araujo et al., 2012; Hungria and Mendes,
2015). For instance, Barcellos et al. (2007) and Silva Batista et al. (2007)
observed high rates of horizontal transfer of symbiotic genes from the
inoculants Bradyrhizobium japonicum and Bradyrhizobium elkanii to
indigenous rhizobia in the Cerrado. In India, Satya Prakash and Anna-
purna (2006) and Ansari et al. (2014) reported an increase in the genetic

diversity of indigenous soil Rhizobia following massive inoculation of
Bradyrhizobium commercial strains.

Second, inoculation-induced changes in abundance and structure of
soil microbiomes might lead to shifts in the functioning of the latter. For
instance, the overrepresentation of microbes having antagonistic effects
on plant pathogens can induce suppressiveness in conducive soil (Shen
et al., 2015; Xiong et al., 2017). Moreover, the abundance of bacteria
known to cause N losses and induce plant diseases such as Rhodanobacter
spp and Mycobacterium spp, respectively, decreased upon the introduc-
tion of Paenibacillus mucilaginosus 3016, whereas the abundance of
beneficial bacteria such as Bradyrhizobum spp and Pseudomonas spp
increased. Importantly, these changes were related to modified enzy-
matic activity levels in the soil (Ma et al., 2018). Actually, several studies
showed that the introduced microbial inoculants could change soil
phosphatase, sulfatase, chitinase, esterase, urease, and other enzyme
activities, thus impacting nutrient cycling, fertilization, decomposition
and biocontrol activities (Mar Vazquez et al., 2000; Nassal et al., 2018;
Wu et al., 2018).

Third, based on studies presented in the aformentioned tables, even
though the abundance of inoculants decreased — sometimes below the
detection limit — following inoculation, microbial community composi-
tion was still impacted (Kozdroj et al., 2004; Cordier and Alabouvette,
2009; Mallon et al., 2018). In some cases, when invader survivability
became low, the impact was found to be transient (Johansen and Olsson,
2005; Baudoin et al., 2009; Yin et al., 2013). However, we advocate that
the magnitude of this impact, either long-lasting or transient, might not
necessarily relate to the fate of the inoculant populations. As shown in
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Fig. 2. Proportion of published studies that report presence or absence of microbial inoculation impact with respect to methodology used to detect such effects.

several studies, even though the number of inoculant cells declined
following introduction into soil, changes in community composition
persisted (Kozdrdj et al., 2004; Renoud, 2016; Mallon et al., 2018).

It remains unclear whether the measured changes are due to direct
effects from the inoculants or indirect effects, for instance through nu-
trients released from dead or moribund inoculant cells. In the case where
the inoculants survive to a level sufficiently high for the intended pur-
poses, the effect is likely due to the inoculants themselves. For example,
Fu et al. (2017) observed long-lasting changes in microbial composition
when the inoculant, Bacillus amyloliquefaciens NJN-6, showed relatively
stable abundance between 2.5 and 3.0 log copies of 16S rRNA gene/-
gram soil within 3 years of experiment. On the other hand, one could
argue that when survival is low due to biotic and abiotic factors, the
observed changes in community structure could at least partly be due to
the nutrient flush caused by dead (lysed) inoculant cells, which in turn
could promote an increase in the abundance of some resident taxa (but
see next section for an alternative explanation). Regardless of the po-
tential mechanism, an impact can be observed in most cases.

We hypothesized that the level of inoculation might positively
determine the magnitude of inoculation impact as higher inoculation
level might render longer inoculant survival. However, it was not
possible to test any direct relationship between inoculation level and
impact since the studies referred to releases of different microbial spe-
cies with distinct experimental set up. Moreover, each study also applied
different inoculation methods such as soil amendment, direct intro-
duction, seed coating, etc. Hence, inferring general conclusions about
the relationship between inoculation level and impact would be invalid
and requires a more systematic testing of the inoculant level across a
broad range of strains, soils and inoculation methods. However, in a
recent study, Dong et al. (2019) revealed that increasing inoculated
biofertilizer concentrations led to a greater impact on soil resident mi-
crobial diversity, providing evidence for our hypothesis.

