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The level of pairs of polynomials

Alberto F. Boixa, Marc Paul Noordmanb, and Jaap Topb

aDepartment of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel; bBernoulli Institute,
University of Groningen, Groningen, The Netherlands

ABSTRACT
Given a polynomial f with coefficients in a field of prime characteristic p, it
is known that there exists a differential operator that raises 1=f to its pth

power. We first discuss a relation between the “level” of this differential
operator and the notion of “stratification” in the case of hyperelliptic
curves. Next, we extend the notion of level to that of a pair of polynomials.
We prove some basic properties and we compute this level in certain spe-
cial cases. In particular, we present examples of polynomials g and f such
that there is no differential operator raising g/f to its pth power.
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1. Introduction

Let k be any perfect field and R ¼ k½x1, :::, xd� its polynomial ring in d variables. In this case, it is
known [12, IV, Th�eor�eme 16.11.2] that the ring DR of k-linear differential operators on R is the
R-algebra (which we take here as a definition)

DR :¼ RhDxi , t j i ¼ 1, :::, d and t � 1i � EndkðRÞ,
generated by the operators Dxi , t , defined as

Dxi , tðxsjÞ ¼
s

t

 !
xs�t
i , if i ¼ j and s � t,

0, otherwise:

8>><
>>:

For a non-zero f 2 R, let Rf be the localization of R at f; the natural action of DR on R extends
uniquely to Rf and it is known that m � 1 exists such that Rf ¼ DR

1
f m : In characteristic 0, there

are examples where the minimal such m is strictly larger than 1 (e.g. [14, Example 23.13]). On
the other hand, if charðkÞ ¼ p > 0, one may always take m¼ 1 ([1, Theorem 3.7 and Corollary
3.8]). This is shown by proving the existence of a differential operator d 2 DR such that dð1=f Þ ¼
1=f p, that is, d acts as Frobenius on 1=f : We want to mention here that the existence of this
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differential operator was used as key ingredient in [3] to prove that local cohomology modules
over smooth Z-algebras have finitely many associated primes. On the other hand, the fact that Rf

is generated by 1=f as DR-module remains valid for more general classes of rings R: the interested
reader may consult [1, Theorems 4.1 and 5.1], [13, Theorem 3.1], [26, Corollary 2.10 and Remark
2.11], and [2, Theorem 4.4] for details.

We will suppose that k is a perfect field of positive characteristic p, and we fix an algebraic
closure �k of k. For an integer e � 0, let Rpe � R be the subring of all the pe powers of all the ele-

ments of R and set DðeÞ
R :¼ EndRpe ðRÞ, the ring of -linear ring-endomorphism of R. Since R is a

finitely generated Rp-module, by [29, 1.4.8 and 1.4.9], it is

DR ¼ [
e�0

DðeÞ
R :

Therefore, for d 2 DR, there exists e � 0 such that d 2 DðeÞ
R but d 62 Dðe0Þ

R for any e0 < e: This
number e is called the level of d. For a polynomial f, the level is defined as the lowest level of an
operator d such that dð1=f Þ ¼ 1=f p:

The level of a polynomial has been studied in [1, 6, 4]. In particular, results were established
relating the level of a polynomial defining a (hyper)elliptic curve to p-torsion of the Jacobian; see
also Section 2.

By [7, §4.4 and 4.5], the level of a polynomial f is closely related to the so-called
Hartshorne–Speiser–Lyubeznik–Gabber number of the pair (R, f), and the latter number can be
explicitly calculated using Macaulay2. On the other hand, one can also calculate the level of f in
terms of F-jumping numbers [11, Proposition 6].

One of the goals of this article is to introduce and study the level of a pair of polynomials.
Given f, g polynomials defined over Fp, one may ask whether there is a differential operator d 2
DR mapping g/f to ðg=f Þp: Such an operator exists when g¼ 1 by [1, Theorem 3.7 and Corollary
3.8], and more generally, when f itself has level one, as pointed out in [6]. Keeping in mind all of
this, it seems natural to define the level of g and f as

levelðg, f Þ :¼ inf e � 0 : 9d 2 DðeÞ such that dðg=f Þ ¼ ðg=f Þp
n o

:

As we already mentioned, our goal in this article is to study this notion, and to calculate it in sev-
eral interesting examples.

Part of our motivation for introducing it comes from [25], where the author gave a conceptual
proof of a polynomial identity obtained in [24, Lemma 3.1] using hypergeometric series algo-
rithms. This polynomial identity, and the corresponding results obtained by Singh concerning
associated primes of local cohomology modules [24] were the basis of [20], where the authors
proved, among other remarkable results, that local cohomology modules Hm

ItðXÞðZ½X�Þ are rational

vector spaces for any m > heightðItðXÞÞ, where X is a matrix of indeterminates, and ItðXÞ is the
ideal of size t minors of this matrix [20, Theorem 1.2]. The proof presented in [25] used as key
ingredient certain differential operators defined over the integers that, modulo a prime p, act as
the Frobenius endomorphism on quotients of polynomials [25, page 244].

