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A B S T R A C T

Social withdrawal is found across neuropsychiatric disorders and in numerous animal species under various
conditions. It has substantial impact on the quality of life in patients suffering from neuropsychiatric disorders.
Often it occurs prodromal to the disease, suggesting that it is either an early biomarker or central to its etiology.
Healthy social functioning is supported by the social brain of which the building blocks go back millions of years,
showing overlap between humans, rodents and insects. Thus, to elucidate social withdrawal, we have to ap-
proach its environmental triggers and its neural and molecular genetic determinants in an evolutionary context.
Pathological social withdrawal may originate from a faulty regulation of specific neural circuits. As there is
considerable heritability in social disorders, the genetic building blocks of the social decision making network
might be our most relevant target to obtain an understanding of the transition of normal social interaction into
social withdrawal.

1. Introduction

Disrupted social behavior is a shared symptom of many neu-
ropsychiatric disorders. In particular, withdrawal from social interac-
tions is commonly exhibited in people afflicted with schizophrenia,
Alzheimer’s disease, depression, and various other neuropsychiatric
disorders (American Psychiatric Association, 2013; Porcelli et al.,
2019a). There is considerable evidence that the quality and quantity of
social interactions in adulthood can have significant effects on an in-
dividual’s health and well-being: humans and other animals with lim-
ited social relationships, or who are socially isolated, have higher rates
of mortality and morbidity than those with normal levels of social re-
lations (Cacioppo and Hawkley, 2009; Eisenberger and Cole, 2012;
Holt-Lunstad et al., 2010; House et al., 1988). Moreover, the effects of
social relationships on mortality even outweigh well-known risk factors
such as smoking, alcohol use and high BMI (Holt-Lunstad et al., 2010).
Hence, social withdrawal in neuropsychiatric disorders is an important
symptom that may cause deleterious effects on disease development,
progress and outcome. The precise neural circuit mechanisms under-
lying withdrawal from social engagement are not well understood, but
likely involve structural and/or functional changes within key cortical
and subcortical brain structures intimately involved in the regulation of
a broad range of social behaviors. This so-called cognitive social brain
(Adolphs, 2009; Brothers, 1990; Dunbar, 2009), social behavior

network (Newman, 1999) or social decision-making network (SDMN;
O’Connell and Hofmann, 2011) has been mapped out in a wide variety
of species including humans and has been shown to be evolutionary
well-conserved (O’Connell and Hofmann, 2012). This information
highlights the significant convergence in the neuroanatomy and neu-
rophysiology of these brain circuits of humans and other animals, as
well as in the underlying genetics that shape neural structure and
function. Since the phenotype of social withdrawal is not only displayed
by mentally-disordered patients but can also be observed in various
animal species under different environmental conditions (Dwyer et al.,
2015; Fernandez et al., 2017; Henry et al., 2008), animal models can be
employed to unravel the neural, molecular and genetic mechanisms of
social withdrawal. In literature both social withdrawal and avoidance
are used to describe the same phenomenon. Although all social avoid-
ance can be considered as social withdrawal, social withdrawal entails
more than only that. In contrast to social avoidance, social withdrawal
can also be expressed as a lack of approach or interaction (see for ex-
ample Hanks et al., 2013; Miyamoto et al., 2017; Seillier et al., 2013;
Uribe et al., 2013).

There is a large number of studies that demonstrate that experiences
of (social) stress or exposure to sickness-inducing pathogens can lead to
retraction of social engagement and interactions (see for example
Bluthe´ et al., 1992 & Patel et al., 2018). Yet, a large individual sus-
ceptibility exists for these environmental-induced social withdrawal
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effects indicating that genetic predispositions appears to play an im-
portant role in the development of social withdrawal (see for example
Terrillion et al., 2017). These genetic vulnerabilities are often related to
neuropsychiatric disorders. This suggests that specific genes are in-
volved in the etiology of both neuropsychiatric disorders as well as
social withdrawal behavior. Social withdrawal is, however, also shown
to be a highly adaptive response to environmental challenges in a wide
variety of species (Dantzer, 2001; Hart, 1988). For that reason, social
withdrawal should not by definition be interpreted as a behavioral
maladaptive symptom of a disease state, but rather as an adaptive re-
sponse to the imposed environmental situation that can, when ex-
pressed excessively, lead to maladaptive consequences. In this review,
we first present social withdrawal as a behavioral symptom of various
mental disorders and how it is assessed in humans. Secondly, we
highlight social avoidance/approach behavior in rodents and describe
its measurement in various different experimental testing paradigms.
We then outline the key neural circuitry and its molecular mechanisms
underlying social behavior and summarize how the different environ-
mental triggers and biological causes affect these neural mechanisms.
With an evolutionary explanation in mind, the review concludes with a
discussion of the genetic risk factors for excessive social withdrawal.

2. Social withdrawal as a shared and early symptom of multiple
mental disorders

In humans, social withdrawal is often referred to as part of the
phenotypic expression of many neuropsychiatric disorders. It can be
seen in neurodevelopmental disorders, such as Schizophrenia (Tandon
et al., 2009), neurodegenerative diseases, including Alzheimer’s disease
(Reichman Arnaldo et al., 2001), and other neuropsychiatric disorders,
such as Major depressive disorder (Kupferberg et al., 2016). In these
disorders social withdrawal is often part of a specific “cluster” of
symptoms (e.g. negative symptoms in Schizophrenia or neuropsychia-
tric symptoms in Alzheimer’s disease). Moreover, social withdrawal is
the core behavioral symptom of social anxiety disorder (SAD) that is a
highly prevalent disorder characterized by persistent fear and avoid-
ance of social interactions (Kessler et al., 1998). Interestingly, in many
of these disorders, patients will show signs of negative or neu-
ropsychiatric symptoms (including social withdrawal) even before the
disorder-characteristic symptoms arise (see for example Dominguez
et al., 2010 & Feldman et al., 2004). Furthermore, the cluster of
symptoms that includes social withdrawal is often connected to the
worst outcome in terms of functionality and quality of life (see for ex-
ample Fitzgerald et al., 2001; Rabinowitz et al., 2012; Sousa et al.,
2013).

2.1. Schizophrenia and Alzheimer’s disease

The symptoms of Schizophrenia (SZ) are often clustered in “posi-
tive” or “negative” symptoms. Positive symptoms encompass excessive
behaviors not present in healthy individuals, such as hallucinations,
delusions and other reality distortions (Tandon et al., 2009). In con-
trast, negative symptoms are characterized by blunted behavioral
functions. Current consensus about the negative symptoms is that they
entail blunted affect, poverty of speech, asociality, avolition and an-
hedonia (Foussias and Remington, 2010; Kirkpatrick et al., 2006).
However, these behaviors can be clustered in two distinct categories: 1)
Diminished expression, consisting of blunted affect and poverty of
speech and 2) Amotivation, consisting of asociality, anhedonia and
avolition (Blanchard and Cohen, 2006; Foussias and Remington, 2010;
Strauss et al., 2013, 2012). In this second category the symptom of
social withdrawal can be found. Patients suffering from Alzheimer’s
disease (AD) express a symptom cluster similar to the negative symp-
toms of SZ (Galynker et al., 1995; Reichman et al., 1996; Vercelletto
et al., 2002). Here, these symptoms are often referred to as the neu-
ropsychiatric (behavioral) symptoms (NPS) of Alzheimer’s disease. Data

suggests that NPS are stable during longitudinal assessment (Trigg
et al., 2015), although it has also been suggested that specific symptoms
(e.g. apathy) can increase as the disease progresses (Conde-Sala et al.,
2014). Neuropsychiatric symptoms precede the onset of AD (Feldman
et al., 2004). In patients suffering from Alzheimer’s disease 88 % also
suffers from NPS. Apathy is consistently found to be one of the most
occurring neuropsychiatric symptoms. It is reported in about 70 % of
AD patients (Khoo et al., 2013), ranging from 44 % to 92 % in patients
suffering from mild and severe AD respectively (Mega et al., 1996).
Apathy is defined as a loss of motivation, and encompasses behavioral
expressions such as social withdrawal, lowered initiative and lack of
interest in activities (see for review Landes et al., 2001). As such,
apathy appears to show great similarity to avolition as observed in SZ.
Indeed, it is argued that they refer to the same phenotype (Foussias and
Remington, 2010;Marin, 1991). Also in SZ the negative symptoms are
thought to precede other symptoms (Möller, 2007). This is supported by
Dominguez et al. (2010) who confirmed that negative symptom ex-
pression predicts the onset of positive symptoms (Dominguez et al.,
2010). Furthermore, a review by Yung and McGorry (1996) concluded
that patients and their family members are reporting negative symp-
toms (e.g. reduced motivation and social withdrawal) in the (initial)
prodromal phase of the disease (Yung and McGorry, 1996). A meta-
analysis by Perkins et al. (2005) suggests that patients displaying severe
negative symptoms also have a longer duration of untreated psychosis
at their first treatment (Perkins et al., 2005). This association is not
found with general or positive symptomatology, suggesting a specific
role for negative symptoms. A prolonged period of untreated psychosis
is linked to a blunted symptomatic recovery and functional outcome for
the first psychotic episode (Perkins et al., 2005). As such, earlier de-
tection of negative symptoms, such as social withdrawal, could po-
tentiate treatment by shortening this period.

