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Abstract

Chitooligosaccharide oxidase (ChitO) is a fungal carbohydrate oxidase containing a bicovalently 

bound FAD cofactor. The enzyme is known to catalyse the oxidation of chitooligosaccharides, 

oligomers of N-acetylated glucosamines derived from chitin degradation. In this study, the unique 

substrate acceptance was explored by testing a range of N-acetyl-D-glucosamine derivatives, 

revealing that ChitO preferentially accepts carbohydrates with a hydrophobic group attached to 

C2. The enzyme also accepts streptozotocin, a natural product used to treat tumours. Elucidation 

of the crystal structure provides an explanation for the high affinity towards C2-decorated 

glucosamines: the active site has a secondary binding pocket that accommodates groups attached A
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at C2. Docking simulations are fully in line with the observed substrate preference. This work 

expands the knowledge on this versatile enzyme.

Keywords: Covalent flavin, glucosamine, oxidation, crystal structure, chitooligosaccharides

Abbreviations: ChitO, chitooligosaccharide oxidase; GOO, glucooligosaccharide oxidase; 

GlcNAc, N-acetyl-D-glucosamine; GlcVal, N-valeryl-D-glucosamine; GlcPro, N-propionyl-D-

glucosamine; GlcHex, N-hexanoyl-D-glucosamine; FAD, flavin adenine dinucleotide; CV, 

column volume; MBP, maltose binding protein; HRP, horseradish peroxidase; RMSD, root mean 

square deviation; SEC, size exclusion chromatography.

Highlights

 The crystal structure of ChitO was solved for the first time

 The substrate range of ChitO was further expanded towards C2-glucosamines

 Docking experiments explained the substrate acceptance of ChitO

Introduction

Carbohydrate oxidases are highly valued enzymes, used in diagnostics and for industrial 

applications because of their enantio- and regioselectivity [1]. They are active on various 

carbohydrates and are typically regioselective in oxidizing a particular CH-OH bond of the 

targeted carbohydrate. Upon oxidation of the carbohydrate, molecular oxygen is reduced into 

hydrogen peroxide. Often, alternative electron acceptors can be used as well, such as quinones or 

ferrocenium ion [2]. Two distinct groups of carbohydrate oxidases can be distinguished: copper- 

and FAD-containing oxidases. Oxidases of the first group are mostly active on monosaccharides 

such as galactose [3]. They display sequence and structural features which distinguish them from 

FAD-dependent oxidases, such as clusters of histidine residues to coordinate copper [4]. The 

FAD-containing oxidases can be classified based on different parameters such as their substrate 

specificity, mode of flavin cofactor binding or structural features. The most studied and widely 

applied carbohydrate oxidase is glucose oxidase from Aspergillus niger [5]. It contains a 

dissociable but tightly bound FAD as cofactor and is active on monosaccharides with a preference 

for D-glucose, performing oxidation at the C1 of the sugar ring. The active site is partially 

occluded, leaving space for a single sugar moiety to enter through a narrow tunnel which opens in 

a funnel on the protein surface. Glucose oxidase is a prototypical member of the GMC A
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flavoprotein family [6]. Another GMC-type flavoprotein carbohydrate oxidase is pyranose oxidase 

[7, 8], in which the FAD is covalently tethered via a histidyl linkage between His167 and the C8 

of the isoalloxazine ring of the flavin cofactor. The oxidation reaction in this case involves an 

oxidation at the C2 position of various pyranoses, such as D-glucose. Similar to glucose oxidase, 

pyranose oxidase has a buried active site that can be reached through a narrow substrate tunnel.

A completely different fold is adopted by flavoprotein carbohydrate oxidases that contain a 

bicovalently bound FAD. They are part of the VAO flavoprotein family [9] and are set apart from 

all above-mentioned carbohydrate oxidases because of their activity on oligosaccharides [10]. This 

atypical anchoring of the FAD cofactor involves a histidyl and a cysteinyl linkage. While the 

presence of one covalent flavin-protein linkage has been linked to enhanced stability and redox 

potential [11, 12], the presence of two covalent bonds has been hypothesized to enhance capacity 

of these enzymes to bind and oxidise relatively large substrates such as oligosaccharides. Through 

the two attachment points, the flavin cofactor is fixed and the surrounding protein part can adopt a 

relatively open active site as observed for the crystal structures of bicovalent flavoproteins.