Another motivation comes from [9], where the authors use higher order differential operators
to measure various kind of singularities in all characteristics. These higher order operators also
play a key role in recent developments in the study of symbolic powers of ideals (see [10] and [9,
Section 10] for details). We hope that the calculation of the level of a pair of polynomials might
help in the understanding of these differential operators. The interplay between differential opera-
tors over the integers and their reduction modulo a prime p (which is a delicate issue, see [15,
Section 6] for details) was a key technical ingredient to prove in [3, Theorem 3.1] that local coho-
mology modules over Z can have p-torsion for at most finitely many primes p.
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Now, we provide a more detailed overview of the contents of this manuscript for the conveni-
ence of the reader; first of all, in Section 2, we give some connection between being stratified for
a nonlinear differential equation and the level of a polynomial in the case of hyperelliptic curves.
Second, in Section 3, we formally define the level of a pair of polynomials, listing some of the
properties it satisfies. In Section 4, we focus on specific calculations when f and g are both homo-
geneous polynomials; in particular, we will show, among other things, that levelðg, f Þ is, in gen-
eral, not finite (see Proposition 4.9). We end this paper by raising some open questions to
stimulate further research on this subject.

2. Stratified differential equations and hyperelliptic curves

The notion of stratification for nonlinear differential equations was introduced in [23]; we briefly
recall it here. Let C � Fp be an algebraically closed field, let C(z) be the one variable differential
field extension of C with derivation d

dz and let K be a finite separable extension of C(z). Consider
the differential equation f ðy0, yÞ ¼ 0, where f 2 K½S,T� is an absolutely irreducible polynomial
such that the image d of df/dS in K½S,T�=ðf Þ is nonzero; the differential algebra A :¼ K½y0, y, 1=d�
is given by the derivation D with D(z) ¼ 1 and DðyÞ ¼ y0: One says that f ðy0, yÞ ¼ 0 is stratified
if and only if Dp ¼ 0 [23, Theorem 1.1]; it was also proved in [23, Proposition 2.3] that, if p � 3
and f is the defining equation of an elliptic curve E, then f ðy0, yÞ ¼ 0 is stratified if and only if E
is supersingular. By [6, Theorem 1.1], this is equivalent to the homogeneous polynomial corre-
sponding to f having level two.

Keeping in mind these characterizations, one may ask what is the connection between being strati-
fied and the level of a polynomial. For this, we recall the following terminology. Let X be a curve of
genus g defined over an algebraically closed field k of characteristic p> 0. The p-rank fX of X is defined
as the Fp-dimension of the p-torsion of the k-points of the Jacobian of X. The a-number aX is defined
as the dimension of the kernel of the Cartier–Manin matrix associated to X. Many properties of these
numbers are discussed in the textbook [18]; the p-rank fX and the a-number aX satisfy fX þ aX � g:
Here equality does not hold in general, but aX ¼ 0 () fX ¼ g () X is ordinary, and aX ¼
g () X is superspecial (see [22, Theorem 2] and [21, Theorem 4.1] for the latter).

Proposition 2.1. Given an algebraically closed field k of prime characteristic p � 3, consider the
hyperelliptic curve H of genus g � 1 defined by the equation y2 ¼ hðxÞ, where hðxÞ 2 k½x� is
squarefree and has degree 2g þ 1: The following statements are equivalent.

(i) H is not ordinary.
(ii) There exist a0, a1, :::, ag�1 2 k with aj 6¼ 0 for at least one j, such that the differential equation

ðx0Þ2 ¼ hðxÞ
ðag�1xg�1 þ :::þ a1xþ a0Þ2

is stratified.
(iii) The a-number of the Jacobian of H is not zero.

Proof. Let C0 be the modified Cartier operator defined in [30, Definition 2.1.]; by the argument
pointed out in [23, page 312], the differential equation is stratified if and only the differential
form x :¼ ððag�1xg�1 þ :::þ a1xþ a0Þ=yÞdx is exact, which is equivalent to the condition
C0ðxÞ ¼ 0: Our goal now is to write down this condition in terms of the basis of differentials xi :

¼ ðxi�1=yÞdx (1 � i � g); it is easy to see that C0ðxÞ ¼ 0 if and only if

Xg
i¼1

a1=pi�1C0ðxiÞ ¼ 0:

COMMUNICATIONS IN ALGEBRAVR 3



Now, if one writes hðxÞðp�1Þ=2 ¼PN
j¼0 cjx

j, (where N ¼ ððp� 1Þ=2Þð2g þ 1Þ) then one has [30,

page 381] that

C0ðxiÞ ¼
Xg
j¼1

cjp�ixj,

and therefore one ends up with the following equality:

Xg
j¼1

Xg
i¼1

a1=pi�1cjp�i

 !
xj ¼ 0:

Equivalently, since the xj’s are k-linearly independent, for any 1 � j � g,

Xg
i¼1

a1=pi�1cjp�i ¼ 0:

Summing up, if one denotes by v the column vector ða1=p0 , :::, a1=pg�1Þ and by C the Cartier–Manin

matrix of the hyperelliptic curve y2 ¼ hðxÞ [30, Definition 2.2], one has that our differential equa-
tion is stratified if and only if C � v ¼ 0, which, by [30, Theorem 3.1], is equivalent to the state-
ment that the hyperelliptic curve y2 ¼ hðxÞ is not ordinary. This proves the equivalence between
(i) and (ii); finally, the equivalence between (i) and (iii) follows immediately from the fact that
the a-number of JacðHÞ equals the corank of the Cartier–Manin matrix of H [18, 5.2.8]. w

Combining Proposition 2.1 with [4, Theorems 1.3, 3.5 and 3.9], we obtain the following result.

Corollary 2.2. Preserving the assumptions and notations of Proposition 2.1, let g � 2, p > 2g2 � 1,
and let f ¼ y2z2g�1 � z2gþ1hðx=zÞ. If levelðf Þ � 3, then there are a0, a1, :::, ag�1 2 k with aj 6¼ 0 for
at least one j such that the equation

ðx0Þ2 ¼ hðxÞ
ðag�1xg�1 þ :::þ a1xþ a0Þ2

is stratified.

