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Abstract
Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of
ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of
resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present
paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in
the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged
oscillation power of the radial bubble oscillation. The proposed procedure was verified for free
bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified
with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and
200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure
amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in
comparison with its linear resonance frequency. Analysis of existing shell models reveals that models
that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed
tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion
is drawn that the further development of shell models could be improved by the consideration of
nonlinear rheological laws.

Keywords
Contrast agent; Lipid shell; Resonance frequency

1. Introduction
Knowledge of resonant frequencies of contrast agent microbubbles is an important factor for
ultrasound contrast imaging and therapeutic techniques. For example, matching the resonant
frequency of a contrast agent to the transmitted frequency provides optimized conditions for
generating acoustic radiation force, which has shown to be beneficial in the enhancement of
adhesion of targeted agents and drug delivery [1–3]. Imaging techniques such as subharmonic
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imaging take advantage of the bubbles subharmonic response which can be optimized by
utilizing a transmitted frequency of twice the contrast agent’s resonant frequency [4–6].

The resonant properties of contrast agents are dependent on the parameters of encapsulation
and the ambient medium. Moreover, at high acoustic pressures, the resonance frequency of an
encapsulated bubble is expected to be also dependent perceptibly on the acoustic pressure
amplitude like that of a free bubble [7]. Therefore it is important to have a method that could
predict, for a given sort of contrast agent and given acoustic conditions, the value of the
transmitted frequency at which the contrast agent resonates.

The subject of our interest in this paper is lipid-shelled contrast agents. Currently there are
experimental estimates of resonance frequencies of lipid-shelled microbubbles only for the
regime of linear oscillations [8,9]. However, even for the linear regime, there is little agreement
between data obtained by different authors. Figure 1 compares experimental data obtained by
Sun et al. [8] for the contrast agent Definity® (circles) with data obtained by van der Meer et
al. [9] for the contrast agent BR-14 (asterisks). The dashed line shows the linear damped
resonance frequency for a free (unencapsulated) bubble, calculated by equation (2), see section
2. The solid line shows the linear damped resonance frequency for an encapsulated bubble
assuming that the encapsulating shell is described by de Jong’s model, see (8) – (10) in section
4 and the values of the shell parameters ibid. Both Definity® and BR-14 are lipid-shelled
perfluorocarbon-core agents so one would expect that their resonance frequencies are close.
However, one can see from Fig. 1 that Sun et al.’s data are close to resonance frequencies of
free bubbles while van der Meer et al.’s data show a considerable increase in resonance
frequencies as compared with free bubbles.

The objectives of the present paper are

i. To propose a method for evaluating resonance frequencies of contrast agent
microbubbles at high acoustic pressure amplitudes when the bubble oscillation is
essentially nonlinear.

ii. To test the proposed method against free (unencapsulated) bubbles in order to
demonstrate that it provides correct results.

iii. To estimate then resonance frequencies of lipid-shelled microbubbles in the regime
of nonlinear oscillations, using experimental radius-time curves at different acoustic
pressure amplitudes.

iv. It is known that in the regime of nonlinear oscillations the resonance frequency of an
oscillatory system can both decrease and increase depending on the material
parameters of the system. For example, resonance frequencies of free bubbles
decrease with increasing acoustic pressure [7]. It is shown in this paper that resonance
frequencies of lipid-shelled microbubbles decrease as well. In the context of this
result, a comparison between different shell models is carried out the purpose of which
is to check whether the existing shell models are capable of predicting the said
downward tendency.

2. Free bubbles
As pointed out above, we start with considering free (unencapsulated) bubbles. The linear
resonance frequency of a free bubble is known to be given by the Minnaert formula [10]:

(1)
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where ω0 is the angular resonance frequency of a bubble with equilibrium radius R0, γ is the
ratio of specific heats of the gas inside the bubble, P0 is the hydrostatic pressure in the
surrounding liquid, ρ0 is the equilibrium density of the liquid, and σ is the surface tension at
the gas-liquid interface. It should be noted, however, that because of damping effects the real
resonance frequency is different from ω0 and given by [11,12]

(2)

where c is the speed of sound in the surrounding liquid and the viscous damping constant δη
is defined as  with ηL denoting the shear viscosity of the surrounding liquid.

For the regime of nonlinear oscillations, there are no analytical formulas similar to (1) and (2),
so resonance frequencies can be evaluated only by numerical calculations. To calculate
resonance frequencies of gas bubbles in the nonlinear regime, Lauterborn [7] used the so-called
normalized amplitude RN = (Rmax − R0)/R0, where Rmax denotes the maximum radius of the
bubble during its steady-state oscillation. Lauterborn calculated numerically RN as a function
of the driving frequency ω for various values of initial bubble radii and then determined the
resonance frequency of a bubble with initial radius R0 as the value of ω that corresponds to the
main peak of the RN −ω curve obtained for this bubble.