Negative symptoms themselves have also been associated with
poorer functional outcomes. In AD negative symptoms are shown to
play a bigger role in the quality of life, when compared to the well-
known cognitive deficits (Sousa et al., 2013; Trigg et al., 2015;
Zucchella et al., 2015). Rabinowitz (2012) shows that in SZ negative
symptoms are a better predictor for functioning than any other
symptom type (Rabinowitz et al., 2012). There, negative symptoms
have a stronger negative effect on employment (Rosenheck et al.,
2006), and are associated with a lowered quality of life (Fitzgerald
et al., 2001; Fujimaki et al., 2012). In general, functional outcomes
were worse in SZ patients displaying more negative symptoms (Strauss
et al., 2013). This was found to be particularly in patients who ex-
pressed more behaviors related to the amotivation/avolition category
(Foussias et al., 2011; Galderisi et al., 2013; Strauss et al., 2013).
Considering its central role in disease outcome, a scientific focus on the
‘amotivation/avolition-subtype’ and its means of expression, social
withdrawal, could provide valuable insight to counter the burden of SZ
and AD. Both economically, by increasing productivity, and personally,
by increasing quality of life.

2.2. Major depressive disorder and Social anxiety disorder

The implications of social withdrawal are also clear in Major
Depressive Disorder (MDD), a disorder that is one of the most profound
causes of disability (GBD, 2017 DALYs and HALE Collaborators, 2018;
US Burden of Disease Collaborators et al., 2018). When questioned,
currently depressed patients report higher levels of social avoidance
compared to healthy controls, with remitted patients reporting levels in
between the two (Quigley et al., 2017). In MDD, the presence of social
withdrawal is linked to anhedonia (Buckner et al., 2008). Anhedonia
appears to be the largest predictor of psychosocial functioning in MDD
(Vinckier et al., 2017). Young women with high depressive scores ex-
pect themselves to respond less positively to social situations, indicating
that they expect less pleasure. Furthermore, they engage less in socially
rewarding behaviors (Setterfield et al., 2016). Hence it appears as if
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social withdrawal in MDD is highly related to motivational deficits,
similar to their involvement in SZ and AD. And similarly to those dis-
orders, motivational deficits in MDD show a relationship with both
functional impairments and subjective quality of life (Fervaha et al.,
2016). Negative appraisal of social company is related to more time
being alone; this predicts the onset of depression in females taken from
a general population sample (Van Winkel et al., 2017). Furthermore,
social rejection (i.e. a passive form of social withdrawal) is a key risk
factor for MDD (see for review Slavich et al., 2010). MDD patients seem
to process social rejection and acceptance differently than healthy
controls (Hsu et al., 2015; Kumar et al., 2017; Stuhrmann et al., 2011).
This difference in processing might contribute to the overstatement of
negative and understatement of positive experiences seen in MDD. An
impairment which is suggested to be involved in the approach/avoid-
ance problems MDD patients suffer from, where approach is thought to
be impaired and avoidance to be reinforced (see for review Trew,
2011). Studies trying to objectively show this deficit have difficulties
replicating this (Radke et al., 2014; Struijs et al., 2017). MDD patients
share an increase in social avoidance with patients suffering from SAD,
although the social avoidance levels seen in SAD patients is even higher
when compared with those that suffer from MDD only (Ottenbreit et al.,
2014). Social anxiety disorder, also known as social phobia, is char-
acterized by discomfort in and avoidance of social situations (see for
review Stein and Stein, 2008). Thus, in SAD, social withdrawal is not
only part of the disorder, it is the core diagnostic criteria. Interestingly,
SAD seems to be contiguous with milder social anxiety (Ruscio, 2010).
This suggests that there is no hard cut-off for the display of social
withdrawal, but rather that this behavior is widely spread across the
general population from which the extremes are seen as symptomatic.

At this moment in time, it is unknown whether the transdiagnostic
expression of social withdrawal is originating from a unique neuro-
biological substrate or whether it involves different proximate me-
chanisms that reflect different adaptive (or maladaptive) responses.
When considering the various psychological constructs underlying so-
cial withdrawal it is likely that for each of these underlying constructs,
a different biology may arise. For example, a patient with schizoid
personality disorder avoids others because of the lack of social reward
from the interactions. In contrast, other schizophrenia patients will
avoid people as a consequence of their positive psychotic symptoms
(e.g., denigrating auditory hallucinations). In addition, social with-
drawal in patients with social anxiety disorder is also a defensive
strategy but the psychological correlates are different from those of
paranoid patients (e.g., fear of being negatively evaluated versus fear of
being harmed). Considering these different forms of social withdrawal,
this review will focus on the motivational and rewarding aspects of
social withdrawal, as well as its underlying neural circuitry.

3. Assessment of human social withdrawal

Although the concept of social withdrawal is recognizable for many,
the objective assessment of social withdrawal is challenging. How do
you assess if someone exhibits “a loss of social engagement”? In the
majority of clinical studies researchers utilize questionnaires, when
assessing social functioning and social motivation in the context of
neuropsychiatric disorders, such as the social functioning scale (SFS)
(Birchwood et al., 1990), Scales for physical and social anhedonia
(Chapman et al., 1976), the Snaith–Hamilton Pleasure Scale (Snaith
et al., 1995) and the Anticipatory and Consummatory Interpersonal
Pleasure Scale (Gooding and Pflum, 2013). Questionnaires have the
innate advantage that they are non-invasive and relatively time-effi-
cient. However, questionnaires are also inherently subjective and the
individuals answering the questionnaire could be untrustworthy or
simply fail to recall details (see for example Kaplan et al., 2008).
Though, neuropsychiatric patients seem to be similarly trustworthy as
healthy control (Brill et al., 2007). Questionnaires are not the only
methods used for the assessment of social behavior/withdrawal. Non-

verbal behavior of patients can be studied to assess sociability (see for
review Geerts and Brüne, 2009) and certain behavioral tasks have been
used to evaluate the social capabilities of individuals (Hynes et al.,
2011). Assessments of non-verbal behavior correlate with self-reported
information from questionnaires and predict (social) functioning of
patients (Brüne et al., 2008; Troisi et al., 2007). These clinical assess-
ments make use of ethograms, a list of behaviors and their descriptions,
to score the patients’ behavioral patterns (see for example Grant, 1968;
Troisi et al., 1998), similar to how social behavioral is classically as-
sessed in laboratory animals.

3.1. Contemporary methods of assessment

Recently, technological advancements have allowed for new
methods to objectively assess social withdrawal in humans. For ex-
ample, smartphones have allowed studies to assess the “natural habitat”
of participants, which is termed “ambulatory assessment” (AA). An
often-used simple form of AA is letting subjects respond to queries
which are either prompted at set or random times, or self-initiated. This
avoids memory constraints often found in questionnaires asking the
participants to recall certain events (Trull and Ebner-Priemer, 2013).
Taking it one step further is connecting these prompts to occurring
events, for example prompting queries when the participant is in a
certain geographical location (Törnros et al., 2016). However, recent
studies have begun making use of the data collected by the smartphone
sensors themselves as proxies for social behavior. Chow et al. (2017)
show that social anxiety correlates with time spent at home, a purely
geographical measurement (Chow et al., 2017). Furthermore, a study
by Dissing et al. (2018) shows that smartphone communication char-
acteristics relate to self-reported social integration and face-to-face
contact frequency (Dissing et al., 2018), further demonstrating that
data derived from smartphones can be used as a proxy for social be-
haviors. However, data from smartphones sensors cannot be used to
provide proxies of subjective or “perceived’ quality of social relation-
ships that questionnaires or self-reports do include. They can only
provide an objective measure of the number/frequency of social con-
tacts and exploratory behavior. There is mounting support for the no-
tion that subjective or perceived quality of social relationships is a
stronger predictor of poor health and emotional state in humans than
number and frequency of social contacts or social network size
(Cacioppo et al., 2010; Hawkley et al., 2006). For example, subjective
feelings of loneliness are associated with higher mortality (Perissinotto
et al., 2012) and higher rates of hypertension, diabetes, and Alzheimer
disease (Hawkley and Cacioppo, 2010; Tomaka et al., 2006; Wilson
et al., 2007). This shows that subjective questionnaires can still have an
advantage over objective data. More advanced techniques of collecting
objective data with smartphones can now provide a detailed view of the
social state of an individual. An example of this is the measure of
proximity (i.e. distance between the subject and others), which cannot
be assessed using questionnaires. Since social withdrawal entails de-
creased social contact, the distance to peers is most likely reduced
considering face-to-face social contact happens in relatively close
proximity. With smartphones this distance can be measured, enabling
researchers to gain direct insight into the social networks of partici-
pants (Boonstra et al., 2017; Eagle et al., 2009). Interestingly, the
measurement of proximity does not only relate well to the definition of
social withdrawal, it also translates well to the assessment paradigms
used in model organisms.

