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Abstract: High concentrations of high-density lipoprotein (HDL) cholesterol are likely associated
with a lower risk of posttransplantation diabetes mellitus (PTDM). However, HDL particles vary
in size and density with yet unestablished associations with PTDM risk. The aim of our study
was to determine the association between different HDL particles and development of PTDM in
renal transplant recipients (RTRs). We included 351 stable outpatient adult RTRs without diabetes
at baseline evaluation. HDL particle characteristics and size were measured by nuclear magnetic
resonance (NMR) spectroscopy. During 5.2 (IQR, 4.1-5.8) years of follow-up, 39 (11%) RTRs developed
PTDM. In multivariable Cox regression analysis, levels of HDL cholesterol (hazard ratio [HR] 0.61,
95% confidence interval [CI] 0.40–0.94 per 1SD increase; p = 0.024) and of large HDL particles (HR 0.68,
95% CI 0.50–0.93 per log 1SD increase; p = 0.017), as well as larger HDL size (HR 0.58, 95% CI 0.36–0.93
per 1SD increase; p = 0.025) were inversely associated with PTDM development, independently of
relevant covariates including, age, sex, body mass index, medication use, transplantation-specific
parameters, blood pressure, triglycerides, and glucose. In conclusion, higher concentrations of HDL
cholesterol and of large HDL particles and greater HDL size were associated with a lower risk of
PTDM development in RTRs, independently of established risk factors for PTDM development.

Keywords: HDL cholesterol; HDL particles; HDL size; posttransplantation diabetes mellitus; renal
transplant recipients

1. Introduction

Posttransplantation diabetes mellitus (PTDM) is one of the major complications following renal
transplantation. PTDM may be associated with adverse effects on both short- and long-term outcomes
in renal transplant recipients (RTRs), including graft failure, cardiovascular disease, and patient
survival [1–4]. The reported incidence of PTDM varies from 7% to 39% at one year after transplantation
and from 10% to 30% at 3 years post-transplantation [5]. There are similarities between the pathogenesis
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of PTDM and type 2 diabetes mellitus (T2DM) [6]. Alternations in both insulin secretion and insulin
resistance may be considered as risk factor for developing PTDM [7]. Interestingly, although insulin
resistance is involved in the pathogenesis of low concentrations of high-density lipoprotein (HDL)
cholesterol, HDL itself may stimulate insulin secretion and prolong β-cell survival [8]. Many studies
have shown an inverse association between HDL cholesterol and worsening of insulin resistance,
modulation of glucose metabolism, and progression to T2DM [9–13]. Notably, HDL particles vary in
size, density, and function, causing various HDL particles to differ in their associations with insulin
secretion, resistance, and incident diabetes [14,15]. HDL remodeling is altered in insulin-resistant
conditions and T2DM, resulting in decreased HDL cholesterol coinciding with less large and more
small HDL particles [16,17]. Thus, the distribution of HDL particles is altered from large HDL particles
which are rich in cholesteryl esters to small HDL particles in T2DM [18]. Among HDL particles,
measured by nuclear magnetic resonance (NMR) spectroscopy, lower levels of large HDL particles and
smaller HDL particle size were associated with the development of insulin resistance and T2DM, often
independently of typical diabetes risk factors [19–23].

Identifying RTRs who are more likely to develop PTDM may help to provide early interventions
that may reduce mortality and morbidity outcomes in RTRs. Little is currently known about the
association between HDL particle characteristics and the risk for development of PTDM in RTRs.
Therefore, the aim of our study was to determine the association between different HDL particles with
the risk of future PTDM in RTRs.

2. Materials and Methods

2.1. Design and Study Population

For this study, all RTRs (aged≥18 years) with a≥1 year post-transplantation period were eligible for
participation. The data were collected between November 2008 and June 2011, from the Tranplantlines
Food and Nutrition Study (NCT02811835), during outpatient clinic visit at the University Medical
Center Groningen (UMCG), Groningen, the Netherlands, as described previously [24,25]. Written,
informed consent was obtained from 707 (87%) of the 817 initially invited RTRs; only subjects providing
written, informed consent were included in this study. For the present study, we excluded patients
with missing data on HDL indices (n = 239) and patients with diabetes or a history of diabetes at
baseline (n = 117), leaving 351 RTRs eligible patients for analysis. The study was conducted according
to the guidelines laid down in the Declaration of Helsinki, and all procedures involving human
subjects/patients were approved by the Institutional Review Board (METc 2008/186).