Lauterborn’s approach is, however, not quite adequate in the case of medical ultrasonic
applications. First, Lauterborn dealt with continuous sinusoidal waves while in medical
ultrasonics, insonation is normally in the form of a pulse consisting of only a few acoustic
cycles, so it is often difficult to determine the value of the instantaneous radius R(t) which
should be accepted as Rmax, in addition to the fact that in some cases the bubble does not reach
the steady-state oscillation. Second, it is difficult to apply Lauterborn’s approach in the case
that resonance frequencies are estimated from experimental data since due to random
fluctuations and measurement errors the amplitude of experimental radius-time curves is not
constant even if the steady-state oscillation occurs. Finally, when experimental data are
processed, one normally has a fixed driving frequency and a set of radius-time curves measured
at this frequency for bubbles of different size. In other words, in experiments, the initial bubble
radius is a variable quantity rather than the driving frequency.

For such cases, Lauterborn’s approach can be generalized. Instead of the normalized amplitude,
we propose to calculate the following quantity:

(3)

where f = ω/2π and T is the duration of the bubble oscillation (or the duration of the driving
acoustic pulse). The dimensionless quantity W (f, R0) has the sense of time-averaged oscillation
power at a given frequency f for a bubble with equilibrium radius R0. This oscillation power
can be plotted as a function of R0 at a fixed frequency f. The resonance radius for this frequency
is then determined as the value of R0 that corresponds to the main maximum of this plot. This
method can be applied to both theoretical and experimental radius-time curves.

Figure 2 provides an example of a theoretical W−R0 curve assuming that the excitation is a
single 20-cycle acoustic pulse with a pressure amplitude of 100 kPa and a center frequency of
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2.5 MHz. One can see from Fig. 2 that the resonant radius for 2.5 MHz at 100 kPa is 1.23 μm.
Radius-time curves used to plot Fig. 2 were calculated by the following equations [13,14]:

(4)

(5)

(6)

(7)

where the overdot denotes the time derivative, x(t) is the position of the center of the bubble
in an inertial frame, mb is the mass of the bubble, Pac (x, t) is the driving acoustic pressure at
the location of the bubble centroid, and Fd is the viscous drag force which is taken in the form
of Levich’s law [15]. Eq. (4) governs the radial oscillation of the bubble and (5) its translation.
The second term on the left-hand side of (5) is the added mass force and the first term on the
right-hand side is the acoustic radiation force. At high acoustic pressure amplitudes, the effect
of translation on the radial oscillation is no longer negligible. Therefore here, although of our
prime interest is the radial oscillation, the translational motion is also taken into account. The
values of the physical parameters used in the calculations are: P0=101.3 kPa, ρ0 = 1000 kg/
m3, ηL = 0.001 Pa·s, c = 1500 m/s, σ = 0.072 N/m, and γ = 1.07. The value of the polytropic
exponent corresponds to the ratio of specific heats for perfluorocarbon, a gas which is used in
lipid-shelled contrast agents. We use the same value for free bubbles to make the comparison
with lipid-shelled bubbles more adequate.

The dependence between the frequency of resonance response and the equilibrium radius which
was obtained by means of W− R0 curves analogous to that in Fig. 2, is shown in Fig. 3 by solid
lines for two values of acoustic pressure, 100 kPa and 200 kPa. The excitation is a single 20-
cycle acoustic pulse (chosen to maximize the microbubble oscillation within the time window
captured by the high-speed camera for experimental data). The frequency range was chosen to
correspond to frequencies commonly used in medical ultrasound examinations. The dotted line
was calculated by (2), i.e., it gives the linear damped resonance frequency. As a check of the
applied method, the closed circles on the dotted line show values that were calculated by (3)
at a pressure amplitude of 1 kPa. It is seen that, as they must, these values coincide with the
results of (2). Also, the dashed lines show the results obtained by Lauterborn’s method
assuming the excitation to be a continuous sinusoidal wave. All these checks confirm the
correctness of the oscillation power method. It is also interesting to note that, as might be
expected, in continuous waves, the nonlinear effects manifest themselves stronger so the
decrease in resonance frequencies is slightly larger than in the pulse wave.
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3. Lipid-shelled bubbles
In this section, the oscillation power method is applied to evaluate resonance frequencies of
lipid-shelled microbubbles in the regime of nonlinear oscillation. Experimental radius-time
curves are used which were acquired for a lab-made lipid-shelled perfluorocarbon contrast
agent. The formulation of these microbubbles, which consisted of a DSPC:DSPE-PEG2000
monolayer shell and a decafluorobutane gas core, has been described previously in detail
[16]. The microbubbles were insonified with a single 20-cycle acoustic pulse at two values of
the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5,
and 3.0 MHz. The radius-time curves were optically recorded using a high speed imaging
system described in detail previously [17,18].

