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Abstract

Acoustic angiography imaging of microbubble contrast agents utilizes the superharmonic energy 

produced from excited microbubbles, and enables high-contrast, high-resolution imaging. 

However, the exact mechanism by which broadband harmonic energy is produced is not fully 

understood. In order to elucidate the role of microbubble shell fragmentation in superharmonic 

signal production, simultaneous optical and acoustic measurements were performed on individual 

microbubbles at transmit frequencies from 1.75 to 3.75 MHz and pressures near the shell 

fragmentation threshold for microbubbles of varying diameter. High-amplitude, broadband 

superharmonic signals were produced with shell fragmentation, while weaker signals 

(approximately 25% of peak amplitude) were observed in the presence of shrinking bubbles. 

Furthermore, when imaging populations of stationary microbubbles with a dual-frequency 

ultrasound imaging system, a sharper decline in image intensity with respect to frame number was 

observed for 1 μm bubbles than for 4 μm bubbles. Finally, in a study of two rodents, increasing 

frame rate from 4 to 7 Hz resulted in a decrease in mean steady-state image intensity of 27% at 

1000 kPa and 29% at 1300 kPa. While the existence of superharmonic signals when bubbles 

shrink has the potential to prolong the imaging efficacy of microbubbles, parameters such as frame 

rate and peak pressure must be balanced with expected re-perfusion rate in order to maintain 

adequate contrast during in vivo imaging.
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INTRODUCTION

Vascular remodeling is an important indicator of disease in cancers of the breast (Nakamura 

et al. 2005), prostate (Brawer et al. 1994), and colon (Takahashi et al. 1995; Duff et al. 

2007). Specifically, studies have shown increased microvessel density and tortuosity to be 

early indicators of malignancy in several cancers (Brawer et al. 1994; Fox et al. 1995; 

Takahashi et al. 1995; Nakamura et al. 2005; Bullitt et al. 2006; Duff et al. 2007). A 
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microbubble contrast agent-based ultrasound imaging approach termed “acoustic 

angiography” has been developed which is capable of acquiring high resolution images of 

vasculature alone (Gessner et al. 2010; Gessner et al. 2012; Gessner et al. 2013). In this 

technique, a low frequency pulse (~1–5 MHz) is transmitted by a dedicated transmit 

element, exciting microbubbles within vasculature to oscillate nonlinearly and to produce 

broadband harmonic echoes. These echoes are received by a separate high frequency (≥ 10 

MHz) receiving element on the same transducer (Bouakaz et al. 2003; Kruse and Ferrara 

2005; Martin et al. 2014). By mechanically scanning this dual-frequency transducer, it is 

possible to acquire high resolution images of vasculature (Fig. 1) and differentiate healthy 

tissue from tumor-bearing tissue based on visualizing angiogenesis (Gessner et al. 2012; 

Shelton et al. In review). However, the exact mechanism by which broadband harmonic 

energy is produced is not fully understood. While microbubble shell fragmentation is one 

possible source of broadband energy, the relationship between microbubble shell 

fragmentation and superharmonic echoes has not yet been directly assessed.

When microbubbles oscillate nonlinearly in response to an applied ultrasound pulse, signals 

are produced which have energy at integer multiples of the transmitted frequency. While 

early work demonstrated the utility of harmonic echoes at either twice the transmitted 

frequency (Chang et al. 1995; Porter and Xie 1995) or subharmonic echoes at half the 

transmitted frequency (Shankar et al. 1998; Shi et al. 1999), separation of microbubble and 

tissue echoes may be improved when receiving superharmonic echoes occurring at 

frequencies greater than three times the transmitted frequency. At such frequencies, signal 

content is broadband rather than confined to discrete bands (Kruse and Ferrara 2005). 

However, the role of shell disruption in producing these broadband signals is not clear.

The shell fragmentation threshold for ultrasound contrast agents has been investigated by 

several groups in determining the pressure-frequency relationship in bubble fragmentation 

(Chomas et al. 2001b; Chen et al. 2003; Yeh and Su 2008). In addition, researchers have 

presented several methods for acoustic detection of bubble fragmentation relying on 

different physical phenomena including rebound signals arising from shell rupture and 

reformation (Ammi et al. 2006), post-excitation signals (King et al. 2010), or narrowband or 

broadband harmonics of uncertain origin (Madanshetty et al. 1991; Everbach et al. 1997; 

Tung et al. 2010; Vignon et al. 2013). The proximity of a microbubble to a vessel wall has 

been shown to influence the number of pulses required for fragmentation of a population of 

microbubbles, with bubbles at or near a wall requiring fewer pulses for fragmentation and 

exhibiting a reduced resonance frequency (Caskey et al. 2007; Couture et al. 2009; Casey et 

al. 2013). Interactions between bubbles have resulted in an increase in bubble fragmentation 

threshold as concentration increases (Chang et al. 2001; Yasui et al. 2009). Radhakrishnan et 

al. recently examined the relationship between cavitation and loss of echogenicity, reporting 

loss of echogenicity of more than 80% in B-mode images prior to the detection of 

narrowband harmonic signals associated with stable or inertial cavitation (Coussios et al. 

2007). The authors of this previous study hypothesize that the decrease in B-mode 

echogenicity is the result of shell rupture. When viewed in the context of this result, it is 

unclear whether the broadband superharmonic signals used in superharmonic imaging are 

the result of events associated with shell fragmentation or shell rupture. To our knowledge, 
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the question of whether bubbles must be broken in order to produce broadband 

superharmonic signals has not been answered.

In previous studies characterizing the various mechanisms of ultrasound-induced cavitation 

phenomena in lipid-shelled microbubbles, observed phenomena have been described as 

fragmentation, dissolution without visible fragmentation, or shrinkage to a stable diameter 

(Chomas et al. 2001a; Chomas et al. 2001b; Chen et al. 2002; Borden et al. 2005; Bouakaz 

et al. 2005; Cox and Thomas 2010; Guidi et al. 2010; Kwan and Borden 2010; Casey et al. 

2013). Physical mechanisms of core gas loss have been classified as rapid fragmentation, 

active diffusion, and passive diffusion (Chomas et al. 2001a). In previous studies examining 

the fragmentation of single microbubbles, Dayton et al. reported fragmentation thresholds as 

function of transmitted frequency, pressure, and microbubble diameter (Chomas et al. 

