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Abstract

Objective—To assess the potential of electrical impedance myography (EIM) to serve as a 

marker of muscle fiber atrophy and secondarily as an indicator of bone deterioration by assessing 

the effects of spaceflight or hind limb unloading.

Methods—In the first experiment, 6 mice were flown aboard the space shuttle (STS-135) for 13 

days and 8 earthbound mice served as controls. In the second experiment, 14 mice underwent hind 

limb unloading (HLU) for 13 days; 13 additional mice served as controls. EIM measurements 

were made on ex vivo gastrocnemius muscle. Quantitative microscopy and areal bone mineral 

density (aBMD) measurements of the hindlimb were also performed.

Results—Reductions in the multifrequency phase-slope parameter were observed for both the 

space flight and HLU cohorts compared to their respective controls. For ground control and 

spaceflight groups, the values were 24.7±1.3°/MHz and 14.1±1.6°/MHz, respectively (p=0.0013); 

for control and HLU groups, the values were 23.9±1.6°/MHz and 19.0±1.0°/MHz, respectively 

(p=0.014). This parameter also correlated with muscle fiber size (ρ=0.65, p=0.011) for spaceflight 

and hind limb aBMD (ρ=0.65, p=0.0063) for both groups.

Conclusions—These data support the concept that EIM may serve as a useful tool for 

assessment of muscle disuse secondary to immobilization or microgravity.
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Introduction

Exposure to prolonged disuse or microgravity produces a variety of effects on skeletal 

muscle, including fiber atrophy, a reduction in maximal force, and reduced endurance1. For 

example, given the major alterations that can ensue even after just several days of exposure 

to microgravity, human spaceflight currently requires astronauts to participate in daily 

exercise countermeasures to help offset the effects of weightlessness2. Although a recent 

report suggests that high intensity exercise combined with optimal nutrition may mitigate 

bone and muscle loss3, novel approaches to reduce negative effects of spaceflight or 

prolonged bed rest/immobilization on musculoskeletal health, including drug therapies, are 

being sought4,5.

Diagnostic tools for the assessment of muscle and bone loss due to disuse or weightlessness 

are, however, quite limited. Standard methods used to evaluate these changes such as dual-

energy X-ray absorptiometry (DXA) and quantitative computed tomography6,7 are 

expensive and inconvenient for regular clinical use. Moreover, they are not feasible in 

spaceflight, given the size, weight, and power requirements of the equipment. Ultrasound is 

being studied for muscle loss assessment in spaceflight, but quantifying the measurements 

requires substantial procedural modification8. Simple force-testing dynamometers are 

inconvenient and inaccurate to use on debilitated patients and are virtually impossible to use 

in space. For these reasons, other non-invasive approaches that can be applied easily and 

rapidly to both patients and astronauts are of interest. One approach that offers potential 

value is electrical impedance myography (EIM). EIM is a technique in which a high-

frequency, low-energy electrical current is applied to a localized area of muscle and the 

resulting surface voltages are measured9. EIM is a specialized version of methods developed 

in the well-studied field of bioelectrical impedance spectroscopy, in which alterations in the 

characteristics of a tissue or cellular suspension are characterized by the their electrical 

frequency-dependent properties10-13. In addition to these non-muscular studies, at least one 

investigation has evaluated the specific relationship between muscle cell size and 

bioimpedance parameters in tissue culture14.

Since the EIM technique is painless, rapid to apply, non-invasive, and the equipment 

lightweight, it has the potential to serve as a useful method for monitoring muscle status. 

Earlier studies have shown that surface EIM alterations are closely tied to muscle fiber 

size15. Importantly, data in humans16 and in rats17 support that EIM is sensitive to changes 

in muscle following disuse, with reductions in EIM parameters of greater than 30% from 

baseline, and thus may also have the potential to sensitively identify the impact of disuse or 

microgravity on muscle health. Here we further explore the potential application of EIM for 

the assessment of muscle impacted by disuse by studying ex vivo muscle obtained from mice 

exposed to reduced mechanical loading via hind limb unloading (HLU) or spaceflight, 

testing the basic hypothesis that such disuse will consistently alter EIM values.
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Materials and methods

Animals

For both the hind limb unloading (HLU) and spaceflight experiments, we used 9-week-old 

female C57Bl/6N mice (Charles River, Wilmington, MA). In the HLU cohort, 13 ground 

control and 14 HLU mice were studied, while in the space flight study, 8 ground control and 

6 space flight mice were examined. The HLU protocol was approved by Beth Israel 

Deaconess Medical Center's Institutional Animal Care and Use Committee (IACUC), and 

the protocol used for the spaceflight study was approved by the ACUC at Kennedy Space 

Center.

