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Abstract
Sylvatic dengue viruses (DENV) are both evolutionarily and ecologically distinct from human
DENV and are maintained in an enzootic transmission cycle. Evidence of sylvatic human
infections from West Africa and Southeast Asia suggests that sylvatic DENV come into regular
contact with humans. Thus, this potential of emergence into the human transmission cycle could
limit the potential for eradicating this cycle with vaccines currently in late stages of development.
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We assessed the likelihood of sylvatic DENV-4 emergence in the face of natural immunity to
current human strains and vaccination with two DENV-4 vaccine candidates. Our data indicate
homotypic neutralization of sylvatic and human DENV-4 strains by human primary convalescent
and vaccinee sera but limited heterotypic immunity. These results suggest that emergence of
sylvatic strains into the human cycle would be limited by homotypic immunity mediated by virus
neutralizing antibodies produced by natural infection or vaccination.
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Introduction
Dengue viruses (DENV) are arthropod-borne viruses (arboviruses) in the genus Flavivirus
(family Flaviviridae) that utilize Aedes (Stegomyia) spp., primarily Ae. aegypti and to a
lesser degree Ae. albopictus, as vectors for transmission in urban and peri-urban settings
(urban transmission cycle). In Southeast Asia and West Africa, DENV are also transmitted
in an enzootic cycle between non-human primates and arboreal Aedes spp. mosquitoes.
There are four antigenically distinct but genetically related serotypes (DENV-1, -2, -3 and
-4) within the dengue (DEN) antigenic complex (Calisher et al., 1989). Unlike most
arboviruses, DENV are extremely restricted in their natural vertebrate host range, which
most likely includes only primates. Currently, all four DENV serotypes can be found in
nearly all urban and peri-urban tropical and subtropical environments where Ae. aegypti is
present. By current estimates this distribution puts over half of the global human population
at risk for infection. The impact of DENV infections on human health is enormous; over 200
million infections and 2 million cases of of dengue hemorrhagic fever (DHF) occur each
year, with a case fatality rate of up to 5% (Kyle and Harris, 2008). Most profoundly, the
majority of the DEN-associated disease in hyperendemic regions is borne by children (Clark
et al., 2005; Mathers et al., 2007; Witayathawornwong, 2005), although recent evidence
from Southeast Asia and Latin America suggests that adults are also at high risk (Fox et al.,
2011; Guilarde et al., 2008; Hanafusa et al., 2008; Koh et al., 2008; Siqueira et al., 2005;
Wichmann et al., 2004), particularly in urban areas that are transitioning or have already
transitioned to hyperendemicity.

Phylogenetic (Chen and Vasilakis, 2011; Rico-Hesse, 1990; Twiddy et al., 2003; Vasilakis
et al., 2008b; Wang et al., 2000) and ecological studies (Cordellier et al., 1983; Hervy et al.,
1984; Monlun et al., 1992; Roche et al., 1983; Rudnick, 1965; Rudnick, 1978, 1984, 1986;
Smith, 1956, 1958) indicate that the ancestral sylvatic DENV are both ecologically and
evolutionarily independent from the current endemic DENV circulating within urban
transmission cycles. However, data from West Africa and Southeast Asia suggest that
sylvatic DENV come into regular contact with humans. For example, in West Africa the
gallery forest-dwelling mosquito, Ae. furcifer, which is highly susceptible to sylvatic DENV
infection (Diallo et al., 2005), disperses into villages and may be responsible for sylvatic
DENV infection of humans (Diallo et al., 2003; Fagbami et al., 1977). In Southeast Asia,
Ae. albopictus may transfer sylvatic DENV from the forest into human habitats (Rudnick,
1986). Sylvatic DENV infection can cause human disease in both rural peridomestic and
urban settings as documented by spillover epidemics (Carey et al., 1971; Vasilakis et al.,
2008c), and human infections in West Africa (Franco et al., 2011; Monlun et al., 1992;
Robin et al., 1980; Saluzzo et al., 1986) and Southeast Asia (Cardosa et al., 2009). Clinical
illness due to sylvatic DENV not only is indistinguishable from classic dengue fever (DF),
but also has the potential to progress to severe disease (Cardosa et al., 2009; Franco et al.,
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2011). Because the only means to determine whether the DENV strain causing human
infection is from the sylvatic or the urban transmission cycle is by sequencing the virus
genome, human infection by sylvatic strains is often misclassified etiologically as dur to
urban strains.