2001b), while Sijl et al. reported that larger bubbles have an acoustic response which is 

largely independent of shell structure (Sijl et al. 2008). Alternatively, when B-mode imaging 

is used to acoustically assess fragmentation in populations of microbubbles, Porter et al. 

reported acoustic detection of three distinct mechanisms (static diffusion, acoustically driven 

diffusion, and rapid fragmentation) (Porter et al. 2006), while Haworth et al. demonstrated 

the ability to form images of stable and inertial cavitation (Haworth et al. 2012).

Of particular interest for imaging are non-destructive or partially-destructive mechanisms of 

microbubble dissolution. Several research groups have previously investigated shrinking of 

lipid-shelled microbubbles in response to pulsed ultrasound. In combined optical-acoustical 

experiments examining the response of microbubbles to low-pressure (PNP <65 kPa), 15-

cycle bursts between 2 and 4 MHz, Guidi et al reported changes in damping as bubbles 

shrink (Guidi et al. 2010). Thomas et al. recently categorized the response of single 

shrinking bubbles to two successive pulses on the basis of spectral content at the transmitted 

frequency and twice the transmitted frequency (Thomas et al. 2009). Underlying 

mechanisms of shrinkage rate and loss of core gas have recently been examined by Cox and 

Thomas in optical studies using three-cycle pulses at 1.1 MHz and 200 kPa peak-to-peak 

amplitude (Cox and Thomas 2010; Cox and Thomas 2013). These studies found that 

bubbles near resonance shrink faster than the theoretical diffusion limit. The authors propose 

this enhanced diffusive loss may be due to either turbulent fluid around the bubble or sub-

resolution “nanofragmentation” of the lipid shell. The present study is unique from previous 

studies in that superharmonic acoustic responses are acquired with simultaneous optical 

observations. Single-cycle pulses at peak negative pressures relevant to in vivo imaging 

(100–500 kPa) are also used rather than multi-cycle bursts. Use of single-cycle pulses is 

necessary for high-resolution imaging as in Fig. 1.

In recent work, we have characterized the broadband superharmonic response of lipid-

shelled microbubbles to ultrasound, describing the signal-to-noise ratio (SNR), contrast-to-

tissue ratio (CTR), and axial resolution with varying acoustic pressure, frequency, 

microbubble diameter, and microbubble concentration (Lindsey et al. 2014). In this work, 

maximum CTR was observed for transmit frequencies in the 1.5–3.5 MHz range. Previous 

studies in the literature indicate that larger bubbles typically have a higher fragmentation 

threshold, which increases with transmit frequency (Chomas et al. 2001b). Our recent results 

include diagnostically-useful CTR levels at pressures of approximately 500 kPa at 3.5 MHz 
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for 4 μm-diameter bubbles—a combination of pressure and frequency at which some larger 

bubbles may not fragment—indicating the need for further investigation into the underlying 

relationship between microbubble fragmentation and superharmonic generation. In the 

current article, we use simultaneous optical and acoustic measurements to examine this 

relationship at frequencies from 1.75 to 3.75 MHz and pressures near the microbubble 

fragmentation threshold for single lipid-shelled microbubbles having diameters in the range 

of 1 to 4 μm. These single bubble results are then extended to populations of bubbles in in 

vitro and in vivo imaging experiments performed with a dual-frequency imaging system.

The following terminology will be used in this manuscript to describe bubble destruction. 

Microbubble or shell “rupture” denotes the formation of any discrete discontinuity through 

which core gas is able to escape. “Fragmentation” indicates complete destruction of the 

microbubble shell immediately upon application of an acoustic pulse. “Destruction” 

encompasses both rupture and fragmentation. “Shedding” indicates loss of lipid shell 

material. A “shrinking” or “deflating” bubble is one which exhibits a decrease in diameter in 

response to one or more applied acoustic pulses.

MATERIALS AND METHODS

Contrast agent preparation

Microbubbles were formed from lipid solutions as previously described (Streeter et al. 2010) 

using a 9:1 molar ratio of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC-Powder, 

Avanti Polar Lipids, Alabaster, AL) and polyoxyethylene 40-stearate (PEG40S, Sigma, St. 

Louis, MO) in a 90 mL solution of phosphate-buffered saline (Fisher Scientific, Pittsburg, 

PA). Using a sonic dismembrator (Model 500, Fisher Scientific, Hampton, NH) for 15 

seconds at 70% power in the presence of decafluorobutane (SynQuest Labs, Alachua, FL), 

microbubbles were generated via acoustic emulsification by mechanical agitation via tip 

sonication, sorted via centrifugation (Feshitan et al. 2009), and sized via optical scattering 

(Accusizer 780A, PSS-NICOMP, Port Richey, FL). In order to ensure a range of diameters, 

two distributions of microbubbles were used, one centered at approximately 4 μm in 

diameter and a second centered at approximately 1 μm in diameter (Fig. 2).

Single bubble simultaneous acoustic-optical experiments

The setup for these experiments (Fig. 3) consisted of an inverted microscope (Olympus IX2, 

Tokyo, Japan) which shared a common focus with transmitting and receiving transducers. A 

high speed camera (Photron Fastcam APX-RS, San Diego, CA) captured images from the 

microscope at 125 frames/s and displayed the result on a monitor in real time. First, a 

focused annular transducer with a center frequency of 2.25 MHz (Olympus Panametrics, 

Waltham, MA) was used to transmit a single-cycle waveform. This transducer was 

calibrated in water at frequencies between 1.75 and 3.75 MHz in 0.5 MHz increments and 

pressures between 300 and 1300 kPa in 100 kPa increments using a needle hydrophone 

(ONDA HNA-0400, Sunnyvale, CA) on a three-axis micro-positioning stage (Narishige 

International USA, East Meadow, NY). A separate 10 MHz receiving transducer (V311, 

Olympus Panametrics, Waltham, MA) was positioned within the opening of the annular 

transducer with the acoustic foci aligned at 5.08 cm. After calibration, the hydrophone was 
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replaced with a 200 μm-diameter cellulose tube (Spectrum Laboratories, Inc., Rancho 

Dominguez, CA). The tube was aligned to the dual optical/acoustic focus using the 

microscope and micro-positioning system.