4. Social withdrawal in rodents is classically measured in dyads
under artificial conditions

In humans, it is difficult to experimentally manipulate, or assess, the
biological mechanisms underlying social withdrawal. Hence, studies
have been employed using model organisms to investigate the neuro-
biological mechanisms underlying social withdrawal. Rodents are
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highly social and naturally interact frequently with their conspecifics
(Kondrakiewicz et al., 2019). As a matter of fact, in a laboratory setting
mice and rats prefer social company over a solitary existence
(Balcombe, 2006; Van Loo et al., 2004). They show a preference for
places previously associated with social contact (Lott, 1984) and will
actively work to obtain social contact (Patterson-Kane et al., 2002;
Sherwin, 1996). A multitude of experimental paradigms have been
created to assess social approach/avoidance behavior in rodents, from
which most are based on the proximity to either a conspecific or a social
cue (see for review Peleh et al., 2019). Among the sociability para-
digms, one of the best known is the social interaction test (SIT). Ori-
ginally it was developed by File and Hyde (1978) as a behavioral model
of anxiety (File and Hyde, 1978). The test is based on the assumption
that anxiety and social behavior are negatively associated; that is, ro-
dents that are highly anxious tend to spend less time with engaging
with conspecifics. This premise is supported by the fact that anxiolytics
increase social interaction (Calabrese, 2008). In this test, 2 non-familiar
rodents, of similar weight and sex, are placed in a neutral test arena that
permits free exploration between the conspecifics for 5−10 min. Ty-
pically, the duration of social (approaching, sniffing, allogrooming or
following the partner) vs. non-social (rearing, ambulation, auto-
grooming) behaviors are measured. Although aimed at anxiety, the SIT
has extensively been used in research directed at the negative symp-
toms of schizophrenia, assessing social withdrawal in (pharmacologi-
cally induced) models of the disease (Sams-Dodd et al., 1997). In fact,
the SIT is one of the key methods to assess face and/or predictive va-
lidity of pharmacological models/interventions in SZ (see for example
(Rung et al., 2005a,b). However, it can be contested if the social in-
teraction test itself provides adequate face validity to be employed as
such. The test only measures a dyadic interaction in a social animal, in
which a grouped situation would be ecologically more appropriate (see
for example Sutherland et al., 2005). As such, it appears as if the
translational and evolutionary relevance of social interactions is dis-
regarded in testing for negative symptoms. However, the social inter-
action test does provide some interesting results. Injections of NMDAR-
antagonists, postulated to act at the core of SZ (Cohen et al., 2015),
produce a reduction in social interaction (Rung et al., 2005a,b; Sams-
Dodd, 1999), in line with the glutamate hypothesis of SZ. Similarly, a
decrease in social interactions has been found in a genetic model of AD
using the SIT (Fujiwara et al., 2011). Together, these results indicate
that, although the construct validity of the SIT can be contested, the test
often exposes the behavioral deviations associated with social with-
drawal.

The social preference/avoidance test is commonly employed in rats
and mice to gauge social preference or social aversion/avoidance be-
haviors. It operates on the premise that rodents prefer social vs. non-
social stimuli. The test can be conducted in a number of different cages
and settings, either in a one compartment familiar (home) or neutral
cage or in a 3 compartment cage (i.e. the so-called three chamber test
(3-CT)) (see for example Brodkin et al., 2004 & Moy et al., 2004). In the
one-compartment versions, there are generally two testing sessions.
First, the experimental animal is exposed to an empty wire mesh cage
and the amount of time investigating the object is recorded. Next, the
empty wire mesh cage is replaced with either a novel or familiar con-
specific and the amount of time interacting (usually based on distance)
is recorded. Generally, most researchers report on the time spent in a
so-called interaction zone in the presence of the non-social (empty wire
mesh cage) or social target. Increased time spent in the interaction zone
in the presence of the social stimulus vs. the non-social stimulus re-
presents social preference. Likewise, less time spent in the interaction
zone in the presence of the social target vs. the non-social stimulus
represents social avoidance. In the 3-compartment version, the test
apparatus consists of three chambers, and an experimental animal is
placed in the middle chamber and then has the choice of entering two
identical chambers (right and left), one empty chamber and one
chamber in which an (unfamiliar) encaged stimulus animal is placed.

Spending more time with the stimulus animal is thought to represent
sociability (i.e. social preference). See Toth and Neumann (2013) for a
review on these behavioral assays and models of social fear and social
avoidance (Toth and Neumann, 2013).

Similar to the SIT, the social preference/avoidance tests look only at
social approach and avoidance behavior from a dyadic perspective. This
is not the desired natural behavior, neither from the rodent perspective
nor from a translational perspective, in which the aim is to mimic a
human symptom. In these dyadic tests, the animal cannot display its full
range of social behaviors. When investigating social withdrawal this is
of particular importance because an animal can display social with-
drawal either as a lack of motivation to approach and/or interact or as
an increased motivation to avoid another conspecific. Additionally, an
animal can be avoided by others, which is also seen as a socially
withdrawn state. Classical dyadic tests are aimed at assessing only one
of these behavioral discrepancies, hence they might miss the others.
Furthermore, dyadic tests do not relate to the human situation, as we
rarely display our social behavior in a strict dyadic setting.

4.1. Social withdrawal in a semi-natural environment

A way of increasing both ecological and translational relevance is by
assessing the full social behavioral repertoire in a group of rodents.
Only in these social-housing structures, can social withdrawal from the
other members of the social group be truly studied. One of the most
well-known systems for the behavioral scrutiny of social group dy-
namics is the Visible Burrow System (VBS), made famous by the
Blanchard group (see for example Arakawa et al., 2007 & Blanchard
et al., 1995). The VBS is a semi-natural environment build to resemble a
rodent’s ecological appropriate environment. It consists of an open-
arena and multiple observable nests with tunnels leading to them which
together serve as semi-natural burrows. Research using the VBS has
been primarily focussed on aggression/hierarchies in rats (see for ex-
ample Blanchard et al., 2001). However, during the last decade atten-
tion has shifted towards the utilisation of mice in this semi-natural
environment. This shift has also facilitated the use of transgenic and
mutant mouse lines, resembling human neuropsychiatric phenotypes.
One of these is the BTBR inbred mouse line. These mice show pheno-
typic resemblance to the human autism spectrum disorder (ASD) be-
havioral phenotype (McFarlane et al., 2008). The behavioral deficits of
this mouse strain have been investigated in the VBS and subsequently
validated using the 3CT by Pobbe et al. (2010). In the VBS BTBR’s
displayed an impairment in all social behavioral domains, such as ap-
proach, aggressive behavior and allogrooming (Pobbe et al., 2010). The
decrease in social behavior, observed in the semi-natural environment,
could also be replicated in the 3CT. However, whereas the VBS allows
for between strain comparison (i.e. BTBR vs control), the 3CT is aimed
at providing a ‘yes or no’ answer concerning social preference within
the strain. Due to this, subtle differences between strains might not be
picked up. Additionally, due to the longitudinal nature of group-housed
approaches, effects of novelty, which might obscure truly social deficits,
only play a minor role in the total displayed behavior. This contrasts the
classical dyadic test in which (social) novelty is a core part of the test
environment.

Groups of mice form a stable hierarchical social structure, consisting
of dominant and submissive individuals, typically based on aggressive
encounters. Recent studies have shown that the social status within
these hierarchies influences gene expression in specific neuronal
structures related to social behavior (So et al., 2015; Williamson et al.,
2016). This indicates that the social environment of a subject, and its
position therein, is important to take into account when studying the
mechanism underlying social behavior. A study by Shemesh et al.
(2016) shows how investigating the behavior longitudinally in group-
housed mice can provide additional information of the effect of genetic
manipulation on social behavior, compared to a more conventional
approach (Shemesh et al., 2016). Mice deficient for Corticotropin-
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releasing factor receptor type-2 in the medial amygdala, a key social
structure, show reduced interest in novel mice and increased interest in
familiar animals, when tested in a dyadic testing setup. Activation of
the neurons targeting the receptor, in wildtype mice, resulted in the
opposite, promoting interest in novel and reducing interest in familiar
mice. When inhibiting these neurons in a group-housed context social
approach was increased. Particularly towards mice of the same social
rank, which were approached the least before the neurons were in-
hibited (Shemesh et al., 2016). In this study all animals of the group
were manipulated, however, studies in group-housed mice also provide
the unique opportunity to combine treated and untreated animals in
one group. Using this semi-natural approach, the biological basis of
social withdrawal can now be effectively scrutinized in an ecologically
relevant setting that more accurately translates to the human situation.

5. Social approach and avoidance behavior are mainly driven by
the brain’s social decision-making network (SDMN)

All animals continuously evaluate the saliency of environmental
stimuli and respond to it with context-appropriate behavioral actions
toward (approach) or away from it (avoidance) (Elliot et al., 2006;
Schneirla, 1965). The translation of challenges and opportunities that
accompany group living into the spectacular diversity of social beha-
viors (e.g., investigation, mating, aggression, parenting, affiliation,
fleeing) is largely dependent upon distributed processing of social sig-
nals across an evolutionary very well conserved social behavior neural
network functionally integrated with the basic motivational reward
circuitry of limbic forebrain and midbrain areas (see for review Chen
and Hong, 2018; Newman, 1999; O’Connell and Hofmann, 2011). The
core components of this so-called social decision-making network
(SDMN) encompasses the intimately interconnected limbic structures
medial and basolateral amygdala (MeA, BLA), bed nucleus of the stria
terminalis (BNST), lateral septum (LS), mediodorsal and anterior tha-
lamus (MDT), several hypothalamic nuclei including the anterior hy-
pothalamic (AHA)/medial preoptic (MPOA) area and ventromedial
hypothalamus (VMH) as well as the striatal forebrain regions nucleus
accumbens/ventral striatum (NAc), hippocampus (HPC) and ventral
Pallium (VP). Findings suggest that these limbic areas collectively en-
compass a hierarchical role in the dynamic encoding of external socio-
sensory cues and internal physiological signals to cohesively drive
adaptive social behaviors that are appropriate to spatial context and
dominance status (Chen and Hong, 2018). In addition, important “top-
down” modulatory control is provided by various cortical structures
(e.g., encompassing Brothers’ (1990) and Dunbar’s (2009) cognitive
social brain) like the orbitofrontal (OFC), medial prefrontal (mPFC),
insular (IC) and anterior cingulate cortex (ACC), as well as the as-
cending midbrain monoaminergic nuclei like the dorsal/medial raphe
nucleus (DRN/MRN; serotonin), locus coeruleus (LC; noradrenaline)
and ventral tegmental area (VTA; dopamine). The production of the
autonomic and somatic motor output aspects of the various social be-
havioral elements are to a large extent coordinated by the periaque-
ductal gray area (PAG) (see O’Connell and Hofmann, 2011; Prounis and
Ophir, 2020; Rogers-Carter and Christianson, 2019 for more detailed
reviews of the various cortical and non-cortical neural structures that
comprise the social brain network). Extensive comparative research
demonstrated that this highly interconnected neural network for social
behavioral functioning is remarkably similar in many vertebrate species
including human beings, indicating that it is evolutionary ancient and
phylogenetically conserved (Goodson, 2005; O’Connell and Hofmann,
2012). Indeed, this basic SDMN circuitry (at region level) is generally
confirmed in humans by modern brain-imaging techniques that allow
the in-vivo functional/structural (fMRI) analysis of the neuronal nodes/
networks and of its associated neurochemistry (PET/SPECT) that are
involved in social behaviors (see for reviews (Bickart et al., 2014;
Porcelli et al., 2019a; Rogers-Carter and Christianson, 2019). Ob-
viously, the functional activity of this social behavior neural decision-