Glucooligosaccharide oxidase (GOO) was the first bicovalent flavoprotein for which the crystal 

structure was elucidated [13, 14]. GOO performs oxidation at the C1 of aldose sugar molecules. 

GOO is efficient in oxidizing disaccharides such as lactose, maltose and cellobiose, but is even 

more active on xylooligosaccharides, as demonstrated by recent studies [15, 16]. It performs 

oxidation at C1 which means that, for oligosaccharides, the target of the reaction is exclusively the 

CH-OH bond at the reducing end of the polymer chain. The structure of GOO revealed for the first 

time the structural architecture of a bicovalently bound FAD cofactor, linked to the enzyme via 

histidyl and cysteinyl linkage [13]. Even though the two linking residues are 60 positions apart in 

the amino acid sequence, the two covalent bonds are structurally close. The histidyl linkage is 

formed with C8 of the isoalloxazine ring while C6 is engaged in the cysteinyl linkage. By site-

directed mutagenesis studies it has been shown that both covalent bonds contribute to a relatively 

high redox potential of the flavin cofactor and are required for proper catalysis [14]. The reaction 

mechanism of GOO involves a strategically positioned tyrosine residue behaving as a general 

base, acting in concert with the flavin to catalyse oxidation via a hydride transfer.

In addition to GOO, several other sequence- and structure-related carbohydrate oxidases have 

been discovered in the last two decades [15, 16]. While some of them exhibit a similar substrate 

acceptance profile and regioselectivity, several were found to act on other types of carbohydrates. 

We have recently reported on a xylooligosaccharide oxidase from Myceliophthora thermophila A
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which specifically acts on xylose-based oligosaccharides, while oxidizing at C1 [17]. The 

elucidated crystal structure revealed the structural features that result in this unique substrate 

specificity. Another example of a carbohydrate oxidase belonging to this group of bicovalent 

flavoprotein oxidases, that displays activity on a different class of carbohydrates, is 

chitooligosaccharide oxidase from the fungus Fusarium graminearum. Chitooligosaccharides can 

be derived from chitin and have found industrial applications [18]. Similar to GOO, ChitO 

catalyses oxidation at C1, while it displays a unique substrate specificity: it acts on N-acetylated 

oligosaccharides, namely chitooligosaccharides (Fig. 1) [19]. This means that ChitO can recognise 

oligomers of N-acetylglucosamine, bind them and position their reducing end towards its active 

site to catalyse the oxidation reaction at C1. The specificity towards N-acetylated carbohydrates 

has been previously ascribed to a pivotal role of a glutamine residue (Gln268) in the substrate 

binding pocket [19]. Yet, no crystal structure was available to confirm this role. Mutagenesis 

studies have confirmed that it harbours a bicovalently bond FAD, attached to cysteine and 

histidine residues, as in the case of GOO. The impairment of a formation of the covalent bonds 

strongly reduces the redox potential of ChitO [20].

R
OH

O OH

O

HO ChitO

H2O2O2
R

OH

O

O

HO
O

C1 C1

X X

Fig. 1: General reaction catalysed by ChitO.
X=H for monomers or other N-acetylglucosamine moieties for oligomers. R= variable substituent.

Using a homology model of ChitO, an enzyme engineering study has been carried out which 

resulted in enzyme variants that accept substrates other than N-acetylated oligosaccharides [21]. In 

this way it was possible to expand the activity of ChitO towards the disaccharide lactose and the 

monosaccharide N-acetyl-D-glucosamine. It was also demonstrated that ChitO and its variants can 

be used for a convenient assay for monitoring hydrolysis of chitin or cellulose [22].

Here, we report on the crystal structure of ChitO. Furthermore, using the obtained structural 

insights, we have performed a more exhaustive study on the substrate scope of ChitO. Various 

amino sugars have been tested as substrates, to better understand the substrate acceptance profile A
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of ChitO. Intriguingly, this has revealed that this fungal oxidase readily accepts various aliphatic 

groups at C2 of glucooligosaccharides. These findings add more insight into the catalytic scope of 

ChitO and its structural features.

Materials and methods

The reagents used in this study were from Sigma, Acros and BioRad, culture media components 

were from Difco and the crystallisation screens were purchased from Hampton, Molecular 

Dimensions and Qiagen.