The next examples illustrate some of the results obtained above.

Example 2.3. Given 0 6¼ b 2 Fp, and p > 7, consider the equation

ðx0Þ2 ¼ x5 þ b

ða1xþ a0Þ2
, (1)

and assume that p 	 3 ðmod 5Þ (e.g. p¼ 13). The hyperelliptic curve of genus two H defined by
y2 ¼ x5 þ b has the following Cartier–Manin matrix:

0 0
c 0

� �
, where c :¼ ðp� 1Þ=2

ð2p� 1Þ=5
� �

bðp�3Þ=10:

In particular, H is not ordinary. In this case, H is supersingular (but not superspecial) and there-
fore levelðy2z3 � x5 � bz5Þ � 3 by [4, Corollary 3.10]. The equation (1) is stratified, if and only if
a1 ¼ 0, as follows from the fact that the differential form dx/y is in the kernel of the Cartier
operator, whereas for a1 6¼ 0 the form a0dx=yþ a1xdx=y is not in the kernel.

Assume that p 	 4 ðmod 5Þ (e.g. p¼ 19). In this case, by either [27, Theorem 2] or [28,
Corollary of page 12], H is superspecial and therefore (1) is stratified for any value of a1, a0: In
this case, levelðy2z3 � x5 � bz5Þ � 3 by [4, Example 4.4]. In contrast, where p 	 1 ðmod 5Þ (e.g.
p¼ 11), one can easily check that H is ordinary (this also follows from [28, Theorem 3]) and
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therefore (1) is not stratified for any choice of a1, a0: In this case, using [4, Theorems 1.3, 3.5 and
3.9] one concludes that levelðy2z3 � x5 � bz5Þ ¼ 2:

Example 2.4. Given p > 17, consider the equation

ðx0Þ2 ¼ ðx� 1Þ8 � x8

ða2x2 þ a1xþ a0Þ2
: (2)

One can check that, under a M€obius transformation of the form

ðx, yÞ 7! 1
xþ 1

,
y

ðxþ 1Þ4
� �

,

the hyperelliptic curve H defined by y2 ¼ ðx� 1Þ8 � x8 corresponds to y2 ¼ x8 � 1, and therefore
both have the same p-rank. As shown in [17, Section 2], H is ordinary if and only if p 	
1 ðmod 8Þ, and supersingular (that is, its p-rank is 0) if and only if p 	 7 ðmod 8Þ: In the
ordinary case, we know that the level is 2, and at least three in the supersingular (not superspe-
cial) case. However, in the remaining cases (where p 	 3, 5 ðmod 8Þ) the curve has p-ranks 1
and 2 respectively, and in these two cases, while we can ensure that there are non-zero choices of
a2, a1, a0 such that (2) can be either stratified or not, we cannot predict in general what is
the level.

3. The level of a pair of polynomials

Hereafter, let k be a perfect field of prime characteristic p, and let R be the polynomial ring
k½x1, :::, xd�: The aim of this section is to study the following concept.

Definition 3.1. Given polynomials f, g with coefficients in k and f 6¼ 0, one defines the level of
(g, f) as

levelðg, f Þ :¼ inf e � 0 : 9d 2 DðeÞ such that dðg=f Þ ¼ ðg=f Þp
n o

2 N0 [ 1f g:
When g¼ 1, one denotes levelðf Þ instead of levelð1, f Þ; this is the notion of level of a polynomial
introduced in [6, Definition 2.6].

Remark 3.2. Note that levelðg, f Þ only depends on the quotient g/f, so one could also reasonably
denote this notion by levelðgf Þ instead. But this alternative notation is inconsistent with the one in

[6] in the case f¼ 1, so we stick with the notation levelðg, f Þ: In any case, one can usually assume
that g and f are coprime, since common factors do not change the level of the pair.

Note also that levelðg, f Þ ¼ 0 if and only if g=f 2 R: If g and f are coprime, this only happens
if f is a constant.

In Proposition 4.9, we give an example of polynomials f and g such that levelðg, f Þ ¼ 1:
Before going on studying this notion, we review the so-called ideals of peth roots; the inter-

ested reader can find a more detailed treatment in [1, page 465], [5, Definition 2.2], and [16,
Definition 5.1]. For an ideal I 
 R we denote by I½p

e� the ideal generated by the pe-th powers of
elements of I.

Definition 3.3. Given g 2 R and an integer e � 0, we define the ideal of peth roots IeðgÞ to be
the smallest ideal J � R such that g 2 J½p

e�:

Remark 3.4. Under our assumptions, R is a free Rpe-module with basis given by the monomials
xa j kak � pe � 1
� �

: A polynomial g 2 R can therefore be written as
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g ¼
X

0�jjajj�pe�1

gp
e

a x
a,

for unique ga 2 R: Then IeðgÞ is the ideal of R generated by elements ga [5, Proposition 2.5].

The main relation between these ideals and differential operators is the following equality,
valid for any polynomial g 2 R and any integer e � 0 (see [1, Lemma 3.1]):

DðeÞ � g ¼ IeðgÞ pe½ �: (3)

Using this, one can relate the level of a pair of polynomials to ideals of peth roots as follows.