making network, and thereby the selection of the appropriate beha-
vioral response to social challenges and opportunities, is determined by
a wide variety of molecular substrates (i.e., neurotransmitters, hor-
mones, cytokines, and their respective metabolic enzymes, receptors,
and intraneuronal signaling molecules). Undisputedly, among the
neurochemical systems that are considered key signaling molecules in
this neurocircuitry controlling social behaviors are the main inhibitory/
excitatory amino acids (GABA/Glutamate), canonical monoamines
serotonin (5-HT), noradrenaline (NA) and dopamine (DA), the “social”
nonapeptides oxytocin (OXT), and vasopressin (AVP), the “hedonic”
endogenous opioid peptides, the “stress” HPA- and “sex” HPG-axis’s
neuropeptides (corticotropin releasing factor (CRF)) and steroid hor-
mones (corticosterone, testosterone, estrogen), and their cognate re-
ceptors. Indeed, the neurons in the SDMN regions as outlined above,
abundantly receive these neurotransmitter projections and express a
variety of their membrane-bound receptors, including serotoninergic
1A/B, 2A/C, dopaminergic DRD1/2 and vasopressin/oxytocin AVP1A/
B/OTR receptors, the mu, delta and kappa opioid receptors as well as
the intracellular steroid hormone androgen (AR), estrogen (EsR1/2),
progesterone (PR), mineralocorticoid (MR) and glucocorticoid (GR)
receptors. Since levels of many of these neuromodulators change ra-
pidly and dynamically before, during and after the execution of dif-
ferent social behaviors, they may influence the various nodal neuron
excitabilities and hence the initiation, maintenance and termination of
different social behaviors as well as the consequent processing of social
experiences.

6. Neuropsychiatric disorders correlate with malfunctions in the
social decision-making network

Compared to healthy controls, neuronal anomalies have been dis-
covered in patients suffering from multiple neuropsychiatric disorders
(see for review Porcelli et al., 2019b). In SZ, cortical grey matter is
reduced in the frontal regions before the onset of the disorder (Cannon
et al., 2015). After disease onset, SZ patients show brain volume dif-
ferences in a wide variety of areas, when compared to healthy controls.
The hippocampus, amygdala, thalamus and NAc were all smaller in SZ
patients, and larger lateral ventricle volumes were also observed (Van
Erp et al., 2016). In AD, structural changes related to the neu-
ropsychiatric symptoms, apathy in particular, were mainly found in the
OFC and ACC. However, more areas appear to be involved, such as the
amygdala and the VTA (Boublay et al., 2016; Theleritis et al., 2014).
Other neuronal abnormalities have also been associated with AD, in-
cluding volumetric reductions and/or neurotransmitter deficits. Some
related to components of the SDMN (see for review Hardy et al., 1985).
Cell loss is found in the LC, the main site of NA production, and lowered
concentrations of NA and loss of NA innervation are seen in multiple
areas including the hypothalamus and cingulate cortex (Hardy et al.,
1985). Considering MDD, many areas related to the SDMN connect the
disorder to social withdrawal. After social rejection MDD patients show
increased activation in their amygdala, insula and ventrolateral pre-
frontal cortex (Kumar et al., 2017), which are all part of social brain
networks (Bickart et al., 2014). Depressed patients also show deacti-
vation of opioid receptors in the amygdala and blunted activation in the
NAc, thalamus and periaqueductal grey during rejection. Similarly,
during social acceptance (de)activation patterns differed from healthy
controls, where activation of the amygdala was only seen in controls
and deactivation of the NAc was only seen in patients (Hsu et al., 2015).
Additionally, responses of particular neuronal structures to either po-
sitive facial expressions (e.g. happy) or negative facial expressions (e.g.
sad) differed between MDD patients and healthy controls. In reaction to
positive stimuli a decreased response could be seen in the amygdala,
insula and striatum. Whereas negative stimuli led to hyper-respon-
siveness in the amygdala, insula and striatum, a decrease in OFC acti-
vation could also be observed (Stuhrmann et al., 2011). Thus, ab-
normalities in the activation of components of the SDMN in response to
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both positive and negative social stimuli can be observed in MDD,
where the response to positive stimuli is blunted and the response to
negative stimuli is exaggerated. This skewed response to opposite
salient emotional cues may indicate a dysfunctional OXT system which
is supported by the finding of reduced plasma OXT levels in depressed
patients (Jobst et al., 2015). In SZ, a long-standing hypothesis suggests
that dopamine is a key factor, which has been supported by elevated DA
synthesis capacity, release and baseline synaptic levels in patients.
Presynaptic dysregulation appears to be at the core of this (for review
see (Howes and Murray, 2014)). In AD, dopamine dysfunction can be
found at any point during the progression of AD, which is possibly re-
lated to the expression of apathy (Martorana and Koch, 2014). Another
line of reasoning suggests a great importance of glutamate and GABA in
SZ, which is similarly based on years of evidence (see for review (Cohen
et al., 2015)). The origin can be found in the observation that phen-
cyclidine (PCP) leads to a SZ-like phenotype in healthy individuals
(Luby et al., 1959). This suggested a central role for the NDMA-re-
ceptor, for which PCP is an antagonist. Indeed, NDMA-receptor ex-
pression levels are reduced in post-mortem PFC samples of SZ patients
(Weickert et al., 2013). This subsequently may relate to reduced GABA-
ergic activity, as antagonism of the NMDA-receptor to a decrease in
activity of prefrontal GABA-ergic interneurons. Interestingly, treatment
with a NMDA-receptor antagonist also has a, delayed, excitatory effect
on pyramidal neurons, which are thought to play a critical role in ex-
ecutive functions (Homayoun and Moghaddam, 2007). In rats, a bi-
lateral infusion of a GABAA-receptor antagonist into the medial pre-
frontal cortex or basolateral amygdala leads to social withdrawal (Paine
et al., 2017). Patients suffering from SZ appear to have lowered cortical
GABA-functionality when compared to healthy controls (Lewis, 2014).
This lowered functionality appears to be already visible during the
prodromal stage of the disease, as is apparent by lowered cortical
gamma oscillatory power (Minzenberg et al., 2010). In AD, a wide
variety of neurotransmitter systems contribute to the neuropsychiatric
symptoms, as the cholinergic, noradrenergic, serotonergic and dopa-
minergic systems all seem to play a role (Boublay et al., 2016).
Waldemar et al. (2011), shows that donepezil, a cholinesterase in-
hibitor, prevents/decelerates the formation of apathy in AD (Waldemar
et al., 2011), indicating a role for the cholinergic system specifically in
this symptom. Furthermore, cell loss in the raphe nucleus and a re-
duction in both 5-HT itself and its receptors has been reported (Hardy
et al., 1985). The treatment of MDD has primarily focussed on the 5-HT,
making use of selective serotonin reuptake inhibitors (SSRIs) which pri-
marily target the serotonin transporter (SERT). Indeed, the serotonergic
system seems to be affected in MDD. Patients show lower blood levels of
5-HT and its precursor, and the SSRIs used for the treatment of MDD
lead to increased extracellular 5-HT availability. Furthermore, there
seems to be an involvement of all 5-HT receptors in MDD (see for re-
view Fakhoury, 2016). Specifically, reduced SERT-receptor binding in
the striatum and amygdala was found in depressed patients (Kambeitz
and Howes, 2015) and reductions in 5-HT1a-receptor binding was found
across a wide variety of brain areas, including the amygdala, ACC and
the raphe nucleus (Drevets et al., 1999; Wang et al., 2016).

7. Social behavior and the reward system

From the above, it is clear that neuropsychiatric disorders correlate
with changes in both the structural components of the SDMN and re-
lated neurochemical function properties. This includes parts of the
SDMN mainly dedicated to motivation and reward. When discussing
social withdrawal, a behavior related to approach and avoidance, a
connection to the hedonic reward systems seems like a natural step.
Indeed, Kirschner et al. (2016) propose a discrepancy in adaptive
coding of rewards in SZ patients as a key part in negative symptoms
(Kirschner et al., 2016). Foussias and Remington (2010) argue that
primarily the anticipation of pleasure is affected in SZ rather than the
consumption (Foussias and Remington, 2010). Studies confirm this

suggestion (Gard et al., 2007; Mote et al., 2014), although discrepancies
can be found in the literature, including studies that have used similar
methods (Chan et al., 2010; Strauss et al., 2011). Deficits in anticipatory
pleasure correlate with negative symptoms (Chan et al., 2010; Mote
et al., 2014) and are also observed in patients with recent onset diag-
nosis (Mote et al., 2014), preceding the positive symptoms. Chan et al.
(2010) confirm the relationship between anticipatory pleasure and so-
cial withdrawal in Chinese SZ patients, however they also show a re-
lation with consummatory pleasure (Chan et al., 2010). Edwards et al.
(2015) suggest a greater discrepancy between anticipated and con-
summatory subjective valence in SZ patients, as a possible explanation
(Edwards et al., 2015). Taking this into consideration, it appears as if SZ
patients suffer from a deficit in judging rewards.