2.2. Data Collection

The baseline measurements were performed during a morning visit to the outpatient clinic as
described in detail previously [26]. Information on medication and medical history was derived from
patient records. Alcohol consumption and smoking behaviour information was obtained by using
a questionnaire. Physical activity was assessed by using the valid Short QUestionnaire to ASsess
Health-enhancing physical activity (SQUASH) score in time multiplied by intensity [27]. Body height
and weight were measured, and body mass index (BMI) was calculated as weight (kilograms) divided
by height squared (meters). Blood pressure and heart rate were measured with a semiautomatic device
(Dinamap1846; Critikon, Tampa, FL) every minute for 15 min in a half-sitting position. The average
of the last 3 measurements was calculated as a blood pressure value. All RTRs were instructed to
collect a 24 h urine sample according to a strict protocol on the day before their visit to the outpatient
clinic. Blood was drawn in the morning after the completion of the 24 h urine collection and after
8–12 h fasting.
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2.3. Laboratory Measurements

Plasma glucose was measured using an enzymatic hexokinase assay. Glycated hemoglobin (HbA1c)
was assayed using the turbidimetric inhibition immunoassay (Roche Integra). C-reactive protein (CRP)
was measured using an immunoturbidimetric assay (all Roche Modular P Chemistry platform, Roche
Diagnostics, Mannheim, Germany). Serum creatinine was measured by using an isotope dilution mass
spectrometry (IDMS) traceable enzymatic method on a Roche P-Modulator automated analyzer (Roche
Diagnostics, Basel, Switzerland), cystatin C was measured using a particle-enhanced immuno assay
(Gentian, Moss, Norway), and renal function was assessed by using the combined creatinine cystatin
C-based Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula in order to calculate
the estimated glomerular filtration rate (eGFR) [28]. Urinary albumin concentration was determined by
nephelometry (Dade Behring Diagnostic, Marburg, Germany). Frozen EDTA plasma samples collected
at baseline were sent to LabCorp for testing. Lipoprotein parameters were measured by 1H-NMR
spectroscopy using a Vantera® NMR Clinical Analyzer (LabCorp, Raleigh, USA [29,30]). Triglycerides
(TG, mg/dL), total cholesterol (TC, mg/dL), and HDL cholesterol (HDL-C, mg/dL) were quantified by
using a Lipid Panel Assay NMR platform. To this end, a Lipid Panel Assay for quantifying TG, TC, and
HDL-C was developed using Partial Least-Squares (PLS) regression models that were trained to several
hundred or several thousand 400 MHz proton NMR spectra from serum specimens for which TG, TC,
and HDL-C were chemically measured. Using a PLS regression routine, the spectral information in the
combined methylene and methyl region was trained against the chemical measurements where the
information was connected through latent variables. Cross-validation was performed to optimize the
regression model. Once trained with a sufficient number of specimens, for any test specimen spectrum,
the NMR spectral information was then converted into lipid concentrations using the regression
coefficients for the regression model. Triglyceride-rich lipoproteins (TRL) (24–240 nm), low-density
lipoproteins (LDL) (19–23 nm), HDL (7.4–13.0 nm), and subclasses of HDL particles (small, medium,
and large) were quantified using the amplitudes of their spectroscopically distinct lipid methyl group
NMR signals [31]. HDL size was calculated using the weighted averages derived from the sum of
the diameters of each subclass multiplied by its relative mass percentage. Total TRL, LDL, and HDL
particles were calculated by the sums of the concentrations of the respective subclasses. Estimated
ranges of particle diameter for the subclasses were as follows: large HDL, 9.6–13 nm; medium HDL,
8.1–9.5 nm; and small HDL, 7.4–8.0 nm. All lipoprotein parameters were measured using an optimized
version (LP4 algorithm) of NMR LipoProfile Test [32]. The estimated diameters of the HDL subspecies
were as follows: H7P, 12.0 nm; H6P, 10.8 nm; H5P, 10.3 nm; H4P, 9.5 nm; H3P, 8.7 nm; H2P, 7.8 nm; and
H1P, 7.4 nm.

2.4. PTDM

PTDM was defined on the basis of the American Diabetes Association criteria when at least one of
the following criteria was met: (1) classic symptoms of diabetes (e.g., polyuria, polydipsia, unexplained
weight loss) plus a nonfasting plasma glucose concentration ≥ 11.1 mmol/L (200 mg/dL); (2) fasting
plasma glucose (FPG) ≥ 7.0 mmol/L (126 mg/dL); (3) use of antidiabetes medication; or (4) HbA1c
≥ 6.5% (48 mmol/mol) [33,34]. PTDM was recorded until 30 September 2015. RTRs were censored
for PTDM at the time of graft failure (i.e., when they returned to dialysis or received another kidney
transplantation) or death.