Protein expression and purification – chemically competent ORIGAMI E. coli cells were 

transformed using the plasmid harbouring the gene for expression of MBP-ChitO [19]. After 

growth on LB-agar containing ampicillin, tetracycline and kanamycin, colonies were picked and 

used for inoculation of small scale cultures of LB medium. After overnight growth at 37°C, the 

precultures were used to inoculate Erlenmeyer flasks. The LB medium was complemented with 

0.04% L-arabinose to induce protein expression and the flasks were left incubating at 17°C for 3 

days at 200 rpm. After harvesting by centrifugation, the cell pellet was resuspended in buffer A 

(50 mM KPi buffer pH 7.6) and the suspension sonicated for 10 minutes (5 seconds on – 5 

seconds off) at 70% amplitude on a Vibra Cell CV 18 sonicator (Sonics). The lysate underwent 

ultracentrifugation and the supernatant was collected and filtered using 0.4 μm filter units 

(Millipore).

Gravity columns were filled with amylose resin and rinsed with 5 CV of buffer A. After loading of 

the sample on the column, elution was performed with 3 CV of buffer A followed by elution with 

2 CV of buffer B (50 mM KPi pH 7.6 and 10 mM maltose). Cleavage of MBP was performed in 

batch using 0.6 μg of trypsin per mg of protein content, at room temperature for 1.5 hours. ChitO 

was separated from the cleaved MBP by loading the sample on the amylose resin column and by 

collecting the flow-though (Fig. S1).

Size exclusion chromatography and buffer exchange were necessary for crystallisation 

experiments on ChitO, to assure monodispersity and to minimise salt crystals growth, respectively. 

A Superdex 200 10/300 column (GE Healthcare) was mounted on an ÄKTA purifier (GE 

Healthcare) and equilibrated in a buffer containing 20 mM Na-citrate pH 4 and 100 mM NaCl. 

Protein was injected and the system flow set to 0.2 mL/minute. Fractions of 0.5 mL were collected 

and the ones corresponding to the yellow-coloured ChitO elution peak were pooled and 

concentrated (Figs. S2 and S3).A
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Kinetic studies – An HRP coupled assay was used to detect ChitO activity [19] in microtiter plates 

using a SynergyMX (BioTek) plate reader. Measurements of absorbance increase at a wavelength 

of 515 nm were performed over a period of 15 minutes from the start of the reaction. The tested 

substrates for these studies were GlcNAc, streptozotocin, GlcPro, GlcVal and GlcHex.

Melting temperature assay – ChitO samples were tested for their thermostability using different 

buffers employing both the ThermoFluor and ThermoFAD [23] methods. In the first case SYPRO 

orange dye was added in order to detect protein denaturation, while in the second method the 

fluorescent signal of the flavin cofactor was used. The measurements were performed using an 

ICycler MyiQ thermocycler (BioRad), applying a temperature rampage from 23 to 100°C and 

recording the fluorescence signal every 0.5 minutes. The tested pH values of the buffers in which 

ChitO was dissolved ranged from 3 to 8.5, with concentrations of 100 mM.

Protein crystallisation and crystallography – ChitO crystals were obtained in multiple conditions. 

Crystallisation conditions were screened using a Mosquito crystallisation robot (TPP LabTech).  

After careful optimisation, the best diffracting objects were determined to be in a handmade sitting 

drop condition containing 0.3 M CaCl2, 0.1 M Bis-Tris pH 5.7 and 34% w/v PEG 3350. Due to 

their intergrown state, these crystals were separated using microtools. After treatment with a 

glycerol-based cryoprotectant and freezing in liquid nitrogen, the samples were sent for 

synchrotron data collection (Table 1).

Table 1: Data collection and refinement statistics.

Statistics for the high-resolution shell are shown in parenthesis.