Lemma 3.5. Let f , g 2 R and e � 0 be given. Then the following are equivalent:

(i) levelðg, f Þ � e;

(ii) Ieðgpf pe�pÞ � Ieðgf pe�1Þ;
(iii) Ieðgpf pe�pÞ½pe� � Ieðgf pe�1Þ½pe�:

In particular, levelðg, f Þ ¼ inf e � 0 : Ieðgpf pe�pÞ � Ieðgf pe�1Þ� �
:

Proof. The equivalence of (ii) and (iii) is proved in the last paragraph of the proof of [1,

Proposition 3.5]. We prove that (i) and (iii) are equivalent. Suppose that there is d 2 DðeÞ such
that dðg=f Þ ¼ ðg=f Þp: Since d is linear over pe-powers, this implies that dðgf pe�1Þ ¼ gpf p

e�p: By

(3), this implies gpf p
e�p 2 Ieðgpf pe�pÞ½pe�, so that Ieðgpf pe�pÞ½pe� � Ieðgf pe�1Þ½pe�:

Conversely, suppose now that Ieðgpf pe�pÞ½pe� � Ieðgf pe�1Þ½pe�: Again using (3), one has that

DðeÞðgpf pe�pÞ � DðeÞðgf pe�1Þ: In particular gpf p
e�p 2 DðeÞðgf pe�1Þ, hence there is d 2 DðeÞ such that

dðgf pe�1Þ ¼ gpf p
e�p: Multiplying this equality by 1=f p

e
and using that d is linear over peth powers,

we get dðg=f Þ ¼ ðg=f Þp: w

Observe that the equality DðeÞ � g ¼ IeðgÞ½p
e� is made explicit in, e.g., the proof of [6, Claim

3.4]. Using these techniques one can in case e ¼ levelðg, f Þ < 1, algorithmically construct an

explicit operator d 2 DðeÞ
R with dðg=f Þ ¼ gp=f p: However we do not know how to decide whether

the level of a given pair is finite.

Remark 3.6. By the same argument as in [4, § 2.4], the level of a pair is invariant under linear
coordinate changes.

In the next statement, our aim is to collect some properties that the level of a pair of polyno-
mials satisfies.

Proposition 3.7. Let f , g 2 R be non-zero polynomials such that g
f 62 R. Then the following state-

ments hold.

(i) levelðg, f Þ ¼ 1 if and only if g 2 I1ðgf p�1Þ:
(ii) If levelðf Þ ¼ 1, then levelðg, f Þ ¼ 1:
(iii) If either Ieðgpf pe�pÞ 6� Ieðf pe�1Þ or Ieðgpf pe�pÞ 6� IeðgÞ, then levelðg, f Þ > e:
(iv) If f and g are homogeneous, and e � 1 is an integer such that pe > deg g � deg f , then

Ieðgf pe�1Þ is generated by polynomials of degree at most deg f :

Proof. The assumption that f does not divide g in R implies that levelðg, f Þ > 0: Then (i) follows
from Lemma 3.5 together with the easy observation that I1ðgpÞ ¼ ðgÞ: Part (ii) was already proved
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in [6, page 248]; we repeat the proof for the sake of completeness. Let d0 2 Dð1Þ such that
d0ð1=f Þ ¼ 1=f p: Then define d :¼ d0 � ð�gp�1Þ: We find that dðg=f Þ ¼ d0ðgp=f Þ ¼ gpd0ð1=f Þ ¼
ðg=f Þp, as required.

Part (iii) follows immediately combining Lemma 3.5 with the fact that Ieðgf pe�1Þ �
IeðgÞIeðf pe�1Þ [1, Lemma 3.3]. Finally, to prove part (iv) fix e � 1 an integer and write

gf p
e�1 ¼

X
0�jjajj�pe�1

cp
e

a x
a,

for some ca 2 R: Since both f and g are homogeneous it follows that

degðgÞ þ ðpe � 1Þdegðf Þ ¼ pedegðcaÞ þ degðxaÞ,

which implies that

degðcaÞ � ðpe � 1Þdegðf Þ þ degðgÞ
pe

¼ degðf Þ þ deg g � deg f
pe

:

The second term on the right hand side is smaller than 1 by assumption, and since both sides are
integers, we get deg ca � deg f : The result follows. w

4. Some examples

The goal of this section is to calculate the level of a pair of polynomials (g, f) for several particu-
lar choices of g and f; we will quickly see that, even for low degrees, most of the calculations are
highly non-trivial. In particular, we show that levelðg, f Þ is, in general, not always finite (see
Example 4.9).

We want to start with the case considered by Singh, see for example [25].

Lemma 4.1. Let p be a prime number, X ¼ u v w
x y z

� �
be a matrix of indeterminates defined

over R ¼ k½u, v,w, x, y, z�, and set D1 :¼ vz � wy,D2 :¼ wx� uz, and D3 :¼ uy� vx. Then,
levelðg, f Þ ¼ 1 for each pair ðg, f Þ 2 ðw,D1D2Þ, ðv,D1D3Þ, ðu,D2D3Þ

� �
:

Proof. By symmetry, it is enough to show that levelðg, f Þ ¼ 1 when ðg, f Þ ¼ ðw,D1D2Þ: Set f :¼
D1D2, and notice that f ¼ 1 � ðxzvwÞ þ ð�z2Þ � ðuvÞ þ ð�w2Þ � ðxyÞ þ 1 � ðyzuwÞ: This shows that,
if p¼ 2, then I1ðf Þ ¼ R so levelðf Þ ¼ 1 and therefore levelðg, f Þ ¼ 1: Now, assume that p � 3,

one can check that in the support of f p�1 appears the monomial ðxyuvÞðp�1Þ=2ðzwÞp�1 with coeffi-

cient
p� 1

ðp� 1Þ=2
� �

; this shows again that levelðf Þ ¼ 1 and therefore levelðg, f Þ ¼ 1: w

Remark 4.2. Notice that, in the setting considered in Lemma 4.1, Singh shows in [25] that the
differential operator d :¼ Du, p�1Dy, p�1Dz, p�1 (which is clearly of level one) is such that dðg=f Þ ¼
ðg=f Þp, for g/f any of the three fractions considered in Lemma 4.1.

