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Abstract

Diagnosis of primary ciliary dyskinesia (PCD) by identification of dynein arm loss in transmission

electron microscopy (TEM) images can be confounded by high background noise due to random

electron-dense material within the ciliary matrix, leading to diagnostic uncertainty even for

experienced morphologists. We developed a novel image analysis tool to average the axonemal

peripheral microtubular doublets, thereby increasing microtubular signal and reducing random

background noise. In a randomized, double-blinded study that compared two experienced

morphologists and three different diagnostic approaches, we found that use of this tool led to

improvement in diagnostic TEM test performance.
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Introduction

Cilia are evolutionarily-conserved common cellular processes that have either sensory

(“primary” cilia) or motor (“motile” cilia) functions, and whose loss-of-function defects

result in disease phenotypes [1], including the ciliopathies [2] and primary ciliary dyskinesia

[3]. Sensory and motile cilia share a characteristic axonemal architecture of 9 peripherally

located microtubular pairs [1]. Motile cilia have dynein arm multimers that hydrolyze ATP

[4] to generate mechanical torque [5] by forced sliding of adjacent peripheral microtubular

pairs [6]. Motile cilia without two-microtubule central complexes (“9+0” architecture) move

in a rotatory fashion, and are responsible for a fluid current at the embryonic node that

determines sidedness in the developing embryo [7]. In contrast, motile cilia with two-

microtubule central complexes (“9+2” architecture) have an effective stroke in a single

plane, such that synchronous (per cell) and metachronous (per surface) beating allows

coordinated movement of surface fluid [8, 9].

Primary ciliary dyskinesia (PCD) (primary here implies congenital, rather than acquired, and

not involvement of primary cilia) is a human disease (OMIM 244400) that affects the

structure and/or function of motile cilia and flagella [1, 9], leading to early onset sino-

pulmonary infections, bronchiectasis, and male sterility [9-11]. Although early diagnosis and

management benefit these patients [12, 13], there is substantial delay in diagnosis [14]. The

originally-described patients with immotile sperm flagella and absent muco-ciliary transport

were found to have missing dynein arms [15-17]. Larger series subsequently found

ultrastructural loss or truncation of dynein arms in 80-90%, and central complex defects in

15-20%, of patients with clinical PCD and specific ultrastructural defects [18, 19]. A larger

series also found that 5% of cases showed either acquired ultrastructural changes related to

mucosal damage, or equivocal ultrastructural changes related to low signal:noise [19].

Although initial studies assumed that all PCD cases had specific axonemal ultrastructural

defects, subsequent studies have found DNAH11-mutant patients with clinical PCD, but

without ultrastructural defects [20, 21]. Three different clinical series of a total of 577 PCD

cases found normal ultrastructure in 18% [22], 29% [19], and 30% [21] of the PCD cases. If

70% of true PCD cases show a ciliary ultrastructural abnormality, and if 90% of ciliary

ultrastrucutural defects in PCD involve the dynein arms, then roughly 60-65% of actual

PCD cases (TEM screening sensitivity) will show specific defects of the axonemal dynein

arms. Because of this frequency of dynein arm dysmorphology in PCD, and because of the

specificity of this finding, it is important for diagnostic morphologists to optimize

visualization of dynein arm ultrastructure.

Optimization of glutaraldehyde/paraformaldehyde fixation with addition of tannic acid, as

well as optimization of staining with uranyl acetate, allows improved signal-to-noise of

TEM images [23]. However, despite optimal protocols for tissue sampling and processing,

images can still show high background noise from random electron-dense material in the

ciliary matrix [24]. This high background leads to low signal-to-noise ratios, confounding

interpretation of axonemal ultrastructure. It would thus be desirable to develop methods that

accentuate relevant ciliary structures and reduce ciliary matrix background noise. This has

been previously accomplished using manual registration of peripheral microtubular pairs

[23-25] and using affine transformations based on the centers of peripheral microtubular
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pairs [26] to produce a composite, low-noise image. However, each of these methods suffers

from various drawbacks, including dependence on circular symmetry of the axoneme [24,

26], lack of automation [23, 25, 26], and dependence on homogeneity of peripheral

microtubular pair shape [26]. We have developed a semi-automated image analysis tool that

processes high-noise digital TEMs and outputs low-noise averaged images of the peripheral

microtubular pairs. In a randomized, double-blind experiment, we found that use of this

image-averaging tool led to increases in TEM diagnostic test performance for each of two

experienced morphologists.

