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Design of Privacy-Preserving Dynamic Controllers
Yu Kawano, Member, and Ming Cao, Senior Member

Abstract—As a quantitative criterion for privacy of “mecha-
nisms” in the form of data-generating processes, the concept of
differential privacy was first proposed in computer science and
has later been applied to linear dynamical systems. However,
differential privacy has not been studied in depth together with
other properties of dynamical systems, and it has not been fully
utilized for controller design. In this paper, first we clarify that
a classical concept in systems and control, input observability
(sometimes referred to as left invertibility) has a strong connection
with differential privacy. In particular, we show that the Gaussian
mechanism can be made highly differentially private by adding
small noise if the corresponding system is less input observable.
Next, enabled by our new insight into privacy, we develop a
method to design dynamic controllers for the classic tracking
control problem while addressing privacy concerns. We call
the obtained controller through our design method the privacy-
preserving controller. The usage of such controllers is further
illustrated by an example of tracking the prescribed power supply
in a DC microgrid installed with smart meters while keeping the
electricity consumers’ tracking errors private.

Index Terms—Discrete-time linear systems, Differential Pri-
vacy, Observability, Privacy-Preserving Controllers

I. INTRODUCTION

The trend of the Internet-of-Things (IoT) and cloud comput-
ing makes privacy and security become a research area of acute
social and technological concerns, see e.g. [1]–[7]. To protect
the privacy of data sources, the collected data are usually
processed statistically before being publicized for different
applications. However, even if one only publishes statistical
analytics, not raw data, private personal information may still
be identified by smart data mining algorithms that combine
the statistics with other third party information, see e.g. [8]–
[11]. Motivated by threats on privacy, statistical disclosure
control, or more generally privacy preserving data mining, has
been intensively studied; see e.g. [12], [13]. Representative
techniques include the K-anonymity [14], l-diversity [15], t-
closeness [16], and differential privacy [17], [18]. In particular,
differential privacy enjoys the mathematical property of being
quantifiable and thus has been used in solving various privacy-
related problems arising in the domains of smart grids [19]–
[21], health monitoring [22], [23], blockchain (or bitcoin) [24],
[25] and mechanism design [26].

There is a growing need to treat privacy as a critical property
of dynamical systems instead of the feature of some static time
invariant data set. For example, in power grids, consumers’
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electricity consumption patterns change over time and are
coupled in a closed loop with the stabilization actions of
various controllers in power systems. To address privacy issues
of those datasets that are generated by dynamical systems,
the standard concept of differential privacy for static data has
been extended to discrete-time linear dynamical systems, see
e.g. [27], [28], which shows convincingly that the key idea
of differential privacy, namely adding noise to data before
publishing them, is also effective for privacy protection for
dynamical data sets. However, there is still a considerable lack
of in-depth understanding of the possible fundamental inter-
play between differential privacy and other critical properties
of dynamical systems [29].

To address this challenge, we propose to take an approach
that is deeply rooted in systems and control theory; to be
more specific, we study privacy of dynamical systems by
taking two major steps: first to study privacy in terms of
input observability and then to provide a privacy-preserving
controller design method. The differential privacy level of
a discrete-time linear system can be interpreted as a quan-
titative criterion for the difficulty of identifying its input,
which triggers us to give a refreshing look at rich classic
results on uniquely determining the input from the output in
systems and control under the name of input observability [30]
or left invertibility [31]. For input observability, there are
already several qualitative criteria, e.g. the rank condition of
the transfer function matrix [31], the PBH type test [30],
[32], and Kalman’s rank type conditions [31], [33]. However,
these existing conditions do not provide quantitative anal-
ysis. Therefore, there is a gap between the relatively new
concept of differential privacy and the classical concept of
input observability. To establish a bridge between this gap,
we extend the notion of the Gramian to input observability.
Then, we show that the Gaussian mechanism evaluates the
maximum eigenvalue of the input observability Gramian; in
other words, small noise is enough to make the less input
observable Gaussian mechanism highly differentially private.
This new insight suggests that the input observability Gramian
can be used for detailed privacy analysis, not restricted to
differential privacy, just like what the standard controllability
and observability Gramians can do for detailed controllability
and observability analysis.

Next, we consider achieving trajectory tracking while pro-
tecting the tracking error as private information. Trajectory
tracking itself has been studied as a part of the output
regulation problem [34] for which dynamic output feedback
controllers have been studied. The differential privacy level
increases if the dynamic controllers are designed such that the
maximum eigenvalue of the input observability Gramian is
small, which is achieved by making the corresponding H∞-
norm small. In this paper, we provide a dynamic controller



design method in order to address the tracking problem and
to specify the H∞-norm simultaneously based on LMIs. It
is worth pointing out that to increase the differential privacy
level of the controller, one needs to make the H∞-norm
of the controller small or add large noise, both of which
may deteriorate the control performance. Therefore, privacy-
preserving controller design reduces to a trade-off between the
privacy level and control performance.

Along this line of research on designing privacy-preserving
controllers, there are related earlier works. Differential privacy
has been employed for privacy-preserving filtering [27], [28],
but not for controller design. In particular, [27] also studies the
connection between differential privacy and the H∞-norm of a
system; however, differential privacy has not been studied from
the input observability perspective, which was considered in
our preliminary conference version [35]. Different from [27],
[35], in this paper we consider not just i.i.d. noise; although
this may seem to be a rather minor technical extension,
it is in fact an important step towards obtaining a deeper
understanding of the differential privacy level of a dynamical
system. Also note that differential privacy has been used
for LQ control [36] and distributed optimization [37]–[41],
where the controller gains or controller dynamics are designed
without considering privacy issues, and consequently privacy-
preserving noise is added separately, making protecting pri-
vacy independent of the controller design itself. In contrast, we
design the controller with the incorporated goal of achieving
high privacy levels using small noise.

The remainder of this paper is organized as follows. Sec-
tion II introduces the concept of differential privacy and
analyzes it from several aspects including input observability.
Section III provides a privacy-preserving controller design
method. Our method is illustrated by an example of DC mi-
crogrids installed with smart meters in Section IV. Section V
briefly mentions extensions of our results to nonlinear systems,
where a part of the results has been presented in a preliminary
conference version [42]. Finally, Section VI concludes the
paper.

Notations: The set of real numbers, non-negative real num-
bers, and non-negative integers are denoted by R, R+ and Z+,
respectively. For vectors x1, . . . , xm ∈ Rn, a collective vector
[x⊤

1 · · · x⊤
m]⊤ ∈ Rnm is also described by [x1; · · · ;xm] for

the sake of simplicity of description. For the sequence u(t) ∈
Rm, t ∈ Z+, a collective vector consisting of its subsequence
is denoted by Ut(τ) := [u(τ); · · · ;u(τ + t)] ∈ R(t+1)m; when
τ = 0, the argument is omitted, i.e., Ut := [u(0); · · · ;u(t)].
For a square matrix A ∈ Rn×n, its determinant is denoted by
det(A), and when its eigenvalues are real, its maximum and
minimum eigenvalues are denoted by λmax(A) and λmin(A),
respectively. Further, A � 0 means that A is symmetric and
positive definite. The identity matrix of size n is denoted
by In. For the vector x ∈ Rn, its norms is denoted by
|x|p := (

∑n
i=1 |xi|p)

1/p, where p ∈ Z+, and its weighted
norm with A � 0 is denoted by |x|A := (x⊤Ax)1/2. A
continuous function α : [0, a) → R+ is said to be of class
K if it is strictly increasing and α(0) = 0. Moreover, it
is said to be of class K∞ if a = ∞ and α(r) → ∞ as
r → ∞. A random variable w is said to have a non-degenerate

multivariate Gaussian distribution with the mean value µ ∈ Rn

and covariance matrix Σ � 0, denoted by w ∼ Nn(µ,Σ), if
its distribution has the following probability density:

p(w;µ,Σ) =

(
1

(2π)ndet(Σ)

)1/2

e−|w−µ|2
Σ−1/2.

The so called Q-function is defined by Q(w) :=
1√
2π

∫∞
w

e−
v2

2 dv, where Q(w) < 1/2 for w > 0, and
R(ε, δ) := (Q−1(δ) +

√
(Q−1(δ))2 + 2ε)/2ε.

II. DIFFERENTIAL PRIVACY ANALYSIS

In this section, we study differential privacy of discrete-
time linear dynamical systems from three aspects. First, we
define the differential privacy of a Gaussian mechanism with
output noise [17], [18]; the exact definition of a mechanism
will become clear later. Second, we investigate the differential
privacy of the mechanism in terms of observability. Last, we
analyze the differential privacy of the mechanism with input
noise. Throughout the paper, we follow the convention by
focusing on a finite data sets. In a dynamical system setting,
this corresponds to analyzing the system’s properties within a
finite time.

Consider the following discrete-time linear system:{
x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(1)

for t ∈ Z+, where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq

denote the state, input and output, respectively, and A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rq×n and D ∈ Rq×m.

For (1), the output sequence Yt ∈ R(t+1)q is described by

Yt = Otx0 +NtUt, (2)

where Ot ∈ R(t+1)q×n and Nt ∈ R(t+1)q×(t+1)m are

Ot :=
[
C⊤ CA⊤ · · · (CAt)⊤

]⊤
, (3)

Nt :=



D 0 · · · · · · 0

CB D
. . .

...

CAB CB D
. . .

...
...

...
. . . . . . 0

CAt−1B CAt−2B · · · CB D


. (4)

To facilitate future discussion, we also denote the left (t+1)q
by (T + 1)m submatrix of Nt by Nt,T , T ≤ t.