2.5. Statistical Analyses

All analyses were conducted with the use of the statistical packages IBM SPSS (version 24.0.1;
SPSS, Chicago, IL, USA) and STATA/SE (version 14; StataCorp, College Station, TX, USA). A two-sided
p-value less than 0.05 was considered statistically significant. Baseline RTR characteristics were
compared to those with and without incident PTDM using t-tests and Wilcoxon tests for continuous
values with normal distribution and skewed distribution, respectively. Data with normal distribution
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were expressed as mean ± SD, whereas data with skewed distribution were expressed as median
(interquartile range [IQR]). Categorical data were expressed by their percentages and were compared
by means of chi-squared tests. In prospective analyses, the Kaplan–Meier method was used to estimate
PTDM rates in HDL cholesterol, total HDL particles, different subclasses of HDL particles, and HDL
size ranked from the highest to the lowest value in tertiles, and Log-rank test was used to compare the
estimated differences. Cox proportional hazard regression was used to calculate hazard ratios (HR) for
incident PTDM for each predictor for both tertiles of and log-transformed variables which were not
normally distributed, to find out the most significant association of HDL subclass or subspecies with
PTDM development. The proportional hazards assumption was tested for each predictor along with
covariates to see if it was violated. All models were adjusted for age, sex, and BMI. Subsequently, we
performed additive adjustments in Cox regression analyses to avoid too many covariates included,
based on the number of events. In additive multivariable models, we adjusted for smoking behaviour,
alcohol use, and SQUASH score (model 2); lipid-lowering medication use, antihypertensive medication
use, prednisolone dose, calcineurin inhibitor use, and proliferation inhibitor use (model 3); eGFR,
urinary albumin excretion, cytomegalovirus (CMV) infection, and time since transplantation (model 4);
HbA1c (model 5). Lastly, in model 6, we performed additional adjustment for BMI, systolic blood
pressure (SBP), FPG, and triglycerides.

3. Results

3.1. Characteristics of RTRs at Baseline

Baseline characteristics and baseline plasma lipids and lipoproteins of 351 RTRs are shown in
Tables 1 and 2, respectively. RTRs who developed PTDM (n = 39) had a higher BMI, a larger waist
circumference, higher systolic and diastolic blood pressure and HbA1c at baseline in comparison with
RTRs who did not develop PTDM (n = 312). They used prednisolone and calcineurin inhibitor more
frequently (Table 1). Plasma triglycerides and H2P were higher, whereas HDL cholesterol, large HDL
particles, HDL size, H7P, and H6P were lower at baseline in subjects who developed PTDM (Table 2).

Table 1. Baseline Characteristics of 351 RTRs (Renal Transplant Recipients).

Variables Total
Incident PTDM (Posttransplantation

Diabetes Mellitus) p Value

Yes No

Participants, n 351 39 312
General characteristics

Men, % 54.1 61.5 53.2 0.325
Age, year (y) 51.3 ± 13.4 52.2 ± 10.4 51.2 ± 13.9 0.589

Lifestyle parameter
Current smoker, % 14.0 17.9 13.4 0.445

Alcohol use, never, % 10.1 5.4 10.6 0.320
Physical activity score

(time×intensity) 5640 (3220–8940) 4710 (2520–10440) 5760 (3305–8790) 0.597

Body composition
Weight, kg 78.5 ± 16.1 85.5 ± 15.5 77.6 ± 15.9 0.005
Height, cm 173.8 ± 9.3 175.6 ± 9.4 173.6 ± 9.3 0.220
BMI, kg/m2 25.9 ± 4.5 27.7 ± 4.3 25.7 ± 4.5 0.010

Waist circumference, cm 96.2 ± 14.4 104.3 ± 14.1 95.3 ± 14.2 0.001
Transplant demographics

Time since renal transplantation, y 4.9 (1.5–11.8) 3.2 (1.4–11.8) 5.0 (1.7–11.9) 0.297
Donor age, y 44.0 ± 15.2 44.4 ± 16.1 44.0 ± 15.2 0.888

Living donor, % 37.9 43.6 37.2 0.437
Dialysis duration, months 26(5–55) 21 (0–59) 26 (6–54) 0.604
Delayed graft function, % 8.0 12.8 7.4 0.237

Rejection, % 23.4 20.5 23.7 0.656
CMV infection, % 25.6 26.3 20.5 0.436

Blood pressure
Systolic blood pressure, mmHg 135.8 ± 17.4 142.7 ± 15.9 135.0 ± 17.4 0.008
Distolic blood pressure, mmHg 82.8 ± 11.2 88.1 ± 11.6 82.1 ± 11.0 0.003
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Table 1. Cont.

Variables Total
Incident PTDM (Posttransplantation

Diabetes Mellitus) p Value

Yes No

Hypertension, % 90.3 97.4 89.4 0.111
Glucose Homeostasis

Glucose, mmol/L 5.1 ± 0.6 5.3 ± 0.6 5.1 ± 0.06 0.064
HbA1c, % 5.6 ± 0.3 6.0 ± 0.3 5.6 ± 0.3 < 0.001

Hs-CRP, mg/L 1.4 (0.6–3.8) 1.6 (0.8–2.8) 1.4 (0.6–4.2) 0.766
Renal function

eGFR, mL/min per 1.73 m2 42.9 (30.4-56.8) 41.1 (25.0-52.3) 43.0 (31.0–57.8) 0.172
Urinary Albumin excretion, mg/24 h 38.9 (9.5–170.5) 43.2 (6.8–201.6) 38.5 (10.0–169.7) 0.615

Medication use
Lipid-lowering medication, % 49.3 56.4 47.8 0.309

Anti-hypertensive medication, % 88.0 94.9 87.2 0.163
Prednisolone, mg/day 8.8 ± 1.8 9.3 ± 1.3 8.8 ± 1.9 0.024

Calcineurin inhibitor, % 58.1 76.9 55.8 0.012
Cyclosporine, % 41.9 53.8 40.4
Tacrolimus, % 16.5 23.1 15.7

Proliferation inhibitor, % 86.3 76.9 87.5 0.070
Azathioprine,% 19.9 15.4 20.5

Mycophenolic acid, % 66.4 61.5 67.0

Data are the mean ± SD, median (interquartile range) unless otherwise indicated. Significance was tested by t-tests
and Wilcoxon tests for normal distribution and skewed distribution of continuous values respectively. BMI: body
mass index; CMV: cytomegalovirus; HbA1c: glycated hemoglobin; Hs-CRP: high-sensitivity C-reactive protein;
eGFR: estimated glomerular filtration rate.