Resolution range 36.84  - 1.611 (1.668  - 1.611)

Space group P 21 21 21

Unit cell 73.686 74.247 97.157 90 90 90

Total reflections 133786 (10473)

Unique reflections 67364 (5457)

Multiplicity 2.0 (1.9)

Completeness (%) 96.84 (79.79)

Mean I/sigma(I) 20.59 (2.00)

Wilson B-factor 21.47

R-merge 0.01763 (0.3768)

R-meas 0.02493 (0.5328)A
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R-pim 0.01763 (0.3768)

CC1/2 1 (0.698)

CC* 1 (0.907)

Reflections used in refinement 67361 (5457)

Reflections used for R-free 3242 (278)

R-work 0.1780 (0.2592)

R-free 0.1989 (0.2498)

CC(work) 0.964 (0.788)

CC(free) 0.958 (0.816)

Number of non-hydrogen atoms 3934

  macromolecules 3527

  ligands 53

  solvent 354

Protein residues 468

RMS(bonds) 0.016

RMS(angles) 1.92

Ramachandran favoured (%) 98.28

Ramachandran allowed (%) 1.5

Ramachandran outliers (%) 0.21

Rotamer outliers (%) 0.27

Clashscore 8.94

Average B-factor 24.6

  macromolecules 23.98

  ligands 16.81

  solvent 32.03

The diffraction data on ChitO crystals were collected at the SLS, Villigen, Switzerland, where one 

object diffracted at 1.6 Å resolution. The collected images were processed using XDS [24] and the 

resulting ASCII file was used for scaling in aimless from the CCP4 package [25]. The scaled .mtz 

file obtained from aimless was the input for the structure solution step run in phaser MR [26]. The 

search model for molecular replacement was the PDB entry 1ZR6, having 45% identity with A
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ChitO over 94% query cover (from BlastP run). Six cycles of refmac5 [25] and manual fitting in 

coot [27] delivered the final model.

Docking and modelling studies – The high resolution structure of ChitO was further analysed by 

docking known substrates in the active site of the enzyme. For this procedure Yasara [28] docking 

was used, applying the AmberIPQ force field over a 20x20x20Å box, which was encompassing 

the whole active site. The enzyme structure and the structures of the different ligands were 

provided as .pdb files and the docking experiments were launched for 100 runs using VINA [29]. 

The results were clustered in values of RMSD which were changed each time to allow a consistent 

number of representative complexes to be inspected visually. The complexes giving a pro-catalytic 

arrangement, underwent an energy minimisation step in Yasara. This procedure was adopted for 

the ligands: GlcNAc, streptozotocin, chitobiose, GlcVal, chitotriose, cellobiose, maltose and 

lactose. When the dockings of GlcHex and N-octyl-D-glucosamine (GlcOct) were tested, a more 

accurate protocol was followed, due to the bulky nature of the compounds. In these instances, 

some of the residues forming the binding pocket were allowed to move during the docking 

experiment (Thr153, Met170 and Phe319). The .pdb file of the ChitO structure was prepared by 

running Protoss on Protein Plus [30] and then by creating a rigid and a flexible sets of coordinates 

for the receptor and a flexible set for the ligand using AutoDock Tools. The structures were 

converted in .pdbqt format to ensure proper charges and connectivity and a config file was written 

to run VINA over a defined 20x20x20Å box which was traced in Pymol [34] and then imported. 

After converting the resulting models in .pdb files and selecting the results that showed a proper 

conformation, these underwent an energy minimisation step in Yasara.

Results and discussion

ChitO is a VAO-type enzyme displaying high sequence homology with other known 

oligosaccharide oxidases. It also has a bicovalently bound FAD cofactor present in its active site, 

like many other VAO-type oxidases active on oligosaccharides. The main trait distinguishing 

ChitO from other flavoprotein oxidases active on oligosaccharides is the substrate specificity. 

While GOO and XylO display specificity for glucooligosaccharides and xylooligosaccharides, 

respectively, ChitO shows a high affinity for oligosaccharides that are N-acetylated at C2 (N-

acetylglucooligosaccharides). In the present study, wild type ChitO was purified and crystallised, 

and its kinetic profile determined for a set of D-glucosamine derivatives.A
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The main goal of our study was to determine the molecular basis for the unique substrate 

acceptance of ChitO. In order to investigate what type of C2-modified saccharides are still 

accepted as substrate, potential substrates with different C2-moieties were systematically screened. 

Next to the previously identified substrate N-acetylglucosamine (GlcNAc), also other compounds 

were tested with the alkyl tail extended by one carbon (N-propionyl-D-glucosamine, GlcPro), 

three carbons (N-valeryl-D-glucosamine, GlcVal), and four carbons (N-hexanoyl-D-glucosamine, 

GlcHex). Additionally, a nitrosourea derivative of D-glucosamine was tested: streptozotocin (Fig. 