Remark 2.1: If [Ot Nt] = 0, then Yt is identically zero.
In this pathological case, there is no reason to proceed with
privacy analysis, and thus throughout the paper we assume
that [Ot Nt] 6= 0. ◁

A. Differential Privacy With Output Noise

To proceed with differential privacy analysis, we consider
the output yw(t) := y(t)+w(t) after adding the noise w(t) ∈
Rq . From (2), Yw,t ∈ R(t+1)q can be described by

Yw,t = Otx0 +NtUt +Wt. (5)



This defines a mapping M : Rn × R(t+1)m × R(t+1)q 3
(x0, Ut,Wt) 7→ Yw,t ∈ R(t+1)q . In differential privacy
analysis, this mapping is called a mechanism [17], [18].

It is worth clarifying that the input of the dynamical sys-
tem (1) is u while the input data of the induced mechanism (5)
is (x0, Ut).

Remark 2.2: Depending on specific applications, x0 and Ut

do not need to be private at the same time. Our results can
be readily extended to the scenario where one of x0 and Ut

is confidential, and the other is public. ◁
Differential privacy gives an index of the privacy level of

a mechanism, which is characterized by the sensitivity of
the published output data Yw,t with respect to the input data
(x0, Ut). More specifically, if for a pair of not so distinct input
data ((x0, Ut), (x

′
0, U

′
t)), the corresponding pair of output data

(Yw,t, Y
′
w,t) are very different, then one can conclude that input

data are easy to identify, i.e. the mechanism is less private.
Thus, differential privacy is defined using a pair of different
but “similar” input data, where by similar we mean that the
pair satisfies the following adjacency relations.

Definition 2.3: Given c > 0 and p ∈ Z+, a pair of input
data ((x0, Ut), (x

′
0, U

′
t)) ∈ (Rn×R(t+1)m)× (Rn×R(t+1)m)

is said to belong to the binary relation c-adjacency under the
p norm if |[x0;Ut] − [x′

0;U
′
t ]|p ≤ c. The set of all pairs of

the input data that are c-adjacent under the p norm is denoted
by Adjcp. ◁

The magnitude of c gives an upper bound on the difference
of the pair of input data (x0, Ut) and (x′

0, U
′
t). Therefore, c

can be chosen according to the knowledge of the range or
distribution of input data.

Now, we are ready to define differential privacy of the
mechanism (5).

Definition 2.4: Let (R(t+1)q,F ,P) be a probability space.
The mechanism (5) is said to be (ε, δ)-differentially private
for Adjcp at a finite time instant t ∈ Z+ if there exist ε > 0
and δ ≥ 0 such that

P(Otx0 +NtUt +Wt ∈ S)
≤ eεP(Otx

′
0 +NtU

′
t +Wt ∈ S) + δ, ∀S ∈ F (6)

for any ((x0, Ut), (x
′
0, U

′
t)) ∈ Adjcp. ◁

Remark 2.5: There are two minor differences between Def-
inition 2.3 and the symmetric binary relation in [27]. In [27], it
is assumed that x0 = x′

0 in the binary relation and the pair of
input sequences (Ut, U

′
t) are the same except for one element

in the sequence, which is a special case of Definition 2.3. Our
definition of differential privacy is a direct extension of the
original one [17], [18] and slightly different from that defined
for linear dynamical systems in [27]; our definition depends
on the initial state in addition to the input sequence, and Wt

is not necessarily causal. ◁
If ε and δ are large, then for a different pair of input

data ((x0, Ut), (x
′
0, U

′
t)), the corresponding probability distri-

butions of output data (Yw,t, Y
′
w,t) can be very different, i.e.,

a mechanism is less private. Therefore, the privacy level of a
mechanism can be evaluated by the pair of variables ε and δ.
From its definition, one notices that if a mechanism is (ε1, δ1)-
differentially private, then it is (ε2, δ2)-differentially private

for any ε2 ≥ ε1 and δ2 ≥ δ1. Therefore, ε and δ give a lower
bound on the privacy level, where larger ε and δ imply lower
privacy levels.

As is clear from the definition, ε and δ also depend on noise.
In fact, we will show that the sensitivity of the dynamical sys-
tem (1) provides the lower bound on the covariance matrix for
the multivariate Gaussian noise to achieve (ε, δ)-differential
privacy, which is a generalization of [18], [27, Theorem 3]. In
what follows, we call a mechanism with the Gaussian noise a
Gaussian mechanism.

Theorem 2.6: The Gaussian mechanism (5) induced by
Wt ∼ N(t+1)q(µ,Σ) is (ε, δ)-differentially private for Adjc2
at a finite time t ∈ Z+ with ε > 0 and 1/2 > δ > 0 if the
covariance matrix Σ � 0 is chosen such that

λ−1/2
max (OΣ,t) ≥ cR(ε, δ), (7)

where

OΣ,t :=
[
Ot Nt

]⊤
Σ−1

[
Ot Nt

]
. (8)

Proof: Using a similar argument as in the proof for [27,
Theorem 3], for arbitrary ε > 0, one has

P(Otx0 +NtUt +Wt ∈ S)

≤ eεP(Otx
′
0 +NtU

′
t +Wt ∈ S) + P

(
W̃ ≥ εz − 1/2z

)
,

where

z := |Ot(x
′
0 − x0) +Nt(U

′
t − Ut)|−1

Σ−1 ,

and W̃ ∼ N (0, 1). Then, the mechanism is (ε, δ)-differentially
private if Q

(
εz − 1

2z

)
≤ δ, i.e.

z ≥ R(ε, δ), (9)

for any ((x0, Ut), (x
′
0, U

′
t)) ∈ Adjc2. The inequality (9) holds

if (7) is satisfied because

z−1 =|Ot(x
′
0 − x0) +Nt(U

′
t − Ut)|Σ−1 ≤ cλ1/2

max (OΣ,t) .

In (7), only the matrix
[
Ot Nt

]
depends on the system

dynamics (1). We will analyze this matrix in terms of sys-
tem (1)’s input observability in the next subsection. When the
initial state (resp. input sequence) is public, the condition (7)
can be replaced by λ

−1/2
max (N⊤

t Σ−1Nt) ≥ cR(ε, δ) (resp.
λ
−1/2
max (O⊤

t Σ
−1Ot) ≥ cR(ε, δ)). The matrix OΣ,t defined in (8)

is in fact the Fisher information matrix of Yt with respect
to [x0; Ut]. Therefore, Theorem 2.6 connects differential
privacy with Fisher information.

From (8), λ
1/2
max(OΣ,t) is the 2-induced matrix norm

of Σ−1/2[Ot Nt], denoted by |Σ−1/2[Ot Nt]|2. This can be
upper bounded as follows.

λ1/2
max(OΣ,t) =

∣∣∣Σ−1/2
[
Ot Nt

]∣∣∣
2

≤
∣∣∣Σ−1/2

∣∣∣
2

∣∣[Ot Nt

]∣∣
2

= λ
−1/2
min (Σ)λ1/2

max

(
OI(t+1)q,t

)
,

and consequently,

λ−1/2
max (OΣ,t) ≥ λ

1/2
min(Σ)λ

−1/2
max

(
OI(t+1)q,t

)
. (10)



Therefore, for any given c, ε > 0 and 1/2 > δ > 0, one can
make the Gaussian mechanism (ε, δ)-differentially private if
one makes the minimum eigenvalue of the covariance matrix Σ
sufficiently large such that

λ
1/2
min(Σ) ≥ cλ1/2

max

(
OI(t+1)q,t

)
R(ε, δ) (11)

because (10) and (11) imply (7). In the special case where
Σ = σ2I(t+1)q , σ > 0 (an i.i.d. Gaussian noise), (11) becomes

σ ≥ cλ1/2
max

(
OI(t+1)q,t

)
R(ε, δ). (12)

Still one can design σ to make the Gaussian mechanism (ε, δ)-
differentially private for arbitrary ε > 0 and 1/2 > δ > 0.

Remark 2.7: One can also extend [27, Theorem 2] to use
the i.i.d. Laplace noise in our problem setting. However, the
extension to the multivariate Laplace noise is not easy because
this involves the computation of the modified Bessel function
of the second kind. Let wi(t), i = 1, . . . , q, t ∈ Z+ be an
i.i.d. Laplace noise with the variance µ ∈ R and distribution
b > 0. Then, the Laplace mechanism (5) is (ε, 0)-differentially
private at a finite time t with ε > 0 if

b ≥ c
∣∣[ Ot Nt

]∣∣
1
/ε,

for any ((x0, Ut), (x
′
0, U

′
t)) ∈ Adjc1, where |A|1 :=

maxj
∑

i |ai,j | is the induced matrix 1-norm. As for the
Gaussian mechanism, the induced matrix norm of [Ot Nt]
plays a crucial role for the Laplace mechanism too. In the
next subsection, we study its 2-norm in terms of system (1)’s
input observability. Because of the equivalence of induced
matrix norms, the observation for the 2-norm is applicable
to an arbitrary norm including the 1-norm. ◁

Remark 2.8: In this subsection, to make the input data pri-
vate, noise is added to the output data, which makes the output
data also private. To analyze the differential privacy level of
the output data, one can employ the conventional results for a
static data set in [17], [18]. By adding a sufficiently large noise,
it is possible to achieve the differential privacy requirements
for the input data and output data at the same time. ◁

Note that in Theorem 2.6, the system (1) is not necessarily
stable. Now, we focus on asymptotically stable systems. Then,
one can characterize the differentially privacy level in terms of
the H∞-norm and the observability Gramian, where the H∞-
norm of the system (1) is the infimum non-negative constant
γ satisfying

t∑
τ=0

|y(τ)|22 ≤ γ2
t∑

τ=0

|u(τ)|22, ∀t ∈ Z+,

for all L2-bounded input signals, and the observability
Gramian is

O∞ := O⊤
∞O∞ =

∞∑
t=0

(CAt)⊤(CAt), (13)

where Ot is defined in (3). Note that λmax(O
⊤
t Ot) is non-

decreasing with t ∈ Z+, and for the asymptotically stable
system, O∞ is finite. Now, we obtain the following result as
a corollary of Theorem 2.6.