After alignment, prepared microbubble contrast agents were diluted until only single 

bubbles were observed in the optical field of view. The optical field of view was 

approximately 150 μm × 150 μm, smaller than the receive focal beam diameter of 600 μm. 

Diluted microbubble solutions were injected into the tube using a custom microinjection 

system consisting of an ultra-fine screw thread which controls the injection of a syringe 

plunger with high precision. When a single, stationary bubble was visible within the optical 

field of view, five consecutive 1-cycle pulses were transmitted (PRF= 2 Hz) on the low-

frequency transducer at a specified pressure-frequency combination. Lines of 

radiofrequency acoustic data from the 10 MHz receiving transducer were acquired after each 

of the five consecutive pulses by triggering the data acquisition system on the pulse 

generator. These data were amplified (RITEC BR-640A, Warwick, RI) and sampled at 100 

MHz via a 14-bit digitizing board (Signatec PDA14, Corona, CA). Optical data acquired by 

the camera were recorded to a laptop computer (Lenovo, Morrisville, NC).

After each sample, a new bubble was introduced into the acoustic/optical focus, and the 

experiment was repeated for a total of 5 measurements of single bubble behavior for 

pressures from 100 to 500 kPa in 100 kPa increments and frequencies from 1.75 to 3.75 

MHz in 0.5 MHz increments. Observations were made on 250 individual bubbles, with an 

effort made to capture bubbles of varying diameters. In order to investigate a bubble’s 

ability to produce superharmonic energy over many pulses as would be required in real-time 

imaging, additional experiments were performed in which 4 μm bubbles were interrogated 

with 50 single-cycle pulses at 1.75 MHz at 200 and 300 kPa (n=2 bubble trials each case. At 

each frequency-pressure combination, control data with only water in the tube were 

acquired. Acquired acoustic data were normalized by the transducer bandwidth in the 

frequency domain in order to remove the influence of the transducer bandwidth, wall-

filtered to remove echoes from the cellulose tube, then bandpass-filtered (7th order 

Butterworth, 50% bandwidth). Filtering and analysis were performed using Matlab (The 

Mathworks, Natick, MA). Videos of optical data were reviewed in ImageJ (Version 1.47, 

NIH, Bethesda, MD) to assess bubble fragmentation and to measure the change in diameter. 

Any bubble decreasing in diameter by at least 10% of its original value was categorized as 

shrinking. Because our goal is to reliably perform imaging of broadband superharmonic 

signals, this three category classification system (no change in diameter, shrinking bubble, 

immediate fragmentation) is helpful in determining whether harmonic-producing bubbles 

persist over multiple pulses.

Logistic regression analysis was performed in Matlab to determine the thresholds for bubble 

fragmentation and shrinking as a function of frequency and pressure and as a function of 

diameter and pressure as in Chomas et al. (Chomas et al. 2001b). For determining the 

fragmentation threshold, a binomial distribution was used and each observed bubble was 

classified as either immediately fragmenting (i.e on the first pulse) or non-fragmenting. For 

determining the shrinking threshold, each observed bubble was classified as either shrinking 

Lindsey et al. Page 5

Ultrasound Med Biol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(by at least 10% on the first pulse) or non-shrinking. The slope of the fit line given by the 

generalized linear model (glmfit) was also computed in Matlab.

Dual-frequency imaging of stationary microbubbles

In order to directly assess the role of shell fragmentation in broadband superharmonic signal 

generation in populations of bubbles, solutions containing 107 bubbles/mL of either 1 or 4 

μm microbubbles were injected into a 200 μm cellulose tube in a water bath positioned at the 

focus (1.5 cm) of a custom mechanically-steered dual-frequency transducer having a 4 MHz 

transmit and a 30 MHz receiving element (Gessner et al. 2010). This custom probe was 

connected to a VisualSonics Vevo 770 high frequency imaging system (Toronto, Canada) 

which has been modified to transmit using an external waveform generator (Tektronix 

AWG2021) and amplifier (ENI 3100 LA, Rochester, NY) while forming images only 

containing high frequency signal content > 15 MHz (in-line highpass filter, TTE, Los 

Angeles, CA). The flow was allowed to stabilize for 10 minutes to ensure minimal 

redistribution of bubbles into or out of the tube at the time of image acquisition. Imaging 

was then performed using a single-cycle 4 MHz pulse at a frame rate of 1 Hz for 50 frames; 

image sequences were stored to analyze image brightness as a function of frame rate. This 

test was performed three times at each peak negative pressure from 275 to 400 kPa in 25 kPa 

increments. Acquired images were processed by subtracting a control image containing only 

the cellulose tube filled with water from each frame of each experimental acquisition 

(Version 1.47, ImageJ, NIH, Bethesda, MD). A region of interest (ROI) of identical size and 

location was then drawn over the resulting images and average brightness within the ROI 

was computed for each frame.

In vivo dual-frequency imaging

While in vitro imaging analysis of stationary bubbles provides insight into fragmentation or 

shrinking behaviors over time, there are no stationary bubbles when imaging in vivo, and 

thus the feasibility of any high-frame rate imaging technique which may induce either shell 

rupture or fragmentation depends on the relationship between bubble destruction rate and 

local perfusion rates. For this reason, bubble destruction was assessed in vivo by imaging 

two rodents at two distinct frame rates (4 and 7 Hz) for each animal, thus varying the rate of 

any destructive processes with respect to the perfusion rate. Two healthy Fischer 344 rats 

were imaged using the custom dual-frequency probe described previously and the 

VisualSonics Vevo 770 with a region of interest centered on the kidney. Animals were 

depilated and scanned while under isoflurane anesthesia according to a protocol approved by 

the Animal Care and Use Committee of the University of North Carolina. Contrast agent 

(3.3×109 bubbles/mL, 1 μm diameter) was infused continuously at a rate of 40 μL/min. Peak 

negative pressure was varied up to 1300 kPa, ensuring MI remained below 0.7. Note that 

actual pressure at the focus was less than that measured in water pressure due to attenuation. 

Images were analyzed by comparing average brightness within an identical ROI containing 

the kidney for each acquired frame. Frames containing motion artifacts due to respiration 

were discarded in order to compare the same anatomical region over time.
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RESULTS

Optical observation of fragmentation threshold

Results of bubble behavior in optical observations are reported for each pressure-frequency 

combination in Figure 4A and for each pressure-diameter combination in Figure 4B. In Fig. 