3. Resilience of soil microbial communities in response to
inoculation

Regardless of the main mechanism through which inoculation im-
pacts the native soil microbiome, it remains unclear whether the impact
persists for longer periods of time or vanishes more or less quickly, i.e.
how resilient the native communities are. We advocate that it is logical
to assume that persisting microbial inoculants will have longer impact
compared to short-lived inoculants. Given the paucity of current infor-
mation, further studies need to consider the long-term assessment of
community resilience, next to the impact of recurrent application of

microbial inoculants, specifically whether the soil microbiome (i) re-
tains function and structure regardless the amount of inoculum added
(resistance); (ii) shows capacity to self-organize after disturbance,
returning to its original state (resilience); or (iii) is capable of building
and enhancing its learning and adaptation capacity, by reaching an
alternative stable state (Carpenter and Brock, 2008) (Fig. 3a). A careful
examination of the studies listed in Table 1 and Supplementary Tables
S1 and S2 showed that the time span for a soil microbial community to
recover and return to its initial composition after microbial release
varies a lot. For instance, the release of Pseudomonas fluorescens DR54
affected the structure of resident microbiome associated with barley
rhizosphere up to 6 days after inoculation but the latter returned to its
original structure at day 9 (Johansen and Olsson, 2005). Other studies
observed resilience only several months after inoculation (Yin et al.,
2013; Wang et al., 2018). However, to the best of our knowledge, studies
on the impact of microbial inoculation on the soil microbiome have
targeted resilience from a compositional perspective only. Thus, key
aspects of microbial function have remained unaddressed. Here, we
argue that addressing resilience from a functional perspective is key to
determine whether the invaded communities could still retain their
functioning despite changes in their composition. Further exploration of
multi-omics studies is needed to foster our understanding in the impact
and resilience of the resident microbiome facing microbial inoculation
from functional point of view.

Microbial ecology concepts outline that microbial resilience can be
linked to specific population traits, such as the ability to grow rapidly
and to exhibit physiological plasticity (Allison and Martiny, 2008).
Previous studies confirmed that these are some of the features that allow
microbial communities to recover from environmental perturbation
(Schimel et al., 2007; Shade et al., 2012). Based on this concept, we
propose that these traits play important roles in promoting the resilience
of microbial community following inoculation, albeit experimental
work should be done to prove the hypothesis. For instance, from an
ecological perspective, the effect of introducing microbes to soil might
be related to the physiological capacity of resident communities to
withstand antagonistic effects from the invaders (see next section).
Studies focusing on the transcription and regulation of genes associated
with resistance or tolerance traits could provide evidence of potential
resistance mechanisms. The methods and tools to study gene tran-
scription and regulation regarding physiological tolerance and adapta-
tion towards toxic and antibiotic compounds are available (Ramos et al.,
2009; Blair et al., 2015). When applied in the context of microbial in-
vasion, they could indicate whether defence mechanisms triggered after
inoculation could nurture the survival of the invader or help recovery of
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Fig. 3. The impact of microbial inoculants on soil community structure and four possible mechanisms explaining how they can modify the soil microbial community
composition. Fig. 3a summarizes the possible temporal dynamics of microbial community structure following microbial inoculation. In the first scenario (A), after
inoculation the community resists, i.e. the community structure does not change. In the second scenario (B), the microbial inoculants change the initial composition
of resident community. Here the initial invasion by the inoculants increases the abundances of red and black resident microbial populations but decreases yellow and
purple populations. After the exclusion of inoculants, the initially impacted microbial composition can recover and return to its initial state (i.e. complete resilience).
In the third scenario (C), the microbial inoculants will permanently change the initial composition of resident community, i.e. the inoculation-induced shift in
community composition remains and the community reaches alternative stable state. In addition, we illustrate four possible mechanisms on how microbial inoculants
alter resident community composition, beginning with resource competition (Fig. 3b). The introduced microbes (blue circles) are inoculated to a native community
which consists here of eight taxa. The thick blue line indicates the entire niche of the native community. When microbial inoculant (blue peak) is introduced into the
community, an overlapping zone is created as the invader and some resident taxa compete for similar resources. The initial population size of inoculant (blue peak) is
high enough to outcompete resident taxa which compete for resources of similar preference, which then alters the community structure. The niche structure is altered
in such a way that residents would preferentially occupy those niches on which the invader has little or no competitive advantage. The second mechanism explaining
inoculation effect on soil microbial community composition is associated with antagonism (Fig. 3c). In the case where the inoculants produce antibiotics (depicted in
orange), they eliminate some microbial taxa sensitive to antibiotics (Populations C and D) while resistant taxa (Populations A and B) will maintain their abundance.
The third mechanism is related to synergism where the inoculants excrete secondary metabolites (in red) serving as nutrients for some resident taxa, which stimulates
their growth (Fig. 3d). In this Fig., the secondary metabolites are able to increase the abundance of populations A and D while populations B and C remain unaffected.
The fourth is indirect mechanism through which inoculation can affect soil microbial community by modifying the rate and composition of root exudates (Fig. 3e).
Different organic compounds exuded by roots (depicted by clouds in pink, green, and orange) will then favour some microbial taxa. In Fig. 3e, populations A, B, and D
are favoured by the inoculation-induced modification of exudates. (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)