Corollary 2.9: The Gaussian mechanism (5) induced by an
asymptotically stable system (1) and Wt ∼ N(t+1)q(µ,Σ) is

(ε, δ)-differentially private for Adjc2 at a finite time t ∈ Z+

with ε > 0 and 1/2 > δ > 0 if the covariance matrix Σ � 0
is chosen such that the following inequality holds

λ
1/2
min(Σ) ≥ c

(
λ1/2
max(O∞) + γ

)
R(ε, δ). (14)

Proof: It holds that

|Ot(x
′
0 − x0) +Nt(U

′
t − Ut)|Σ−1

≤ |Ot(x
′
0 − x0)|Σ−1 + |Nt(U

′
t − Ut)|Σ−1

≤ λ1/2
max(Σ

−1)(|Ot(x
′
0 − x0)|2 + |Nt(U

′
t − Ut)|2)

≤ cλ1/2
max(Σ

−1)
(
λ1/2
max(O∞) + γ

)
.

Therefore, (14) implies (9), where 1/λmax(Σ
−1) = λmin(Σ)

is used.
If x0 is public and the multivariate Gaussian is i.i.d,

Corollary 2.9 reduces to [27, Corollary 1]. When the initial
state (resp. input sequence) is public, the condition (14) can
be replaced by λ

1/2
min(Σ) ≥ cγR(ε, δ) (resp. λ

1/2
min(Σ) ≥

cλ
1/2
max(O∞)R(ε, δ)). From the proof, one notices that for an

asymptotically stable system (1), if the covariance matrix Σ
is chosen such that (14) holds, then (7) holds for any t ∈ Z+.
That is, for any asymptotically stable system (1) and for any
ε > 0 and 1/2 > δ > 0, there exists a non-degenerate multi-
variate Gaussian noise which makes the induced mechanism
(ε, δ)-differentially private for any t ∈ Z+. However, this is
not always true for unstable systems; a similar statement can
be found in [43, Theorem 4.5].

B. Connection with Strong Input Observability

In the previous subsection, we have studied the (ε, δ)-
differential privacy of a Gaussian mechanism induced by
output noise. However, it is not intuitively clear how dif-
ferential privacy relates to dynamical systems’ other intrinsic
properties. For differential privacy, noise is designed to prevent
the initial state and input sequence from being identified from
the published output sequence. From the systems and control
point of view, the property of determining the initial state
and input sequence can be interpreted as observability or
left invertibility [30], [31]. In this subsection, we study the
Gaussian mechanism from the input observability perspective.

First, we define what we mean by strong input observability.
Definition 2.10: The system (1) is said to be strongly input

observable if there exists T ∈ Z+ such that both the initial
state x0 ∈ Rn and initial input u(0) ∈ Rm can be uniquely
determined from the measured output sequence YT . ◁

It is worth mentioning that if (x0, u(0)) is uniquely de-
termined from YT , then (x(k), u(k)) is consequently uniquely
determined from YT+k, k = 1, 2, . . . . Hence, one can focus on
(x0, u(0)) in the definition of strong input observability. Note
that although strong input observability may seem too strong
to hold for many existing engineering systems, more emerging
and future systems may very likely possess this property
after more sensed data and communicated information become
available.

Remark 2.11: There are several similar but different con-
cepts from strong input observability just defined. On the one



hand, if UT is known, the analysis reduces to determining the
initial state x0, i.e, the standard observability analysis [44].
When UT is unknown, the property that x0 can be uniquely
determined is called unknown-input (or strong) observabil-
ity [45]. On the other hand, if x0 is known, the analysis
reduces to determining the initial input u(0); this property is
called input observability with the known initial state x0 [30]
or left invertibility [31]. In the case, for the unknown initial
state x0, the property that the initial input u(0) can be uniquely
determined is called input observability [30]. Therefore, our
strong input observability requires both unknown-input (or
strong) observability and input observability. ◁

The results in the existing observability analysis are helpful
for the strong input observability analysis. Especially, by
extending [31, Theorem 3], we have the following necessary
and sufficient condition for strong input observability. Since
the proof is similar, it is omitted.

Theorem 2.12: The system (1) is strongly input observable
if and only if

rank
[
O2n N2n,n

]
= n+ (n+ 1)m (15)

for Ot in (3) and the submatrix Nt,T of Nt in (4), i.e., the
matrix [O2n N2n,n], has the column full rank. ◁

The following corollary is also used in this paper.
Corollary 2.13: The system (1) is strongly input observable

if and only if

rank
[
Ot Nt,T

]
= n+ (T + 1)m, (16)

for any integers T ≥ n and t ≥ T + n. ◁
Proof: From the structures of Ot and Nt,T , if [O2n N2n,n]

has the column full rank, then

rank
[
O2n N2n,n

]
= rank

[
O2n+t N2n+t,n

]
for any t ∈ Z+. Conversely, from the Cayley-Hamilton
theorem [46], if [O2n+t N2n+t,n] has the column full rank
for some t ∈ Z+, then (15) holds.

The rank condition (15) or (16) is a qualitative criterion for
strong input observability, but differential privacy is a quanti-
tative criterion. A connection between these two concepts can
be established by extending the concept of the observability
Gramian to strong input observability because controllability
and observability Gramians give both quantitative and qual-
itative criteria. To extend the concept of the Gramian, we
consider a weighted least square estimation problem1 of the
initial state x0 and input sequences UT , T ≥ n, from the
output sequence with the measurement noise Yw,t, t ≥ T +n,
under the technical assumption u(τ) = 0, t ≥ τ > T :

J(x0,UT ) = min
(x0,UT )∈Rn×R(T+1)m

|Yw,t −Otx0 −Nt,TUT |2Σ−1 .

(17)

This problem has a unique solution if (16) holds, i.e., the
system is strongly input observable, in which case the solution

1Note that the controllability Gramian is originally obtained from the min-
imum energy control problem [47]. The duals of the controllability Gramian
and minimum energy control problem are respectively the observability
Gramian and least square estimation problem of the initial state.

is [
x̂0

ÛT

]
= (OΣ,t,T )

−1 [ Ot Nt,T

]⊤
Σ−1Yw,t, (18)

where

OΣ,t,T :=
[
Ot Nt,T

]⊤
Σ−1

[
Ot Nt,T

]
. (19)

When there is no measurement noise, i.e., WT = 0, it follows
that (18) gives the actual initial state and input sequence.

One notices that OΣ,t,t = OΣ,t for OΣ,t in (8). As for OΣ,t,
the matrix OΣ,t,T characterizes the differential privacy level
of a Gaussian mechanism, which we state as a corollary of
Theorem 2.6 without the proof.

Corollary 2.14: Let T ≥ n and t ≥ T + n. For
any ((x0, Ut), (x

′
0, U

′
t)) belonging to Adjc2 and satisfying

u(τ) = u′(τ), T < τ ≤ t, the Gaussian mechanism (5)
induced by Wt ∼ N(t+1)q(µ,Σ) is (ε, δ)-differentially private
at a finite time t ∈ Z+ with ε > 0 and 1/2 > δ > 0, if the
covariance matrix Σ � 0 is chosen such that

λ−1/2
max (OΣ,t,T ) ≥ cR(ε, δ). (20)

◁
Notice that if T = t, (20) is equivalent to (7). From (20),

Corollary 2.14 concludes that the differential privacy of the
Gaussian mechanism is characterized by the maximum eigen-
value of the matrix OΣ,t,T , where OΣ,t,T is not necessarily
non-singular in differential privacy analysis; non-singularity is
required to guarantee the uniqueness of a solution to the least
square estimation problem (17).

For Σ = I(t+1)q , we call Ot,T := OI(t+1)q,t,T the strong
input observability Gramian. The strong input observability
Gramian is both qualitative and quantitative for strong input
observability. For instance, from Corollary 2.13, the system (1)
is strongly input observable if and only if Ot,T is non-singular
for any integers T ≥ n and t ≥ n + T . Also, by substituting
(x̂0, ÛT ) of (18) into (x0, UT ) of (17), one notices that if
all eigenvalues of Ot,T is large, then J(x0,UT ) in (17) with
Σ = I(t+1)q is small. That is, (x0, UT ) is relatively easy
to be estimated. This observation agrees with (20) because
for Σ = σ2I(t+1)q , large σ is required if λmax(Ot,T ) is
large; recall (12). In other words, small noise is enough to
make the less input observable Gaussian mechanism highly
differentially private.

To gain deeper insight following the privacy analysis, we
take a further look at the eigenvalues of the strong input
observability Gramian Ot,T from three aspects. First, from
(3), (4) and (19) with Σ = I(t+1)q , the first m × m block
diagonal element of Ot,T is

(Ot,T )1,1 :=

t∑
k=0

(CAk)⊤CAk,

and for i ≥ 2, the ith m×m block diagonal element of Ot,T

is

(Ot,T )i,i := D⊤D +

t−i−2∑
k=0

(CAkB)⊤CAkB,

i = 2, . . . , T + 1



where (Ot,T )T+1,T+1 := D⊤D when t = T . One notices
that (Ot,T )1,1 is the standard observability Gramian for the
initial state x0, and (Ot,T )i,i, i ≥ 2 can be viewed as the
observability Gramian corresponding to the initial input u(0),
which we call the initial input observability Gramian. Since
the trace of a matrix is the sum of all its eigenvalues, and
the trace of Ot,T is the sum of the traces of all its block
diagonal elements (Ot,T )i,i, i = 1, . . . , T + 1, the sum of
the eigenvalues of Ot,T is the sum of the eigenvalues of all
(Ot,T )i,i, i = 1, . . . , T + 1. Therefore, if the standard and
initial input observability Gramians have large eigenvalues, the
strong input observability Gramian Ot,T has large eigenvalues
also. In other words, the privacy level of the initial state and
whole input sequence is characterized by that of only the initial
state and initial input. This fact is natural because of two facts:
1) the output at each time instant contains the information of
the initial state and initial input, i.e. these are the least private
information; 2) if the initial state and initial input are uniquely
determined, the whole input sequence is uniquely determined.