4A, the fragmentation threshold (dashed line) increases with frequency as previously 

reported (Chomas et al. 2001b; Chen et al. 2003; Yeh and Su 2008) with a slope of 36 kPa/

MHz, with p<.0001 for pressure and p <.005 for frequency. Experiments indicate there is no 

relationship between frequency and the threshold for bubble shrinking (p=0.63). This may 

be due to the use of a range of transmit frequencies which are lower than expected bubble 

resonance, i.e. native Definity® exhibits resonance at approximately 10 MHz for 1.1–3.3 μm 

mean bubble diameter (Goertz et al. 2007). However, use of lower frequencies is necessary 

for superharmonic imaging.

Bubble shrinking is observed predominantly in larger bubbles at moderate pressures 

(approximately 300 kPa). In Fig. 4B, the dashed line shows the fragmentation threshold 

(slope 36 kPa/μm, pressure: p<.0001, diameter: p<.005) and the solid line represents the 

shrinking threshold (slope −18 kPa/μm, pressure: p<.0001, diameter: p<.0001). While other 

researchers have previously reported preferential shrinking in smaller bubbles at peak 

pressures less than 100 kPa (Guidi et al. 2010), shrinking was not observed in small bubbles 

in this study.

Tracking single bubbles through simultaneous optical/acoustic measurements

In order to further illustrate the individual bubble responses within the described three 

categories, we present exemplary optical images and corresponding spectra for each of the 

seven different cases of bubble behavior observed. Each sequence of optical images depicts 

the microbubble as it appeared before pulse delivery and after the delivery of each of five 

pulses.

In Fig. 5A, a 1 μm bubble exhibits no change in diameter and very similar spectra in 

response to five consecutive pulses at 3.75 MHz and a peak negative pressure of 300 kPa. In 

Fig. 5B, a bubble shrinks once, then remains stable to subsequent pulses. Within this 

sequence of pulses, acoustic signals having the highest amplitude are observed when the 

bubble shrinks. After the second pulse, the peak occurs at a higher frequency, then slowly 

shifts downward with subsequent pulses, although no further change in diameter is visible. 

Multiple discrete shrinking events were often observed for larger bubbles, as exemplified in 

Fig. 5C for a 4 μm bubble at 1.75 MHz and a peak negative pressure of 200 kPa. In this 

figure, a decrease in microbubble diameter may be observed after each successive pulse, 

with the strongest superharmonic signals recorded after the first and second shrinking 

events.

At sufficiently high pressures or low frequencies, microbubble shells visibly fragmented on 

the first pulse, producing a single strong echo on the first pulse alone (Fig. 5D, 1.75 MHz, 

500 kPa). Meanwhile, unique responses were observed at intermediate frequencies and 

pressures, including multiple shrinking events followed by either bubble disappearance 

without visible shell fragmentation (Fig. 5E) or shell fragmentation (Fig. 5F). While shell 
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fragmentation was not visible in all cases (Fig. 5G), even in its absence, strong broadband 

echoes may be present (Pulse 5, Fig. 5E) as core gas is lost. In our study, bubble 

fragmentation occurred with larger bubbles for both the initial bubble (Pulse 4, Fig. 5F) and 

smaller remnant bubbles (Pulse 5, Fig. 5G). Fragmentation of these daughter bubbles 

produced a strong broadband signal similar to a shrinking event in a large bubble (compare 

responses to Pulses 2 and 5, Fig. 5G) but weaker than fragmentation of a single small bubble 

(Pulse 1, Fig. 5D). In some cases, the original bubble produced one or more stable daughter 

bubbles on the first pulse (Fig. 5G). The formation of daughter bubbles was observed only in 

4 μm bubbles and in the following cases: in 1 of 25 acquisitions at 300 kPa, and 7 of 25 

acquisitions at 400 kPa. The presence of a daughter bubble can be seen to produce two 

spectral peaks (Fig. 5G), with one bubble remaining stable to subsequent pulses.

Single bubble observations

Optical observations reveal the existence of many different cases of bubble dissolution 

which fall within the category of “shrinking” used in the analysis in Fig. 4. In order to fully 

display all types of bubble behavior and the conditions under which they occur, these 

subcategories of shrinking bubbles are presented in full in Fig. 6. However, the three simple 

categories indicating no change in bubble diameter, >10% decrease in bubble diameter, and 

complete shell fragmentation are useful for assessing superharmonic signal generation and 

the duration of the effect. In Fig. 7A, the mean spectra after the first pulse are displayed for 

three categories of observed behavior: bubbles which show no change in diameter, shrinking 

bubbles, and bubbles with complete shell fragmentation. A fragmenting bubble produces the 

strongest response, while a shrinking bubble produces a far weaker superharmonic signal 

containing approximately 25% of the energy of the fragmenting bubble. A bubble exhibiting 

no change in diameter produces superharmonic energy nearly equal to the control case in 

which no bubble was present. The persistence of this superharmonic content over five pulses 

is displayed in Fig. 7B, where the energy resulting from the shrinking bubble case—initially 

approximately 25% of the energy from fragmenting bubbles—remains relatively constant 

over five pulses but is relatively similar to the case of the unchanging bubble diameter. Both 

the shrinking bubble and unchanging diameter cases produce greater amplitude than the 

control case (no bubble present), suggesting that weak harmonic signals may be produced in 

some cases due to events which results in little loss of core gas.