Table 2. Baseline Lipids and Lipoproteins Values of 351 RTRs.

Variables Total
Incident PTDM p Value

Yes No

Participants, n 351 39 312
Triglycerides (total), mg/dL 149 (103–208) 173 (126–297) 146 (102–200) 0.004

Total cholesterol, mg/dL 198.9 ± 41.0 295.1 ± 45.8 198.1 ± 40.3 0.365
HDL cholesterol (total), mg/dL 54.4 ± 14.8 48.4 ± 10.6 55.2 ± 15.1 0.001

TRL particles (total), nmol/L 189 (138–265) 219 (148–316) 184 (136–263) 0.068
LDL particles (total), nmol/L 1400 (1171–1632) 1427 (1335–1673) 1395 (1158–1622) 0.212
HDL particles (total), µmol/L 20.5 ± 3.3 20.1 ± 3.2 20.5 ± 3.3 0.469
Large HDL particles, µmol/L 2.2 (1.3–3.6) 1.4 (1.0–2.3) 2.3 (1.4–3.8) <0.001

Medium HDL particles, µmol/L 4.9 ± 2.1 4.6 ± 1.9 4.9 ± 2.2 0.452
Small HDL particles, µmol/L 13.0 ± 3.3 13.8 ± 2.9 12.9 ± 3.3 0.095

HDL size, nm 9.1 ± 0.5 8.9 ± 0.3 9.2 ± 0.5 0.001
HDL Subspecies

H7P, µmol/L 0.3 (0.1–0.5) 0.2 (0.1–0.3) 0.3 (0.1–0.6) 0.022
H6P, µmol/L 0.6 (0.2–1.5) 0.3 (0.1–0.7) 0.7 (0.2–1.6) 0.002
H5P, µmol/L 0.9 (0.4–1.5) 0.8 (0.4–1.2) 0.9 (0.4–1.5) 0.378
H4P, µmol/L 1.7 (1.1–2.5) 1.7 (1.3–2.4) 1.7 (1.1–2.5) 0.841
H3P, µmol/L 2.8 (1.5–4.2) 2.9 (1.4–4.3) 2.8 (1.5–4.2) 0.768
H2P, µmol/L 9.6 (7.6–11.8) 11.0 (8.8–12.5) 9.4 (7.4–11.6) 0.024
H1P, µmol/L 3.0 (1.8–4.5) 3.0 (1.5–4.1) 3.0 (1.8–4.7) 0.569

Data are the mean ± SD, median (interquartile range) unless otherwise indicated. Significance was tested by
t-tests and Wilcoxon tests for normal distribution and skewed distribution of continuous values respectively. HDL:
high-density lipoprotein; TRL: triglyceride-rich lipoprotein; LDL: low-density lipoprotein.

3.2. Association of HDL Cholesterol and HDL Particle Characteristics with Incident PTDM

In total, 39 RTRs (11%) developed PTDM during a median follow-up of 5.2 years (IQR 4.1–5.8
years). The median time between transplantation and study baseline for the RTRs who developed
PTDM was 5.0 years (IQR 1.8–12.0 years). PTDM risk was first compared among the tertiles of HDL
cholesterol, total HDL particles, HDL subclasses, and HDL size by Kaplan–Meier analysis (Figure 1).
All of these HDL variables were categorized in tertiles from the highest to the lowest values. HDL
cholesterol, large HDL particles, and HDL size showed statistically significant associations with PTDM
(p = 0.019, p = 0.004, and p = 0.004, respectively). Total HDL, medium HDL, and small HDL particle
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concentrations were not associated with PTDM development in Kaplan–Meier analysis (p = 0.440,
p = 0.347, and p = 0.110, respectively).
Biomolecules 2020, 10, x 7 of 16 

  

A B 

 
 

C D 

  

E F 

Figure 1. Kaplan–Meier curves for PTDM development according to the tertiles of HDL indices in 351 
RTRs. Panel (A) for HDL cholesterol, panel (B) total HDL particles, Panel (C) for large HDL particles, Panel 
(D) for for medium HDL particles, Panel (E) for small HDL particles, and panel (F) for HDL size. 