Next, for fixed t, the minimum eigenvalue of Ot,T does not
increase with T . For instance,

λmin(Ot,1) ≤ λmin(Ot,0). (21)

Recall that these two Gramians are obtained from the least
square estimation problems when u(t) = 0 for t = 2, 3, . . .
and t = 1, 2, . . . , respectively. Therefore, (21) corresponds to
a natural observation that u(0) is more difficult to estimate if
u(1) is unknown compared to the case when u(1) is known
to be 0.

Finally, for fixed T , λmax(Ot,T ) is non-decreasing with t,
and thus ε in Corollary 2.14 is non-decreasing with t. This
implies that as more data are being collected, less private
a mechanism becomes. It is worth emphasizing that this
observation is obtained when Σ = I(t+1)q , or more generally
Σ = σ2I(t+1)q , σ > 0, i.e., the output noise is i.i.d. Therefore,
by employing non-i.i.d. noise, it is still possible to keep the
same privacy level in longer duration; we will discuss this in
the next subsection.

The above discussions are based on the minimum or max-
imum eigenvalue of the strong input observability Gramian.
For more detailed privacy (strong input observability) analysis,
each eigenvalue and the associated eigen-space can be used
as typically done for the standard observability Gramian. Let
vi ∈ Rn+(T+1)m, i = 1, . . . , n+(T+1)m, be the eigenvectors
of Ot,T associated with the eigenvalues λi ≤ λi+1. If there is
k such that λk � λk+1, then (x0, UT ) ∈ span{vk+1, . . . , vT }
is relatively easy to observe. Especially, if 0 < λk+1, then
such (x0, UT ) can be uniquely determined, and the projection
of span{vk+1, . . . , vT } onto the (x0, u(0))-space gives the
strongly input observable subspace. For the (non-strong) input
observability with known initial state (i.e., left invertibility),
the input observable and unobservable subspaces have been
studied based on an extension of Kalman’s canonical decom-
position [48], but quantitative analysis has not been established
yet.

The quantitative analysis of subspaces can be used for de-
signing noise to make a system more private. Let λk � λk+1,
and consider the projection of span{vk+1, . . . , vT } onto the

(x0, u(0))-space, which we denote by X × U ⊂ Rn × Rm.
Then, the output of the system is sensitive to the initial
states and inputs in X × U ; in other words, such initial
states and inputs are less private. To protect less private input
information, one can directly add noise v ∈ X×U to the initial
state and the input channel instead of the output channel. This
motivates us to study differential privacy with input noise.

C. Differential Privacy With Input Noise

In this subsection, we study the scenario where noise is
added to the input channel. In this case, one can directly decide
the distribution of estimated input data. However, additional
effort is needed for studying the utility of the output data.
Furthermore, differential privacy analysis is technically more
involved because the output variables are not necessarily non-
degenerate (while they are Gaussian if the input noise is
Gaussian). To address this issue, even though artificial, some
technical procedure is required, which is essentially equivalent
to selecting a different base measure using the disintegration
theorem [49]. As the main result of this subsection, we show
that the differential privacy levels of the Gaussian mechanisms
induced by the input noise and output noise can be made the
same for suitable choices of the input noise and output noise.

To proceed with analysis, we assume that the system (1)
is strongly input observable, i.e., the matrix in (16) has the
column full rank for any T ≥ n and t ≥ T + n, which
implicitly implies (t+1)q ≥ n+(T +1)m. Then, there exists
a (t + 1)q − (n + (T + 1)m) by (t + 1)q matrix N t,T such
that

rank N t = (t+ 1)q,

and [
Ot Nt,T

]⊤
N t,T = 0, (22)

where

N t :=
[
Ot Nt,T N t,T

]
. (23)

Remark 2.15: If a system is strongly input unobservable,
i.e., (16) does not hold, then one can use the singular value
decomposition of [Ot Nt,T ] for similar analysis. ◁

Now, we consider the following system with the initial state,
input and output noises,{
x(t+ 1) = Ax(t) +B(u(t) + v(t)), x(0) = x0 + vx
yv(t) = Cx(t) +D(u(t) + v(t)) + vd(t),

(24)

where the output noise vd is generated by the dummy vari-
ables V d,t,T ∈ R(t+1)q−(n+(T+1)m) as[

vd(0); vd(1); · · · ; vd(t)
]
= N t,TV d,t,T . (25)

The reason we call them the dummy variables is that V d,t,T

does not affect the differential privacy level, which will
be explained later. By recalling the notation of a sequence
introduced in the introduction, define

V t :=
[
vx; Vt; V d,t,T

]
∈ R(t+1)q. (26)



From (23) and (26), for v(τ) = 0, τ > T , the output sequence
Yv,t ∈ R(t+1)q can be described by

Yv,t = Ot(x0 + vx) +Nt(Ut + VT ) +N t,TV d,t,T

= Otx0 +NtUt +N tV t. (27)

We study the connection between the differential privacy
levels of mechanisms (5) and (27). The important fact is that
the numbers of the elements of Wt and V t are the same, and
from (23), N t is non-singular. For mechanisms (5) and (27),
the generated output sequences are the same if and only if
Wt = N tV t. Therefore, the designs of the noises Wt and V t

are equivalent problems. In the previous subsection, we have
studied the differential privacy of the Gaussian mechanism (5).
Similarly, for the Gaussian mechanism (27), we have the
following corollary of Theorem 2.6.

Corollary 2.16: Let T ≥ n and t ≥ T + n. Also let
V t ∼ N(t+1)q(µ, diag{Σ1,Σ2}) be a non-degenerate multi-
variate Gaussian noise, where Σ1 ∈ R(n+(T+1)m)×(n+(T+1)m)

is the covariance matrix of the initial state and input noise
[vx;Vt], and Σ2 is that of the dummy variable V d,t,T . Then,
for any ((x0, Ut), (x

′
0, U

′
t)) belonging to Adjc2 and satisfying

u(τ) = u′(τ), T < τ ≤ t, the Gaussian mechanism (27)
induced by the strongly input observable system (1) and V t

is (ε, δ)-differentially private at a finite time t ∈ Z+ if the
covariance matrix Σ1 is chosen such that

λ
1/2
min(Σ1) ≥ cR(ε, δ). (28)

Proof: Instead of (7), one has

λ−1/2
max

([
Ot Nt,T

]⊤
N

−⊤
t Σ

−1
N

−1

t

[
Ot Nt,T

])
≥ cR(ε, δ).

From (23), it follows that[
Ot Nt,T

]⊤
N

−⊤
t Σ

−1
N

−1

t

[
Ot Nt,T

]
=
[
In+(T+1)m 0

]
N

⊤
t N

−⊤
t Σ

−1
N

−1

t N t

[
In+(T+1)m

0

]
= Σ

−1

1 .

Therefore, (28) holds.
Corollary 2.16 concludes that the differential privacy level

only depends on the covariance Σ1 of the input noise [vx;VT ],
i.e., the differential privacy level does not depend on the sys-
tem itself. The covariance Σ1 gives an intuitive interpretation
of the privacy level of the input. Therefore, Corollary 2.14
can help understanding the interpretation of the magnitudes
of (ε, δ) from the perspective of the privacy level of the input.

In Corollary 2.14 and Theorem 2.16, the differential privacy
levels of both mechanisms are the same if

OΣ,t,T =
[
Ot Nt

]⊤
Σ−1

[
Ot Nt

]
= Σ

−1

1 , (29)

where we recall (19) for the first equality; the converse is
not true in general since differential privacy only evaluates
the maximum eigenvalues. Therefore, adding the Gaussian
noise with the covariance Σ to the output of the system (1) is
equivalent to adding the Gaussian noise with the covariance
O−1

Σ,t,T to the input of the system (1) under the strong input
observability assumption.

In the previous subsection, we mentioned that the pri-
vacy level of the mechanism (5) with the i.i.d. output noise
Σ = σI(t+1)q decreases with the growth of duration. In
contrast, if one adds noise to the initial state and input channel,
the privacy level of a mechanism does not depend on the
duration because one can directly decide the distribution of the
estimated initial state and input sequence. These two facts do
not contradict each other if one allows to add non-i.i.d output
noise. From (29), adding suitable non-i.i.d. noise to the output
channel has a similar effect as adding noise to the initial state
and input channel. Therefore, adding non-i.i.d. noise is a key
factor for keeping the same privacy level against the duration
when one adds noise to the output channel.

Finally, the reason that the dummy variables V d,t,T do not
affect the differential privacy level can be explained based on
the least square estimation problems of the initial state and
input sequence. For a strongly input observable system, the
solution to the following least square estimation problem

J (x0,UT ) = min
(x0,UT )∈Rn×R(T+1)m

|Yv,t −Otx0 −Nt,TUT |22

is, from (16), (22), and (27),[
x̂0

ÛT

]
= O−1

t,T

[
Ot Nt,T

]⊤
Yv,t =

[
x0

UT

]
+

[
vx
VT

]
.

The least square estimation is the actual initial state and
input sequence plus the noise added to them. Because of the
condition (22), the dummy variable V d,t,T is canceled. This is
the reason that the dummy variable does not affect differential
privacy analysis.