The results obtained by applying equation (3) to the experimental R − t curves are displayed
by circles in Fig. 4 for 100 kPa and Fig. 5 for 200 kPa. The solid lines show a polynomial
interpolation for the envelopes of the experimental points. The interpolation was made using
the program package MATHEMATICA. The peaks of the interpolation curves correspond to
supposed resonant radii. The values of the resonance frequencies and the corresponding bubble
radii, obtained for 100 kPa from Fig. 4, are shown by triangles in Fig. 6. The results for 200
kPa, obtained from Fig. 5, are shown by diamonds. The dashed lines in Fig. 6, marked by F100
and F200, represent the resonance frequency-initial radius curves for free bubbles at 100 kPa
and 200 kPa, respectively, and the upper dashed line, marked by Eq. (2), shows the linear
damped resonance frequency for a free bubble which was calculated by equation (2). Finally,
the circles represent the experimental data obtained by Sun et al. for the contrast agent
Definity® in the linear regime [8].

It is known from classical mechanics [19] that in the regime of nonlinear oscillation, the
resonance frequency of an oscillatory system can both decrease and increase depending on the
material parameters of the system. Figure 6 suggests that the resonance frequency of a lipid-
shelled microbubble tends to decrease with increasing acoustic pressure, although the decrease
is not as significant as that for a free bubble.

4. Discussion
The question arises as to whether the result obtained in the preceding section is consistent with
existing shell models. Do currently available models for lipid-coated microbubbles predict the
same tendency, a decrease in the resonance frequency with increasing acoustic pressure, or
not? Let us consider shell models based on two different rheological laws. Several models exist
that consider the lipid shell as a linear viscoelastic solid. Among these models are the Sarkar
[20], the Kelvin-Voigt [21,22], and the de Jong model [9]. In contrast, we have recently
proposed a Maxwell model which assumes that the lipid shell behaves as a linear viscoelastic
fluid [12]. It should be emphasized that the purpose of our comparison is not to determine
which of these models better fits the experimental radius-time curves. Our aim is to compare
the predictive capabilities of the two models in regard to the behavior of the resonance
frequency at increasing acoustic pressure. For sake of evaluation of a bubble shell as a
viscoelastic solid, we utilize the de Jong model, which has demonstrated good agreement with
experimental data in linear regimes. This comparison is found to yield interesting results which
are presented in Fig. 7.

In Fig. 7, the dashed line, marked by dJ, shows the linear damped resonance frequency for an
encapsulated bubble assuming that the encapsulating shell is described by the de Jong model.
This curve was calculated by the following equations [9]:
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(8)

(9)

(10)

where χ is the shell elasticity parameter and κS is the shell dilatational viscosity. The calculation
was made at the values of the shell parameters which were obtained experimentally for lipid-
shelled bubbles by van der Meer et al. [9]: χ = 0.54 N/m and κS = 10−8 kg/s. The upper solid
line in Fig. 7, marked by dJ200, represents the dependence between the resonance frequency
and the equilibrium radius that is predicted by the de Jong model at 200 kPa. This curve was
calculated by the oscillation power method at the same shell parameters as for the dashed dJ
line. Specifically, the radial dynamics of lipid-shelled bubbles was simulated by equation (4)
of van der Meer et al.’s work [9]. One can see that the de Jong model predicts an increase in
resonance frequencies contrary to the experimental estimates presented in Fig. 6. In the belief
that the experimental estimates are correct, this disagreement suggests that either the values of
the shell parameters which were evaluated by van der Meer et al. for the linear regime, are not
suitable for the nonlinear regime, or the assumption that the lipid shell behaves as a linear
viscoelastic solid may not be adequate.

Let us now consider the Maxwell shell model [12], which treats the lipid shell as a linear vis-
coelastic fluid. In the limit of thin shell, the Maxwell model can be represented in the zero-
thickness form as follows

(11)

(12)

(13)

where

(14)
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(15)

κSM is the shell dilatational viscosity, λ is the shell relaxation time, and G denotes the right-
hand side of (11). It will be recalled that our purpose here is only to check what tendency is
predicted by the Maxwell model. Therefore the values of the shell parameters for the Maxwell
model were chosen in such a way that in the linear regime the Maxwell model, as far as possible,
gives values of the same order of magnitude as the de Jong model: κSM = 2.0×10−8 kg/s and
λ = 0.03 μs. With these parameters, the Maxwell model in the linear regime gives the dotted
line marked by M. With the same parameters at 200 kPa, the Maxwell model gives the lower
solid line marked by M200. Thus, the Maxwell model predicts a decrease in resonance
frequencies with increasing acoustic pressure.