Studies using non-human animals have previously shown that social
behavior in itself can be rewarding (see for review Trezza et al., 2011).
In humans, social rewards and monetary rewards show overlap in their
neuronal activation pattern (Izuma et al., 2008; Lin et al., 2012). One
exception was the amygdala, which was only activated during the
consumption of a social reward (Rademacher et al., 2010). In rodents it
has been shown that social interactions can be highly rewarding and
indeed recruit components of the brain’s reward circuitry (Dölen et al.,
2013; Robinson et al., 2002). Thus, a deficit in components of the re-
ward system could lead to the disruption of social rewards, ultimately
leading to social withdrawal (for review see (Krach et al., 2010)). Hung
et al. (2017) show necessity for social reward processing of dopami-
nergic neurons in the VTA driven by OXT. Social interaction activates
oxytocinergic neurons in the paraventricular nucleus (PVN) that project
to the VTA. Mice lacking OXT-receptors in the targeted dopaminergic
neurons in the VTA or mice from which the PVN originating oxytoci-
nergic neurons were inhibited displayed a reduction specifically in the
processing of social rewards (Hung et al., 2017). Interestingly, OXT also
rescues the display of social withdrawal after treatment with PCP (Kohli
et al., 2019). Borland et al. (2018) show evidence that OXT injected into
the VTA decreases (experienced) social reward value, while an OXT-
receptor antagonist increases it (Borland et al., 2018). The aforemen-
tioned dopaminergic neurons of the VTA project to GABAergic medium
spiny neurons in the NAc and olfactory tubercle of the ventral striatum
(Haber and McFarland, 1999), making it part of the SDMN. Interest-
ingly, the avolition subtype of SZ relates to hypoactivation in the
ventral part of the striatum (i.e. NAc) during reward anticipation
(Kirschner et al., 2015). Moreover, MDD is related to hypoactivation of
this same area (Kupferberg et al., 2016). When an animal is exposed to
a reward, the dopaminergic reaction to this reward adapts based on the
predicted value of the reward (Tobler et al., 2005). This allows the
reward system to discriminate between the almost endless possibilities
of rewards. Interestingly the striatum, and its connectivity to other
reward structures, appears to be key in the adaption to rewards (Park
et al., 2012).

7.1. Opioid receptors and social rewards

Another important neurochemical system that is implicated in the
modulation of social reward are endogenous opioid and the mu-opioid
receptors. The μ-opioid receptor (MOR) system has also been shown to
interact with oxytocin and dopamine in social bonding and social re-
ward (Smith et al., 2018). Originally formulated by Panksepp, the brain
opioid theory of social attachment posits that opioids contribute to
emotional responding within close relationships and to the behavior or
feelings that might promote further bonding (Inagaki, 2018; MacHin
and Dunbar, 2011; Panksepp et al., 1980). Hence, reductions in opioid
activity should increase desire for social companionship, and increases
in this system should reduce the need for affiliation. Extensive data
from animals (for reviews, see Inagaki, 2018; Loseth et al., 2014) sug-
gest that opioids are released during affiliative behavior and increase
feelings of social connection, whereas inhibiting opioids (resulting in
low opioid tone) motivates social contact and increases feelings of
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social disconnection. Pharmacologically altering opioid activity with
opiate drugs leads to similar effects on social behavior and feelings of
social connection. For example, animals treated with moderate doses of
opiates tend to socially isolate themselves; conversely, the opioid an-
tagonists naloxone and naltrexone have opposite effects, increasing
affiliation. In addition, genetic mutations of the mu opiate receptor
(MOPR) that alter receptor function can influence social behavior in a
variety of animal models and humans (Barr et al., 2008; Moles et al.,
2004; Pearce et al., 2017). The nonsynonymous single nucleotide
polymorphism (SNP) A118 G within the MOPR gene (OPRM1) is
commonly seen in European (15–30 %) and Asian (49–60 %) popula-
tions (Bergen et al., 1997; Gelernter et al., 1999; Tan et al., 2003).
Individuals that carry the G-allele have an increased tendency to be-
come engaged in affectionate relationships and experience more plea-
sure in social situations (Troisi et al., 2011).

8. Rodent models of social withdrawal target the social decision-
making network

The fact that various neuropsychiatric disorders that present social
withdrawal symptoms are precipitated by different environmental
triggers (such as exposure to adverse stressors or infectious agents) or
certain biological causes (neural manipulations, pharmacological
agents, genetic mutations) is well documented. Therefore, many animal
models of social withdrawal are based on the application of stressors, or
infectious/pharmacological agents either during their developmental
period or during adulthood. In addition, some models recapitulate other
possible etiologies of social withdrawal by directly targeting the puta-
tive underlying biological substrate like alterations in specific brain
circuitries or distinct genes that are believed to be associated with so-
cial withdrawal/avoidance. Following are several examples of these
employed strategies

8.1. Direct manipulations of the SDMN

Functional magnetic resonance imaging, electrical, pharmacological
and optogenetic stimulation and lesion studies have begun to delineate
the key neurons and neural circuits within the SDMN that specifically
subserve social approach/avoidance behaviors. Notably, the mPFC has
emerged as a crucial “top-down” neural substrate for controlling social
interaction in both humans (Bicks et al., 2015; Dolan, 2002) and other
animals (Kim et al., 2015; Yizhar, 2012). Major structural and func-
tional changes in the PFC have been documented in human imaging and
postmortem studies of patients with MDD, autism and schizophrenia
(Amaral et al., 2008; Drevets et al., 2008; Tan et al., 2007). These
changes generally include reduced neuronal PFC activity of MDD pa-
tients (Drevets et al., 2008), but increased PFC activity (increased ex-
citation and inhibition (E/I) balance) in autism and schizophrenia
(Lewis et al., 2005; Rubenstein and Merzenich, 2003). Neural activity in
the mPFC correlates with social approach behavior in mice (Lee et al.,
2016). A subset of mPFC neurons exhibited elevated discharge rates
while mice approached the social target in a three-chamber sociality
test (Kim et al., 2015). Accordingly, selective pharmacogenetic inhibi-
tion of glutaminergic mPFC neuron projections to specifically the PAG
increased social avoidance (Franklin et al., 2017). In contrast however,
acute optogenetic excitation of mPFC projections to dorsal raphe nu-
cleus or lateral habenula has been reported to impair social functioning
and to induce social avoidance (Benekareddy et al., 2018; Challis et al.,
2014; Yizhar et al., 2011). Accordingly, NMDA receptor dysfunction in
the mPFC increases social approach behavior in mice (Finlay et al.,
2015). Hence, similar to human findings indicated above, both hypo-
activity and hyper-activity of mPFC seems to be able to decrease
sociability in rats and mice, likely depending on the specific cluster of
mPFC neurons involved or experimental paradigm used.

A major projection target of the PFC, and important SDMN structure
regulating social approach and avoidance, is the amygdala. The

amygdala may mediate social facilitation, in part, via projections to the
ventral hippocampus. A recent study optogenetically manipulated the
projections from pyramidal neurons in the basolateral amygdala to the
ventral hippocampus in mice performing social interaction tests.
Deactivation of these projections significantly increased social interac-
tions, whereas activation of the projections decreased social interac-
tions (Felix-Ortiz and Tye, 2014).

Another often employed pharmacological method to induce social
withdrawal in rodents is sub-chronic treatment with PCP, an antagonist
of the NMDA-receptor (see for example Seillier and Giuffrida, 2009).
Utilizing this model, Matricon et al. (2016) have studied which activity
pattern the brain expresses during the display of social withdrawal
(Matricon et al., 2016). Firstly, they show that after exposure to the SIT,
other brain areas were more activated, measured by means of c-fos
expression, than after a non-social exploratory task. Contrasting acti-
vation patterns were found in the brain areas connected the SDMN, as
deviations in expression can be found in the infralimbic cortex (IL),
OFC, dorsomedial caudate putamen (dmCPu), ventrolateral septum
(VLS), posterior nucleus of the central amygdala (pCeA) and dorso-
lateral PAG. Interestingly, many of these changes were blocked by in-
ducing social withdrawal through PCP-treatment. PCP-treatment pre-
vented the changes in c-fos activation in the IL, OFC, dmCPu, VLS and
pCeA. Furthermore, PCP-treated animals showed activation of the
dorsomedial BNST after exposure to the SIT and a decrease in c-fos
positive cells in the basolateral amygdala and VTA after both the social
and non-social task (Matricon et al., 2016). Effects of PCP on the VTA
were shown to be reproducible as they were also found by another
study (Katayama et al., 2013). Interestingly, many of the areas affected
by PCP-treatment appear to play a key role in the mesolimbic reward
system and overlap with the SDMN. However, the social effects of PCP
might be non-specific, as PCP is known to have general rewarding ac-
tions (Carlezon and Wise, 1996). Effects of pharmacological interven-
tions on social withdrawal are not confined to the glutamatergic
pathway; other neurotransmitter systems related to the SDMN are also
involved (see for review Gururajan et al., 2010). Pharmacologically
targeting the Dopaminergic system by injections of amphetamine in rats
has provided conflicting results regarding social withdrawal. After
acute treatment, both increases and decreases in social behavioral le-
vels have been found. However, after chronic treatment evidence seems
to favor a social withdrawal inducing effect (Gururajan et al., 2010).
Other pharmaceuticals affecting the dopaminergic system have also
been tested on their effects on social withdrawal. Classical anti-
psychotics, such as haloperidol and chlorpromazine, tend to induce
social withdrawal in the SIT. Whereas atypical antipsychotics lead to an
increase of social behavior (Corbett et al., 1993). Concerning the ser-
otonergic system, acutely 3,4-methylenedioxymethamphetamine
(MDMA) seems to have prosocial effects, both in humans and rodents
(see for review (Kamilar-Britt and Bedi, 2017)). MDMA initially leads to
an increase in the extracellular availability of 5-HT (Nichols et al.,
1982), coinciding with its acute effects. However, the long-term pre-
treated rodents show lowered 5-HT availability in the hippocampus,
frontal cortex, striatum and amygdala, coinciding with a display of
social withdrawal (Bull et al., 2004; McGregor et al., 2003). Indeed,
sub-chronic treatment with MDMA has consistently been found to lead
to social withdrawal (Gururajan et al., 2010). Taken together, it is clear
that pharmacological interventions targeting the neurotransmitters
central to the SDMN can have profound effects on social withdrawal.