III. PRIVACY-PRESERVING CONTROLLERS

A. Motivating Example

We start with a motivating example. Consider DC micro-
grids [50] installed with smart meters whose dynamics are
described by

Liİi(t) = −RiIi(t)− Vi(t) + ui(t), Ii(t) := IT,i(t)− IL,i,

CiV̇i(t) = Ii(t)−
∑
j∈Ni

Ii,j(t),

Li,j İi,j(t) = (Vi(t)− Vj(t))−Ri,jIi,j(t),

yi,1(t) = Vi(t), yi,2(t) = Ii(t), (30)

where IT,i(t) ∈ R, Vi(t) > 0, and Ii,j(t) ∈ R denote the
generator current, load voltage, the current between nodes i
and j, respectively, and IL,i ∈ R denote the load current,
which can be viewed as a constant in the time scale of
controller design. The parameters Li, Li,j , Ri, Ri,j , Ci > 0
denote inductances, resistances, and capacitance, respectively.
The set of neighbors of node i is denoted by Ni, and the
number of the neighbors is denoted by ni. For analysis and
controller design, we use its zero-order-hold discretization,
since each output information is collected and sent to the
power company digitally.

One objective of the power company is to maintain the
stability of the system by keeping Vi(t) to the prescribed
value V ∗ and the difference between the generator current



(i.e. supply) and load current (i.e. demand), denoted by Ii(t),
to zero. Therefore, the control objective is

lim
t→∞

Vi(t) = V ∗, lim
t→∞

Ii(t) = 0. (31)

Owing to developments of IoT technologies, smart meters
are becoming more widely available, which can be used to
monitor and send the value of Ii(t)(= IT,i(t) − IL,i) to the
power company online. However, the desired load current IL,i

is determined by each user and thus contains the information of
each user’s lifestyle. Since this load current of privacy concern
is static, one can use existing results for static differential
privacy, e.g. [21].

However, there is bigger privacy issue that needs to be
addressed. Our observations in the previous section indicate
the possibility that a user i can identify the other users’
[Vi, Ii] from its own dynamical control input data sets ui.
So the privacy of user i here is concerned with her wish not
letting the other users be able to identify that her consumption
pattern has changed, and such a privacy issue depends on
controller dynamics. Thus, one is forced to consider designing
a tracking controller by taking privacy into account. The
privacy-protection objective is that even if user i’s [Vi, Ii]
becomes different from [V ∗, 0], another user j cannot infer
the occurrence of the difference from uj , j 6= i. This privacy
requirement should not conflict with the control objective (31)
of tracking the desired signals.

In the following subsections, first we summarize the stan-
dard result for tracking controller design based on the internal
model principle. Then, we impose a differential privacy re-
quirement for a tracking controller. In the end, we consider
estimating private information and evaluate its difficulty.

B. Tracking Controllers

To be self-contained, in this subsection, an existing tracking
controller is shown. This controller has tuning parameters that
will be adjusted based on a privacy requirement in the next
subsection.

Consider the following plant{
xp(t+ 1) = Apxp(t) +Bpup(t),
yp(t) = Cpxp(t) +Dpup(t),

(32)

where xp(t) ∈ Rnp , up(t) ∈ Rmp and yp(t) ∈ Rqp denote
the state, input and output, respectively, and Ap ∈ Rnp×np ,
Bp ∈ Rnp×mp , Cp ∈ Rqp×np and Dp ∈ Rqp×mp .

The control objective is to design an output feedback
controller, which achieves yp → yr as t → ∞ for a given
reference output yr(t) ∈ Rqp . Suppose that the reference
output yr(t) is generated by the following exosystem:{

xr(t+ 1) = Arxr(t), xr(0) = xr,0 ∈ Rnr ,
yr(t) = Crxr(t),

(33)

where xr(t) ∈ Rnr and yr(t) ∈ Rqr ; Ar ∈ Rnr×nr and
Cr ∈ Rqr×nr . Then, the composite system consisting of the
plant (32) and exosystem (33) is{

x̄(t+ 1) = Āx̄(t) + B̄up(t),
e(t) = yp(t)− yr(t) = C̄x̄(t) +Dpup(t),

x̄ :=

[
xp

xr

]
, Ā :=

[
Ap 0
0 Ar

]
, B̄ :=

[
Bp

0

]
,

C̄ :=
[
Cp −Cr

]
.

The tracking control objective can be rewritten as
limt→∞ e(t) = 0.

As an output feedback controller, the following observer
based stabilizing controller is typically used{

up(t) = Gxc(t),
xc(t+ 1) = Acxc(t)− Le(t),

(34)

where

Ac := Ā+ LC̄ + (B̄ + LDp)G,

and G = [G1 G2] ∈ Rmp×(np+nr) and L = [L⊤
1 L⊤

2 ]
⊤ ∈

R(np+nr)×qp are design parameters. The tracking problem is
solvable by the above dynamic output feedback controller
under the following standard assumptions [34].

Assumption 3.1: The matrix Ar has no eigenvalue in the
interior of the unit circle. ◁

Assumption 3.2: The pair (Ap, Bp) is stabilizable. ◁
Assumption 3.3: The pair (C̄, Ā) is detectable. ◁
Assumption 3.4: The following two equations:

XAr = ApX +BpU,

0 = CpX +DpU − Cr,

have a pair of solutions X ∈ Rnp×nr and U ∈ Rmp×nr . ◁
Remark 3.5: Assumption 3.4 guarantees that for any given

xr(t) generated by (33), there exist xp,s(t) and up,s(t) si-
multaneously satisfying (32) and e(t) = yp(t) − yr(t) = 0
for all t ∈ Z+. Assumption 3.1 guarantees that such xp,s(t)
and up,s(t) uniquely exist; this assumption is for the ease of
discussion and is not necessarily to be imposed as mentioned
in [34]. ◁

Under Assumption 3.4, the tracking problem is solvable
if the closed-loop system consisting of the plant (32) and
the controller (34) is asymptotically stable. From the sepa-
ration principle [44], the closed loop system can be made
asymptotically stable by finding a pair of G1 and L that
makes Ap+BpG1 and Ā+LC̄ asymptotically stable, respec-
tively. Then, G2 can be designed as G2 = U − G1X for U
and X in Assumption 3.4.

C. Privacy Requirements for Controllers

The privacy requirement imposed in the motivating example
is to make a user j not be able to distinguish whether
another user i’s [Vi, Ii] has deviated from [V ∗, 0] using its
input uj , j 6= i. This corresponds to designing a controller (34)
such that e is always inferred to be zero using up. Note that this
privacy requirement is different from protecting the privacy
of yp, in which case if yr is a piece of public information, the
information e = yp − yr = 0 cannot be published, and thus
in which case protecting yp conflicts with the tracking control
objective, implying one may have to regulate yp to a different
value than yr. In contrast, the privacy requirement for e does
not conflict with the goal of tracking control.

For protecting the information of e, we consider adding
noise to up. As mentioned in the previous section, adding



sufficiently large noise always achieves the prescribed privacy
level. However, large noise can change a control input signif-
icantly. Therefore, it is desirable to design a controller which
becomes highly private by adding small noise. According to
Theorem 2.9, such a controller has a small H∞-norm.

Remark 3.6: One may consider controller design from dif-
ferent perspectives. Based on Theorem 2.6, differential privacy
analysis itself is possible for an unstable controller. However,
this theorem does not give a clear indication on how to choose
design parameters G1 and L1. On the other hand, if a strongly
input unobservable controller is designed, the information in
the strongly input unobservable space is protected without
adding noise as mentioned in Section II-B. However, from
Theorem 2.12, this reduces to a rank constraint problem that is
difficult to solve in general as the rank minimization problem
is known to be NP-hard [51]. Therefore, we design a controller
having a small H∞-norm. ◁

Remark 3.7: In Theorem 2.9, the differential privacy level
also depends on the standard observability Gramian of the ini-
tial state. However, it is not straightforward to simultaneously
specify the maximum eigenvalues of the observability Gramian
and H∞-norm. In fact, it is known that the maximum Hankel
singular value, the square root of the maximum eigenvalue of
the product of the controllability and observability Gramians,
is bounded by the H∞-norm [52]. Therefore, making H∞-
norm small can result in making the maximum eigenvalue of
the observability Gramian small. ◁

Remark 3.8: Even if one adds different noise than the
Gaussian noise such as the Laplace noise as in Remark 2.7,
making H∞-norm small can increase the differential pri-
vacy level. Making H∞-norm small can result in making
λ
1/2
max([ Ot Nt ]⊤[ Ot Nt ]) small. Then, from the equiv-

alence of the norm, any matrix induced norm of [ Ot Nt ]
becomes small. Therefore, from Remark 2.7, the differential
privacy level increases also for the Laplace mechanism. ◁

In general, a controller having a bounded H∞-norm needs
to be asymptotically stable. Unfortunately, stable controller
design is not always possible because of its structure in (34).

Proposition 3.9: Under Assumptions 3.1-3.4, the con-
troller (34) solving the linear output regulation problem is not
asymptotically stable if Dp = 0.

Proof: Assumption 3.4, (34), and G2 = U −G1X yield λInp
−Ap −BpG1 −BpG2

0 λInr
−Ar

Cp −Cr

[ X
In−r

]

=

 λX −ApX −BpU
λInr −Ar

CpX − Cr

 =

 X(λInr −Ar)
λInr −Ar

−DpU

 .

If Dp = 0, this becomes zero when λ is an eigenvalue of
Ar. Therefore, for the pair (C̄, Ā + B̄G), any eigenvalue
of Ar is not observable. That is, the set of eigenvalues of
Ac contains that of Ar, which are marginally stable according
to Assumption 3.1.

If Dp 6= 0, one can use the output regulation controller (34)
addressing the privacy requirement. However, there are plenty
of systems for which Dp = 0. To deal with these systems,

we modify the output regulation controller (34) in the next
subsection.