Subsequently, we performed Cox proportional hazard regression analyses for HDL cholesterol, 
large HDL particles, HDL size, with incident PTDM (Table 3). Higher HDL cholesterol was associated 
with lower risk of PTDM in crude analyses (HR, 0.53; 95% confidence interval [CI], 0.36–0.80 per 1SD 
mg/dL; p = 0.002). After adjustment for age, sex, and BMI (model 1) the association remained 
statistically significant (HR, 0.55; 95% CI, 0.36–0.83 per 1SD mg/dL; p = 0.005). Adjustment for 
additional variables including alcohol consumption, smoking status, and physical activity (model 2), 
use of lipid-lowering medication, anti-hypertensive medication, prednisolone dose, calcineurin 
inhibitors, and proliferation inhibitors (model 3), eGFR, albuminuria, CMV infection, and time after 
transplantation (model 4), and HbA1c (model 5) did not attenuate the association between HDL 
cholesterol and PTDM. After full adjustment for age, sex, BMI, SBP, FPG, and TG (model 6), the 
negative association remained statistically significant (HR, 0.61; 95% CI, 0.40–0.94 per 1SD mg/dL; p 

0 2 4 6
0

10

20

30

Follow up (years)

po
st

tr
an

sp
la

nt
 d

ia
be

te
s 

%

Low
Medium

High

Log-rank P=0.019 HDL Cholesterol

0 2 4 6
0

10

20

30

Follow up (years)

po
st

tr
an

sp
la

nt
 d

ia
be

te
s 

%

Low

Medium

High

Log-rank P=0.44 Total HDL

0 2 4 6
0

10

20

30

Follow up (years)

po
st

tr
an

sp
la

nt
 d

ia
be

te
s 

%

Low

Medium

High

Log-rank P=0.004 Large HDL

0 2 4 6
0

10

20

30

Follow up (years)

po
st

tr
an

sp
la

nt
 d

ia
be

te
s 

%
Low
Medium

High

Log-rank P=0.347 Medium HDL

0 2 4 6
0

10

20

30

Follow up (years)

po
st

tr
an

sp
la

nt
 d

ia
be

te
s 

%

Low
Medium

High

Log-rank P=0.110 Small HDL

0 2 4 6
0

10

20

30

Follow up (years)

po
st

tr
an

sp
la

nt
 d

ia
be

te
s 

%

Low

Medium

High

Log-rank P=0.004 HDL size

Figure 1. Kaplan–Meier curves for PTDM development according to the tertiles of HDL indices in 351
RTRs. Panel (A) for HDL cholesterol, panel (B) total HDL particles, Panel (C) for large HDL particles,
Panel (D) for for medium HDL particles, Panel (E) for small HDL particles, and panel (F) for HDL size.

Subsequently, we performed Cox proportional hazard regression analyses for HDL cholesterol,
large HDL particles, HDL size, with incident PTDM (Table 3). Higher HDL cholesterol was associated
with lower risk of PTDM in crude analyses (HR, 0.53; 95% confidence interval [CI], 0.36–0.80 per 1SD
mg/dL; p = 0.002). After adjustment for age, sex, and BMI (model 1) the association remained statistically
significant (HR, 0.55; 95% CI, 0.36–0.83 per 1SD mg/dL; p = 0.005). Adjustment for additional variables
including alcohol consumption, smoking status, and physical activity (model 2), use of lipid-lowering
medication, anti-hypertensive medication, prednisolone dose, calcineurin inhibitors, and proliferation
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inhibitors (model 3), eGFR, albuminuria, CMV infection, and time after transplantation (model 4),
and HbA1c (model 5) did not attenuate the association between HDL cholesterol and PTDM. After
full adjustment for age, sex, BMI, SBP, FPG, and TG (model 6), the negative association remained
statistically significant (HR, 0.61; 95% CI, 0.40–0.94 per 1SD mg/dL; p = 0.024). When analyzed per
tertile, HDL cholesterol, was also inversely associated with PTDM development. In crude analysis,
large HDL particles were associated with PTDM development (HR, 0.66; 95% CI, 0.51–0.84 per log 1SD;
p = 0.001). This association persisted after adjusting for age, sex, BMI, and other covariates. In the fully
adjusted model, we also found an inverse association between large HDL particles and incident PTDM
(HR, 0.68; 95% CI, 0.50–0.93 per log 1SD; p = 0.017). When analyzed per tertile, a lower amount of large
HDL particles was also associated with increased risk of PTDM (Table 3). In crude analyses, greater
HDL size was inversely associated with PTDM development (HR, 0.47; 95% CI, 0.31–0.72 per 1SD;
p = 0.001). This association remained after adjustment for other covariates in all other models and
analyses according to tertiles of HDL size (Table 3). All together, the risk of developing PTDM was
about threefold higher in the lowest vs. the highest tertile of HDL cholesterol, large HDL particles, and
HDL size.

Table 3. Association between HDL parameters and risk of PTDM in 351 RTRs.