Collectively, these observations combined with: (i) experimental evidence in models of
human (Vasilakis et al., 2007) and mosquito infection (Diallo et al., 2008; Diallo et al.,
2005) (Hanley and Vasilakis, unpublished data) that adaptation is not required for urban
transmission; and (ii) the continuing risk of DENV emergence from the sylvatic cycle
resulting in human infection, which can manifest as symptomatic dengue disease, suggest
that sylvatic dengue spillover may occur at a greater frequency than is currently recognized.
A recent study showed broad neutralization by vaccinated monkey serum against a large
panel of DENV-1–4, including a DENV-2 sylvatic strain (Barban et al., 2012). Our earlier
study (Vasilakis et al., 2008a), evaluating the neutralization capacity of convalescent sera
collected from dengue vaccine recipients and from DENV-2 and DENV-3 patients following
primary infection, also suggested that the emergence of sylvatic DENV strains into the
human transmission cycle would be limited by homotypic humoral immunity.

In this study, to assess the likelihood of current sylvatic DENV-4 re-emergence (emergence
of extant sylvatic DENVs into the human transmission cycle) in the face of immunity
induced by current urban-circulating DENV strains or vaccine candidates, we tested sera
collected from DENV-4 vaccine recipients and convalescent-phase sera from DENV-
infected patients against geographically and genetically diverse sylvatic and human
DENV-4 strains (Table 1).

Results and discussion
Neutralization studies of human vaccinee sera

For vaccination to achieve effective immunity against DEN disease, the immune response
must be effective against all four DENV serotypes and must be long-lived. Natural infection
with DENV results in lifelong protection against reinfection with the same serotype
(Halstead, 1974; Okuno et al., 1983; Papaevangelou and Halstead, 1977; Rosen, 1986;
Sabin, 1952; Tadano et al., 1983) but only in transient cross-protection against heterotypic
serotypes (Guirakhoo et al., 2006; Sabin, 1952). Homotypic immunity is mediated by
neutralizing antibodies directed mainly against the viral envelope (E) protein (Crill and
Roehrig, 2001; Kaufman et al., 1987; Roehrig et al., 1998) and other minor antigens located
in the viral membrane [(M) (Kaufman et al., 1989) and nonstructural 1 (NS1) (Schlesinger et
al., 1986) proteins] as well as by cell-mediated immunity. However, heterotypic immunity is
associated with cross-reactive neutralizing antibodies to E and prM that decline rapidly after
infection (Pengsaa et al., 2006; Sabin, 1952).

Previously, we assessed the likelihood of current sylvatic DENV re-emergence in the face of
immunity to current vaccine candidates, including the DENV-4 candidate vaccine
rDEN4Δ30, by evaluating the neutralizing capacity of sera from DENV4Δ30 vaccinees
against reference sylvatic and human DENV-4 strains (Vasilakis et al., 2008a). Here, we
assessed the potential of all available sylvatic DENV-4 strains to re-emerge in the face of
immunity to an expanded set of human strains, as well as the more attenuated DENV-4
rDEN4Δ30-200,201 and rDEN4Δ30 vaccine candidates, by evaluating the neutralizing
capacity of sera from human DENV vaccinees and convalescent patients from Puerto Rico,
Mexico, Singapore, Sri Lanka, the West Indies, Honduras, and Thailand.