8.2. Effects of infection

However, this same network can also be targeted by making use of
more naturally occurring biological triggers, namely exposure to pa-
thogens or stressors. Injecting rodents with lipopolysaccharide (LPS),
the part of gram-negative bacteria that is recognized by the immune
system as a pathogen (Wang and Quinn, 2010), causes a strong re-
duction in social exploration (Bluthe et al., 1992), as part of the sickness
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syndrome. Furthermore, in rats that were intraperitoneally (i.p.) in-
jected with LPS, impairments in social behavior could be partly atte-
nuated by an i.p., but not intracerebroventricular, injection of an in-
terleukin-1 (IL-1) receptor antagonist (Bluthe et al., 1992). This
suggests a role for peripheral cytokine IL-1 in social behavior. However,
other cytokines such as interleukin-6 (IL-6) also seem to play a role
(Bluthé et al., 2000). Interestingly, these cytokines also seem to affect
the SDMN. After injecting rats with IL-1, c-fos activation can be found
in several areas including the amygdala and catecholaminergic neurons
of the nucleus of the solitary tract (NTS) (Brady et al., 1994), which
project to the amygdala (Zardetto-Smith and Gray, 1990). Immediate-
early gene expression in the amygdala is also found after i.p. adminis-
tration of IL-6 in mice (Tinsley et al., 2001). Moreover, multiple cyto-
kines seem to modulate neurotransmitters such as dopamine (DA),
norepinephrine (NE) and serotonin (5-HT) in either the amygdala or
another part of the SDMN such as the striatum (see for review Dunn,
2006).

8.3. Effects of stress

Similar to pathogens, stress also can induce decreased social beha-
vior (see for example Colyn et al., 2019) and it is known to also enhance
plasma cytokine levels (Cheng et al., 2015). Stress can be highly het-
erogenic in nature, it can be experienced acutely or chronically and it
may be of social or non-social origin. A wide variety of stressors seem to
induce decreases in social interaction or increased social avoidance in
rodents (see for review Toth and Neumann, 2013). However, social and
non-social stressors seem to have differential behavioral effects. When
focusing on chronic stressors, chronic mild stress (CMS) does not seem
to lead to social withdrawal (Venzala et al., 2013) or only under certain
conditions (Gross and Pinhasov, 2016). An often-used non-social
stressor is chronic restraint stress (CRS), but the effects of this stressor
also vary. Studies using adult rats have shown both increased social
approach behavior (Li et al., 2016) and social withdrawal (i.e. de-
creased interaction and increased avoidance) (Varlinskaya et al., 2018;
Zain et al., 2019) after CRS, although differences might be based on
methodological discrepancies. Chronic social stress, in the form of
chronic social defeat stress (CSDS), appears to lead to more stable ef-
fects on social behavior, as it frequently has been shown to induce so-
cial avoidance in vulnerable animals (see for example Bondar et al.,
2018; Colyn et al., 2019; Ito et al., 2017; Patel et al., 2018). This has led
to the use social avoidance as a behavioral biomarker for social defeat
stress (SDS) allowing the selection of susceptible and resilient in-
dividuals. In non-manipulated individuals, vulnerability to SDS relates
to multiple factors, including trait anxiety and increased cytokine (IL-6)
levels (Nasca et al., 2019). Interestingly, stress induced behavioral
changes also coincide with changes in the SDMN brain nodes. Structural
changes can be seen in the PFC, hippocampus and BLA. After CSDS
dendritic connectivity is found to be downregulated in the PFC and
hippocampus and upregulated in the amygdala (Colyn et al., 2019;
Patel et al., 2018). Also neurotransmitter systems are affected by CSDS.
Francis et al. (2015) show that activity concerning two subtypes of
medium spiny neurons in the NAc, one enriched with the dopamine
receptor D1 and the other with D2, is influenced by CSDS. Whereas
excitatory input is increased in the D1 subtype, it is decreased in the D2
subtype of the medium spiny neurons. Furthermore, modulating the
activity of these neurons can influence the effects of CSDS, as activating
the D1 neurons results in resilience against the stressor and inhibition
induces the behavioral outcomes (Francis et al., 2015). Besides dopa-
mine, the oxytocinergic system also appears to play a role, as OXT in-
fusion can rescue the social deficits caused by CSDS (Lukas et al., 2011).
Interestingly, the effects of CSDS on social avoidance in susceptible
animals can also be blocked by countering (neuro)inflammation (Ito
et al., 2017). This demonstrates the potential overlap between path-
ways involving pathogen or stress exposure leading to changes in
SDMN, ultimately leading to social withdrawal.

8.4. Genetic manipulation

Social behavioral deficits can also be induced by manipulating the
genetic building blocks of the pathways the aforementioned induction
methods act on. Mice deficient for GluN3A, a gene coding for a subunit
of the NMDA-receptor, show clear hallmarks of social withdrawal, in-
cluding social avoidance and reduced social interaction, which could be
rescued by oxytocin (Lee et al., 2018). Knocking-out the oxytocin re-
ceptor itself similarly leads to a similar phenotype in which social in-
teractions are reduced and avoided, both in the VBS and in classical
behavioral tests (Pobbe et al., 2012). Regarding the pathway via which
the immune system influences social behavior, genetic manipulation of
toll-like receptor-2 (TLR-2) has also been shown to lead to social dis-
crepancies. Mice in which the TLR-2 is knocked-out show a clear re-
duction in social interaction time, although they did not display social
avoidance (Park et al., 2015).

9. Social behavior is highly conserved

It is clear that social affiliative behavior is not unique to humans.
Animals from various taxa show a certain degree of sociality (i.e. group-
living) and even outside the animal kingdom social behavior can be
observed. Amoeba (Gregor et al., 2010), roundworms (McBride and
Hollis, 1966), the common fruit fly (Ramdya et al., 2017; Soto-Yéber
et al., 2018), mice (Kondrakiewicz et al., 2019) and primates (Kudo and
Dunbar, 2001), all tend to be social in one way or another. Such a wide
range of species showing comparable behaviors hints towards con-
served biological mechanisms that control these behaviors. This is
confirmed in the finding that the part of the body that principally
controls human social behavior, the social brain, goes far back on the
evolutionary tree. O’Connell and Hofmann (2012) show that the SDMN
has been conserved over 450 million years of evolution, the time of the
last common ancestor of the ray-finned fish and tetrapods (O’Connell
and Hofmann, 2012). Arendt et al. (2016) propose that the evolution of
the brain dates back to a common ancestor of the cnidarians (i.a. jel-
lyfish) and bilaterians (i.a. insects and vertebrates) (Arendt et al.,
2016). The building blocks of the system controlling social behavior
may thus stem from a common ancestor for many of our typical model
organisms including caenorhabditis elegans, drosophila melanogaster, mus
musculus and rattus norvegicus. This would suggest that similar me-
chanisms can be found that drive social behavior, which could be ex-
pected to respond alike to similar (changes in) neuroactive agents. In-
terestingly, dopamine seems to have modulatory effects on social
behavior across taxa. In c. elegans dopamine administration leads to an
increase in social behavior, whereas antipsychotics and antagonists for
the Dopamine D2 receptor (DRD2) decrease aggregation (Dwyer et al.,
2015). Fernandez et al. (2017) show that manipulation of the dopa-
minergic system, leading to a reduction of Dopamine availability, de-
creases sociability in drosophila m. (Fernandez et al., 2017). In mice,
lowered social interaction time can be found when atypical anti-
psychotics are administered (Corbett et al., 1993). These antipsychotics
all show antagonism for at least one of the dopaminergic receptors. Not
only manipulation of the dopamine system can alter social behavior in
distant species, substances affecting serotine pathways show similar
evolutionary conservatism. As stated before, MDMA has prosocial ef-
fects, in humans and rodents (see for review (Kamilar-Britt and Bedi,
2017). However, similar effects can be found in cephalopods, as MDMA
infusion led to increased social interaction in octopus bimaculoides
(Edsinger and Dölen, 2018). This suggest that the biological basis of
social behavior is highly conserved and present in virtually all species.
Social behavior is a way for organisms to cope with living in a group
and is thus a necessity for most species (Alexander, 1974). Intuitively
this would exclude solitary species. However, solitary species also show
signs of sociality. Elbroch et al. (2017) provide evidence that the cougar
(puma concolor), a large “solitary” carnivorous felid, displays social
strategies similar to that of more social animals. All assessed cougars
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were part of a social network in which they displayed a hierarchy. At
large carcasses conspecifics tolerated each other, which was explained
by direct reciprocity. Interestingly, this tolerance was not explained by
kinship (Elbroch et al., 2017). More studies are reporting sociality in
classically “solitary” species (see for example Wagner et al., 2008 &
Wiens and Zitzmann, 2003) indicating that social behavior is wide-
spread across animals.