Materials and Methods

Tool design

Two of us (KF, MN) designed a tool in the MATLAB environment that allows the user to

successively process digital images of ciliary axonemes. Analysis begins with user selection

of upper left and lower right bounds of a given axoneme. This section is then extracted and

processed further by user selection of individual peripheral microtubular pairs, which are

themselves extracted. The first peripheral microtubular pair is then used as a template to

which the following peripheral microtubular pairs are registered. Registration is performed

using an affine transformation that allows for rotation and scaling. The sum of square

differences (SSD) between the two peripheral microtubular pairs is minimized. Each

subsequent peripheral microtubular pair is registered in this way and averaged in.

The workflow, shown in Figure 1, consists of 1) selection of the 10 “highest-quality”

axonemes (based on a qualitative assessment of plane of section and signal:noise ratio) and

2) selection of the peripheral microtubular pairs from these axonemes. Successive

registration is then performed to produce the low-noise output. The output is in two groups:

1) “per-axoneme” averaged images (1 image per ciliary axoneme, each image the average of

9 peripheral microtubular pairs, so 10 images), and 2) a single “all-axonemes” averaged

image (the average of all 90 peripheral microtubular pairs in the 10 axonemes) (Figure 2).

Biopsy Sources and Tissue Processing

Nasal mucosal scrape cytology preparations were obtained from consented adults and

children seen by pulmonologists and clinical scientists at UNC following referral for formal

evaluation for cystic fibrosis (CF) and PCD. Biopsy tissues were subjected to primary

fixation by immersion in buffered 2% glutaraldehyde/2% paraformaldehyde supplemented

with 0.5% tannic acid for 5 days to 3 months at 4°C, post-fixed for 1 hr. at 4°C in 1%

osmium tetroxide, dehyrated through graded ethanols, and embedded in epoxy resin.

Although ours is a well-recognized center of PCD research, PCD nevertheless is a rare

disease, and the patient population from which appropriate specimens are derived is

relatively small. Thus, it has been our practice to store specimens until sufficient numbers

have been received, in order to facilitate processing and to achieve optimal quality control.

We have previously shown excellent ultrastructural preservation of nasal mucosal biopsies

that required extended fixation [27]. Ultrathin (60-90 nm) sections were cut and post-stained

in uranyl acetate and lead citrate. Stained sections were viewed and photographed in a Zeiss

EM900 transmission electron microscope at a standard accelerating voltage of 50 kV.
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Experimental design

A total of 26 cases were selected from the UNC Cystic Fibrosis Center TEM library by one

of us (ML). Each case was assigned an overall best clinical diagnosis by one of us (ML) of

PCD (n=19) or not affected/normal (n=7), based on all available data from clinical

presentation, family history, radiographs, TEM, ciliary videomicroscopy, nasal nitric oxide

(NO), and genetic sequencing. A summary of the cases is given in Table 1. The set of TEM

images from each case was scanned by one of us (KF) on an Epson Expression 10000XL at

400dpi in 8 bit grayscale Tagged Image Format (TIFF). The 10 “highest quality” ciliary

axonemes (based on a qualitative assessment of plane of section and signal:noise ratio) per

case were selected, processed using the tool, and their output saved for each case. Thus, each

case was represented 3 ways, i.e. as 1) a set of raw TEM digital images per case, 2) a set of

ten per-axoneme averaged images per case, and 3) one all-axonemes averaged image per

case.

These three sets of diagnostic images were then evaluated by two experienced TEM

morphologists (JLC, WF). For the first method, the morphologists were given the digital

scans of all of the raw TEM images for a given case; this was considered to model the

current approach to TEM diagnosis. For the second method, the morphologists were given

the 10 per-axoneme averaged images. For the third method, the morphologists were given

the single all-axonemes averaged image. The case order was randomized for each of the two

morphologists, and for each method. Corresponding image files were assembled within a

folder structure in such a way that they could be browsed. A spreadsheet was prepared so

that the morphologists’ evaluations could be recorded. Each case was scored for the

presence or absence of each of the dynein arms. No teaching set was used prior to the

experiment. Each morphologist used his own diagnostic criteria regarding whether dynein

arm truncation was sufficient to diagnose a dynein arm defect.