In additional experiments at each of two frequency-pressure combinations (1.75 MHz, 200 

and 300 kPa, n=2 single bubble trials each case) designed to investigate a bubble’s ability to 

produce superharmonic energy over 50 pulses as in real-time imaging, bubbles were 

observed to shrink to a stable diameter and to continually emit low levels of superharmonic 

energy. Single results for 1.75 MHz, 200 and 300 kPa pulses are shown in Figure 8. Guidi et 

al. reported continued microbubble scattering at the transmitted frequency after deflation but 

did not examine harmonic response (Guidi et al. 2010). In investigating non-spherical 

oscillations next to a wall, Vos et al. report a high degree of correlation between the second 

harmonic and the occurrence of microjetting, noting that the presence of a jet did not always 

coincide with instantaneous microbubble destruction (Vos et al. 2007).
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Dual-frequency imaging of stationary microbubbles

Results for dual-frequency imaging experiments with stationary bubbles in a tube at peak 

negative pressures of 300, 350, and 400 kPa are shown in Fig. 9. At 300 kPa, there is a 

decrease in image brightness of 1 μm bubbles during the first ten frames, followed by a 

slower decline over the remaining frames. 4 μm bubbles exhibit only a very weak decrease 

in brightness, though brightness remains well below that of 1 μm bubbles. This is consistent 

with the fact that the fragmentation threshold increases with bubble diameter, and that 

signals which coincide with bubble deflation have demonstrated lower harmonic amplitudes 

in this study and lower amplitudes at the transmitted frequency in previous studies (Vos et 

al. 2007). At 350 kPa, image brightness declines exponentially for 1 μm bubbles, ending at a 

level similar to that of 4 μm bubbles. 4 μm bubbles again exhibit little decrease with respect 

to time at 350 kPa. At 400 kPa, bubbles of both sizes show a rapid decrease in brightness 

over the first 5 frames, after which 4 μm bubbles stabilize and 1 μm bubbles exhibit a slow 

decline in image brightness. Final image brightness for 4 μm bubbles exceeds that of 1 μm 

bubbles at 400 kPa.

Collectively, these results suggest that generation of a broadband superharmonic response is 

dependent on microbubble oscillation resulting in destructive processes—either immediate 

fragmentation with p < 0.0001 for pressure, p < 0.005 for diameter and p < 0.005 for 

frequency, or shell rupture and microbubble deflation with p < 0.0001 for pressure, p < 

0.0001 for diameter, and no significant frequency dependence—although some image 

intensity remains even after 50 frames in all cases involving microbubble populations 

(control images of tubes were subtracted). This might be explained by the stability of 

deflated bubbles, which has been directly observed in this study and previously (Guidi et al. 

2010). Results also indicate that in populations of microbubbles, minimal fragmentation (or 

harmonic generation) occurs for 4 μm bubbles below approximately 400 kPa.

In vivo dual-frequency imaging

Mean image intensity for an ROI containing the kidney averaged over both animals is 

plotted as a function of frame number at pressures of 700, 1000, and 1300 kPa in Fig. 10. 

For each pressure, the final image is displayed for both 4 Hz and 7 Hz cases. At a nominal 

peak negative pressure of 700 kPa (Fig. 10A), both frame rates show very little decline in 

brightness over time, and final images are very similar. At a nominal peak negative pressure 

of 1000 kPa (Fig. 10B), mean brightness of images acquired at 4 Hz is observed to settle to a 

higher value (20) than those acquired at 7 Hz (15). Finally, at a nominal peak negative 

pressure of 1300 kPa, both frame rates exhibit a greater initial intensity and a more rapid 

decline from that initial intensity (Fig. 10C) than at 1000 kPa, with image intensity for both 

frame rates settling to similar values. At higher pressures, lower frame rates allowed for an 

increase in perfusion relative to destruction, increasing steady-state image brightness by 

27% at 1000 kPa (Figure 10B) and 29% at 1300 kPa (Figure 10C).

DISCUSSION

In this work, we have described superharmonic signals generated by 1 and 4 μm lipid-

shelled bubbles with simultaneous optical observation in order to determine the origin of 
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these signals. The broadband harmonic signal most commonly associated with 

superharmonic imaging was observed when significant shell fragmentation occurred on the 

first pulse and was absent on subsequent pulses (Fig. 7). Larger microbubbles had a slightly 

higher fragmentation threshold (Fig. 4B) and were observed to shrink at pressures below this 

threshold, producing weaker superharmonic signals (Fig. 7A) persisting over many pulses 

(Fig. 7B, Fig. 8). Likelihood of shrinking was found to increase with initial bubble diameter 

(Fig. 4B). While multiple discrete shrinking events were observed in some cases (Fig. 5C), 

at moderate pressures bubbles shrank to a stable size—which is consistent with previous 

studies (Borden et al. 2005)—then maintained a constant diameter and emitted constant, 

weak harmonic echoes with subsequent pulses. The production of weak superharmonic 

signals by bubbles which did not visibly shrink or fragment raises the question of whether 

lipid shedding or “nanofragmentation” reported by other researchers may be occurring in 

these cases (Borden et al. 2005; Yasui et al. 2009; Cox and Thomas 2013). One of these 

previous studies also showed that increasing shell cohesiveness by using longer lipid chain 

lengths decreased the rate of microbubble dissolution (Borden et al. 2005), which may be 

useful in prolonging the weaker subharmonic signal observed in the presence of shrinking of 

events. It is unclear what sensitivity might be required in order to detect this signal in vivo in 

the presence of attenuation, however, the persistence of detectable microbubble signals to 50 

frames in tube imaging indicates that in the presence of adequate microbubble 

concentrations, the superposition of deflation signals can be detected with a prototype 

imaging system.

Role of shell fragmentation in superharmonic signal production

The strongest, most broadband harmonic signals were present when shell fragmentation 

occurred on the initial pulse (Fig. 5D). However, there are still significant harmonic signals 

produced in cases of sub-threshold pressures (Figs. 5B–C) which are quite different in 

nature from the spectra observed when the shell is fragmented on the first pulse (Fig. 5D). If 

the superharmonic signal were to occur solely due to shell fragmentation, there would be no 

harmonic signal produced by sub-threshold pulses. This suggests that although 

superharmonic signal production is often associated with shell fragmentation, end state 

fragmentation may not be required. One possible explanation is the occurrence of transient 

fragmentation events which are followed by bubbles re-forming (Biagi et al. 2007). Because 

shell rupture can occur at pressures lower than those required for stable or inertial cavitation 

(Haworth et al. 2012), release of core gas is not necessarily indicative of stable or inertial 

cavitation. A stable cavitation threshold for Definity® of 0.42 MPa has been reported for 10 

cycle pulses at 6 MHz, as determined by the presence of subharmonic emissions (Porter et 

al. 2006) (Coussios et al. 2007). A lower threshold may be expected at the reduced 

frequencies used in our study, though the use of shorter pulses should slightly increase 

cavitation thresholds. Ultimately, since the generated echo response is a function of the 

bubble radius, wall velocity, and wall acceleration (Leighton 1994; Dayton et al. 1999), it is 

likely that the actual source of broadband energy generation cannot be observed on the time 

and spatial resolution scales observed in our optical experiments.