the resident communities.

From the resilience perspective, two additional points associated
with technical issues and ecological concepts should be considered.
Regarding the latter, even if soil microbiomes tend to return to their
initial composition after invasion, we speculate that the abundance and
diversity of some taxa might remain changed. Although this hypothesis
needs to be further investigated in the context of inoculation impact, it
has been verified in a study using another type of disturbance. Jurburg
et al. (2017) measured the alteration of soil microbial community
composition following heat disturbance and found that even though the
majority of resident bacteria tend to be resilient (resilience at commu-
nity level 49 days after disturbance), the abundance of slow-growing
Conexibacter and some Phenylobacterium strains were two times higher
compared to those observed in the community prior to disturbance.
Meanwhile Nitrosomonadaceae, Nitrospira, Xanthomonadaceae, Lyso-
nacter, and Chitinopagaceae remained largely supressed after distur-
bance, indicating a lack of resilience. These results also highlight the
importance of evaluating the impact of inoculation in a temporal context
since the effects might change overtime. However, to what extent these
changes affect soil ecosystem functioning remains largely unknown.

Microbial inoculants will have a direct effect promptly after being
introduced into the new habitat. This effect is interesting for those who
gauge the changes’ magnitude and sensitivity in a short-term duration.
As time goes by, environmental change is likely to influence ecological
and evolutionary processes. When they come into force, chronic impacts
will be most likely detected and long-term evaluation is needed espe-
cially when the inoculants survive. However, most of the 108 studies
addressing the impact of microbial releases on soil community (Table 1
and Supplementary Tables S1 and S2) only measured the effects over
short durations. Around 50% of HTS-method, 75% of qPCR method, and
77% of profiling-method based studies presented in these tables moni-
tored the soil community status over less than 3 months after inocula-
tion. For instance, the inoculation impact of Arthrobacter
chlorophenolicus A6L to microbial communities in 4-chlorophenol
contaminated soil was only measured for 13 days (Jernberg and Jans-
son, 2002). Chen et al. (2013) measured the impact of Burkholderia sp
J62 and Pseudomonas thivervalensis Y-1-3-9 on the microbiomes of cad-
mium contaminated soil at day 60 only. In both cases, the inoculation
led to changes in the structure of the resident communities, but it re-
mains unclear whether the impact persisted for longer period of time. In
Fig. 1b, from 26 HTS studies, 11 performed multiple measurements on
soil community status and only 2 of them reported resilience capacity
following inoculation. For profiling method, multiple measurements of
the impact were conducted in 40 studies and only 10 of them showed
tendencies to return to its original state (see Fig. 1c) In qPCR-based
method, none of those studies indicated resilience capacity (see

Fig. 1d). Thus, one faces the possibility that release-induced changes in
community structure might be permanent (do not, or not easily, return
to the initial composition). If the shift is irreversible, the altered com-
munity may undergo alternative stable state and potentially affect soil
functioning; for instance, if a key narrow function like ammonia
oxidation is affected. This is related with the phenomenon called hys-
teresis where a system is unable to recover to its initial state after
perturbation (Beisner et al., 2003). For instance, Sun et al. (2013)
showed increasing and decreasing relative abundance of Nitrosomonas
and Nitrosospira respectively in the soil with intercropping combined
with Rhizobium inoculation treatment. The community composition did
not return to its original state even after 2 years since the Sinorhizobium
meliloti CCBAU01199 was introduced.