Lemma 4.3. Let k be a field of characteristic p, let f ¼ xd, assume that p � d, and let g 2 R ¼
k½x, y� be a homogeneous polynomial of degree d which is not a multiple of f. Then, levelðg, f Þ ¼ 2
unless g 2 ðxd�1Þ, in which case levelðg, f Þ ¼ 1:
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Proof. Write g ¼Pd
i¼0 aix

iyd�i; now, notice that

gf p�1 ¼
Xd
i¼0

aix
iþdðp�1Þyd�i:

Given 0 � i � d write iþ dðp� 1Þ ¼ ðd� 1Þpþ ðpþ i� dÞ, and notice that, unless i¼ d, 0 �
pþ i� d � p� 1 (here, we are also using that d � p). This shows that I1ðgf p�1Þ ¼
ða1=pd xd, a1=pi xd�1 : 1 � i � d � 1Þ ¼ ðxd�1Þ, so levelðg, f Þ 6¼ 1 unless g 2 ðxd�1Þ, in which case
levelðg, f Þ ¼ 1: So, from now on, assume that g 62 ðxd�1Þ:

We have I2ðgpf p2�pÞ ¼ I1ðgf p�1Þ ¼ ðxd�1Þ: Now, write

gf p
2�1 ¼

Xd
i¼0

aix
iþdðp2�1Þyd�i:

Again, the equality iþ dðp2 � 1Þ ¼ ðd � 1Þp2 þ ðp2 þ i� dÞ and the fact unless i¼ d, p2 þ i�
d � p2 � 1, shows that I2ðgf p2�1Þ ¼ ða1=p2d xd, a1=p

2

i xd�1 : 1 � i � d � 1Þ ¼ ðxd�1Þ ¼ I2ðgpf p2�pÞ,
and therefore levelðg, f Þ ¼ 2, as claimed. w

Lemma 4.3 has the following interesting consequence.

Lemma 4.4. Let k be a field of prime characteristic p, and let f , g 2 k½x, y� be quadratic forms. Ifffiffiffiffiffiffiðf Þp
denotes the radical of (f), then

levelðg, f Þ ¼
0, if g is a multiple of f ,

1, if either f is not the square of a linear form, or if g 2 ffiffiffiffiffiffiðf Þp n ðf Þ,
2, otherwise:

8><
>:

Proof. First of all, if f is not the square of a linear form, then by [6, Proposition 5.7] levelðf Þ ¼ 1
and therefore part (ii) of Proposition 3.7 implies that levelðg, f Þ ¼ 1: So, hereafter we assume that
f is the square of a linear form; By Remark 3.6 we can assume that f ¼ x2 and that g is again a
quadratic form. Then, in this case, Lemma 4.3 says exactly that levelðg, f Þ ¼ 2 unless g 2 ðxÞ, in
which case levelðg, f Þ ¼ 1; the proof is therefore completed. w

As a more elaborate example we now consider level g, fð Þ with f ¼ x3 þ y3 þ z3 and g any
homogeneous cubic in 3 variables which is not a scalar multiple of f. Since level fð Þ ¼ 1 in case
the characteristic p 	 1 mod 3ð Þ, Proposition 3.7 (ii) shows level g, fð Þ ¼ 1 for p 	 1 mod 3ð Þ
and any such g.

We expect that the same holds for all characteristics p � 5: The next two special cases
show that this is correct for most g. By Example 4.8, the same does not hold in characteristics
p¼ 2, 3.

Claim 4.5. Let p � 5 with p 	 2 mod 3ð Þ, let f ¼ x3 þ y3 þ z3, and let g 2 R ¼ k x, y, z½ � be a

homogeneous polynomial of degree 3 such that, if one writes g ¼Paþbþc¼3 ga, b, cx
aybzc, and set B :

¼ p� 1
p� 2ð Þ=3, p� 2ð Þ=3, pþ 1ð Þ=3

� �
, C :¼ p� 1

p� 2ð Þ=3
� �

, D :¼ p� 1
1,2 p� 2ð Þ=3, p� 2ð Þ=3

� �
, E :¼ p� 1

1, 2p� 1ð Þ=3, p� 5ð Þ=3
� �

,

and F :¼ p� 1
pþ 4ð Þ=3, p� 2ð Þ=3, p� 5ð Þ=3

� �
, then the rank of
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A :¼

Bg1,1, 1 Cg2,0,1 Cg2,1,0
Cg0,2,1 Bg1,1,1 Cg1,2,0
Cg0,1,2 Cg1,0,2 Bg1,1,1
Bg2,0, 1 Dg0,2,1 Cg3,0,0 þEg0, 3,0 þDg0,0,3
Bg2,1, 0 Cg3,0,0 þEg0,3,0 þDg0,0,3 Dg0,1,2

Bg3,0,0 þ Fg0,3, 0þ Fg0,0,3 Dg1,2,0 Dg1,0,2
Dg2,0,1 Bg0,2,1 Eg3,0,0þCg0, 3,0 þDg0,0,3

Eg3, 0,0 þCg0,3,0 þDg0,0, 3 Bg1,2,0 Dg1,0,2
Dg2,1,0 Fg3, 0,0 þBg0,3,0 þ Fg0,0,3 Dg0,1,2
Dg2,1, 0 Eg3,0, 0þDg0,3,0þCg0,0,3 Bg0,1,2

Eg3,0,0þDg0,3,0 þCg0,0,3 Dg1,2, 0 Bg1,0,2
Dg2,0, 1 Dg0,2, 1 Fg3,0,0 þ Fg0,3,0 þBg0,0, 3

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

is three. Then level g, fð Þ � 1, with equality exactly if g is not a multiple of f.