The presence of harmonic content at a level above the control level even in the absence of 

observable shell fragmentation (Figs. 7A–B) indicates that the weaker superharmonic 
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signals are produced when bubbles shrink without complete bubble fragmentation, though 

shell damage is required to facilitate the observed rapid loss of core gas. The exact 

mechanism by which ultrasound induces microbubble deflation is unknown, though it has 

been hypothesized that lipid shedding produces an increase in surface tension and 

subsequently in Laplace pressure, resulting in gas dissolution (Datta et al. 2008). While the 

role of sub-resolution lipid shedding or fluid turbulence without apparent loss of core gas 

cannot be determined without further study, these phenomena may help explain the presence 

of superharmonic signals produced by bubbles with stable diameters. The fact that the 

optical field of view was smaller than the acoustic beam diameter allows for the possibility 

that additional unobservable microbubbles may have been present within the receive beam. 

With increasing distance from the center of the focus, these additional microbubbles would 

experience decreased pressures under the transmit beam and also contribute diminishing 

echoes to the received signals relative to the optically-observed, on-axis microbubble. If 

present, contributions from additional, off-axis microbubbles under the focus would sum 

constructively, increasing the amplitude of acquired signals, though in a constant manner 

across all cases tested because dilutions were equivalent.

Finally, in analyzing fragmentation and shrinking thresholds, it was difficult to ascertain a 

frequency threshold for shrinking. If bubble fragmentation is an effect of inertial cavitation 

and dependent primarily on fluid motion surrounding the bubble, while bubble shrinking is a 

stable cavitation effect and thus dependent on individual bubble properties such as the 

coating (Radhakrishnan et al. 2013), this may explain the presence of a clear fragmentation 

threshold for fragmentation but not for shrinking.

Effect of bubble diameter on superharmonic signal production

In previous work, we observed an increase in superharmonic scattering for 4 μm bubbles at 

lower pressures (approximately 300–500 kPa) relative to that of 1 μm bubbles at the same 

pressures (Lindsey et al. 2014). There are two possible explanations for this phenomenon: 1) 

Larger bubbles have a larger scattering cross section, resulting in greater energy returning to 

the transducer, and 2) As observed in these experiments, larger bubbles are more prone to 

shrinking than smaller bubbles, which produces a weak superharmonic signal. At peak 

pressures less than 500 kPa, many large bubbles do not fragment but rather become smaller 

bubbles, which may in turn fragment on subsequent pulses, prolonging the harmonic signal 

for a greater number of pulses and thus increasing the 4 μm harmonic signal. In dual-

frequency imaging of populations of stationary bubbles in a tube, image intensity for 4 μm 

bubbles exceeded that of 1 μm bubbles at 400 kPa (Fig. 9), when bubbles may be expected 

to fragment rapidly.

Superharmonic imaging of populations of microbubbles in a tube

The results of imaging stationary microbubbles in tubes indicate that only a limited decrease 

in image brightness occurs over time at peak negative pressures of 300 and 350 kPa and that 

some superharmonic signal content is produced even after 50 pulses. There are several 

possible explanations for this prolonged lifespan of bubbles: 1) bubbles at the back of the 

tube are shielded by those at the front during initial pulses until shielding bubbles are 

gradually destroyed in a front-to-back progression; 2) most individual bubbles are observed 
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to shrink at 300 kPa (Fig. 4B), resulting in many bubbles producing the weak superharmonic 

signal observed in Figure 7A on each pulse; 3) larger bubbles shrink until reaching a 

diameter at which they are small enough to be destroyed. The accumulation of excess shell 

material could also affect the stability of shrinking bubbles, though this would require 

further study. Nonetheless, the sharp decline in image intensity observed over the first 10 

frames for 1 μm bubbles indicates that many small bubbles are destroyed during the first few 

frames. This rapid decrease in image brightness during initial frames is not observed for 4 

μm bubbles until pressure is increased to 400 kPa, suggesting that their stable superharmonic 

content at lower pressures is the result of the dissolution behavior (shrinking) observed in 

single bubble experiments. That 400 kPa is sufficient to destroy some larger bubbles is also 

consistent with single bubble observations (Fig. 4B).

In vivo superharmonic imaging

When performing in vivo imaging, much higher peak pressures were required to generate 

sufficient superharmonic signal content to provide adequate contrast in images. No contrast 

was visible below 500 kPa; the 700 kPa images shown represent the approximate lower 

bound of superharmonic imaging in vivo using the described system (Fig. 10A). The 

requirement of higher pressure may be explained by both attenuation and small vessel 

confinement effects in vivo. For example, for an imaging depth of 1.5 cm, an attenuation of 

0.2 dB/cm/MHz in overlying tissues represents a loss of 1.2 dB at 4 MHz. Superharmonic 

echoes may be expected to be difficult to detect at the transducer due to the strong 

attenuation of high frequency waves. For example, attenuation of 0.2 dB/cm/MHz results in 

attenuations of 9 dB at 30 MHz. Caskey et al. have also reported that microbubble 

oscillation is constrained when bubbles are confined to smaller vessels, which may indicate 

higher pressures are required to produce superharmonic signals in small vessels (Caskey et 

al. 2007). However, reduced bubble expansion in vivo was also associated with an increased 

oscillation lifetime and a change in the destruction mechanism from fragmentation to 

acoustically-driven diffusion.

Peak negative pressures greater than 500 kPa were needed to reliably produce images in 

vivo. The increased image contrast at 1000 and 1300 kPa was greatly preferred for 

diagnostic use relative to the 700 kPa images. These images at higher peak pressures also 

exhibited a decrease in image intensity with respect to frame number. This re-affirms the 

notion that some form of bubble destruction—whether through formation of small shell 

discontinuities or shell fragmentation—is necessary to produce superharmonic signal 

content. At these higher pressures, lower frame rates allowed for an increase in perfusion 

relative to destruction, (Figure 10B–10C). Taken in aggregate, these in vivo imaging results 

demonstrate that the images having the highest contrast are produced on the initial frame(s), 

but also that steady-state contrast can be increased by decreasing frame rate. However, in 

imaging the rodent kidney, the re-perfusion rate was high enough that useful images were 

still acquired at 7 Hz even after many frames. Because only relatively low frame rates could 

be tested due to system limitations imposed by a mechanically-steered transducer, 

superharmonic imaging may face greater challenges if frame rates were to be increased 

further. It should also be noted that larger vessels typically have faster flow rates, indicating 
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that increasing frame rate may decrease contrast to smallest vessels, effectively decreasing 

resolution by eliminating the ability to distinguish the smallest features.