Finally, technical issues influence our perception of inoculant effects
and post inoculation resilience of the resident community. As shown in
Table 1 and the supplementary tables, different approaches ranging
from profiling methods to advanced molecular techniques such as HTS
have been used for evaluating inoculation effects over the short and
longer term. The numbers of studies employing the different methods to
detect possible inoculant effects are very different and restrict analysis of
a possible effect of the method used on our capacity to detect an inoc-
ulant effect. For example, 100 and 80% of the studies employing
phospholipid-fatty acid (PLFA) method and automated ribosomal
intergenic spacer analysis (ARISA), respectively, detected an impact.
However, we cannot say that the PLFA method allowed better detection
of inoculant impact compared to ARISA because there were only 5
studies employing ARISA for 14 studies based on PLFA. Actually, to
make a fair comparison, a study should be conducted with the same
experimental setup, same inoculation level, and same microbial inocu-
lant, comparing which methods are the most sensitive to detect an effect.

The sensitivity of techniques such as micro-respiration metabolic
profiling (biology based CLPP), fatty acid approaches (FAME and PLFA)
or molecular fingerprint techniques (DGGE, ARISA, [T]RFLP) might
limit our ability to detect changes to the most abundant microbial
populations. Although this issue can be solved by using HTS approaches
(the strength and limitation of each technique are discussed in Kirk et al.
(2004)), they lack information on microbial activities or phenotypic
characteristics. Further, when using DNA-based methods one cannot
distinguish the origin of the DNA as it might come from living cells,
lysates, dead cells, or free DNA. We thus advocate using a combination
of HTS and other phenotypical methods, as impact and resilience can
only be properly tackled when both taxonomic and functional commu-
nity traits are concomitantly assessed.
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4. Proposed mechanisms of how inoculation drives resident
microbial community changes

Although our literature search showed that microbial inoculation
often affects the resident soil microbial communities, the mechanisms
underlying the impact are still poorly understood. Some of the studies
analyzed pointed to a possible mechanism explaining inoculant effect on
soil microbial community, but none of studies comprehensively dis-
cusses the relative importance of the different possible mechanisms at
stake. Thus, here we present and discuss four mechanisms that can
govern the changes in the soil native microbiome upon microbial inoc-
ulation (Fig. 3).

The first mechanism refers to resource competition (Fig. 3b), which
has been studied to dissect the relationship between biodiversity and
invasibility in microbes (van Elsas et al., 2012; Eisenhauer et al., 2013;
Mallon et al., 2015). Several studies have shown that the amount of
(limiting) resources that are left unconsumed by native species and the
consumption rate of resources by the native and invader species control
the fate of invading species (van Elsas et al., 2012; Mallon et al., 2015;
Wei et al., 2015; Yang et al., 2017). This means that the higher the
number of vacant niches (not used by the resident community), the
higher the chance of the inoculant to successfully establish in their new
habitat. More precisely, Mallon et al. (2015) reported that low level of
overlap between the soil community niche and the niche of an inocu-
lated bacteria is a good predictor for the capacity of the inoculated
bacteria to maintain high abundance following inoculation. Similarly,
Wei et al. (2015) observed that soil communities with high connectance,
low nestedness, and a clear niche overlap with the invader, reduce in-
vasion success.

Once establishment takes place, the introduced microbial inoculant
might be able to outcompete some taxa and use existing resources to
spread and grow (Fig. 3b). This would be applicable if the invaders
possess special traits that make them competitively superior in utilizing
resources, for instance by promoting soil acidification (Zhang et al.,
2009) or by having higher access to iron in soil due to siderophore
production (Wandersman and Delepelaire, 2004). Once the invaders get
established, their abundance could suppress functionally similar taxa
from the resident communities — i.e. taxa that compete for similar re-
sources — and facilitate the enhancement of taxa that are functionally
unrelated to the inoculants.