2). Streptozotocin is a natural product and has been shown to be a valuable high-toxicity anti-

cancer agent which damages DNA [35]. Intriguingly, all test D-glucosamine derivatives were 

found to be accepted as substrate. After establishing the steady-state kinetic parameters (Table 2 

and Fig. S4), it was found that streptozotocin is the worst substrate out of the five tested. Yet, its 

kinetic parameters are not much different from D-glucosamine. When considering the kinetic 

parameters, the best identified substrate is GlcHex. The catalytic efficiency for this 

monosaccharide is even superior to any previous reported ChitO substrate [22]. The differences in 

catalytic efficiency rely mainly on the varying Km values while the kcat is rather similar for all 

substrates. With GlcHex displaying a Km of only 0.16 mM, the apparent affinity steadily decreases 

going to shorter alkyl moieties at C2. This behaviour suggested the presence of structural elements 

capable of favourable hydrophobic interactions with the moiety present at C2 (Table 2 and Fig. 

S4).

O OH

OH
HO R

HO
R1 R2

R4 R5

HN

O

HN N

O
NO

HN

O

HN

O

HN

OR3

Fig. 2: Structural formulas of the tested substrates.
R1 is GlcNAc, R2 is streptozotocin, R3 is GlcPro, R4 is GlcVal and R5 is GlcHex.

Table 2: Steady-state kinetic parameters for the identified ChitO substrates.

Km (mM) kcat (s-1) kcat/ Km (M-1 s-1)

Streptozotocin 6.24 ± 0.47 7.14 ± 0.15 1140

GlcNAc 5.10 ± 0.47 9.02 ± 0.30 1770A
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GlcPro 0.94 ± 0.03 7.88 ± 0.09 8350

GlcVal 0.35 ± 0.01 8.30 ± 0.05 23600

GlcHex 0.16 ± 0.01 9.45 ± 0.09 59100

To establish optimal handling conditions for ChitO, the thermostability was probed. The apparent 

melting temperature (Tm’) of ChitO was assessed in different buffer conditions using two methods: 

ThermoFAD and ThermoFluor. Despite ChitO being a flavoenzyme, ThermoFAD measurements 

did not give proper melting curves. This is probably occurring because the flavin cofactor is 

covalent tethered which results in fluorescence quenching, even upon unfolding of the protein. 

ThermoFluor resulted in clear unfolding events and was used over a range of pH values (pH 3 – 

8.5) and NaCl concentrations (0.02 - 0.50 M). The highest Tm’ measured for ChitO was 63.0°C, 

which was measured in Na-citrate buffer pH 4.0 (Fig. S5). Based on these results, the mentioned 

buffer, provided with additional 0.02 M NaCl, was used to run size exclusion chromatography, 

with the aim of stabilising the target protein as much as possible before crystallisation 

experiments. This led to successful crystallization of the oxidase.

The crystal structure of ChitO (PDB entry 6Y0R) was refined at 1.6 Å resolution. The space group 

is P212121 and the unit cell parameters are a=73.69 b=74.25 c=97.16, consistent with the 

monomeric arrangement of the crystal structure for a 50 kDa protein, and with the calculated 

Matthews coefficient of 2.66, corresponding to 53.78% of solvent content. The crystallographic 

parameters are listed in Table 1. The crystal structure of ChitO corresponds to a monomer of 467 

traced residues. This is also the oligomeric state of the protein as determined by gel permeation 

chromatography (Fig. S2). One disulfide bond is present, which keeps the N-terminus close to the 

protein core by linking Cys6 and Cys79. This also explains why expression of ChitO required E. 

coli ORIGAMI which promotes disulfide bond formation [12]. Different from the elucidated GOO 

structures, no glycosylation was found on surface residues. This reflects the fact that ChitO was 

recombinantly produced using E. coli. Some residues, such as Asn327, may represent 

glycosylation sites, being exposed on the surface and overlapping with corresponding glycosylated 

residues present in GOO. One FAD cofactor per protomer is bound in the active site, at the 

interface between the FAD-binding (F) and substrate-binding (S) domains (Fig. 3). The F domain 

can be roughly described as the N-terminal portion of the protein, until residue 230 complemented 

with residue 440 to the C terminus (Fig. 3). The S domain corresponds to the central part of the 

sequence, from residue 231 to residue 439. While no substrate is bound in the elucidated structure A
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of ChitO, the location of the carbohydrate binding pocket along the isoalloxazine moiety of the 

FAD cofactor can be easily identified by overlapping the structure with a GOO or XylO structure. 