Tertiles 1 2 3

HDL cholesterol, mg/dL >59 47–58 <47 Per 1SD p value
Cases 7 14 18 39

Crude analysis 1.00 (ref) 2.07 (0.84–5.14) 3.29 (1.37–7.88) 0.53 (0.36–0.80) 0.002
Model 1 1.00 (ref) 1.99 (0.79–5.05) 3.01 (1.22–7.43) 0.55 (0.36–0.83) 0.005
Model 2 1.00 (ref) 1.78 (0.69–4.63) 2.89 (1.16–7.23) 0.53 (0.34–0.83) 0.006
Model 3 1.00 (ref) 2.21 (0.85–5.74) 3.15 (1.26–7.92) 0.55 (0.36–0.83) 0.004
Model 4 1.00 (ref) 1.90 (0.74–4.90) 2.60 (1.02–6.61) 0.59 (0.39–0.91) 0.018
Model 5 1.00 (ref) 2.62 (1.01–6.80) 2.71 (1.05–6.99) 0.59 (0.38–0.92) 0.021
Model 6 1.00 (ref) 1.92 (0.76–4.90) 2.53 (1.00–6.48) 0.61 (0.40–0.94) 0.024

Large HDL particles µmol/L >2.9 1.6–2.9 <1.6 Per 1SD Log p value
Cases 7 11 21 39

Crude analysis 1.00 (ref) 1.70 (0.66–4.39) 3.59 (1.53–8.46) 0.66 (0.51–0.84) 0.001
Model 1 1.00 (ref) 1.46 (0.55–3.85) 3.18 (1.29–7.87) 0.63 (0.47–0.84) 0.002
Model 2 1.00 (ref) 1.28 (0.47–3.47) 3.06 (1.22–7.66) 0.61 (0.44–0.84) 0.002
Model 3 1.00 (ref) 1.78 (0.66–4.80) 3.43 (1.38–8.52) 0.60 (0.45–0.81) 0.001
Model 4 1.00 (ref) 1.51 (0.55–4.10) 3.06 (1.18–7.88) 0.64 (0.47–0.86) 0.004
Model 5 1.00 (ref) 1.37 (0.51–3.73) 2.70 (1.05–6.91) 0.67 (0.48–0.93) 0.017
Model 6 1.00 (ref) 1.49 (0.53–3.94) 2.83 (1.10–7.29) 0.68 (0.50–0.93) 0.017

HDL size, nm >9.2 8.9–9.2 <8.9 Per 1SD p value
Cases 5 13 21 39

Crude analysis 1.00 (ref) 3.05 (1.09–8.56) 4.57 (1.72–12.12) 0.47 (0.31–0.72) 0.001
Model 1 1.00 (ref) 2.78 (0.98–7.89) 4.09 (1.47–11.35) 0.48 (0.31–0.76) 0.002
Model 2 1.00 (ref) 2.60 (0.91–7.47) 3.68 (1.30–10.42) 0.50 (0.31–0.80) 0.004
Model 3 1.00 (ref) 3.56 (1.24–10.21) 4.63 (1.65–13.02) 0.48 (0.32–0.75) 0.001
Model 4 1.00 (ref) 2.90 (1.01–8.33) 3.80 (1.34–10.80) 0.51 (0.33–0.81) 0.004
Model 5 1.00 (ref) 2.10 (0.73–6.07) 3.01 (1.06–8.56) 0.62 (0.40–0.98) 0.040
Model 6 1.00 (ref) 2.85 (1.00–8.15) 3.46 (1.18–10.21) 0.58 (0.36–0.93) 0.025

HRs (95% CIs) were derived from Cox proportional hazard models. Multivariable model 1 was adjusted for age,
sex, and BMI. Model 2 was adjusted for model 1 variables, alcohol consumption, smoking, and physical activity;
Model 3 was adjusted for model 1 variables and treatment (lipid-lowering medication, anti-hypertensive medication,
prednisolone dose, calcineurin inhibitors, and proliferation inhibitors); Model 4 was adjusted for model 1 variables
and eGFR, urinary albumin excretion, CMV infection, time after transplantation; Model 5 was wadjusted for model
1 variables and HbA1c; Model 6 was adjusted for model 1 variables and systolic blood pressure, fasting plasma
glucose, and triglycerides.

3.3. Confounding Influence of Other Lipoproteins on the Association of Large HDL Particles with
Incident PTDM

We observed a negative correlation between the concentrations of large and medium HDL particles
and that of small HDL particles (r = −0.24, p < 0.001 and r = −0.39, p < 0.001, respectively), and
a positive correlation between the concentrations of medium and large HDL particles (r = 0.089,
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p = 0.047) (Table S1). To determine potential confounders in the regression models, further analysis
were performed with joint HDL subclasses in the same model (Table 4). In the multivariabe adjusted
model, the association between large HDL particles and risk of PTDM remained significant when
taking account of medium and small HDL particles (HR, 0.68; 95% CI, 0.50–0.93; p = 0.014).

Table 4. Association Between Joint HDL Subclasses and Risk of Developing PTDM in 351 RTRs.