Sera collected at 42 days post-vaccination from 7 and 10 placebo-controls participating in
the clinical trials evaluating rDEN4Δ30-200,201 and rDEN4Δ30, respectively, were unable
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to neutralize any DENV tested (PRNT60 < 20). Sera collected from all rDEN4Δ30-200,201
vaccinees were previously shown to neutralize the parent DENV-4 strain 814669 (McArthur
et al., 2008) and were not retested in the current study. Overall, sera from 16/19
rDEN4Δ30-200,201 vaccinees neutralized some or all of the DENV-4 strains. Weak to
modest (PRNT60 = 20 – 160) homotypic neutralization was exhibited by vaccinee sera
(Table 2). Sera from 13/19 vaccinees neutralized all of the DENV-4 tested, while sera from
three additional vaccinees neutralized all viruses tested except for the India G11337 (3 test
sera 214.01.14, 214.01.16, 214.01.18) and the H241 strains (test serum 214.01.14). Weak to
modest (PRNT60 = 20 – 160) homotypic neutralization responses were exhibited by sera
collected at 42 days post vaccination (Table 2). The levels of homotypic neutralization
further decreased 180 days post vaccination (PRNT60 = 20 – 40) (data not shown).
Similarly, sera collected from 21/22 persons vaccinated with rDEN4Δ30 neutralized some
(14) or all (7) of the DENV-4 tested, and several sera from other persons were unable to
neutralize human or sylvatic DENV-4 strains (Table 3). The homotypic neutralization
responses exhibited by sera collected 42 days after vaccination ranged from weak to strong
(PRNT60 = 20 – >640) (Table 3) (sera collected 180 days post vaccination were not tested)
and were collectively more potently neutralizing than sera from the rDEN4Δ30-200,201
vaccinees (mean log titers 1:40 and 1:28, respectively, P=0.0163), consistent with greater
attenuation of the rDEN4Δ30-200,201 virus. Sera from all but two persons vaccinated with
either rDEN4Δ30-200,201 or rDEN4Δ30 failed to neutralize heterotypic human DENV-1 –
3 or sylvatic DENV-2 (PRNT60 < 20) (Table 2 – 3). Serum from patient JHU02 exhibited a
strong heterotypic response to the sylvatic DENV-2 DKD811 strain (Cardosa et al., 2009).
Interestingly serum from one vaccinated subject (JHU 22) exhibited a modest to relatively
strong heterotypic neutralizing response to DENV-1 and - 3 (PRNT60 = 40 – >640) and a
robust neutralization titer (>1280) to DENV-2, suggesting a secondary antibody response
(previous DENV-2 infection), or possibly an inapparent West Nile virus infection and
‘original antigenic sin’ (Halstead et al., 1983; Kuno et al., 1993). However, there were
stringent eligibility criteria for this trial, including absence of prior exposure to flaviviruses
(Durbin et al., 2006), and this volunteer was previously found to be seronegative by PRNT
to DENV-1 – 4, yellow fever (YFV) and WNV and by hemagglutination-inhibition assay to
Saint Louis encephalitis virus (SLEV), WNV, and Japanese encephalitis virus (JEV) prior to
vaccination. Furthermore, it is very unlikely that this volunteer (JHU 22) would have been
exposed to any flavivirus other than WNV because he/she was a Baltimore resident with no
travel history to any DENV-endemic countries. We reported a similar observation
previously (Vasilakis et al., 2008a). The broad heterotypic response after vaccination or
previous, unknown exposure could be due to antigenic mismatch between the vaccine and
DENV strains used for the PRNT (Lanata et al., 2012; Sabchareon et al., 2012).

The vaccinee sera offer a unique opportunity to explore the relationship between
neutralization and DENV genetic diversity. Because the sequences are known for the
vaccine strain and for the endemic and sylvatic strains used in the assays, it is possible to
test the relationship between differences in neutralization titers of sera and genetic
differences among the viruses used in the assays. Using published sequences for the
rDEN4Δ30 vaccine strain and the endemic and sylvatic strains (Table 1), genetic p-
distances between the amino acid sequences of the structural proteins were calculated. As
expected, the structural proteins of rDEN4Δ30 were much more similar to those of the
endemic DENV-4 strains than to that of the sylvatic E glycoprotein, with nearly 100%
amino acid sequence identity between the vaccine strain and its parent 814669, followed by
INH6412 (99.4%), Haiti73 (99.3%), IndiaG11337 (97.3%) and H241 (97.0%). The sylvatic
strains’ structural proteins were all 95% identical to the vaccine strain. These distances were
plotted against the log PRNT60 titers for each vaccine recipient and subjected to regression
analysis. For the rDEN4Δ30 recipients, 18 of the 22 sera demonstrated a positive
relationship between the genetic relatedness of the neutralized virus to the vaccine strain and
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the neutralization titer and, of these, 11 of the 18 were statistically significant (P<0.05). The
only sera that failed to show a relationship were JHU 5 and JHU 11 (non-neutralizing sera),
the weakly neutralizing sera JHU 2, and the potently neutralizing sera JHU 6.

Of note, the less potently neutralizing rDEN4Δ30-200, 201 vaccinee sera did not show a
consistent relationship between genetic distance and neutralization titer. Of the 19 sera
tested, only 11 showed a positive relationship between neutralization titer and genetic
distance, and of these 11, only 2 had a statistically significant correlation (214.01.01 and
214.01.13). This likely is because of the overall lower antibody titers induced by these more
attenuated vaccines. This explanation is supported by the observation that these vaccinees
showed reduced homotypic neutralization at 180 days post vaccination.