Analysis

Accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive

value (PPV) were calculated for inner dynein arms (IDA), outer dynein arms (ODA), and

both combined dynein arms for the 26 cases, and for each observer. Inter-rater reliability

was calculated between morphologists using Cohen’s kappa [28] for each method for all

cases (n=26). All data analyses were performed using SPSS version 9.0 (SPSS, Inc.,

Chicago IL). Inter-rater reliability results are presented in the form kappa ± asymptotic

standard error (SE).

Results

TEM Diagnostic Inter-Rater Reliability

For the entire set of 26 cases, inter-rater reliability was calculated between morphologists for

each method (Figure 3). For raw TEM diagnosis, overall kappa including both IDA and

ODA interpretations was 0.762 ± 0.100. For diagnosis using multiple per-axoneme averaged

images, the overall kappa was 0.952 ± 0.047. For diagnosis using a single all-axonemes

averaged image, the overall kappa was 0.867 ± 0.074. Kappa values for just the IDA or the

ODA are also shown in Figure 3.
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TEM Diagnostic Test Performance

Test performance was determined for the three different tests by comparing observed and

expected dynein arm status for each of the 26 cases. For Observer #1, diagnoses of dynein

arm defects showed increasing sensitivity, specificity, PPV, NPV, and accuracy with use of

tool output (Table 2). When using raw TEM, Observer #1 would have generated 2 false

positive PCD diagnoses (calling dynein-arm-defect PCD when the dynein arms were

normal), and would have made 3 false negative PCD diagnoses (calling normal when one of

the dynein arms was defective). When using per-axoneme averages, Observer #1 would

have made 1 false positive PCD diagnosis, and would have made no false negative PCD

diagnoses. When using the single all-axonemes average, Observer #1 would have made 1

false positive PCD diagnosis, and would have made no false negative PCD diagnoses.

For Observer #2, test performance was high with all methods, with minimal room for

improvement over conventional raw TEM analysis. PPV improved with use of tool output

(Table 2). When using raw TEM, Observer #2 would have made 1 false positive diagnosis

(calling dynein-arm-defect PCD when the dynein arms were normal), and no false negative

diagnoses. When using per-axoneme averages, Observer #2 would have made no false

positive or false negative PCD diagnoses. When using the single all-axonemes average,

Observer #2 would have made 1 false positive PCD diagnosis, and would have made no

false negative PCD diagnoses.

For the 7 unaffected individuals, no inner dynein arm loss was expected, but inner arm loss

was observed in 4 of 42 diagnoses. Three of these four discrepant diagnoses were made

using the raw TEM images, one was made using the multiple per-axoneme averaged images,

and none were made using the single all-axonemes averaged images. These data suggest

improved imaging of the inner dynein arms when using the image analysis tool. In these 7

unaffected individuals, no outer dynein arm loss was expected, and no outer dynein arm loss

was observed using any of the three methods.

For the 10 PCD cases with inner dynein arm loss, inner dynein arms were called present in 5

of 60 diagnoses. Two of these five discrepant diagnoses were made using the raw TEM

images, two were made using the multiple per-axoneme averaged images, and one was made

using the single all-axonemes averaged images.

For the 5 PCD cases with outer dynein arm loss, outer dynein arms were called present in 2

of 30 diagnoses. Both of these discrepant diagnoses were made using the raw TEM images.

Genetic Testing

Subsequent to design of this study, genetic studies have confirmed the diagnosis of PCD by

identification of biallelic loss of function mutations in 10 cases (Table 1). For the 6 cases

with mutations in genes associated with dynein arm defects (DNAH5 [29, 30], DNAAF1

[31], CCDC40 [32]), all had identified dynein arm defects. For the 4 cases with mutations in

genes associated with normal dynein arms (RSPH4A [33] and DNAH11 [21]), no dynein arm

defects were identified by our analyses. Therefore, our interpretation of dynein defects is

congruent with these genetic studies.
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Discussion

Specific ciliary axonemal ultrastructural defects are expected in about 70% of PCD cases by

TEM [19, 21, 22], and about 90% of these will involve dynein arm defects [18, 19]. TEM

testing is incorporated into a global clinical workup that includes family history, sino-

pulmonary disease history, radiography screening for bronchiectasis, nasal nitric oxide

concentration, ciliary beat frequency/kinetics, and germline gene mutation testing. For the

60-65% of cases in which the TEM finding of dynein arm loss can support a diagnosis of

PCD, TEM background noise can confound ultrastructural diagnosis, leading to diagnostic

uncertainly even for experienced morphologists. Our tool improves the signal strength of the

peripheral microtubular pair, and reduces the noise from random ciliary matrix electron-

dense material around the inner and outer dynein arms. We tested the hypothesis that

axonemal ultrastructural diagnosis using our tool’s outputs would improve diagnostic test

performance when compared with conventional raw TEM analysis.