In fact, superposition of ChitO with GOO and XylO reveals a high structural similarity, with 

RMSD of only 1.08 Å when comparing to GOO (PDB entry 2AXR) and 1.13 Å when comparing 

to XylO (PDB entry 5L6G) (Fig. S6). 

Fig. 3: Overall structure of ChitO from frontal and side view.
F and S domains are in blue and magenta, respectively. The FAD cofactor is in sticks with yellow carbon atoms.

The FAD cofactor is deeply embedded in the protein, except for the isoalloxazine ring. This redox 

active part of the flavin cofactor is exposed to the solvent because of its position at the bottom of a 

large opening. The isoalloxazine ring is covalently attached to the protein scaffold via a histidyl 

linkage to His64 and a cysteinyl linkage to Cys154 (Fig. 4), similar to GOO [14] (the 

corresponding residues are His70 and Cys130 in GOO). Other residues interacting with FAD, but 

not forming covalent bonds, are: 1) Tyr53, Tyr96, Thr153, Val157, His162, Tyr444 and Tyr447 

with the isoalloxazine ring, 2) Asn446 with the ribityl moiety, 3) the backbone of Gly92 and 

Gly161 with the diphosphate moiety and 4) Ser91, His165 and Asn484 with the adenine. In our 

ligand-free structure, as mentioned above, the isoalloxazine ring of the FAD is quite exposed to 

the solvent. The crevice between the F and S domains allows positioning of saccharides of various 

length.
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Fig. 4: The isoalloxazine ring of the FAD cofactor which is bicovalently bound to His64 and Cys154.

To have a better view on how substrates bind in the active site, in silico docking experiments have 

been performed. The results are in agreement with the substrate acceptance profile determined for 

ChitO. The analysed substrates are from two classes: (1) the above-mentioned N-glucosamine 

derivatives, and (2) several oligosaccharides. When the N-glucosamines were docked as ligands, 

they bound in the active site of ChitO by adopting a pro-catalytic arrangement (Fig. 5). 

Specifically, the CH-OH bond at position C1 points to a specific tyrosine residue (Tyr447) which 

can act as base (Fig. S7), while the C1 hydrogen points towards the isoalloxazine ring to undergo 

hydride transfer to the N5 of the FAD. The conservation of this tyrosine residue and of the 

isoalloxazine tethering shows that the basal catalytic machinery in ChitO, GOO and XylO is 

conserved. In this conformation, the moiety at C2 is hosted in a secondary pocket consisting of 

residues Thr153, Tyr168, Met170, Gln268, Phe319, Gln375, Asn377, Tyr444 and Tyr447. This is 

perfectly in line with the reported finding that Gln268 is crucial for recognition of the N-acetyl 

moiety [21]. This pocket is located on one side of the isoalloxazine ring, and endows ChitO 

specificity towards N-acetylated compounds. In fact, the pocket that allows hosting groups bound 

to C2 was found to be quite large and suited for binding a C2-linked hydrophobic tail of 

considerable length. Docking of GlcVal, with a C2 alkyl moiety of 4 carbon atoms, was found to 

fit the secondary pocket, enclosed between Met170 and Phe319, and taking advantage of the A
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orientation of Tyr168, pointing away from the ligand. Docking of streptozotocin, which results in 

positioning of the nitrosourea in the same secondary pocket, suggests that the reduced affinity for 

this substrate with respect to GlcVal can be explained by the lack of favourable interactions 

available for the polar nitrosourea moiety. Met170, Phe319 and the methyl group of Thr153 

surround this part of the docked streptozotocin structure. Initially, docking of the best reported 

substrate, GlcHex, did not result in a catalytically competent binding mode. Yet, when the side 

chains of Thr153, Met170 and Phe319 were allowed to rotate, a similar pose for the D-glucose 

moiety was obtained, while the aliphatic alkyl chain snugly fits in the secondary pocket (Fig. S8). 