Neutralization studies of human primary convalescent sera
We also assessed the ability of convalescent sera collected from primary DENV-4 pastients
to neutralize sylvatic and endemic DENV-4, (Table 4), including (i) sera obtained 9–21 days
(Puerto Rico and Singapore) or up to a year (Mexico) after onset (Table 4), as part of routine
national surveillance programs, (ii) very late convalescent sera (defined as those collected
>2 years after documented DENV infection) obtained as part of an ongoing dengue in
traveler study (French West Indies and Honduras) and, (iii) anonymous sera from a Sri
Lankan blood bank (length of convalescence unknown) and a reference serum collection
(Thailand). Primary DENV infections were defined by the capture IgM:IgG ratio during the
acute phase of disease (0–5 days after onset of symptoms) (Falconar et al., 2006) or by a
monotypic neutralization profile on late convalescent sera. Because a limited volume of
DENV-4 primary convalescent sera was available, we were unable to evaluate their
neutralization capacity with a large collection of DENV-4 strains. Of the early convalescent
Puerto Rico sera, all but one (PR-A02 with India G11337 strain), robustly neutralized of
both endemic and sylvatic DENV-4 (PRNT60 40 – >1280) (Table 5). Sera obtained from
Puerto Rico and Singapore exhibited weak to modest heterotypic neutralization of endemic
DENV-1 – 3 or sylvatic DENV-1 and -2 (PRNT60 = 20 – 320), except serum PR-A04,
which strongly neutralized the sylvatic DENV-1 strain (PRNT60 >1280). Several sera
exhibited no heterotypic virus neutralization of endemic DENV-1 – 2 or sylvatic DENV-2
strains (PRNT60 < 20) (Table 5). Notably, both sera from Mexico weakly neutralized both
endemic and sylvatic DENV-4 (PRNT60 20 – 40), but not endemic DENV-1 – 3 or sylvatic
DENV-1 and -2 (PRNT60 < 20), whereas one serum exhibited a relatively strong virus
neutralizing activity against sylvatic DENV-1 (PRNT60 = 160)(Table 5). Because these sera
were collected several months after infection (Table 4), the lack of heterotypic neutralization
is consistent with transient heterotypic cross-protection after infection. The relatively robust
heterotypic responses observed in PR-A04 and MX-01 samples suggest that the patients had
a previously undiagnosed, heterologous DENV infection. This concept was proposed by
Halstead (Halstead et al., 1983) as a mechanism of DENV immune response involved in
sequential infections. In such instances, the immune response to a secondary infection is
dominated by the proliferation of cross-reacting memory cells induced by the primary
infection, which may be of lower affinity for the secondary challenging antigen.

The late convalescent sera DT100 (West Indies, 4 years post acute infection) and DT102
(Honduras, 2 years post acute infection) showed that durable and broad homotypic
neutralization can persist several years after infection. The blood donor sera DV002 and
GS58, both from Sri Lanka, showed a less robust but equally broad neutralization against
both endemic and sylvatic viruses. The DENV-4 reference sera, SS06/105, 302 and
SS07/333 were interesting in that they were broadly neutralizing but had as much as a 16-
fold difference in neutralization titers between endemic and sylvatic DENV-4. This suggests
that, while natural infection induces broad intraserotypic neutralization, there can be
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significant variation within that serotype, underscoring the role of genotype-specific
epitopes in antibody mediated protection.

Our results demonstrate the ability of convalescent sera collected after primary DENV-4
infection as well as from DENV-4-vaccinees to neutralize genetically diverse DENV-4. The
observed protection is mainly due to homotypic immunity, and consistent with Sabin’s
observations, we observed only a transient heterotypic immunity. Sera from human
vaccinees collected at 42 and 180 days following vaccination with rDEN4Δ30-200,201 or at
day 42 after rDEN4Δ30 vaccination exhibited limited to no heterotypic immunity.
Furthermore, our rDEN4Δ30-200,201 data corroborate the reduced levels of neutralization
titers observed previously, attributed to the greater attenuation of this candidate (McArthur
et al., 2008).