10. Short-term social withdrawal is adaptive

10.1. An adaptive response to social stress

Although evolution has shaped social structures for optimal survival
by favoring cooperative exchanges, social interactions are often the
main source of stress that may negatively impact the health and well-
being of certain (susceptible) individuals (Koolhaas et al., 2011). Social
stressors ranging from acute social conflicts and defeat to chronic social
instability and sustained social subordination recruit a highly conserved
biological machinery principally positioned to effectively deal or cope
with these adverse social life situations.

Social hierarchies are a way for group-living organisms to organize
themselves in order to assure the allocation of limited resources such as
food or mates. Although these hierarchical structures entails both
winners and losers, most species seem to have the tendency to organize
into social hierarchies, including groups of humans (see for review
Koski et al., 2015). While it is currently under discussion how stress is
related to rank, it is clear that whenever there is a dispute over the
hierarchical status quo this leads to a social conflict (Sapolsky, 2005). In
such a dispute, the losing animal (i.e. the subordinate) experiences a
situation that closely resembles that of social defeat as described above.
Subordinate mice display decreased social interactions when compared
to dominant mice in the same colony (So et al., 2015). This suggests a
socially withdrawn phenotype, comparable with that seen after CSDS.
Indeed, subordination in a colony has been put forward as a model for
chronic social stress (Blanchard et al., 1995). This chronic stress might
be leading to the observed social withdrawal phenotype, leading to
avoidance of the stressor (i.e. the dominant animals). Avoidance of
adverse and stressful situations can be considered an effective adaptive
response, as further harm is avoided. Usually dominant animals cease
their overt aggressive acts and attacks towards other animals that
clearly signals social subjugation and submissiveness. This suggest that,
in healthy animals, the cue of a submissive display (incl. withdrawal)
prevents the continuation of aggression and thus further harm
(Natarajan et al., 2009; Tinbergen, 1952).

10.2. An adaptive response to infection

Group size and contagious parasitism show a positive correlation
(Cote and Poulinb, 1995; Patterson and Ruckstuhl, 2013; Rifkin et al.,
2012). Thus, certain (social) behavioral changes should have evolved to
adapt to the increased susceptibility to pathogens in groups. The most
obvious behavioral adaptation that could relate to this is “sickness
behavior”. Sickness behavior refers to an all-out adaptive response to
pathogens, which was first described, as such, by Benjamin L. Hart
(Hart, 1988, 1985). It is characterized by a variety of behavioral
changes, including anorexia, lethargy, depression and reduced
grooming, and is thought to be mainly induced by cytokines such as IL-
1 (Hart, 1988). Further research into sickness behavior confirmed that
cytokines indeed lead to the symptoms mentioned above, including
anhedonia and social withdrawal (see for review Dantzer, 2001 &
Larson and Dunn, 2001). The behavioral display shown after infection
is thought to conserve energy to efficiently counter the pathogen (Hart,
1988). Supporting this is the fact that although animals show social
withdrawal (e.g. as increased social avoidance/decreased approach)
they increase their huddling behavior (Yee and Prendergast, 2010),
which is a key component in thermoregulation and thus energy

expenditure.
The display of sickness behavior after infection can be mimicked by

injecting rodents with the injection of lipopolysaccharide (LPS), which
also leads to social withdrawal (Bluthe´ et al., 1992). However, ex-
posing a rodent to LPS does not only modulate the behavior of the
“infected” individual, it also effects its conspecifics. Boillat et al. (2015)
showed that rodents prefer non-infected individuals (Arakawa et al.,
2010; Boillat et al., 2015), however this behavior might depend on
previous experiences (Renault et al., 2008). Similar to sickness beha-
vior, avoidance of infected individuals can be seen in multiple species.
Healthy Caribbean spiny lobsters (panulirus argus) tend to avoid in-
dividuals that are infected (Behringer et al., 2006). Also humans appear
to show tendencies of social avoidance when questioned about their
willingness to interact with a person suffering from a variety of illnesses
(Crandall and Moriarty, 1995). As such, pathogens appear to modulate
both the activity of the host as well the activity of its conspecifics
leading to social withdrawal both by and from the infected animal. In
humans, withdrawal from the infected individual appears to rely, at
least partly, on facial cues, as Axelsson et al. (2018) show that subjects
are able to recognize LPS injected individuals based only on facial cues
from pictures taken 2 h after the injection (Axelsson et al., 2018). In
rodents, odor appears to play a key role. Rats tend to show more
avoidance and less sniffing of soiled bedding derived from LPS/inter-
leukin-1 injected conspecifics, compared to that derived from con-
specifics injected with saline (Arakawa et al., 2010). Boillat et al.
(2015) show that the preference for healthy versus infected conspecifics
can be mitigated by removing part of the olfactory system (i.e. the
vomeronasal organ) in mice. The use of the olfactory system in sickness
recognition is, however, not unique to rodents. This method has also
been found in primates. Mandrills (mandrillus sphinx) show a similar
avoidance of faecal samples of infected individuals (Poirotte et al.,
2017), supporting the hypothesis that odour plays a crucial role in the
recognition of sick conspecifics. As such, it is clear that both the in-
fected animals as its peers show an adaptive form of acute social
withdrawal in response to pathogen exposure. Either to conserve en-
ergy and counter the pathogen or to attempt to avoid the pathogen.

11. Long-term social withdrawal can be induced by life-history
events

The above suggest that social withdrawal is part of an adaptive
response which in itself can have beneficial properties. However, in the
above situations the exposure to the cause and expression of social
withdrawal was always of a temporary nature. An adaptive behavioral
response to an acute situation can become a serious risk factor for an
individual’s health and quality of life if it becomes chronic, excessive
and/or leading to lasting social isolation.

11.1. Adverse life events during critical periods

Early-life adverse experiences can lead to a change in the behavioral
phenotype later in life including social behavior. These experiences
may occur even as early as during gestation. As stated above, when a
rodents’ immune system is activated, they (transiently) display sickness
behavior. The same can be observed in pregnant dams (see for example
Kirsten et al., 2010). Interestingly, acute infection of the mother during
gestation also holds consequences for the offspring. The consequence,
however, persist into adulthood. Offspring from dams that were in-
fected during gestation show long-term changes in behaviors such as
diminished locomotor activity and social interaction (see for review
Boksa, 2010). After maternal immune activation (MIA) social with-
drawal can be found in mice (Shi et al., 2003; Smith et al., 2007) and
male rats (Kirsten et al., 2010). It has also been implicated to play a role
in the etiology of human neuropsychiatric disorders (see for review
Estes and McAllister, 2016).

Not only pathogens, but also (social) stressors in the early life of an
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animal can lead to social withdrawal later in life. Adverse social events
shortly after weaning lead to a reduction of social behavior later in life.
In juvenile mice (24 days old), social defeat stress exposure for one, five
or ten consecutive days leads to social avoidance. This effect can be
seen both acutely, one day after exposure, and four weeks after ex-
posure. In contrast, adult mice (70 days old) show no change in social
behavior after just one day of SDS and only show long-term effects after
10 consecutive days of SDS exposure (Mouri et al., 2018). This suggests
that animals are particularly vulnerable to social stressors in this ju-
venile period, leading to social deficits during adulthood. Similarly to
SDS, social isolation can induce social withdrawal later in life (Hol
et al., 1999; Lukkes et al., 2009). Key in this reduction of social beha-
vior appears to be the reduced ability for social play (Hol et al., 1999).
Social play occurs mainly in the period around and after weaning and
appears to play a key developmental role (see for review Vanderschuren
and Trezza, 2014). This suggests that adverse events during specific key
developmental periods can induce social deficits later in life. Evidence
for this has also been found in humans. Children of mothers that ex-
perienced either the Dutch hunger winter (1944–1945) or the Chinese
famine (1959–1961) show an increased prevalence of neuropsychiatric
disorders (Brown et al., 1995; Susser and Lin, 1992; Xu et al., 2009).
Both of these historical events subjected these children to prenatal
stress by substantially lowering the nutritional intake of the mother.
Similarly, adverse experiences during childhood pose a risk factor for
neuropsychiatric disorders (Choi et al., 2017; Rhee et al., 2019), in-
cluding those connected to social withdrawal. Along those lines, a
higher exposure to adverse childhood experiences relates to increased
SZ symptomatology, particularly when these adverse events are related
to abuse and neglect (Carbone et al., 2019). From this we can conclude
that life history events in both humans and rodents can have long-
lasting effects in terms of social behavior. These effects seem to have
adaptive value, if the environmental factor that led to the behavioral
change would still be relevant as originally hypothesized by Belsky
et al. (1991) in their adaptive calibration theory of adaptive life history
strategies (Belsky et al., 1991). This theory proposes that early life
experiences serve an evolutionary function by signaling to the offspring
the amount of harshness and/or availability and predictability of re-
source information vital to the allocation of future reproductive effort.
In harsh and/or unpredictable environments, it makes more sense to be
aware of possible environmental risks. Avoidantly attached individuals,
for example, have a more accessible rapid fight-flight schema and are
quicker to react to perceived threats (Ein-Dor et al., 2011a, 2011b),
indicating the adaptive advantages of such an avoidant attachment
style (Szepsenwol and Simpson, 2019). However, in many of the
aforementioned cases there is a mismatch between the environment
during early life and the later environment, causing the expression of
social withdrawal to be maladaptive (Schmidt, 2011).