Our tool is based on the concept that virtual stacking of predictably-sized structures will

amplify the signal of the structure, and will reduce the random background noise during the

averaging process. This has been shown to work for structures with rotational symmetry

using manual darkroom-based [34] and computer-based methods [24, 26]. It has also been

shown to work for isolated images of peripheral microtubular pairs using manual alignment

[25]. The first novel contribution of this study is the use of a computer to calculate optimal

(least-squares) alignment for the stacked microtubular pairs, requiring no assumptions about

axonemal symmetry, requiring minimal assumptions about peripheral microtubular pair

shape, and allowing virtual stacking of more than 9 microtubular pairs in a single averaged

image.

The second novel contribution of this study is the quantification of test performance for

TEM used to diagnose dynein arm loss in ciliary axonemes. Previous studies alluded to

improved diagnosis due to improved visualization. We tested the hypothesis that axonemal

ultrastructural diagnosis using our tool’s outputs would improve diagnostic test performance

when compared with conventional raw TEM analysis. We were able to test this hypothesis

because of the availability of thoroughly worked-up cases through the UNC Pulmonary/CF

Research and Treatment Center. We found that inter-rater reliability and TEM diagnostic

test performance for detection of dynein arm defects improved when observers used

averaged images. The best test for detection of dynein arm defects in this study was the set

of 10 peraxoneme averaged images, which showed high inter-rater reliability (kappa=0.95),

sensitivity (0.93), specificity (≥0.97), accuracy (≥0.96), PPV (≥0.93), and NPV (0.97).

Further studies will aim to correlate the degree of inner and outer dynein arm truncation with

the probability of axonemal physiologic dysfunction, alteration of nasal nitric oxide

production, and germline genetic mutation. These demonstrated improvements in TEM test

performance will hopefully contribute, along with improvements in ciliary video imaging,

nasal nitric oxide testing, and gene mutation testing, to earlier diagnosis and management of

patients and their at-risk sibs.
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Figure 1.
TEM images are processed by the tool in two steps. In the first step, axonemes are

segmented from the original, followed by selection of microtubular doublets to be averaged.
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Figure 2.
After selection and processing of ten axonemes (A,D), the tool generates output in two

forms: a set of per-axoneme averages (B,E) and a single average (C,F). Averages (B,C,E,F)

are oriented so that the lower dynein arm represents the outer dynein arm. Images A-C

illustrate the tool’s ability to increase signal:noise in case 12, which is missing the inner

dynein arm. Images D-F illustrate the tool’s ability to better visualize the inner dynein arm

in case 3, which has normal ultrastructure.
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Figure 3.
Results of inter-rater reliability analysis for the two morphologists, using conventional raw

TEM, per-axoneme averaged images, and a single all-axonemes averaged image. Cohen’s

kappa along with asymptotic standard error bars are shown for each method. The upper

panel shows kappa for evaluation of IDA, the middle panel for evaluation of ODA, and the

lower panel for the combination of both IDA and ODA.
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Table 2
Test Performance

Raw TEMs Per-axoneme Averages Single All-Axonemes Average

Obs 1 IDA ODA Combined IDA ODA Combined IDA ODA Combined

PPV 0.80 1.00 0.85 0.90 1.00 0.93 0.90 0.83 0.88

NPV 0.88 0.91 0.90 0.94 1.00 0.97 0.94 1.00 0.97

Sensitivity 0.80 0.60 0.73 0.90 1.00 0.93 0.90 1.00 0.93

Specificity 0.88 1.00 0.95 0.94 1.00 0.97 0.94 0.95 0.95

Accuracy 0.85 0.92 0.88 0.92 1.00 0.96 0.92 0.96 0.94

Obs 2

PPV 0.91 1.00 0.94 1.00 1.00 1.00 0.83 1.00 0.88

NPV 1.00 1.00 1.00 0.94 1.00 0.97 1.00 1.00 1.00

Sensitivity 1.00 1.00 1.00 0.90 1.00 0.93 1.00 1.00 1.00

Specificity 0.94 1.00 0.97 1.00 1.00 1.00 0.88 1.00 0.95

Accuracy 0.96 1.00 0.98 0.96 1.00 0.98 0.92 1.00 0.96
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