Several investigators have suggested that amino acid differences in the lateral ridge of
domain III of the E glycoprotein (Cockburn et al., 2012; Endy et al., 2004; Wahala et al.,
2010; Zulueta et al., 2006) are responsible for variable intra-serotypic neutralization. For the
viruses in this study, there are thirteen variable amino acid positions on the E glycoprotein
that are conserved between the endemic and sylvatic strains. Five are in domain I, only one
occurs in domain II, and the remaining eight residue differences are in domain III, of which
only two occur along the lateral ridge (A329T and V382A). It is unlikely that these two
polymorphisms alone would account for differences in neutralization. Moreover, recently
published research suggests the flavivirus targets of human antibodies are likely to be non-
EDIII or quaternary epitopes that potentially involve residues in multiple domains in
variable neutralization (de Alwis et al., 2012).

As noted above, within-serotype neutralization varied broadly. For the rDEN4Δ30 vaccinee
sera, neutralization titer was significantly correlated with genetic distances between the
vaccine strain and the tested strains in half the sera tested. Additionally, the PRNT60 titers of
recent convalescent sera against endemic and sylvatic strains did not vary significantly for
most samples.

Collectively, our data suggest that re-emergence of sylvatic DENV-4 into the human
transmission cycle may be limited by homotypic humoral immunity, induced either by
vaccination or prior natural DENV-4 infection. The potential licensing of effective DENV
vaccines raises the prospect of control or even eradication of the human transmission cycle,
which relies solely on human-mosquito-human transmission. However, sylvatic
transmission cycles are not amenable to control by human vaccination and epidemiological
evidence suggests that sylvatic DENV come into regular contact with humans and can cause
severe disease (Cardosa et al., 2009; Franco et al., 2011) or transient spill-over to urban
settings (Carey et al., 1971; Vasilakis et al., 2008c). Furthermore, recent experimental
evidence indicates a low to non-existent adaptive barrier for the emergence of sylvatic
DENV into the human population (Vasilakis et al., 2007), implying that re-emergence is a
clear and present danger. Therefore, even as efforts to control circulation of human dengue
intensify in a manner analogous to historic efforts to control urban yellow fever, reduction
and ultimate eradication of dengue from human populations solely due to vaccination
campaigns could be, at best, short-lived. The urban yellow fever experience suggests that
successful eradication of dengue will hinge on sustained vaccination of susceptible
populations, including those who are at risk from the introduction of sylvatic DENV, with
potently immunogenic and long-lasting vaccines, as well as control of the urban mosquito
vectors.
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Material and Methods
Ethical considerations

Written consent to participate in the study was obtained from each subject enrolled in the
dengue vaccine studies. All data were handled anonymously and confidentially. The studies
were conducted at the Center for Immunization Research (CIR) at the John Hopkins
Bloomberg School of Public Health under an investigational new drug application for both
rDEN4Δ30-200,201 (BB-IND 12670) and rDEN4Δ30 (BB-IND 12977). The University of
Texas Medical Branch Institutional Review Board reviewed the study as protocol UTMB-
IRB#10-047. Human sera from Singapore were from the early dengue infection and
outcome study (Low et al., 2006), and were collected following written informed consent
and approved by the National Healthcare Group Domain Specific Review Board (DSRB 5B/
05/013). Human sera from Puerto Rico, and Mexico, obtained from routine surveillance, and
sera from US travelers were de-identified and approved for this research study under IRB
exemption 4797 at the CDC, CI986-L62 Mexico and 08-0895 UNC, respectively.

Cell Cultures
Monolayer cultures Vero cells (obtained from American Type Culture Collection, Bethesda,
MD) were grown at 37°C in Dulbecco’s minimal essential medium (DMEM) (4.5 g/L D-
Glucose) with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin/
streptomycin (P/S). C6/36 mosquito cells (a generous gift from Ilya Frolov) were grown at
28°C in Dulbecco’s minimal essential medium (DMEM) (4.5 g/L D-Glucose) with 10%
heat-inactivated FBS, 1% P/S and 1% tryptose phosphate broth (TPB).