In recent years, a number of experimental observations have been made that cannot be
explained on the basis of the existing shell models. De Jong et al. [23] discovered the
“compression-only” behavior of phospholipid-coated bubbles that implies that in some cases
tested the microbubbles only compressed and hardly expanded beyond their initial diameters.
Another confusing observation is the dependence of shell parameters on the initial bubble
radius. Some models based on the assumption that the lipid shell behaves as a linear viscoelastic
solid report that the fitting of experimental radius-time curves indicate that the shell viscosity
increases considerably with the initial bubble radius [9,17]. In [24,25], it is reported that the
shell elasticity behaves similarly. For the Maxwell shell model, an increase in the shell
relaxation time and the shell viscosity with increasing bubble radius is observed as well [26].
Another experimental effect unaccountable by the existing models is the existence of an
acoustic pressure threshold for the onset of microbubble pulsation [27]. The behavior of the
resonance frequency suggested here supplements this list of unsolved problems.

We believe that if the resonance frequency of a lipid-shelled microbubble decreases with
increasing acoustic pressure, it may suggest that further consideration of the rheological
properties of the microbubble shell is needed. We propose the Maxwell model as one
alternative, however, this result by no means implies that a viscoelastic fluid is the only possible
way. For example, Tsiglifis and Pe-lekasis [28] have demonstrated that the model of a
nonlinear viscoelastic solid can provide a decrease in the resonance frequency with increasing
sound amplitude if a strain-softening rheological law, such as the Mooney-Rivlin law [29], is
used to describe the viscoelastic properties of the lipid shell. Do-inikov et al. [30] also show
that the inclusion of nonlinear shell viscosity allows one to model the “compression-only”
behavior and reduce the dependence of the shell viscous coefficient on the initial bubble radius.
These results suggest that nonlinear theory may be required that can take into account a more
complex rheological nature of the lipid shell.
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Fig. 1.
Experimentally determined resonance frequency versus equilibrium radius for lipid-shelled
bubbles in the regime of linear oscillations. Circles indicate experimental estimates obtained
by Sun et al. [8] for Definity®. Asterisks indicate experimental estimates obtained by van der
Meer et al. [9] for BR-14. The dashed line shows the linear resonance frequency for a free
bubble, calculated by (2). The solid line shows the linear resonance frequency for an
encapsulated bubble, calculated by (8) – (10).
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Fig. 2.
Oscillation power as a function of equilibrium radius for free bubbles. The excitation is a 20-
cycle, 2.5 MHz, 100 kPa acoustic pulse.
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Fig. 3.
Resonance frequency versus equilibrium radius for free bubbles at increasing values of the
acoustic pressure amplitude. The dotted line corresponds to the linear damped resonance
frequency given by (2). The excitation is a 20-cycle acoustic pulse. The dashed lines represent
results obtained in the case that the excitation is a continuous sinusoidal wave of the same
amplitude.
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Fig. 4.
Oscillation power versus equilibrium radius for lipid-shelled bubbles insonified with a 20-
cycle, 100 kPa acoustic pulse at four frequencies. Circles indicate results obtained from
experimental radius-time curves. The solid lines show a polynomial interpolation for the
envelopes of the experimental points.
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Fig. 5.
Oscillation power versus equilibrium radius for lipid-shelled bubbles insonified with a 20-
cycle, 100 kPa acoustic pulse at four frequencies. Circles indicate results obtained from
experimental radius-time curves. The solid lines show a polynomial interpolation for the
envelopes of the experimental points.
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Fig. 6.
Resonance frequency versus equilibrium radius for lipid-shelled bubbles. Triangles and
diamonds indicate experimental estimates following from Fig. 4 (100 kPa) and Fig. 5 (200
kPa), respectively. The F100 and F200 curves correspond to free bubbles under the same
acoustic conditions. Circles indicate experimental estimates obtained by Sun et al. [8] for the
linear regime.
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Fig. 7.
Comparison of the de Jong and the Maxwell shell models. The dJ and dJ200 curves are given
by the de Jong model in the linear regime and at 200 kPa, respectively. The M and M200 curves
are given by the Maxwell model in the linear regime and at 200 kPa, respectively.
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