D. Controller Design with Privacy Concern

In order to address the case Dp = 0, we consider the
following controller dynamics:{

up(t) = G1x̄c(t) +G2xr(t),
x̄c(t+ 1) = Ācx̄c(t) + Ārxr(t)− L1e(t),

(35)

where

Āc := Ap +BpG1 + L1(Cp +DpG1),

Ār := L1Cr + (Bp + L1Dp)G2.

The difference of (35) from the previous controller (34) is to
use the actual state xr of the exosystem (33) instead of its
estimation. Since we do not need to estimate xr, (35) can
have better control performance than (34).

Privacy-preserving tracking controller design requires the
following three conditions for the new controller parameters
G1 and L1:

1) Ap +BpG1 is asymptotically stable;
2) Ap + L1Cp is asymptotically stable;
3) Given γ > 0, the H∞-norm of the controller (35) from

e to up is bounded as

‖ −G1(zInp+nr − Āc)
−1L1‖H∞ ≤ γ. (36)

As mentioned in the previous subsection, the third condition
implicitly requires the stability of the new controller (35).
Stabilization of a plant by a stable controller is called strong
stabilization. Its necessary and sufficient condition is described
in terms of a parity interlacing property (PIP) of the transfer
function matrix [53]. However, the PIP condition does not pro-
vide a controller design method. For continuous-time systems,
the papers [54], [55] provide ways of designing a controller
satisfying Condition 3) based on the LMI. We employ one of
these methods.

It is not easy to simultaneously finding G1 and L1 satis-
fying all three conditions; the reason will be explained later.
Therefore, first, we find G1 stabilizing Ap+BpG1, which can
be done by multiple methods under Assumption 3.2. Then, we
find L1 satisfying 2) and 3) as follows.

Lemma 3.10: Suppose that G1 is chosen such that Ap +
BpG1 is asymptotically stable. If there exist P ∈ Rnp×np and
L̂1 ∈ Rnp×qp satisfying the following LMIs:[

P PAp + L̂1Cp

(PAp + L̂1Cp)
⊤ P

]
� 0, (37)

and 
P 0 P 13 G⊤

1

0 γ2Iqp −L̂⊤
1 0

P
⊤
13 −L̂1 P 0

G1 0 0 Imp

 � 0, (38)

P
⊤
13 := P (Ap +BpG1) + L̂1(Cp +DpG1),

then Ap + L1Cp with L1 := P−1L̂1 is asymptotically stable,
and (36) holds.



Proof: If (37) holds, Ap+L1Cp is asymptotically stable.
Next, (38) implies (36) [56, Theorem 4.6.6].

Remark 3.11: For any given G1 stabilizing Ap + BpG1,
it is possible to verify if there exist P , L1, and γ > 0
satisfying (36) by replacing (38) by[

P P 13

P
⊤
13 P

]
� 0. (39)

That is, given G1, the LMIs (37) and (39) have a solution P
only if strong stabilization is achievable. ◁

An alternative way of controller design is to find L̂1

satisfying 2) and then to use similar LMIs for finding G1

that satisfies 1) and 3) simultaneously. If one tries to find G1

and L̂1 at the same time, then one encounters BMIs, e.g. there
is a cross term of G1 and P or G1 and L̂1 in P 13 in (38).
BMIs are more difficult to handle than LMIs, since a BMI
describes those sets that are not necessarily convex.

E. Differential Privacy of Controllers

To make the designed controller in the previous subsection
differentially private, one can add noise to the output up or
the input e of the controller. As clarified in Corollary 2.16,
the differential privacy level under the input Gaussian noise
only depends on the covariance matrix of the noise. Under
the output Gaussian noise, we obtain the following theorem
by combining Corollary 2.9 and Lemma 3.10. Since the proof
directly follows, it is omitted.

Theorem 3.12: Consider the controller dynamics (35) sat-
isfying the requirements 1) – 3) with the output up(t) +
w(t), where w(t) ∈ Rmp is the noise. Then, the Gaussian
mechanism induced by the controller dynamics and Wt ∼
N(t+1)mp

(µ,Σ) is (ε, δ)-differentially private for Adjc2 at a
finite time t ∈ Z+ with ε > 0 and 1/2 > δ > 0 if the
covariance matrix Σ � 0 is chosen such that (14) holds for
(A,B,C,D) = (Āc,−L1, G1, 0). ◁

In summary, the privacy-preserving controller with the
prescribed differential privacy level is designed as follows.
First, one designs the controller dynamics (35) based on the
LMIs (37) and (38) and then design the noise w based on the
above theorem with (14). In the LMIs, the design parameters
reduce to γ, the H∞-norm of the controller (35).

From (14) (and Remark 3.7), a smaller γ gives a smaller
lower bound on the covariance matrix of the Gaussian noise,
but making γ small may result in deterioration of the control
performance. Moreover, adding noise w may result in deteri-
oration of the control performance also. Let H(z) and K(z)
denote the transfer functions of the plant (32) from up to yp
and controller (35) from e to up, respectively. The transfer
function matrices of the closed-loop system from w to yp
is (I −H(z)K(z))−1P (z). If the controller is designed such
that the H∞-norm of K(z) is sufficiently large, the output yp
of the closed-loop system is less influenced by w. In contrast,
this causes a decrease in the privacy level. Therefore, there is
a trade-off between the control performance and the privacy
level for privacy-preserving controller design.

If one additionally requires the H∞-norm of the closed-
loop system not to be greater than γ̄ > 0, then one can use

the following LMI:

Q 0 0 ∗ ∗ ∗
0 P 0 ∗ ∗ ∗
0 0 γ̄2Iqp ∗ ∗ ∗

QAp QBpG1 QBp Q 0 0

−L̂1Cp P
⊤
25 −L̂1Dp 0 P 0

Cp DpG1 Dp 0 0 Imp

 � 0, (40)

P
⊤
25 = P (Ap +BpG1) + L̂1Cp,

where ∗ are suitable elements to make the matrix symmetric.
The H∞-norms of the controller and closed-loop system are
made less than γ and γ̄, respectively, if LMIs (37), (38)
and (40) have solutions P , Q, and L̂1.

F. Private Data Estimation

In the previous subsections, we have studied privacy-
preserving controller design. An approach to evaluating the
privacy level of the proposed controller is to utilize differential
privacy. In systems and control, filtering is a central problem,
and one may ask whether existing filtering techniques can be
used for estimating private data. Therefore, in this subsection,
we consider this estimation problem. It is expected that the
obtained observations in this subsection can help in improving
the privacy-preserving controller design method.

For state estimation, one can use the standard techniques of
the optimal linear filters or smoothers. Thus, we reformulate
the input estimation problem as a state estimation problem
inspired by unknown input observer design [57], [58]. Suppose
that the designed controller (35) is strongly input observable
for the output up and input e. Recall the notations for
sequences Up,2n(t) and E2n(t) introduced in the introduction.
In a similar manner as (2), the output sequence Up,t of the
controller can be described by

Up,2n(t) = O2nx̄c(t) +N2nE2n(t) +Nr,2nXr,2n(t), (41)

where A = Āc, B = −L1, C = G1, and D = 0 for O2n and
N2n, and Nr,t denotes Nt for A = Āc, B = Ār, C = G1,
and D = G2.

From (15), there exists a (not necessarily unique) matrix
K ∈ R(n+(n+1)m)×(2n+1)q such that

K
[
O2n N2n,n

]
= In+(n+1)m. (42)

By using this K, define

Kx :=
[
In 0

]
K,

Ku :=
[
0 Im 0

]
K.

Then, from (41),

Kx(Up,2n −Nr,2nXr,2n)

=
[
In 0

]
K
[
O2n N2n,n

] [ x̄c(0)
En

]
=
[
In 0

] [ x̄c(0)
En

]
= x̄c(0), (43)

and

Ku(Up,2n(t)−Nr,2nXr,2n(t))



=
[
0 Im 0

] [ x̄c(t)
En(t)

]
= e(t), (44)

By substituting them into (35), we have
up(t) = G1x̄c(t) +G2xr(t),
x̄c(t+ 1) = Ācx̄c(t) + Ārxr(t)

−L1Ku(Up,2n(t)−Nr,2nXr,2n(t)),
x̄c(0) = Kx(Up,2n −Nr,2nXr,2n),

(45)

where recall that the state of the exosystem xr is a piece of
public information. This system corresponds to a left inverse
system of the controller. In order to estimate e from up, one
can use the state estimation of this model with the process and
measurement noises ṽ(t) ∈ R(2n+1)mp and w̃(t) ∈ Rmp .

Let x̃c(t) denote the state estimation of (45). Then, define

ũp(t) = G1x̃c(t) +G2xr(t).

Finally from (44) and Ũp,2n(t), the estimation of e(t) denoted
by ẽ(t) can be computed by

ẽ(t) = Ku(Ũp,2n(t)−Nr,2nXr,2n(t)). (46)

It is worth mentioning that in (45), future information of
up(t), namely Up,2n(t) is used in order to estimate e(t). In
other words, at time t, one can estimate the historic data
e(t− 2n), and thus the private data estimation can be formu-
lated as a smoothing problem. There are several techniques
for designing filters or smoothers such as the Kalman filter or
its smoother, and one of them can be employed for the state
estimation. Typically, for the filtering and smoothing problems,
i.i.d. Gaussian noises are used as the process and measurement
noises. Therefore, adding non-i.i.d. or non-Gaussian noises to
the privacy-preserving controller could be useful for protecting
the private data than adding i.i.d. Gaussian noises.

The above is one approach to input data estimation. For
strongly input observable systems, one can directly esti-
mate (x0, u(0)) from Et and the probability density function
of noise by extending the results in [59]. The paper [59] further
develops an updating algorithm of the estimation forward in
time.