Viruses
DENV-1,-2, -3 and -4 isolates of low passage history (Table 1), were obtained from the
World Reference Center for Emerging Viruses and Arboviruses, University of Texas
Medical Branch. The Dominica strain, 814669, from which both tested DENV-4 vaccine
candidates were derived, was provided by Dr. Anna Durbin. Viral isolates were passaged
once in C6/36 cultures to obtain high titer stocks. Supernatants were clarified from cellular
debris by low-spin centrifugation (630 × g, 20 min, 4°C) stabilized with the addition of 10X
SPG (2.18 M Sucrose, 0.038M KH2PO4, 0.072M K2HPO4 and 0.054M L-glutamate), and
stored at −;80°C.

Vaccine Viruses
The rDEN4Δ30 vaccine candidate was derived from the DENV-4 strain 814669 (Dominica
1981) by the removal of 30-nucleotides (nt) from the 3’ UTR of the genome (Durbin et al.,
2001). The rDEN4Δ30-200,201 vaccine virus was derived from the rDEN4Δ30 vaccine
virus by paired charge-to-alanine mutagenesis. (Hanley et al., 2004; McArthur et al., 2008).
The rDEN4Δ30-200,201 virus was generated as described previously in Hanley etal.
(Hanley et al., 2004).

Vaccinee sera
Serum samples were collected as part of previously described DENV vaccine trials (Durbin
et al., 2011; McArthur et al., 2008). Healthy adult male and non-pregnant female volunteers
were recruited from metropolitan Baltimore, Maryland. Informed consent was obtained from
each enrolled healthy volunteer, between 18 – 50 years of age, in accordance with the Code
of Federal Regulations (CFR21, Part 50). Each enrolled volunteer met the following
eligibility criteria: normal findings during physical examination; negative for antibodies to
all DENV, yellow fever virus, West Nile virus, St. Louis encephalitis virus, Japanese
encephalitis virus, human immunodeficiency virus, and hepatitis C virus; negative for
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hepatitis B surface antigen; normal values for complete blood count (CBC), and urinalysis.
Additional safety-related exclusion criteria were also applied. Female volunteers were
required to have a negative urine pregnancy test at least three days prior to vaccination and
on the day of vaccination and to agree to use contraception or abstain from sexual
intercourse for the duration of the study. Sera provided for this study represent collections at
day 42 post vaccination as described in McArthur etal (McArthur et al., 2008).

Human primary convalescent sera
Sera from convalescent patients after primary infection with DENV-4 obtained 9–21 days
(Puerto Rico and Singapore) or up to a year (Mexico) after the onset of symptoms (Table 4),
were obtained from routine surveillance, and were de-identified and approved for this
research study under IRB exemption 4797 at the CDC. Late convalescent sera were
collected as part of an ongoing dengue in traveler study under University of North Carolina
(UNC) IRB approval 08-0895. Anonymous blood bank and reference sera were kindly
provided by the lab of Aravinda de Silva, UNC School of Medicine, Department of
Microbiology.

PRNT and Immunostaining
PRNTs were performed in 12-well, Vero-microplate-cell cultures, using a fixed virus
inoculum [~800 focus forming units (FFU)] against varying serum dilutions (1:10--1:640).
Serum samples were diluted in minimal essential medium (MEM), containing 2% fetal
bovine serum. Virus was mixed with an equal volume of each serum dilution and the
mixture was incubated 1hr at 37°C. Then, 250 µL of the serum-virus mixture was placed
into Vero cultures and incubated 1hr at 37°C. A 1.5 mL volume of 4% methycellulose in
OPTIMEM-I overlay was placed in each well and the plates were incubated at 37°C for 4–5
days. The plates were then fixed with 1:1 methanol:acetone and foci were stained
immunologically and counted to determine the level of virus neutralization, as described
previously (Vasilakis et al., 2008a; Vasilakis et al., 2007). The PRNT titers were scored as
reciprocal of the highest dilution of serum that inhibited 60% of foci.

Statistical analyses
All statistical comparisons and regression analyses were calculated in JMP v7.0 (Cary, NC).
Mean log titers were compared by one-way ANOVA. P<0.05 was considered significant in
all comparisons. Correlations between PRNT60 titers and genetic P-distances were tested
using a standard least squares model. P-distances between DENV-4 structural protein amino
acid sequences were calculated with MEGA V5.0 (Tamura et al. 2011) default settings.
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• Sylvatic dengue viruses are both evolutionary and ecologically distinct from
human DENV

• Low to nonexistent adaptive barrier for emergence into human transmission
cycle

• Sylvatic DENV emergence is constrained by natural infection to DENV strains
from human transmission cycle

• Sylvatic DENV emergence is constrained by vaccination
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