Spaceflight study

Both spaceflight and ground control animals were maintained on a NASA nutrient-upgraded 

rodent food bar18 throughout the experiment. Spaceflight animals were sacrificed within 

approximately 2.5-7.5 hours of the shuttle's completing a 12 day, 18.5 hour flight on board 

the shuttle Atlantis (STS-135 mission). Flight animals were euthanized and the right 

gastrocnemius muscle was removed intact. Ground control animals, matched to day 0 body 

weight and bone parameters of flight mice, were euthanized 2 days later and the 

gastrocnemius muscle removed in an identical fashion, after an equal length of stay in 

identical cages to those used on the space shuttle19.

Hind Limb Unloading studies

In a later experiment, mice of the same strain, sex and age were subjected to HLU for 13 

days and compared to concurrent normally-loaded controls20. Briefly, under isoflurane 

anesthesia, the tail was taped to a freely rotating harness connected to a wheel that could 

move along a rod across the center of the cage. The height of the harness was adjusted such 

that the mouse could not touch its hind paws to the floor. A reloading period of 3 to 6 hours, 

to match the STS-135 timing, was employed in the HLU group by removing the harness and 

allowing the mice to ambulate before sacrifice. NASA food bars and water were provided ad 

libitum.

Muscle processing and electrical impedance measurements

Excised muscle was immediately weighed and then cut to a 0.5 cm × 0.5 cm base with 

approximately a 0.3 cm height block using a razor blade. The block of muscle tissue was 

placed in a 0.5 cm × 0.5 cm base impedance-measuring cell (Figure 1), configured with two 

broad, stainless steel electrodes on two sides for applying electrical current and two needle 

electrodes positioned on top for measuring voltage, as previously described15. The 

impedance data were obtained using the Imp SFB7® (Impedimed, San Diego, CA). 

Reactance (X) and resistance (R) data from 3 to 500 kHz was collected. The muscle was 

placed such that electrical current would flow across (transversely) to the major muscle fiber 

direction. While it would have been preferable to also obtain measurements with electrical 

current flow parallel to the fibers (and thus allowing us to assess the anisotropic 

characteristics of the tissue), positioning the muscle fibers on end with the metal plate 
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electrodes proved very challenging. A preliminary review of the data showed this latter 

process to be quite inconsistent, and thus was omitted from any further analysis.

Muscle histology (obtained on space flight muscle only)

Immediately after the EIM data were collected, the muscle was snap-frozen in isopentane 

cooled in liquid nitrogen, and stored at -80°C. The tissue was then cut into 10 μm slices 

using a Tissue Tek II cryostat (Miles Laboratories, Inc., Elkhart, IN) and stained with 

hematoxylin and eosin. Cell measurements were made using a Zeiss Axiophot microscope 

with a LUDL motorized stage interfaced with a Dell Optiflex 380 computer running Stereo 

Investigator (MBF Biosciences, Inc., Williston, VT) software. This software allows a non-

biased quantification of fiber sizes. After the investigator sets a series of initial parameters, 

including the section of tissue from which to choose cells, the system automatically and 

randomly selects groups of cells to count. Approximately 60 cells were evaluated from each 

animal. In order to reduce the potential for any bias, the evaluator (AS) was blinded to group 

designation (i.e., loaded or unloaded) of each section being assessed. Muscle histology was 

also planned in the HLU animals, but unfortunately the tissue was inadvertently damaged 

during transport and was unusable for analysis.

Bone Mineral Density measurements

Areal bone mineral density (aBMD, g/cm2) of the hind limb (from femoral neck to ankle) 

was assessed by peripheral dual-energy X-ray absorptiometry (pDXA, PIXImus II; GE 

Lunar, Madison, WI, USA) in vivo immediately prior to sacrifice.

Data analysis

From the raw EIM data, the phase was calculated via the equation: phase=arctan (reactance/

resistance) at each frequency. Due to its being the most promising of the multifrequency 

EIM parameters from previous work21,22, and especially in our recent work in HLU17 rats, 

the focus here is on the phase-slope parameter, defined as the slope of the fitted linear 

regression to phase values from 100 to 500 kHz (see Figure 2 for examples as to how this 

analysis was performed), expressed as degrees/MHz. Although considerably beyond the 50 

kHz measurement, the subject much earlier work, the impedance behavior in this region is 

generally linear and thus favorable to least squares regression analysis. For simplicity of 

description, the sign was then flipped (thus the negative values are positive). Further 

explanation as to the potential significance of this parameter is provided in the discussion.

