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Asthma is a disease characterized by inter-
mittent bronchoconstriction due to increased
airway reactivity to both allergic and nonaller-
gic stimuli. Underlying these phenomena is a
chronic, eosinophilic airway inflammation.
Perhaps the most common and significant
risk factor for development of asthma in chil-
dren is induction of an immunoglobulin E
(IgE; allergic) response against indoor aller-
gens (1,2). However, nonallergic stimuli,
which do not directly interact with IgE, are
common causes of asthma exacerbation.
Asthmatic individuals have been identified as a
population that is especially sensitive to the
effect of ambient air pollutants. Although pol-
lutants might enhance IgE-mediated chronic
inflammation via T-helper type 2 (TH2)
processes, they more likely induce exacerbation
of asthma. Indeed, many pollutants associated
with asthma exacerbation induce neutrophilic
inflammation in nonallergic subjects.

Viral infections and pollutants typically
induce TH1-type responses in the airway,
involving activation of nuclear factor-kappaB
(NF-κB). Yet in asthmatic individuals, these
processes may also exacerbate eosinophilic
inflammation. This observation suggests that
chronic allergic airway inflammation may
modify the response to nonallergic stimuli,
thus magnifying the impact of such agents.
The agents more commonly examined for
asthma exacerbation are criteria air pollutants,
such as ozone and particulate matter (PM).
The role of air toxics in asthma has not been
vigorously examined, despite the frequency in
which they are encountered. However, many
of the agents identified in PM can also be
considered air toxics and demonstrate that
this important class of pollutants likely has a
significant impact on asthma. Reviewed in

this article are studies that exemplify the
impact of ozone, particulates, and toxic com-
ponents of particulates on asthma.

Ozone and Asthma

Epidemiologic studies clearly demonstrate
that increases in ambient air ozone are linked
with increased occurrence of acute asthma
exacerbations. Markers for such events,
including increased hospitalizations and
emergency room visits, are usually noted
24 hr after the increase in inflammation, sug-
gesting that inflammation may play a role in
such events (3–8). During the 1996 Summer
Olympic games, an effort to decrease auto-
mobile traffic in Atlanta, Georgia, resulted in
decreases in ambient ozone levels. Asthma
exacerbations decreased as well, again demon-
strating a link between ambient ozone levels
and asthma exacerbations (9).

Exposure to ozone is known to induce
increases in airway inflammation (10–12). In
asthmatic individuals, the effect of ozone
exposure is exaggerated, resulting in either
increased neutrophilic inflammation (13–15)
or an augmentation of eosinophilic inflam-
mation (16,17). In addition to asthmatic
individuals being more sensitive to ozone
per se, ozone appears to augment both the
immediate and late-phase response to aller-
gens. Initially, Molfino and colleagues (18)
described increased sensitivity to inhaled
allergen after exposure to a relatively low level
of ozone (0.12 ppm for 2 hr). Although other
studies examining this dose of ozone do not
reveal such an effect (19), higher levels of
ozone clearly enhance the immediate effect of
inhaled allergen on bronchoconstriction
(20,21). Nasal challenge studies also demon-
strate that ozone exposure might enhance the

late-phase response to allergen (22,23). Thus,
persons with allergic inflammation of the air-
way are differentially susceptible to the effect
of ozone, an agent that in nonallergic subjects
induces neutrophilic inflammation (24–26).

Toxic Components of
Particulate Matter and Asthma
Particulate matter is an important pollutant
and is associated with increased morbidity
and mortality (24,27–30). PM is also associ-
ated with increased disease severity in asthma
(31–33). Indeed, increased admissions to
hospital for asthma are linked to increased
PM exposure, as are decreased peak flow
measurements in children (31,34,35). An
interesting study in the Utah Valley, Utah,
showed a marked decrease in admissions to
hospital for asthma and respiratory tract ill-
nesses when a local steel mill was closed, with
subsequent increase in such events when it
reopened (32,33).

Although a clear mechanism for the
action of PM in asthma exacerbation has not
been identified, studies with model pollu-
tants, including residual oil fly ash (ROFA)
and Utah Valley dust (UVD) particles, sug-
gest that PM enhances TH1-like, neutrophilic
inflammation. Many of the active agents in
various PM species also fall into the broad
category of air toxics. ROFA is a potent
proinflammatory agent that has oxidant activ-
ity, likely mediated by vanadium species and
nickel (36–40). UVD is another PM in
which its biological activity is associated with
metal content and oxidant character (41–44).
Diesel exhaust particles (DEPs) contain poly-
aromatic aromatic hydrocarbons. Each of
these PM components can be considered air
toxics. The specific impact of these agents in
humans is outlined below.

ROFA particles have been shown in vitro
to affect prostaglandin metabolism and induce
cytokine production in epithelial cells (45–48).
Animal studies have also demonstrated
that ROFA is associated with increased
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neutrophilic airway inflammation (49).
Animal studies also show that ROFA can
exacerbate allergic inflammation in mice and
that it enhances sensitization to allergens in a
rat model (50–52).