Joint HDL Subclasses Large HDL Particles Medium HDL Particles Small HDL Particles

Jointly Models * HR (95% CI)
Per Log1 SD p Value HR (95% CI)

Per 1 SD p Value HR (95% CI)
Per 1 SD p Value

Undjusted 0.68 (0.50–0.93) 0.014 0.97 (0.68–1.38) 0.85 1.05 (0.51–2.15) 0.75
Adjusted for LDL particles 0.67 (0.49–0.92) 0.012 0.97 (0.68–1.39) 0.88 1.06 (0.77–1.47) 0.71
Adjusted for TRL particles 0.68 (0.50–0.93) 0.017 0.96 (0.67–1.37) 0.84 1.05 (0.75–1.46) 0.76

Adjusted for LDL and TRL particles 0.67 (0.49–0.92) 0.015 0.97 (0.68–1.38) 0.86 1.06 (0.76–1.47) 0.73

HRs (95% CIs) were derived from Cox proportional hazard models. * All models were adjusted for age, sex,
BMI, systolic blood pressure, fasting blood glucose, and triglycerides, as well as for large, medium, and small
HDL particles.

Additionally, because of the correlation between large HDL and LDL as well as TRL particles
(Table S1), Cox regression analyses with HDL subclasses were jointly included in the model with
further adjustment for LDL particles, TRL particles, and both (Table 4). The association between large
HDL particles and risk of PTDM remained significant in all models.

3.4. Association of Large HDL Subspecies (H7P and H6P) with Incident PTDM

Finally, analyses were performed for the seven subspecies of HDL and incident PTDM during
follow-up in 351 RTRs without diabetes at baseline (Figure S1). H1P through H5P showed no
associations with the development of PTDM. Although H7P was associated inversely with PTDM
development in the crude analyses, the association did not remain significant after adjustment for
additional covariates (Table S2). On the other hand, lower H6P was associated with an increased risk
of developing PTDM not only in the crude model but also after further adjustment for additional
covariates (Table S2). We found a strong inverse association between H6P and incidence of PTDM in
model 6 (HR 0.68, 95% CI 0.49–0.95 per log 1SD; p = 0.024). Additionally, there was an association
between H6P tertiles and the risk of developing PTDM (about fivefold among the lowest vs. the
highest tertile of H6P).

4. Discussion

We report for the first time on the associations of HDL size and various HDL subclasses and
subspecies, determined with a novel NMR-based algorithm, with PTDM development in RTRs. In
the current prospective study, we found that HDL cholesterol was inversely associated with PTDM.
Furthermore, large HDL particles and larger HDL size were also inversely associated with PTDM.
However, there was no association between other measures of other particles, total HDL, medium
HDL, and small HDL particles, and the development of PTDM. Additionally, in further analyses
among large HDL subspecies, we found that H6P was associated with the development of PTDM.

Many epidemiological studies have reported that HDL cholesterol is inversely associated with
incident T2DM [14,15,21,22,35,36]. Consequently, HDL cholesterol is included in risk scores, drawn
from the Framingham Offspring Study Diabetes Mellitus and the Diabetes Prediction Model risk
scores [10,37], and is found to be useful for the prediction of PTDM in RTRs [38]. Baloore et al. found
that HDL cholesterol was inversely associated with both first and recurrent hyperglycemia after
renal transplantation [39]. HDL cholesterol modulates glucose metabolism by various mechanisms,
such as countering the deleterious effects of oxidized LDL on insulin production and activation of
AMP-activated protein kinase [40,41]. Additionally, intravenous reconstituted HDL reduced plasma
glucose via increasing insulin and activating AMP-activated protein kinase [13]. These earlier findings
consistently suggest that higher HDL levels may be protective against T2DM and PTDM.
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Of further note, HDL includes heterogeneous particles which may differ in their function to
promote the reverse cholesterol transport pathway and to exert anti-inflammatory, antioxidant, and
antidiabetic effects [42–46]. Inverse associations between large HDL particles and incident T2DM
have been reported previously [14,15,22]. The studies did not find any association between small
HDL and development of type 2 diabetes. Our results are consistent with those findings, but to our
knowledge, the association of HDL subclasses with PTDM have not been investigated previously
in a renal transplant population. Of further note, Tabara et al. found that large HDL particles were
inversely associated with insulin resistance, which could be a mechanism explaining the association
between large HDL particles and incident T2D [15]. Although they found a positive association
between small HDL particles and insulin resistance, small HDL particles were not associated with
incident T2DM. An association between higher concentrations of small HDL particles and incident of
T2DM was reported in a prospective study among 26,836 women [21]. Similarly, Festa et al. reported
that a higher concentration of small HDL particles was independently associated with increased risk
of diabetes during a five-year follow-up [20]. The pathophysiological relationship between insulin
resistance and HDL particle characteristics, measured by NMR, was tested by the euglycemic clamp
technique, documenting that small HDL particles associated positively and large HDL particles
associated inversely with insulin resistance [19].

The current study also shows that HDL particle size was inversely associated with risk of PTDM
in RTRs. This was consistently reported in two previous general population-based studies [21,22].
Mora et al. found that smaller HDL size was associated with a 4.5-fold higher risk of T2DM in women,
independently of risk factors including HbA1c [21]. In line with this, the association between HDL
size and PTDM development was independent of HbA1c among RTRs in our study. Gravey et al.
found a strong relationship between increased insulin resistance and smaller HDL size measured
by NMR, which could point to a causal role of HDL size and PTDM development among RTRs [19].
HDL size represented a biomarker of HDL metabolism associated with PTDM development in our
study. However, this association is likely to be secondary to the association of large HDL particles and
incident PTDM because of the collinearity between HDL size and large HDL particles. All together,
the relation of HDL size and large HDL particles with incident PTDM in RTRs could conceivably be
explained, at least in part, by increased insulin resistance or impaired insulin secretion [47]. However,
we observed no association of the total HDL particle concentration with incident PTDM, in apparent
contrast with the report by Mora et al. [21].