11.2. Genetic predispositions for stress susceptibility

Stress and/or infection alone often only lead to behavioral deficits
in a susceptible subpopulation. This susceptibility can come from being
exposed to these adverse events in a particularly vulnerable develop-
mental period, but often also genetic vulnerabilities appear to play an
important role in connecting stress during particular periods to social
impairments during adulthood. For example, Coutellier et al. (2015)
showed that mice deficient for the gene Npas4 exhibit cognitive deficits
during adulthood after being exposed to mild chronic stress during
adolescence, in contrast to wild-type animals (Coutellier et al., 2015).
The Npas4 gene also seems to influence social behavior in adult males
born from a mother that was subjected to chronic restraint stress during
gestation. Adult males heterozygous for the Npas4 gene show decreased
social interaction and a social recognition deficit, when compared to
control animals (Heslin and Coutellier, 2018). More evidence comes
from Abazyan et al. (2010), by making use of a mouse model carrying a
mutant version of the gene Disrupted-In-Schizophrenia-1 (DISC1). In

this study, adult mutant mice showed social withdrawal and other de-
pression-related behaviors after maternal immune activation (MIA).
Again, these behavioral alterations where not found in either control
animals receiving MIA or in animals from which the mother was not
infected (Abazyan et al., 2010). However, interactions between genetics
and adverse events are not limited to the prenatal phase. Bartolomucci
et al. (2010) show that mice heterozygous for the SERT gene displayed
social withdrawal after being exposed to chronic social stress during
adulthood, whereas social withdrawal was not seen in wild type mice or
non-stressed animals (Bartolomucci et al., 2010). In humans a role for
the SERT gene in stress vulnerability has also been suggested. Carriers
of the so-called short allele appear to be at higher risk for depression
after stressful life events when compared to carriers of the long allele
(Caspi et al., 2003). These results, however, have not been consistently
replicated, though a majority of the findings still point towards the
initial findings (see for review Avshalom et al., 2010; Uher and
McGuffin, 2008). More genes appear to play a role in stress suscept-
ibility. Social interaction time could be decreased following adult
subthreshold social defeat stress (SSDS) in mice in which Cacna1c was
knocked out in the NAc (Terrillion et al., 2017). The Cacna1c gene has
been also implicated in multiple neuropsychiatric disorders, including
SZ and MDD (Smoller et al., 2013). Similarly, reducing Slc6a15, a
neutral amino acid transporter, expression in specifically the D2
medium spiny neurons of the NAc leads to increase susceptibility to
SSDS (Chandra et al., 2017). Also the Slc6a15 gene has been identified
as a risk factor for MDD (Kohli et al., 2011). Interestingly, CSDS also
leads to reduced expression of both the Cacna1c (Terrillion et al., 2017)
and the Slc6a15 gene (Chandra et al., 2017). Together this suggests that
strong stressors can alter the expression of disorder related genes spe-
cifically in components of the SDMN, thereby increasing susceptibility
for developing social withdrawal.

12. Genetic risk factors for maladaptive social withdrawal

Social withdrawal is most probably caused by a combination of
genetic and environmental factors. Both family and twin studies have
provided evidence for a heritable component of social anxiety/avoid-
ance (Hudson and Rapee, 2000). Social functioning in general is a
continuously distributed trait in the population (Reeb-Sutherland et al.,
2012), while decreased social functioning represents a common early
manifestation of multiple disorders such as Schizophrenia, major de-
pression, and Alzheimer Disease. As part of the PRISM project (Kas
et al., 2019), which is focusing on transdiagnostic studies of shared
symptomatology, it was hypothesized that continuity exists in the ge-
netic underpinnings of social functioning as a trait in the general po-
pulation and as a clinical symptom. As part of the project, a genome-
wide association study (GWAS) was performed using a score based on 4
social functioning self-report questions in the UK Biobank sample (N =
342,461). The trait was significantly heritable, and the GWAS yielded
604 genome-wide significant single nucleotide polymorphisms (SNPs)
in 19 independent loci. Significant genetic correlations of social func-
tioning were indicated with schizophrenia and Major depression, but
not with Alzheimer Disease. The social functioning trait also showed
moderate genetic correlation with loneliness and social anxiety. This
study shows that there is a significant genetic component to variation in
population levels of social functioning. Genome-wide gene-based ana-
lyses - taking into account all SNPs within a gene - performed on the
results of the SNP-wise GWAS of social functioning revealed 33 sig-
nificant genes, including DRD2 (Bralten et al., 2019). In another study
on social isolation and social interaction using the UK biobank sample,
GWAS data was integrated with gene expression and epigenetic data to
identify the relevant cell/tissue types implicated in the regulation of
loneliness. Interestingly, this study observed enrichment of association
signals in regions surrounding genes that are preferentially expressed in
several brain tissues, such as the cerebellum, basal ganglia, and cortex
(Day et al., 2018). This way, building relationships between ‘social’
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genes and neural networks associated to social functioning can be in-
itiated. These findings, however, will require subsequent functional
validation studies, such as those performed in rodent studies, to further
our understanding on the functional relationship between genes, neural
circuits and social functioning.

13. Concluding remarks

Social withdrawal is a common symptom of multiple neu-
ropsychiatric disorders, often occurring prodromal to the disorder.
Abundant evidence supports the view that this behavioral symptom
emerges from a malfunctioning of the brain’s so-called SDMN.
Neuropsychiatric disordered patients that express excessive social
withdrawal symptoms all show malfunctions in at least one component
of the SDMN. Interestingly, the neuroanatomical architecture and mo-
lecular genetic characteristics of the SDMN are highly conserved across
animals species, as is the expression of social withdrawal itself, sug-
gesting that this behavior can be better understood when placed in an
evolutionary framework. Manipulating SDMN components in model
organisms (e.g., mice) can lead to profound alterations in social with-
drawal. However, this behavior is also induced after exposure to a
variety of ecological relevant environmental conditions. For example,
social stressors and/or infectious agents can temporarily affect com-
ponents of the SDMN during adulthood (Colyn et al., 2019; Wang and
Quinn, 2010), leading to an adaptive social withdrawal response prin-
cipally aimed at avoiding the adverse situation. Similar environmental

factors encountered at crucial developmental time-points (e.g. during
gestation or childhood) can lead to long-term alterations in components
of the SDMN, inducing long-lasting social withdrawal (Lukkes et al.,
2009; Mouri et al., 2018). In these situations, the displayed behavior is
often no longer adaptive, as the environment that was responsible for
inducing the behavioral adaptation may not be relevant anymore. The
resulting social withdrawal might have been appropriate to prepare for
a future harsh environment that never came into existence. Long-term
alterations in the structural and/or functional properties of the SDMN
can also find its root cause in genetic predispositions, which either di-
rectly lead to social withdrawal (Lee et al., 2018) or increase suscept-
ibility to an environmental factor such as social stress (Chandra et al.,
2017). These genetic predispositions are often related to neu-
ropsychiatric disorders (see for example Kohli et al., 2011). Fig. 1
summarizes the heterogeneous etiology of social withdrawal. When
social withdrawal becomes excessive and/or chronic, it can have ser-
ious negative health consequences that may even outweigh the poten-
tial adverse health consequences of the risk factors themselves (Holt-
Lunstad et al., 2010).

Future research should take the heterogeneous origin of social
withdrawal into account and make use of its evolutionary well-con-
served neural and genetic basis. Clinical studies should benefit from the
use of objective measures that translate better to the current model
organisms employed to gain in-depth mechanistic knowledge of this
pervasive and often disabling behavioral expression.

Fig. 1. Schematic map of the cortical and
subcortical brain structures that char-
acterizes the social decision-making net-
work and the factors modulating this
neural network leading to social with-
drawal in animal models. Brain areas shaded
in dark represent Newman’s basic Social
Behavior Network (SBN). Brain areas shaded
lightly represent the additional mesolimbic
reward structures that together with the SBN
comprise O’Connell & Hofmann’s SDMN. The
brain areas in white are mainly the core cor-
tical components of Brothers’ and Dunbar’s
Cognitive Social Brain, as well as the main
monoaminergic brainstem nuclei that im-
portantly orchestrates the functional state of
the entire SDMN. Stress and infection in a
healthy individual can lead to temporary
changes in the SDMN, inducing the display of
social withdrawal. However, when these fac-
tors (adverse life events) occur at crucial de-
velopment periods these effects can be long
lasting. Genetic predisposition can alter the
SDMN inducing either a direct effect on social
behavior or lead to increased susceptibility to
stressors. Social withdrawal, the ultimate out-
come of these factors, can be displayed as
lowered social interaction time, increased so-
cial avoidance and other alterations in the so-
cial group dynamics. ACC: anterior cingulate
cortex; AHA: anterior hypothalamic area ; aob:
Accessory olfactory bulb; BLA; basal lateral
amygdala; BNST: bed nucleus stria terminalis;
CeA: central amygdala; DRN: Dorsal raphe
nucleus; HPC: Hippocampus; IC: insular cortex;
LC: locus curoeleus; LHab: lateral habenula;
LS: Lateral Septum; MDT: medial dorsal tha-
lamus; mPFC: medial prefrontal cortex; MPOA:
medial preoptic area; mob: medial olfactory
bulb; NAc: Nucleus Accumbens; OFC; orbito-
frontal cortex PAG: Periaqueductal grey area;
pit: pituitary; VP: Ventral pallidum.
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