The Wilcoxon rank sum test was performed to evaluate for differences between phase-slope, 

muscle mass, muscle fiber cross-sectional area, and areal bone mineral density of the HLU 

and space flight mice with their respective control groups. Spearman rank-correlation 

coefficient (ρ) was calculated to determine the relationship between phase-slope and muscle 

mass, muscle fiber area, and hind limb bone mineral density. All results are given as mean ± 

standard error; significance was assumed at p<0.05, two-tailed.
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Results

Muscle mass

As anticipated, mice exposed to spaceflight had a lower gastrocnemius muscle mass than 

ground controls, although the difference did not reach significance (102±32 mg for 

spaceflight; 112±22 mg for ground p=0.079). However, mice exposed to HLU had lower 

muscle mass as compared to controls (95.2±19 mg for HLU; 107±29 mg for control; 

p=0.0053).

Muscle fiber size (spaceflight only)

Muscle histology measurements were obtained only in the spaceflight animals and their 

controls. As anticipated, mice exposed to spaceflight had a smaller average muscle fiber 

cross-sectional area of 1579±194 μm2 as compared to 2591±197 μm2 in controls (p=0.013) 

(Figure 3 (a)).

Electrical Impedance data and muscle characteristics

The EIM phase-slope parameter was significantly lower in both the spaceflight and HLU 

mice when compared to their respective control groups (Figure 4). For control and HLU 

groups, the values were 23.9±1.6°/MHz and 19.0±1.0°/MHz, respectively (p=0.014); for 

ground control and spaceflight groups, the values were 24.7±1.3°/MHz and 14.1±1.6°/MHz, 

respectively (p=0.0013). We observed a moderate positive relationship between muscle 

mass and the EIM phase-slope parameter in the HLU study (ρ=0.64, p<0.001), and although 

the relationship had a similar pattern in the spaceflight study, the association was weaker 

and did not reach statistical significance (ρ=0.39, p=0.17) (Figure 5). This inconsistency 

may relate to the fact that there were considerably smaller number of spaceflight animals 

and that muscle mass was slightly lower in the HLU group than the spaceflight group 

compared to their respective control groups. However, there was a good correlation between 

muscle fiber size and the phase-slope parameter (ρ=0.65, p=0.011) across the spaceflight 

and ground control animals (Figure 3 (b)).

Areal Bone Mineral Density and Electrical Impedance

As expected, both spaceflight and HLU groups had significantly lower hind limb aBMD 

compared to controls. For ground control and spaceflight groups, the values were 55.9±0.80 

× 10-3 g/cm2 and 50.8±0.56 × 10-3 g/cm2, respectively (p=0.0013). For control and HLU 

groups, the values were 52.6±0.55 × 10-3 g/cm2 and 47.1±0.44 × 10-3 g/cm2, respectively 

(p<0.001). In both studies, there were significant correlations between hind limb aBMD and 

the phase-slope parameter, both assessed using aBMD and EIM values obtained at the end 

of the study (HLU study: ρ=0.55, p=0.0031 and space flight study: ρ=0.65, p=0.0063, Figure 

6).

Discussion

These results support the hypothesis that significant alterations in the electrical impedance 

of mouse muscle occur after exposure to both spaceflight and hind limb unloading, 

consistent with our earlier in vivo observations seen in humans following disuse due to 
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casting16 and rats undergoing hind limb unloading17. Moreover, these EIM alterations 

correlate with muscle fiber size and also to hind limb aBMD. The consistency of the 

majority of these results in the two separate experiments supports their authenticity. Thus, 

the EIM changes observed here likely reflect true alterations to the composition and 

structure of the muscle tissue itself, including reductions in muscle fiber size and possibly 

the deposition of connective tissue23.

The major outcome measure we have utilized here, the phase-slope, as its derivation 

described in Figure 2 shows, is a measure of the frequency-dependence of the impedance21. 

Muscle can be modeled as a complex network of resistors and capacitors24. At these 

frequencies of applied current, the extracellular space serves as the major resistive 

component and the sarcolemma of the cell membranes serves as the major capacitive 

component. The resulting voltages from such complex circuits are typically very sensitive to 

current frequency and thus even subtle alterations in the structure and composition of the 

tissue are likely to be observed as shifts in the phase-slope measurement. The phase itself 

represents a combination of both the resistive and reactive elements in the circuit and has 

been shown to be very sensitive to a variety of neuromuscular diseases as well as to disuse 

atrophy16,21,25,26. Taken together, the changes in the phase-slope measure likely represent a 

reduction in overall surface area of sarcolemmal membrane due to reduced muscle fiber 

area, as supported by our quantitative microscopy data. Such reduced fiber area would likely 

be associated with reduced muscle contractile force and power27.