IV. EXAMPLES

We revisit the DC microgrids (30) with parameters in [50]
for i = 1, 2, where Ri = 0.2[Ω], Ri,j = 70[mΩ], Li =
1.8[mH], and Ci = 2.2[mF] and design a privacy-preserving
controller, where the sampling period is 10−3[s]. We consider
that originally Ii = 0[A] and Vi = 380[V] are achieved
with I1,2 = 0[A]. Then the user 1 starts to use more electricity,
which causes I1 = −4[A]. The goal is to achieve Ii = 0[A]
and Vi = 380[V] again by protecting from user 2 the
information that user 1 changes its electricity consumption.
From the control objective (31), the exosystem (33) is given
by Ar = Cr = I4. In this problem setting, Assumptions 3.1-
3.4 hold.

We design a privacy-preserving tracking controller. First,
we design G1 stabilizing Ap +BpG1 based on the following
optimal control problem:

J =

∞∑
t=0

|xp(t)|22 + |up(t)|22.

Solving the corresponding Riccati equation, G1 is obtained as

G1 =

[
−0.850 0.037 −0.0461 −0.0007 0.229
0.0370 −0.850 −0.0007 −0.0461 −0.229

]
.

With X and U in Assumption 3.4, G2 = U−G1X is computed
as

G2 =

[
0.869 −0.0019 0.873 0.174

−0.0019 0.869 0.174 0.873

]
.

Second, the LMIs (37) and (38) have solutions P and L̂1

for γ = 0.365. The matrix L1 = P−1L̂1 is

L1 =


−0.193 0.0088 0.0828 0.0111
0.0088 −0.193 0.0111 0.0828

−0.0717 0.0072 −0.134 −0.0129
0.0072 −0.0717 −0.0129 −0.134
0.0253 −0.0253 −0.0504 0.0504

 .

In this scenario, the initial state of the controller is chosen
as [0 0 380 380 0]⊤ because the state of the controller takes
this value when the control objective is achieved.

Suppose that each user adds the Gaussian noise to Ii and Vi

before sending them to the power company. Based on our
observation for input observability, we design input noises
from the principal components of N⊤

10,5N10,5 of the controller,
where the initial state of the controller is assumed to be
a piece of public information. Its eigenvalues are shown in
Fig. 1. Let vj,i be the projection of the normalized eigenvectors
corresponding to the eigenvalue λj onto the ui(0)-space. By
using non-zero λj , we compute

40∑
j=21

λjv1,jv
⊤
1,j =

40∑
j=21

λjv2,jv
⊤
2,j =

[
0.0347 −0.0106

−0.0106 0.0129

]
.

Since larger λj characterizes less private information of ui(0),
it is reasonable to add larger noise to ui(0) corresponding to
larger λj . Therefore, we scale by a positive constant a, namely

Σ1 = a2
[

0.0347 −0.0106
−0.0106 0.0129

]
as the covariance matrix of the input noise for each user. The
condition (28) for (ε, δ)-differential privacy holds if

a ≥ 10.8cR(ε, δ).

Let c = 1. In privacy related literatures in systems and
control [27], [28], [37], ε and δ are chosen to be values in
[0.3, 1.6] and [0.01, 0.05], respectively. We use similar values.
For instance, for ε = 0.3 and δ = 0.0446 or ε = 0.42 and δ =
0.00820, the condition holds for a = 64.3. For ε = 0.3
and δ = 0.0446 or ε = 0.69 and δ = 0.00820, the condition
holds for a = 39.7. For ε = 1.4 and δ = 0.0446, the condition
holds for a = 15.8.

Figure 2 shows yp and up of the closed-loop system for the
four cases: no noise, a = 15.8, a = 39.7, and a = 64.3. If
there is no noise, the tracking error converges to zero. How-
ever, the change of I1 affects clearly I2, V2, and u2. Therefore,
user 2 can identify that user 1 starts to use more electricity. In
contrast, privacy-preserving controllers with noises mask the
effects caused by the electricity consumption of user 1 against
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Fig. 2. The outputs and inputs of the closed-loop system controlled by the
privacy-preserving controller

user 2. Although adding large noise increases the privacy level,
it unfortunately makes Ii, Vi, and ui fluctuate. Therefore, the
balance between required control and privacy performances
is needed when designing the noise. In this case, the noise
with a = 15.8 is enough to protect the fluctuation of the
input u2.

V. TOWARD NONLINEAR MECHANISMS

The objective in this section is to extend some of our
results to nonlinear mechanisms toward nonlinear privacy-
preserving controller design. The output regulation and H∞-
norm analysis are extended to nonlinear systems at least
locally; see e.g. [34], [60]. Therefore, if differential privacy
analysis is extended, one can design a nonlinear privacy-
preserving controller at least locally in a similar manner as the
linear case. In this section, we proceed with differential privacy
analysis of the Gaussian mechanism induced by a nonlinear
dynamical system and output Gaussian noise. For nonlinear
dynamical systems, even if Gaussian noise is added to the
input channel, the output variable is not Gaussian in general,
and thus we do not analyze the mechanisms induced by input
noise.

A. Differential Privacy with Output Noise

Consider the following nonlinear discrete-time control sys-
tem with output noise{

x(t+ 1) = f(x(t), u(t)),
yw(t) = h(x(t), u(t)) + w(t),

(47)

where f : Rn × Rm → Rn and h : Rn × Rm → Rq are
continuous. Its solution x(t) starting from x0 controlled by
Ut−1 is denoted by ϕ(t, x0, Ut−1), where ϕ(0, x0, U−1) := x0.
The output sequence Yw,t can be described by

Yw,t = Ht(x0, Ut) +Wt, (48)

where Ht : Rn × R(t+1)m → R(t+1)q is

Ht(x0, Ut) :=


h(ϕ(0, x0, U−1), u(0))
h(ϕ(1, x0, U0), u(1))

...
h(ϕ(t, x0, Ut−1), u(t))

 . (49)

Now, we are ready to obtain an extension of Theorem 2.6
to the nonlinear Gaussian mechanism by using input data
dependent Gaussian noise.

Theorem 5.1: The Gaussian mechanism (48) induced by
Wt ∼ N(t+1)q(µ(x0, Ut),Σ(x0, Ut)) is (ε, δ)-differentially
private for Adjc2 at a finite time t with ε(x0, Ut) > 0 and
1/2 > δ(x0, Ut) > 0 if the covariance matrix Σ(x0, Ut) � 0
is chosen such that

inf
|[x̄0;Ūt]|2≤c

1

H̄t(x0, Ut, x̄0, Ūt)
≥ cR (ε(x0, Ut), δ(x0, Ut)) ,

(50)

where

H̄t(x0, Ut, x̄0, Ūt)

:= |Ht(x0 + x̄0, Ut + Ūt)−Ht(x0, Ut)|Σ−1(x0,Ut)

for any (x0, Ut) ∈ Rn × R(t+1)m.
Proof: In a similar manner as for Theorem 2.6, one

obtains (9) for

z = |Ht(x0, Ut)−Ht(x
′
0, U

′
t)|−1

Σ−1(x0,Ut)
.

Define x̄0 = x′
0 − x0 and Ūt = U ′

t − Ut. Then,
((x0, Ut), (x

′
0, U

′
t)) ∈ Adjc2 implies |[x̄0; Ūt]|2 ≤ c. It follows

that

z = H̄t(x0, Ut, x̄0, Ūt) ≤ sup
|[x̄0;Ūt]|2≤c

H̄t(x0, Ut, x̄0, Ūt),

for any ((x0, Ut), (x
′
0, U

′
t)) ∈ Adjc2. Therefore, if (50) holds,

(9) holds.
In Theorem 5.1, the mean value and variance can be made

functions of (x0, Ut) under the reasonable assumption that a
system manager designing noise knows the initial state and
inputs of the system. Even if the system manager does not
know them exactly, noise can still be designed by using a
constant mean value and variance. Note that using (x0, Ut)-
dependent noise does not break privacy guarantee because
information of noise is not published in general.

The paper [61] studies nonlinear observer design based on
differential privacy in the contraction framework with constant



metrics. The provided results can be extended to differential
privacy analysis of nonlinear systems, but as they stand, only
for stable systems. In contrast, Theorem 5.1 can be used for
unstable systems and considers a more general mean value
and variance depending on (x0, Ut).

In a similar manner as Remark 2.7, for the i.i.d. Laplace
noise wi(t), i = 1, . . . , q, t ∈ Z+ with the variance
µ(x0, Ut) ∈ R and distribution b(x0, Ut) > 0, the mechanism
(48) is (ε, 0)-differentially private for Adjc1 at a finite time t
with ε > 0 if

b(x0, Ut) ≥ sup
|[x̄0;Ūt]|1≤c

∣∣Ht(x0 + x̄0, Ut + Ūt)−Ht(x0, Ut)
∣∣
1

ε(x0, Ut)

(51)

for any (x0, Ut) ∈ Rn × R(t+1)m. Furthermore, suppose that
f and h are smooth. Let γ(s) = x0 + s(x̄0 − x0) and ν(s) =
Ut + s(Ūt − Ut) for s ∈ [0, 1]. Then,∣∣Ht(x0 + x̄0, Ut + Ūt)−Ht(x0, Ut)

∣∣
1

=

∣∣∣∣∫ 1

0

∂Ht(γ(s), ν(s))

∂(x0, Ut)

[
x0

Ut

]
ds

∣∣∣∣
1

≤ c

∣∣∣∣∫ 1

0

∂Ht(γ(s), ν(s))

∂(x0, Ut)
ds

∣∣∣∣
1

≤ c sup
(x0,Ut)∈Rn×R(t+1)m

∣∣∣∣∂Ht(x0, Ut)

∂(x0, Ut)

∣∣∣∣
1

.

Therefore, (51) holds if

b(x0, Ut) ≥
c

ε(x0, Ut)
sup

(x0,Ut)∈Rn×R(t+1)m

∣∣∣∣∂Ht(x0, Ut)

∂(x0, Ut)

∣∣∣∣
1

.