UVD has also been shown to induce
airway inflammation in animal studies and to
induce proinflammatory changes in epithelial
cells in vitro. Perhaps most intriguing is the
decreased effect of UVD particles collected
during the time that the local steel mill was
closed (44,53,54). In humans, instillation of
extracts made from UVD collected during
the years the mill was open versus those col-
lected when it was closed was consistent with
animal and in vitro studies demonstrating
that influx of neutrophils was associated with
dust collected during active years and was
blunted in extracts made from UVD col-
lected during a year the mill was closed (42).
Humans exposed to concentrated ambient
air particles also show subtle evidence of
increased respiratory tract inflammation
(43). Thus, it seems clear that PM can
induce inflammation, not unlike ozone. This
proinflammatory effect of PM may account
for its ability to exacerbate asthma.

Diesel exhaust and resultant DEPs are
also an interesting component of PM.
Human challenge studies with diesel exhaust
reveal increases in airway inflammation,
including increases in airway neutrophils and
mast cells (55–57). Diesel exhaust exposure
has been shown to enhance nonspecific air-
way reactivity in asthmatic individuals as well
(58). DEPs, in nasal instillation studies, have
been shown to induce increases in total and
antigen-specific IgE, increase cellular response
to nasally applied allergen, and enhance pro-
duction of TH2 cytokines such as interleukin
(IL)-4 and IL-13 (59–64). DEPs also enhance
sensitization to a neoantigen, keyhole limpet
hemocyanin (KLH), such that antigen-spe-
cific IgE against KLH is generated (65).
In vitro studies suggest that the active agents
in DEPs that affect IgE production are pol-
yaromatic hydrocarbons (66). Animal studies
also demonstrate that polyaromatic hydrocar-
bons enhance IgE production in animals via
actions on B lymphocytes (67). Taken
together, these data suggest that diesel parti-
cles and DEPs may play a significant role not
only in asthma exacerbation but also in TH2
inflammation via the actions of polyaromatic
hydrocarbons on B lymphocytes.

Endotoxin and Asthma

Endotoxin is a common component of PM
and is also encountered in domestic (68,69)
and occupational settings (70,71). A number
of studies have demonstrated increased airway
symptoms in workers who encounter high
levels of endotoxin in the workplace
(70,72–77). Endotoxin is known to stimulate

innate immune responses that have a TH1-
type character (neutrophilic inflammation,
lack of IL-4 and IL-13). Endotoxin induces
neutrophilic airway inflammation in nonal-
lergic, nonasthmatic volunteers (78–85).
This agent also has been found to enhance
nonspecific airway reactivity in asthmatic
individuals (86–88).

Recent studies suggest that endotoxin
may be a factor in increasing asthma morbid-
ity and wheeze (89,90). Conversely, exposure
to endotoxin at a very young age may protect
against development of allergic responses to
allergens (68). However, in persons with
ongoing allergic inflammation, the degree of
allergic inflammation, as determined by enu-
meration of airway eosinophils, appears to
correlate with increased response to endo-
toxin (91). Allergen challenge enhances
expression of CD14, an important endotoxin
receptor, in asthmatic individuals (92–94)
and enhances nasal inflammatory responses to
endotoxin, including increases in neutrophils
and eosinophils (95). Treatment of asthmatic
individuals with corticosteroids blunts
response to endotoxin and decreases CD14
expression in the airway (96). Taken together,
these observations suggest that allergic
inflammation modifies the response to endo-
toxin, enhancing the impact of this agent on
asthma symptoms and morbidity.

Potential Common
Mechanisms
Each of the pollutants outlined above can
induce neutrophilic inflammation. NF-κB is
a key aspect of such activation. Ozone has
been shown to activate NF-κB in epithelial
cells (97) and to induce this transcription fac-
tor in vivo in animal respiratory tissue
(98,99). This activation is blunted by treat-
ment with corticosteroids. Metal ions and
diesel exhaust also appear to induce NF-κB
(48). Endotoxin is a classic stimulus for
NF-κB activation (100). Signal transduction
of endotoxin after it binds to the CD14 cell
surface depends on interaction with the toll-
like receptor (TLR) 4. An intriguing linkage
between TLR 4, a key receptor for endotoxin,
and the action of ozone suggests that TLR4
(or other similar membrane-spanning mole-
cules) may mediate the ultimate activation of
NF-κB by ozone as well (101,102). Future
studies on the effect of environmental stimuli
in exacerbating asthma should examine
potential common response elements such as
the TLR 4, which may mediate the effect of a
number of apparently disparate pollutants.

Summary

This article has outlined some of the exam-
ined effects of ozone, PM, and biological
agents on asthma exacerbation. The role of
air toxics, an important and commonly

encountered air pollutant, in asthma has not
been aggressively studied. Its potential
importance is demonstrated by studies of
PM in which the active agents are biologi-
cally active metal ions and organic residues,
both of which can be considered air toxics.
This class of compounds may have signifi-
cant effects on asthma, especially modulating
immune function, as demonstrated by the
role of polyaromatic hydrocarbons from
diesel exhaust in IgE production.
Examination of the effect of air toxics in
asthma as they exist either in gas, vapor, or
particulate form warrants further study.
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