Fig. 5: Docked structures of N-acetylated compounds in the binding pocket of ChitO, represented as light 

blue surface. FAD is represented as yellow carbon atoms. Standard coding with red oxygen atoms and blue nitrogen 

atoms is retained for all stick representations. GlcNAc in grey carbon atoms (A), streptozotocin in white carbon atoms 

(B), GlcVal in dark green carbon atoms (C) and GlcHex in light pink carbon atoms (D) all bound in the reactive 

conformation with reducing end pointing the active site of the enzyme. The N-acetyl group retains the same binding 

mode.

These experiments confirm that such bulky aliphatic moieties can be accommodated in the 

secondary pocket. To explore whether ChitO would be able to bind substrates with a larger moiety 

at C2, we performed docking experiments using N-octanoyl-D-glucosamine (GlcOct). For this 

bulky substrate, like for GlcHex, flexibility of Thr153, Met170 and Phe319 was included in the A
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docking procedure. Despite multiple docking attempts, no binding pose was found that would be 

compatible with catalysis (Fig. S9). Even when allowing all residues that form the secondary 

pocket to move freely, no relevant binding was found which indicates that the long alkyl tail in 

GlcOct cannot be accommodated in the secondary pocket of ChitO. Unfortunately, GlcOct or a 

closely related glucosamine derivative is not commercially available, preventing experimental 

testing. The kinetic data, structural analysis together with the docking experiment have revealed a 

secondary largely hydrophobic pocket in ChitO in which residues Met170 and Phe319 play a 

pivotal structural role. In other reported sequence-related carbohydrate oxidases, these residues are 

typically replaced by Phe and Tyr residues, respectively (Fig. S6). The finding that ChitO harbours 

a pocket that allows binding of bulky moieties at the C2 position of D-glucose is intriguing and 

may suggest a role of ChitO in the modification of oligosaccharide different from 

chitooligosaccharides. While this is relevant to possible biotechnological applications, the role of 

this pocket still is enigmatic. Except for suggesting other substrates then chitin-derived 

compounds, the pocket may also serve another role such as an entry point or reservoir of  

dioxygen which also is hydrophobic [36].

We also performed docking with oligosaccharides as ChitO exhibits higher affinities towards 

chito-oligosaccharides when compared with the chitomonosaccharide N-acetylglucosamine, with 

the lowest Km values observed for chitotriose and chitotetraose. Docking of chitobiose and 

chitotriose revealed that binding of such oligosaccharides does not interfere with the positioning of 

the reducing end, which is bound as observed for the above-mentioned monosaccharides (Fig. 6).
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Fig. 6: Docked structures of disaccharides in the binding pocket of ChitO, represented as blue surface. 
FAD is represented as yellow carbon atoms. Standard coding with red oxygen atoms and blue nitrogen atoms is 

retained for all stick representations. Cellobiose in purple carbon atoms (A), lactose in pink carbon atoms (B) and 

maltose in salmon carbon atoms (C) all bound in the reactive conformation with the reducing end pointing the enzyme 

active site. In panels D and E are represented chitobiose and chitotriose, in cyan and green carbon atoms, 

respectively.

Docking shows that the oligosaccharides can bind in the extremely large funnel-like pocket that 

ChitO hosts, offering interactions with the side chain of the residues that shape the funnel, 

providing partial protection from the solvent. Other disaccharides docked in the ChitO crystal 

structure were cellobiose, lactose and maltose (Fig. 6 panels A-C). These sugars were chosen as 

they were reported as poor substrates of ChitO mainly due to high Km values (> 50 mM) [21]. In 

order to retain the same catalytic arrangement displayed for previously docked sugars, because of 

its stereochemistry, maltose adopted a different binding mode, which is allowed by the large space A
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available in the binding pocket. On the contrary, the reducing ends of cellobiose and lactose bound 

similarly as found for GlcNAc. The poor binding of these substrates can be explained by the 

absence of a modification at C2, limiting the number of substrate-protein interactions. 

In conclusion, our data reveal the structural basis for the unique substrate acceptance profile of 

ChitO from Fusarium graminearum. The bicovalent flavoprotein oxidase was found to act on a 

wider range of D-glucose derivatives. This includes a relaxed acceptance for modifications at C2, 

while it can bind and oxidise mono- and oligosaccharides. The novel findings shed a new light on 

the catalytic potential of ChitO, which may help in elucidating its physiological role. The data also 

can facilitate future engineering efforts with the aim of tailoring ChitO towards defined 

carbohydrates.
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