Implications for imaging

The results presented indicate that in order to produce a high-amplitude, broadband 

harmonic signal, a combination of frequency, pressure, and bubble diameter that will result 

in bubble dissolution via either shrinking or shell fragmentation should be utilized. The map 

of bubble destruction behaviors in Fig. 6 provides initial guidance as to the pressure that 

may be used to induce different behavior in a microbubble of a given diameter, information 

which could be useful in either imaging or drug delivery. For instance, if the goal is to 

induce as many multiple shrinking events as possible, one might use 300–400 kPa pulses 

with 3–4 μm bubbles (Fig. 6). If the goal is simply to avoid fragmentation (i.e. for bioeffects 

considerations or in dual-frequency molecular imaging), one might use bubbles at least 3 μm 

in diameter while maintaining focal pressures below 400 kPa in vitro (or the diameter-

pressure combination inducing the equivalent regime in vivo). Achieving the desired focal 

pressure during in vivo imaging would require prior transducer calibration in water followed 

by estimation of attenuation, aberration, and vessel wall effects (Caskey et al. 2007; Couture 

et al. 2009; Doinikov et al. 2009). The presented single bubble studies also ignored effects 

of multiple scattering, which plays an important role during in vivo imaging, particularly as 

microbubble concentrations and peak pressures increase (Porter et al. 2006; Haworth et al. 

2012).

While broadband superharmonic signals arising from shell fragmentation are necessarily 

short-lived, results suggest that by increasing frequency or increasing bubble diameter, it 

may instead be possible to reliably produce weaker harmonics having a longer duration over 

multiple pulses. In vivo results also indicate that perfusion, at least in the rodent case, is 

sufficient as to produce minimal loss in contrast at frame rates up to 7 Hz even with 1 μm 

bubbles. In the case of high local perfusion rates, that is when there is significant bubble 

motion under the point spread function (PSF) between pulse repetition intervals, immediate 

shell fragmentation is likely most desirable. However, when microbubble motion under the 

PSF is minimal during a single pulse repetition interval (as may be the case in the smaller 

vessels), superharmonic imaging may be prolonged and diagnostic efficacy improved by 

transmitting at sub-threshold pressures for a given microbubble population. This 

consideration will become more important as dual-frequency imaging systems with 

increasing frame rates are developed and in vivo application of this technology is further 

investigated.

Microbubble dissolution in superharmonic imaging carries further implications for 

functional imaging approaches. In investigating microbubble dissolution after disruption, 

Couture et al. utilized high-frame rate B-mode imaging to observe differences in 

microbubble dissolution over the cross-section of a vessel. They suggested that “rapid B-

mode imaging might provide new information on the geometry and the local environment of 

bubble clouds” (Couture et al. 2009). Dissolution curves in superharmonic imaging might 

yield similar information at a higher resolution. For this reason, understanding the 

mechanism of broadband superharmonic signal production could enable identification of 
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small variations in the vascular environment in addition to allowing for optimization of 

acoustic angiography imaging.

Additionally, in molecular imaging only a small number of microbubbles adhere to a 

pathology site (Talu et al. 2007), making it important to optimize the imaging system’s 

ability to detect microbubbles without destroying them. While using larger microbubbles 

would further reduce the total number of microbubbles able to bind to a site, these results 

suggest that the use of true (rather than nominal) focal pressures less than approximately 400 

kPa and accounting for confinement effects may allow superharmonic imaging of targeted 

microbubbles without immediate shell fragmentation.

For any microbubble-based ultrasound imaging approach, mechanical bioeffects must also 

be considered. Researchers have observed the formation of micro fluidic jets or “microjets” 

at pressures in the diagnostic range (Coussios et al. 2007; Datta et al. 2008). Microjetting 

has previously been characterized by the presence of subharmonic echoes (i.e. stable 

cavitation) (Datta et al. 2008). While previous studies have reported the presence of 

microjetting at microbubble sizes and pressures similar to those used in this work (Skyba et 

al. 1998; Zhao et al. 2005; Vos et al. 2007), we are unable to comment on the presence of 

this effect at this time, as the camera used in this work does not have adequate temporal 

resolution to observe microjetting. However, if microjetting does in fact occur, which seems 

likely for cases involving higher peak pressures and smaller microbubbles, then there could 

be biological effect considerations for bubbles close to a wall, which experience asymmetric 

oscillation and microjetting which may result in cell damage (Thieme and Shung 1992). If 

utilizing lower peak pressure and larger microbubbles allows for superharmonic signal 

production based on shell rupture or shedding rather than cavitation, this may provide an 

alternative path for superharmonic imaging with potentially less biological interaction. 

Regardless, it is important to note that the pressure requirements to cause superharmonic 

signal generation as observed here are higher than that used for “low-MI” clinical imaging 

(Kim et al. 2008), yet still below the maximum mechanical index of 0.8 for which safety has 

been evaluated for Definity® (Lantheus Medical Imaging, N. Billerica, MA) (Imaging 

2013). Furthermore, the ‘flash’ technique of clearing microbubbles which causes 

microbubble fragmentation is a high-MI technique (up to 1.9) utilizing short bursts of 

acoustic pressures greater than tested here, has been used for over a decade regularly in 

clinical myocardial perfusion imaging without noted adverse effects (Aggeli et al. 2008; 

Dolan et al. 2009).

Implications of microbubble shell

The influence of shell properties in lipid-shelled microbubbles has been previously 

described (Borden et al. 2005). Alternatively, polymer-shelled bubbles have demonstrated a 

fragmentation threshold which is at least 500 kPa higher than that of lipid-shelled bubbles. 