Importantly, the alterations observed in the EIM data correlated with meaningful and 

potentially important measures, including muscle fiber size and, very preliminarily, hind 

limb aBMD. Previous studies have already identified EIM data correlating significantly to 

muscle fiber size in rats, in both sciatic crush and HLU models15,17. However, this is the 

first time that a relationship between EIM and aBMD has been suggested. Since muscle 

contractions provide much of the mechanical loading experienced by bone, and prior studies 

have shown associations between muscle mass and aBMD28, it is perhaps not surprising that 

calf muscle EIM measurements correlate with leg aBMD. Longitudinal measurements of 

muscle mass, EIM, and bone mass would allow a better understanding of the temporal 

relationship between bone and muscle changes in response to disuse.

The gastrocnemius was studied in these two experiments. Previous studies have shown that 

in rodents, type 1 muscle fibers tend to atrophy more than type 2 fibers during 

spaceflight29,30. Thus, the soleus, which consists mainly of type 1 fibers, generally shows 

greater alteration than the gastrocnemius which mostly consists of type 2 fibers31. Still, 

some alteration in the gastrocnemius muscle does occur, and it is reassuring that 

measurement of this less affected muscle still identified a change following disuse. The 

soleus was not studied for two major reasons. First, the soleus from the spaceflight 

experiment was not available to this group of researchers. Second, the mouse soleus is 

considerably smaller than the gastrocnemius and would have been technically challenging to 

work with and measure ex vivo in the impedance measurement cell even had it been 

available.
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There are several limitations to this study worth highlighting, most of which relate to the 

study design. First, no in vivo EIM measurements were made. One of the potentially most 

important aspects of EIM is its ability to measure and quantify muscle health rapidly and 

non-invasively. Thus, it would be valuable to monitor in vivo surface EIM change 

longitudinally, as was done in the study on rats17, and to correlate in vivo EIM data with in 

vivo bone mass data, as well as to ex vivo muscle histology and bone microarchitecture. 

Second, we did not perform any functional testing of the muscle unit or muscle fibers, which 

would have allowed us to relate dynamic changes to the EIM data. Third, the impedance-

measuring device used here (the Imp SFB7® from Impedimed, Inc) is limited in that it is not 

specifically designed for this use, having been developed for whole-body bioimpedance 

analysis measurements. It is likely that a dedicated muscle impedance-measuring device 

would have offered even greater sensitivity to these changes. Fourth, it is possible that the 

DXA measurements were impacted by the muscle loss to some extent; ideally, qCT 

measurements would have been performed to more accurately assess bone mineral density. 

Finally, it is impossible to exclude the possibility that water shifts or dehydration from 

prolonged suspension/spaceflight may be contributing to the observed changes in the EIM 

parameters. Although in both experiments the animals were allowed to locomote normally 

for a period of time before necropsy, simple shifts in muscle water content could have 

influenced the EIM results. We do note, however, that other work has shown no evidence of 

impedance change even with 23% reduction in total body weight over a 48-hour period of 

water restriction (unpublished results, Rutkove and Li, 2013).

In summary, we have identified similar alterations in the electrical impedance of muscle 

after exposure to either microgravity or hind limb unloading and these alterations correlate 

with both muscle fiber size (in space flight animals) and hind limb aBMD. These results 

support the need for further study of EIM technology for use in in vivo monitoring of muscle 

alteration during spaceflight and other conditions leading to musculoskeletal disuse.
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Figure 1. 
Impedance measuring cell with muscle demonstrating how data was obtained.
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Figure 2. 
Plots of the average phase from a hind limb unloaded mouse and spaceflight mouse with 

controls. Dotted lines depict the method of calculating the 100-500 kHz phase-slope 

parameter.
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Figure 3. 
(a). Column plot of average muscle fiber size in ground vs. space flight mice. (b) Scatter plot 

correlating phase-slope and average muscle fiber size in ground and space flight mice.
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Figure 4. 
Column plot depicting the average phase-slope of controls vs. hind limb unloaded mice (a) 

and ground vs. space flight animals (b).
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Figure 5. 
Scatter plots correlating phase-slope and muscle mass in control and hind limb unloaded 

mice (a) and control and space flight mice (b).

Sung et al. Page 14

J Musculoskelet Neuronal Interact. Author manuscript; available in PMC 2015 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Scatter plots correlating phase-slope and areal bone mineral density in control and hind limb 

unloaded mice (a) and control and space flight mice (b).
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