Proof. Write g ¼Paþbþc¼3 ga, b, cx
aybzc, and

gf p�1 ¼
X

aþbþc¼3

X
iþjþk¼p�1

ga, b, c
p� 1
i, j, k

� �
x3iþay3jþbz3kþc:

Then, if one picks i ¼ j ¼ p� 2ð Þ=3 and k ¼ pþ 1ð Þ=3, then the corresponding term of gf p�1 isX
aþbþc¼3

ga, b, c
p� 1
i, j, k

� �
zp � xp�2þayp�2þbzcþ1
� �

:

Again, if i ¼ k ¼ p� 2ð Þ=3 and j ¼ pþ 1ð Þ=3, then the corresponding term of gf p�1 is

X
aþbþc¼3

ga, b, c
p� 1
i, j, k

� �
yp � xp�2þaybþ1zp�2þc
� �

:

By the same reason, if j ¼ k ¼ p� 2ð Þ=3 and i ¼ pþ 1ð Þ=3, then the corresponding term of
gf p�1 is X

aþbþc¼3

ga, b, c
p� 1
i, j, k

� �
xp � xaþ1yp�2þbzp�2þc

� �
:

The above expansions show that the basis elements xp�1yp�1z2, xp�1y2zp�1 and x2yp�1zp�1 con-

tain respectively in their coefficient the below term, where B :¼ p� 1
p� 2ð Þ=3, p� 2ð Þ=3, pþ 1ð Þ=3

� �
:

g1, 1, 1Bz
p, g1, 1, 1By

p, g1, 1, 1Bx
p:

Hereafter, we only plan to prove that the coefficient of xp�1yp�1z2 is exactly Cg0, 1, 2xp þ
Cg1, 0, 2yp þ Bg1, 1, 1zp and one can show using the same arguments that the coefficient of
xp�1y2zp�1 (resp. x2yp�1zp�1) is exactly Cg0, 2, 1xp þ Bg1, 1, 1yp þ Cg1, 2, 0zp resp. Bg1, 1, 1xp þ
Cg2, 0, 1ypþ Cg2, 1, 0zp:

Indeed, we want to calculate the coefficient of xp�1yp�1z2, so suppose that there are non-nega-
tive integers k,l, c such that 3iþ a ¼ kpþ p� 1, 3jþ b ¼ lpþ p� 1, 3kþ c ¼ cpþ 2: Since
deg gf p�1
� � ¼ 3p, it follows that 3p ¼ 3iþ aþ 3jþ bþ 3kþ c ¼ kþ lþ cþ 2ð Þp, which implies

that kþ lþ c ¼ 1, so we only have three possibilities for these integers; namely, (1, 0, 0), (0, 1,
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0) and (0, 0, 1). For (1, 0, 0), we get i ¼ 2p� 1� að Þ=3, j ¼ p� 1� bð Þ=3, k ¼ 2� cð Þ=3: Since
p 	 2 mod 3ð Þ, this forces a¼ 0, b¼ 1 and c¼ 2. By the same argument, for (0, 1, 0) one gets
a¼ 1, b¼ 0 and c¼ 2, and finally, for (0, 0, 1) one ends up with a ¼ b ¼ c ¼ 1: This shows that
the coefficient of xp�1yp�1z2 is exactly B g0, 1, 2xp þ g1, 0, 2yp þ g1, 1, 1zpð Þ, as claimed.

One might ask from where the other rows of matrix A appearing in our assumption comes
from; following the same arguments, these rows corresponds to the calculation of the coefficients
of the below basis elements:

x3yp�2zp�1, x3yp�1zp�2, x4yp�2zp�2,

xp�2y3zp�1, xp�1y3zp�2, xp�2y4zp�2,

xp�2yp�1z3, xp�1yp�2z3, xp�2yp�2z4:

Summing up, the foregoing implies, since by assumption the rank of A is 3, that x, y, zð Þ ¼
I1 gf p�1
� �

, hence g 2 I1 gf p�1
� �

and this shows that level g, fð Þ ¼ 1 by using part (i) of Proposition
3.7. w

Claim 4.6. Let p � 5, let f ¼ x3 þ y3 þ z3, and let g 2 R ¼ k x, y, z½ � be a non-zero monomial of
degree 3. Then, level g, fð Þ ¼ 1:

Proof. If p 	 1 mod 3ð Þ, then level fð Þ ¼ 1 and therefore level g, fð Þ ¼ 1 by part (ii) of
Proposition 3.7, so hereafter we will assume that p 	 2 mod 3ð Þ: By symmetry, it is enough to
consider the monomials g ¼ x3, g ¼ x2y and g ¼ xyz. In each of these cases, we will simply con-
struct an explicit differential operator of level 1 that does what is needed. For g ¼ x3, consider
first

d ¼ Dx, p�1 � Dy, p�2 � Dz, 3

(see the Introduction for the notation Dx, n). Clearly d is of level 1, since p> 3. We have that

gf p�1 ¼
X

iþjþk¼p�1

p� 1
i, j, k

� �
x3iþ3y3jz3k:

Applying d gives us

d gf p�1
� � ¼ X

iþjþk¼p�1

p� 1
i, j, k

� �
3iþ 3
p� 1

� �
3j

p� 2

� �
3k
3

� �
x3iþ4�py3jþ2�pz3k�3,

where we use the convention that n
k

� �
¼ 0 for k> n. We investigate for which indices i, j, k the

coefficient in this term is zero. The first factor is never zero, since p� 1, i, j and k are all between
0 and p� 1. The second factor is zero unless 3iþ 3 	 �1 mod pð Þ, as can be seen by writing
out the product. Since i lies between 0 and p� 1, and since p 	 2 mod 3ð Þ, the only integer
value for i such that 3iþ 3 	 �1 mod p is i ¼ 2p� 4ð Þ=3: This means that j is at most

pþ 1ð Þ=3: The third factor 3j
p� 2

� �
is zero unless 3j is either �1 or �2 modulo p. In the allowed

range for j, the only integer possibility is j ¼ p� 2ð Þ=3: This leaves k¼ 1, and for this value of k

we have 3k
3

� �
¼ 1 6¼ 0: So we see that the only non-zero term in d gf p�1

� �
is the one for indices

i, j, kð Þ ¼ 2p�4
3 , p�2

3 , 1
	 


: This gives

d gf p�1
� � ¼ p� 1

2p�4
3 , p�2

3 , 1

 !
2p� 1

p� 1

 !
p� 2

p� 2

 !
3

3

 !
xp ¼ p� 1

2p�4
3 , p�2

3 , 1

 !
xp
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Define now

D ¼ p� 1
2p�4
3 ,

p�2
3 , 1

 !�1

� x2p � d,

then D is also a differential operator of level 1, and by construction we have D gf p�1
� � ¼ x3p ¼

gp: Using that D is Rp-linear, we may divide both sides by fp and get D g=f
� � ¼ gp=f p, as needed.

For the other cases g ¼ x2y and g ¼ xyz, a similar analysis shows that the operators

C � xpypDx, p�2Dy, p�1Dz, 3, resp: C0 � ypzp,Dx, p�3Dy, p�1Dz, 4

for suitably chosen non-zero constants C,C0 2 Fp, have the required property. w

Proposition 3.7(ii) shows that if level fð Þ ¼ 1 then level g, fð Þ � 1: In the example considered in
Lemma 4.5 one has level fð Þ ¼ 2 > level g, fð Þ ¼ 1: One might ask whether in general level g, fð Þ �
level fð Þ: This is not the case, as the following example shows.

Example 4.7. Let R ¼ k x, y, z,w½ �, g¼ y and f ¼ xypþ1 þ yzpþ1 þ zwpþ1: Using Magma [8] we
computed for the cases p 2 2, 3, 5f g that level gð Þ ¼ 1, level fð Þ ¼ 2, but level g, fð Þ ¼ 4:

For any prime p, what is easy to show in this example is that level g, fð Þ � 2; indeed, notice
that

gf p�1 ¼
X

0 � i, j, k � p� 1
iþ jþ k ¼ p� 1

p� 1
i, j, k

� �
yizjwk
� �p � xiyp�kzp�1�iwk

� �
:

We claim that, whereas yp 2 I1 gf p�1
� �

, g ¼ y 62 I1 gf p�1
� �

: Indeed, if in the above expansion we

pick j ¼ k ¼ 0 and i ¼ p� 1, then one gets that gf p�1 ¼ ypð Þp xp�1ð Þ þ :::, and this choice is the
only one that makes the basis element xp�1 appearing in this expansion. This shows that yp 2
I1 gf p�1
� �

; moreover, notice that, if one choices a i, j, k as above where i < p� 1, then the coeffi-
cient of the corresponding basis element is made up by monomials that are divisible by either z
or w. This shows that yp is the smallest possible power of y that belongs to I1 gf p�1

� �
, hence g ¼

y 62 I1 gf p�1
� �

and therefore level g, fð Þ � 2, as claimed.
Moreover, again about Lemma 4.6, we want to single out that the assumption p 6¼ 2, 3 can not

be removed, as the following examples show.

Example 4.8. Let p¼ 2, let R ¼ k x, y, z½ �, f ¼ x3 þ y3 þ z3 and g¼ xyz; we claim level g, fð Þ ¼ 2:

Indeed, on the one hand, gf p�1 ¼ x2ð Þ2 � yzð Þ þ y2
� �2 � xzð Þ þ z2ð Þ2 � xyð Þ, so g ¼ xyz 62

I1 gf p�1
� � ¼ x2, y2, z2

� �
; this shows, by part (i) of Proposition 3.7, that level g, fð Þ � 2: On the

other hand,

gf p
2�1 ¼ x2ð Þ4 � x2yz

� �þ y2
� �4 � xy2z

� �þ z2ð Þ4 � xyz2
� �þ xyð Þ4 � x3zð Þ þ xyð Þ4 � y3z

� �
þ xzð Þ4 � x3y

� �þ xzð Þ4 � yz3
� �þ yzð Þ4 � xyz3

� �
,

and gpf p
2�p ¼ x8 yzð Þ2 þ y8 xzð Þ2 þ z8 xyð Þ2; these last two computations show that

gpf p
2�p 2 x2, y2, z2, xy, xz, yz

� � p2½ � ¼ I2 gf p
2�1

	 
 p2½ �
,

and therefore Lemma 3.5 ensures level g, fð Þ ¼ 2, as claimed.
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Now, assume that p¼ 3 (g and f are the same); in this case, one can check that J :¼ I1 gf 2
� � ¼

x2 þ 2xyþ y2 þ 2xz þ 2yz þ z2
� �

and g ¼ xyz 62 J: One way to check it is the following; denote
by V(J) the hypersurface defined by J. This hypersurface contains the point 1, 1, 1ð Þ, which is a
point which does not belong to V xyzð Þ: This shows that xyz 62 J:

The above argument shows that level g, fð Þ � 2 and, actually, one can check either by hand or
by computer that level g, fð Þ ¼ 2:

We conclude this section with an example showing that the level of a pair of polynomials is,
in general, not finite. This in fact answers a question raised in [6, Section 5].