Note that in the linear case ∂Ht(x0, Ut)/∂(x0, Ut) is nothing
but the matrix [ Ot Nt ].

For Laplacian noise, differential privacy is characterized by
the matrix ∂Ht(x0, Ut)/∂(x0, Ut). This matrix has a strong
connection with the local strong input observability of the
nonlinear system (47); the concept of strong observability
can be extended to nonlinear systems as for local observ-
ability [62] based on the distinguishability of a pair of initial
states and initial inputs. In fact, one can derive a necessary
and sufficient condition for local strong input observabil-
ity in terms of the differential one-forms corresponding to
∂Ht(x0, Ut)/∂(x0, Ut) as follows: there exists t ∈ Z+ such
that

span{dHt(x0, Ut)} ∩ span{dx, du0} = span{dx,du0}

under the constant dimensional assumption for all (x0, Ut) ∈
Rn × R(t+1)q; see e.g. [62] for similar discussions for local
observability. This is an extension of the condition (42). In
contrast to the qualitative criterion for strong input observ-
ability, it is still not straightforward to extend the concept of
Gramians. In fact, there is no clear extension of Gramians
to nonlinear systems even for controllability and observability
although the concept of controllability and observability and
their corresponding energy functions have been extended [62]–
[64].

B. Incrementally Input-to-Output Stable Systems

In Section II-A, we mention that the H∞-norm gives an
upper bound of the differential privacy level. This observation
can help the privacy-preserving controller design. In this
subsection, we aim at extending this result to the nonlinear
case based on the concept of the incremental input-to-output
stability (IOS).

For a nonlinear system, several types of gains (or called
estimations) are defined; e.g. see [65]. Especially, L2 → L2

estimation is extended to nonlinear systems as input-to-state
stability (ISS) [65], which is also extended to incremental
properties in [66]. Incremental ISS can be readily extended to
input-to-output operators, discrete-time systems, and arbitrary
Lp → Lp estimations as follows. In Appendix, we give its
Lyapunov characterization.

Definition 5.2: A nonlinear system (47) is said to be in-
crementally IOS (with respect to the p-norm) if the output
h(ϕ(t, x0, Ut−1), u(t)) exists for all t ∈ Z+, for any x0 ∈ Rn

and u : Z+ → Rm, and there exist class K functions α and γ
such that

t∑
τ=0

|h(ϕ(τ, x0, Ut−1), u(t))− h(ϕ(τ, x′
0, U

′
t−1), u

′(t))|p

≤ α(|x0 − x′
0|p) +

t∑
τ=0

γ(|u(τ)− u′(τ)|p), t ∈ Z+ (52)

for any (x0, x
′
0) ∈ Rn×Rn and (Ut, U

′
t) ∈ R(t+1)m×R(t+1)m.

◁
In fact, α and γ do not need to belong to class K for

differential privacy analysis, and non-negative functions are
enough. To connect differential privacy analysis with ISS, we
consider class K functions.

In the linear case, as shown in Corollary 2.9, the H∞-norm
can be used for designing the Gaussian noise. Now, we obtain
an extension of Corollary 2.9 to the nonlinear IOS system
based on Theorem 5.1. The proof directly follows, and thus is
omitted.

Corollary 5.3: Let Wt ∼ N(t+1)q(µ(x0, Ut),Σ(x0, Ut)) be
a non-degenerate multivariate Gaussian noise. Then, the Gaus-
sian mechanism (48) induced by an incrementally IOS nonlin-
ear system (47) (with respect to 2-norm) is (ε, δ)-differentially
private for Adjc2 at a finite time t with ε(x0, Ut) > 0 and
1/2 > δ(x0, Ut) > 0 if the covariance matrix Σ(x0, Ut) � 0
is chosen such that

λ
1/2
min(Σ(x0, Ut))

≥ (α(c) + (t+ 1)γ(c))R (ε(x0, Ut), δ(x0, Ut))

for any x0 ∈ Rn and Ut ∈ R(t+1)m. ◁

VI. CONCLUSION

In this paper, we have studied differential privacy of
Gaussian mechanisms induced by discrete-time linear systems.
First, we have analyzed differential privacy in terms of strong
input observability and then have clarified that the differential
privacy level is characterized by the maximum eigenvalue of
the input observability Gramian. In other words, small noise is
enough to make the less input observable Gaussian mechanism



highly differentially private. Moreover, we have shown that
the mechanisms induced by input and output noises have the
same differential privacy level for suitable covariance matri-
ces. Next, we have developed a privacy-preserving controller
design method, which can make a linear system highly private
by adding small noise. Finally, we have briefly mentioned
differential privacy analysis of incrementally IOS nonlinear
systems.

Although we have focused on differential privacy in this pa-
per, our analysis and controller design can be tools for studying
more general privacy issues of control systems. Differential
privacy has been originally proposed in static data analysis,
and one may extend this concept to dynamical systems further
or develop new privacy concepts for dynamical systems. For
privacy-preserving controller design, we have first designed a
controller satisfying a certain control performance and then
added noise to protect private information. There remain
several interesting research directions. One is to investigate an
updating method for the covariance matrix of noise forward
in time based on the idea of Kalman filter design. Another
is to develop a randomized control mechanism guaranteeing
a certain control performance, which may enable us to design
the controller and noise at the same time.

In general, measurement and input noises, disturbance and
model error make analysis and controller design difficult and
deteriorate the control performance, and thus they are regarded
as troubles. However, they improve the system’s privacy level.
Therefore, the privacy-preserving controller design reduces to
the trade-off between the privacy level and control perfor-
mance.

Acknowledgement: We thank Dr. Michele Cucuzzella, Uni-
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APPENDIX

In this appendix, we provide a sufficient condition for
incremental IOS.

Theorem A: A nonlinear system (47) is incrementally IOS
if there exist a continuous function V : Rn × Rn → R+,
constants c1 > 0, λ ∈ (0, 1), class K functions σ1, σ2, and a
class K∞ function α2 such that

c1|h(x0, u)− h(x′
0, v)|p ≤ V (x0, x

′
0) + σ1(|u− u′|p), (53)

V (x0, x
′
0) ≤ α2(|x0 − x′

0|p), (54)
V (f(x0, u), f(x

′
0, u

′)) ≤ λV (x0, x
′
0) + σ2(|u− u′|p) (55)

for any (x0, x
′
0) ∈ Rn × Rn and (u, u′) ∈ Rm × Rm.

Proof: Recursively using the inequality (55) for τ ≥ 1
yields

V (ϕ(τ, x0, Uτ−1), ϕ(τ, x
′
0, U

′
τ−1))

≤ λV (ϕ(τ − 1, x0, Uτ−2), ϕ(τ − 1, x′
0, U

′
τ−2))

+ σ(|u(τ − 1)− u′(τ − 1)|p)
≤ λ2V (ϕ(τ − 2, x0, Uτ−3), ϕ(τ − 2, x′

0, U
′
τ−3))

+ λσ2(|u(τ − 2)− u′(τ − 2)|p)
+ σ2(|u(τ − 1)− u′(τ − 1)|p)

≤ λτV (x0, x
′
0) +

τ−1∑
r=0

λτ−1−rσ2(|u(r)− u′(r)|p).

From (53),

c1|h(ϕ(τ, x0, Uτ−1, u(τ))− h(ϕ(τ, x′
0, U

′
τ−1), u

′(τ))|p

≤ λτα2(|x0 − x′
0|p) +

τ−1∑
r=0

λτ−1−rσ2(|u(r)− u′(r)|p)

+ σ1(|u(τ)− u′(τ)|p).

By taking the summation, we have

c1

t∑
τ=0

|h(ϕ(τ, x0, Uτ−1, u(τ))− h(ϕ(τ, x′
0, U

′
τ−1), u

′(τ))|p

≤
t∑

τ=0

(
λτα2(|x0 − x′

0|p) + σ1(|u(τ)− u′(τ)|p)

+

τ−1∑
r=0

λτ−r−1σ2(|u(r)− u′(r)|p)

)

≤ 1− λt

1− λ
α2(|x0 − x′

0|p) +
t∑

τ=0

σ1(|u(τ)− u′(τ)|p)

+

t−1∑
r=0

1− λt−1−r

1− λ
σ2(|u(r)− u′(r)|p)

≤ α2(|x0 − x′
0|p)

1− λ

+

t∑
r=0

(
σ2(|u(r)− u′(r)|p)

1− λ
+ σ1(|u(τ)− u′(τ)|p)

)
,

where in the second last inequality, λ ∈ (0, 1) is used.
Therefore, the system is incrementally IOS.

Remark B: We mentioned that for differential privacy anal-
ysis, α and γ are required to be only non-negative functions.
Here, we obtain a similar characterization by using non-
negative functions σ1, σ2, and α2. ◁
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de la Sociedad Matemática Mexicana, vol. 5, no. 2, pp. 102–119, 1960.
[48] P. Sannuti and A. Saberi, “Special coordinate basis for multivariable

linear systems – finite and infinite zero structure, squaring down and
decoupling,” International Journal of Control, vol. 45, no. 5, pp. 1655–
1704, 1987.

[49] P. Billingsley, Probability and measure, 3rd ed. New York: Wiley,
2008.

[50] M. Cucuzzella, S. Trip, C. D. Persis, X. Cheng, A. Ferrara, and A. J.
van der Schaft, “A robust consensus algorithm for current sharing and
voltage regulation in dc microgrids,” IEEE Transactions on Control
Systems Technology, vol. 27, no. 4, pp. 1583–1595, 2018.

[51] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[52] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. New
Jersey: Prentice Hall, 1996, vol. 40.

[53] M. Vidyasagar, Control System Synthesis: A Factorization Approach.
Morgan & Claypool Publishers, 2011.
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