However, polymer-shelled bubbles are less prone to acoustically-driven changes in diameter 

(Bloch et al. 2004), which would seem to make them a poor choice for producing 

superharmonic signals. The observed mechanism of destruction in polymer-shelled bubbles 

is also different from lipid-shelled bubbles, as the formation of a single defect has been 

observed in the polymer shell through which core gas escapes at a very high velocity to form 
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a daughter bubble. As the presented results suggest that shell rupture, often accompanied by 

loss of core gas, is associated with superharmonic signal generation, a single shell rupture 

event might be expected to produce a single discrete signal rather than the repeated signals 

observed with shrinking bubbles. However, mechanisms of signal production in polymer 

shells may be entirely different from those in lipid shells, as polymer shells exhibit sonic 

cracking due to high surface tension, while lipid shells do not exhibit sonic cracking, only 

lipid shedding. Finally, protein shells (i.e. albumin), are also more rigid than lipid shells and 

have been shown to produce echoes of increasing amplitude over repeated pulsing when 

transmitting at 2.25 MHz and receiving first harmonic echoes at 5 MHz (Dayton et al. 

1999). Optical observations of the same albumin-shelled microbubbles indicate that these 

echoes are associated with asymmetrical shell buckling and loss of rigidity, which may be 

useful phenomena for the production of superharmonic signals. Previous studies have 

reported the presence of narrowband harmonics when using albumin-shelled microbubbles 

(Shi et al. 1999; Shi and Forsberg 2000).

CONCLUSIONS

In this work, the role of bubble destruction in superharmonic signal production was 

investigated through simultaneous optical and acoustic measurements at transmit 

frequencies from 1.75 to 3.75 MHz and pressures near the shell fragmentation threshold for 

1 and 4 μm bubbles. Results indicate that superharmonic signals having the broadest 

bandwidth and highest energy are associated with shell fragmentation, which preferentially 

occurs for smaller bubbles at lower frequencies and higher pressures. However, a 

superharmonic signal is still produced from bubbles which are not fragmented, which has 

the potential to prolong the life and imaging efficacy of microbubbles or reduce the peak 

pressures required at the cost of reduced amplitude relative to the microbubble 

fragmentation case. Populations of 1 μm bubbles exhibited faster dissolution relative to 4 μm 

bubbles in dual-frequency imaging of stationary bubbles. Increasing frame rate from 4 to 7 

Hz during in vivo imaging in rodents decreased mean steady-state image brightness by 27% 

at 1000 kPa and 29% at 1300 kPa. Considerations of peak negative pressures and frame rate 

will take on added significance for the development of real-time in vivo superharmonic 

imaging systems.
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Figure 1. 
High resolution, high-contrast images are acquired using a mechanically-steered dual 

frequency transducer transmitting at 4 MHz and receiving at 30 MHz in a 3-month-old 

C3(1)/Tag mouse. The image shows the bifurcation of the inferior vena cava and abdominal 

aorta into bilateral iliac vessels, as well as further bifurcation into femoral vessels.
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Figure 2. 
The 4 and 1 μm microbubble populations used in this work had modes of 4.5 μm and 0.6 

μm, respectively. Bubbles were diluted such that only a single microbubble was visible 

within the optical focus.
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Figure 3. 
The experimental setup used in this work consists of a 200 μm cellulose tube positioned at 

the common focus of a 2.25 MHz transmitting transducer, a 10 MHz receiving transducer, 

and an inverted microscope.
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Figure 4. 
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Figure 4A. Observed shell fragmentation and shrinking with varying frequency and 

pressure in all bubbles. At each frequency/pressure combination, the first five bubbles come 

from a 1 μm distribution and the last five bubbles come from a 4 μm distribution.

Figure 4B. Observed shell fragmentation and shrinking with varying diameter and pressure 

in all bubbles.
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Figure 5. 
(A) No change in diameter is observed in this set of recordings at 3.75 MHz, 300 kPa for a 1 

μm bubble. Scale bar indicates 1 μm. (B) A single decrease in bubble diameter is observed 

in this set of recordings at 1.75 MHz, 300 kPa for a 1 μm bubble. (C) Multiple shrinking 

events are visible optically and in the corresponding acoustic signals recorded in a 4 μm 

bubble at 1.75 MHz, 200 kPa. (D) A 4 μm-diameter bubble breaks immediately upon 

transmission of a 1.75 MHz, 500 kPa pulse. (E) A 1 μm bubble shrinks several times, then 

disappears without visible shell fragmentation due to application of a 2.25 MHz, 300 kPa 

pulse. (F) A 4 μm bubble shrinks then breaks with visible shell fragmentation upon 

transmission of a 2.75 MHz, 500 kPa pulse. The large bubble breaks on the fourth pulse, 

while the remnant smaller bubbles break on the fifth pulse. (G) A 4 μm bubble breaks into 

twosmaller bubbles after the transmission of the first pulse at 2.25 MHz, 400 kPa. The 

smaller bubble breaks on the fourth pulse.
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Figure 6. 
Diameter-pressure relationship including all subcategories of shrinking bubbles.

Lindsey et al. Page 26

Ultrasound Med Biol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Figure 7A. Mean amplitude spectra acquired after the first pulse in the absence of bubbles 

(green dashed-dotted line), in the presence of an unchanging, intact bubble (solid black line), 

a shrinking bubble (blue dashed line) and a breaking bubble (red dotted line) for 1 um (left) 

and 4 um (right) bubbles. All plots are normalized to the peak of the breaking bubble 

spectrum.

Figure 7B. Received power following each of five successive pulses for intact (black line), 

shrinking (dashed blue line) and breaking (dotted red line) bubbles. No bubble was present 

in the “control” case.
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Figure 8. 
Acoustic power and corresponding optical images of two 1 μm bubbles due to repeated 

transmission of 1 cycle, 1.75 MHz pulses at 200 and 300 kPa.
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Figure 9. 
Mean non-normalized image intensity vs. frame number for bubbles in a tube at (A) 300 

kPa, (B) 350 kPa, and (C) 400 kPA.
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Figure 10. 
Mean non-normalized image intensity as a function of frame (pulse) number during in vivo 

imaging at two frame rates. Imaging was performed at 4 MHz and (A) 700 kPa, (B) 1000 

kPa, and (C) 1300 kPa using 1 μm bubbles.
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