Although various HDL subclasses are interdependent, and their concentrations are affected by
triglyceride-rich apolipoprotein B-containing lipoproteins, the association between large HDL particles
and PTDM development remained significant when taking account of medium HDL, small HDL, total
LDL, and total TRL particles. In comparison, weaker associations of large HDL particles and stronger
association of small and medium HDL particles with coronary heart disease (CHD) were observed
after adjustment for HDL subclasses and LDL particles in two previous studies [48,49]. This may
reflect the fact that large HDL particles are a strong predictor of PTDM development; those correlations
did not change the association between large HDL particles and PTDM development in RTRs in our
study. Our study investigated the relationship between large HDL subspecies, H7P and H6P, with
the incidence of PTDM in RTRs. We found that higher H6P levels were associated with lower risk of
developing PTDM both as a continuous and as a categorical variable, whereas H7P was not associated
with PTDM development. This suggests that there is variation between larger HDL subspecies, which
can be distinguished by their size in the ability to predict PTDM in RTRs. In a recent study, individuals
with obesity had lower values of both H7P and H6P in comparison with lean adolescents. However,
among obese people, individuals with high insulin resistance had a lower amount of H6P compared to
insulin-sensitive adults. Moreover, homeostatic model assessment for insulin resistance (HOMA-IR)
was strongly correlated with fraction 22 which contains H6P as the major HDL subspecies [50].

Alterations in HDL functional properties and HDL metabolism may conceivably explain, at least
in part, the association of large HDL particles and HDL size with incident PTDM, as currently observed.
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Besides a key role of the reverse cholesterol transport pathway in atherosclerosis development [51–53],
HDL-mediated cellular cholesterol efflux (CEC) is considered to be relevant in maintaining β-cell
function [54]. Interestingly, CEC from THP1 macrophages to apoB-depleted plasma predicts incident
PTDM [55]. Using J774 macrophages, CEC to apoB-depleted plasma was found to be positively
correlated with large- and medium-sized HDL, HDL size, as well as HDL particle concentration [56,57],
while in another report, CEC was also correlated with HDL particle concentration though not with HDL
particle size [51]. Of further importance, β-cell function is likely to be related to HDL anti-oxidative
function as well [54], which is in part determined by paraoxonase-1 (PON-1), an anti-oxidative enzyme
which predominantly resides on large HDL particles [46,58,59]. However, serum PON-1 activity did
not predict incident T2DM in the general population [60].

HDL remodelling is altered in hyperglycemic circumstances, among other processes, due to
concerted actions of lipases, cholesteryl ester transfer protein (CETP), and phospholipid transfer
protein (PLTP) [16,61,62]. Increased plasma CETP activity consequent to diabetes-associated
hypertriglyceridemia results in lower HDL cholesterol and smaller HDL particles [16,61]. Likewise,
CETP gene variants that give rise to lower plasma CETP mass result in higher HDL cholesterol
concentrations [63]. Interestingly, administration of CETP inhibitors could lower diabetes risk [64].
Of further relevance, genetic variation in PLTP, a lipid transfer protein that is able to convert HDL
into larger and smaller HDL particles, affects HDL particle distribution [65], whereas we proposed
earlier that higher plasma PLTP activity may predict increased diabetes risk [66]. Taken together, it
is obvious that the extent to which specific processes involved in HDL remodelling are involved in
PTDM development requires further study. Also, an effect of HDL particles and HDL function on
insulin secretion could be considered as a mechanism to explain the protective effects of large HDL
particles against T2D and PTDM [67].

Our study has strengths and limitations. A strength of this single-center study includes a relatively
large prospective cohort of RTRs who completed the endpoint evaluation after a median follow-up of
5.2 years. Furthermore, RTRs with transient posttransplantation hyperglycemia were excluded from
our study by including only RTRs with a functioning graft more than 1 year after transplantation. On
the other hand, the median time after transplantation in the RTRs was 5 years, which makes it not
possible to extrapolate the current results to the RTRs at an earlier stage after transplantation. Another
limitation is that oral glucose tolerance tests were not carried out in this single-center study, which
could have resulted in an underestimation of PTDM frequency. We also did not measure insulin at
basline, precluding to demonstrate precise interactions between HDL particle characteristics, insulin
restistance, and insulin secretion and PTDM development. Of note, however, we applied the American
Diabetes Association Criteria to diagnose PTDM. Finally, the RTRs included were mostly of north
European descent, limiting extrapolation to other ethnicities.

5. Conclusions

Higher levels of HDL cholesterol and of large HDL particles and greater HDL size, as determined
by NMR, were associated with a lower risk of developing PTDM in RTRs. Our findings warrant
replication in other RTR cohorts and in subjects of different ethnicities.
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