Proposition 4.9. Let R ¼ k x, y½ � with chark ¼ p, and let f ¼ xpþ1 þ ypþ1 and g¼ x. Then
level g, fð Þ ¼ 1. In particular, no d 2 DR exists with d g=f

� � ¼ gp=f p:

Proof. Let e � 2 be an arbitrary even integer. We will show that level g, fð Þ > e: By Lemma 3.5,

this is equivalent to showing that Ie gpf p
e�p

� � pe½ � 6� Ie gf p
e�1

� � pe½ �
:

First, we show that Ie gf p
e�1

� �
is a monomial ideal. Indeed, we have

gf p
e�1 ¼

Xpe�1

i¼0

pe � 1
i

� �
xi pþ1ð Þþ1y pe�1�ið Þ pþ1ð Þ: (4)

By the description of Ie in Remark 3.4, to find generators of Ie gf p
e�1

� �
, express gf p

e�1 as an
Rpe-linear combination of monomials with exponents below pe, and take pe-th roots of the coeffi-
cients. If for two indices i and j the corresponding terms in (4) differ by a pe-th power, then they
both contribute to the same generator. But this happens only if the exponents for x and y are
congruent modulo pe. From i pþ 1ð Þ þ 1 	 j pþ 1ð Þ þ 1 mod peð Þ we obtain i 	 j mod peð Þ since
pþ 1 is a unit modulo pe. But if 0 � i, j � pe � 1 and i 	 j mod peð Þ, then i¼ j. So we see that
the terms occurring in gf p

e�1 are independent over Frac Rpeð Þ: Hence the generators for Ie gf p
e�1

� �
that we get from Remark 3.4 are monomials, and so Ie gf p

e�1
� �

is a monomial ideal. It follows

that also Ie gf p
e�1

� � pe½ �
is a monomial ideal.

Now we show that gpf p
e�p 62 Ie gf p

e�1
� � pe½ �

: Since the latter is a monomial ideal, it is sufficient
to find a monomial that occurs in gpf p

e�p with non-zero coefficient which is not in this ideal. For
this, set m :¼ xp

e�p2þpyp
eþ1�p: We claim that this monomial occurs in gpf p

e�p with non-zero coeffi-
cient. We have

gpf p
e�p ¼

Xpe�p

i¼0

pe � p
i

� �
xi pþ1ð Þþpy pe�p�ið Þ pþ1ð Þ:

We see that our monomial m occurs for index i ¼ pe � p2
� �

= pþ 1ð Þ, which is an integer because
e is even. To evaluate the binomial coefficient for this value of i, we can look at the p-adic digits
of the numbers involved. We have pe � p ¼ p� 1ð Þpe�1 þ p� 1ð Þpe�2 þ :::þ p� 1ð Þp, and we
have i ¼ p� 1ð Þpe�2 þ p� 1ð Þpe�4 þ :::þ p� 1ð Þp2: Using Lucas’s theorem [19, pp. 51–52], we
find that the binomial coefficient evaluates to 1, so in particular it is non-zero.

Now we need to show that m 62 Ie gf p
e�1

� � pe½ �
: This ideal is generated by monomials which are

also pe-th powers, and m is an element of this ideal if and only if at least one of these monomials
divides m. The largest pe-th power dividing m is y p�1ð Þpe : Hence, it is enough to show that

y p�1ð Þpe 62 Ie gf p
e�1

� � pe½ �
, or equivalently, that yp�1 62 Ie gf p

e�1
� �

: In view of Remark 3.4, we look at
terms in the product gf p

e�1 that contribute something of the form yn to Ie gf p
e�1

� �
: A term does

this if and only if the exponent for x is strictly lower than pe. In Equation (4) above, this happens
for terms with index i for which i pþ 1ð Þ þ 1 � pe � 1, which is equivalent to
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i �
�
pe � 2
pþ 1

�
¼ pe � p� 2

pþ 1
,

where we used again that e is even. But for such indices i, the exponent for y is given by

pe � 1� ið Þ pþ 1ð Þ � peþ1 þ pe � p� 1� pe þ pþ 2 ¼ peþ1 þ 1:

So the contribution of these terms to Ie gf p
e�1

� �
is at least yp. Thus the lowest exponent n such

that yn 2 Ie gf p
e�1

� �
is n¼ p, and in particular yp�1 62 Ie gf p

e�1
� �

: w

4.1. Some open questions

Question 4.10. The following questions are open, to the best of our knowledge.

(i) Does an algorithm exist which, on input polynomials f and g, decides whether
level g, fð Þ < 1?

(ii) Under which conditions one can ensure that level g, fð Þ � level fð Þ?
(iii) In [11, Proposition 6], it is shown that, if R is an F-finite ring of characteristic

p � 3, f 2 R, and e is the largest F-jumping number of f that lies inside (0, 1), then
level fð Þ ¼ d1� log p 1� eð Þe. Is it possible to obtain a similar result for level g, fð Þ?
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