It is interesting to note that inoculants that do not get established can
also lead to shifts in the resident microbial communities. A recent study
by Mallon et al. (2018) revealed that the soil invasion by E. coli led to
important shifts in soil community composition and associated niche
breadth, despite the fact that the invasive species declined dramatically
in abundance 30 days after introduction. These authors concluded that
resource competition played an important role and that the niche
structure of the resident community got shifted away from invader’s
resources. The observed shifts in soil microbial community structure
could thus be explained by an increase in the abundances of rare or
subordinate taxa due to competitive release caused by the direct
competition between invasive species and microbial taxa initially
abundant in the resident communities. Despite the lack of success in
establishing itself, E. coli left a legacy — a reduction in the niche overlap
between resident community and invader, leaving the niches occupied
by the invader partly vacant for the duration of the experiment (30
days). Since these shifts were consistently associated with a reduction in
the use, by the resident community, of the niches used by the E. coli, the
changes in community structure were likely due to competition for re-
sources rather than utilization of nutrients that become available in
response to dead cells. Moreover, the consistent response observed
across the various community diversity levels, including those where
E. coli was still present at higher densities, supported this conclusion.
This finding raises two important points. From an applied perspective, it
might provide a window of opportunity for a new invasion by the same
species — or functionally similar inoculants — which should then
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encounter less competition, facilitating the establishment phase of
additional inoculations. Thus, recurrent inoculations could represent a
strategy for inoculants that do not survive well in soils. From an
ecological perspective, it raises the questions of how long this legacy
effect holds - i.e. how resilient is the resident soil community after
inoculation? (see previous section) — and then what the potential impact
of recurrent inoculations is.

The second and third mechanisms driving changes in the soil
microbiome following inoculation relate to direct antagonism (Fig. 3c)
and synergism (Fig. 3d) between some resident microorganisms and the
inoculants, through which inoculants can affect community composition
by suppressing or fostering other soil microbes, respectively. Regarding
antagonism, inoculants can directly influence the growth and activity of
the resident communities, in particular through antibiosis — i.e. by
secreting chemical compounds that kill or inhibit resident microbes in
their vicinity (Fig. 3c). Several microbial inoculants released for agri-
cultural purposes, particularly those which intend to control the path-
ogens, have this capacity. For instance, particular species of Bacillus,
Pseudomonas, Streptomyces, Burkholderia, Pantoea, Lysobacter and
Enterobacter, are predominantly involved in antibiotic production
(Dukare et al., 2018). Although these chemicals target certain patho-
gens, they might also have effects on non-target microbial taxa. For
instance, the release of Pseudomonas fluorescens F113Rif producing
antibiotic 2,4-diacetylphloroglucinol (Phl) decreased the genetic di-
versity of different rhizobia species in the sugar beet rhizosphere (Walsh
et al., 2003). The residual impact was long-lasting, as indicated by the
reduction of Phl sensitive taxa even after the field was disinfected and
sown with uninoculated seeds from new plant species.

Introduced microorganisms can also influence resident microbial
communities through synergism, where microorganisms cooperate from
marginal support to absolute mutual dependence (Fig. 3d). In this case,
the arrival of inoculants that produce signalling metabolites such as
precursors, vitamins, and certain amino acids, stimulates the growth of
resident microbial communities (Schink, 2002). In addition, some mi-
crobes can be extremely dependent on their mutual partners in such way
that neither species can function optimally in the absence of its partner
(Kato et al., 2012). The importance of synergism and antagonism has
been recently emphasized by Li et al. (2019) who reported that antag-
onistic and facilitative pairwise interactions within resident microbial
communities predict well invasion by the plant-pathogenic bacterium
Ralstonia solanacearum.

The fourth mechanism explaining why inoculation can modify the
soil microbial community is an indirect effect involving plant root ex-
udates (Fig. 3e). Many microbial inoculants including PGPR indeed in-
fluence the growth and development of the root system through the
production of phytohormones and other molecules. These compounds
promote lateral root branching and modify root functioning (Vacheron
et al., 2013). In particular, introduced PGPR increase the rates of root
exudation which in turn can modify the rhizospheric microbial com-
munity. For instance, Florio et al. (2017) reported that the PGPR Azo-
spirillum lipoferum CRT1, which is known to promote root exudation,
induces an increase of the abundance of denitrifying heterotrophs only
in soils where denitrifiers are limited by carbon availability. Further,
Florio et al. (2019) showed that this PGPR inoculation effect on soil
denitrifier functional groups was indeed modulated by manipulating the
inputs of artificial root exudates to soil. Beyond exudate quantity,
studies also showed that microbial inoculants can modify the composi-
tion of root exudates, in particular regarding amino acids and different
groups of flavonoids (Matilla et al., 2010; Phillips, 2004). These exu-
dates contain diverse organic compounds which favour specific mi-
crobes to metabolize these compounds. For instance, the introduction of
Chryseobacterium balustinum Aur9 changed flavonoid concentrations
exuded by soybean roots (Dardanelli et al., 2010). These changes alter
the abundance of rhizobia in the rhizosphere since flavonoids initiate
the symbiosis with legumes (Khan et al., 2012). In addition, increasing
benzoxazinoids concentration in maize root exudates was observed as a
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response to inoculation with Azospirillum lipoferum CRT1, Azospirillum
brasilense CFN-535, and UAP-154 (Walker et al., 2011). The increasing
benzoxazinoid concentrations could increase the abundance of Pseudo-
monas putida in the maize rhizosphere (Neal et al., 2012) and the
exudation of malic acid, ultimately stimulating the abundance of Bacillus
subtilis (Rudrappa et al., 2008). From these examples, it is clear that
changes in root exudation induced by microbial inoculants indirectly
alter microbial composition in the rhizosphere. However, it is important
to note that plant genotype, potentially via (shifted) exudation, can
interfere with the inoculant and contribute to changes in soil microbial
structure and composition (Aira et al., 2010; Andreote et al., 2010). A
recent study by Xu et al. (2020) revealed a significant interaction effect
between rhizobium inoculation and soybean genotype on rhizosphere
fungal communities. Moreover, disentangling the complexity of who
contributes what to whom remains challenging, as some microbial
resident taxa altered by an inoculant can themselves induce cascading
effects, e.g. on root exudation and the presence of complex
cross-kingdom interactions between plants and microbial communities
themselves.

5. Future perspectives and concluding remarks

In many countries, laws or regulations often require that any impacts
of the release of microbial taxa on the environment, including soil and
its microbial community, should be negligible (Scherwinski et al., 2008;
Wu et al., 2008; Xiong et al., 2013), which is often overlooked. Our
literature search reveals that the majority of published studies reported
that inoculation does modify the composition of the resident soil com-
munity, with possible long-lasting effects. We thus advocate for studies
that foster our understanding of the resistance and resilience of native
soil microbial communities facing microbial inoculants. In particular,
further studies are required to measure how big and long-lasting such
impacts are, especially in an open field across seasons and years where
conditions vary.

Although the impact of microbial release on soil microbial commu-
nity has been assessed mostly from a compositional perspective, evalu-
ating inoculant impact and community resilience from a functional
perspective — using a broad range of omic approaches (metagenomics,
metatranscriptomics, metabonomiics, metaproteomics) — will help
determining whether the invaded communities retain their functioning
despite inoculant-induced changes in their composition. This notion is
related to the often observed functional stability due to the presence of
functionally redundant microbes in the soil community (Jurburg and
Salles, 2015). Whereas high functional redundancy can allow some
microbial species that are insensitive to inoculation to compensate for
the decrease or loss of the function provided by more sensitive ones —
thus leading to similar functioning despite changes in community
composition — changes in function can still be observed if sensitive mi-
crobial species are replaced by functionally inefficient and insensitive
ones (i.e. species with lower specific activities than those present in the
original community). Therefore, resilience will depend not only on
redundancy but also on the physiological constraints of the affected
species, ecological resilience, and recovery ability. In addition, the
evaluation on root and soil phenomics should also be evaluated as soil
inoculation might lead to changes in the phenotypical features (physical
and biochemical traits) of plant and soil biomes (Bargaz et al., 2018;
Duran et al., 2018).

Moreover, we need a better understanding of the mechanisms un-
derlying the changes in the soil microbiome composition and func-
tioning upon invasion, which may help us to improve the effectiveness
of many practical microbiological applications. By enhancing our
knowledge in this field, we could better engineer the way inoculants
affect the abundance of beneficial taxa and those with negative prop-
erties, including those associated with inoculant survival in soil. This
will aid us to develop inoculants with superior survival ability or in-
crease the resistance of resident communities upon invasion by
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pathogenic invaders. Furthermore, application of microbial inoculants
as environmental probiotics could be one way to harness soil microbial
capabilities to mitigate the negative consequences of climate change
(Jansson and Hofmockel, 2020). Engineering inoculants that foster the
activity of resident taxa able to improve carbon sequestration and water
retention in soil could contribute to mitigation and adaptation measures
in the era of climate change. In sum, the value of understanding the
impact of microbial inoculation on resident microbial community will
be a meaningful and integrative development of microbiological theory
paving the way to new practical applications.
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