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Abstract
The importance of including developmental and environmental measures in genetic studies of
human pathology is widely acknowledged, but few empirical studies have been published.
Barriers include the need for longitudinal studies that cover relevant developmental stages and for
samples large enough to deal with the challenge of testing gene-environment-development
interaction. A solution to some of these problems is to bring together existing data sets that have
the necessary characteristics. As part of the NIDA-funded Gene-Environment-Development
Initiative (GEDI) our goal is to identify exactly which genes, which environments, and which
developmental transitions together predict the development of drug use and misuse. Four data sets
were used whose common characteristics include (1) general population samples including males
and females; (2) repeated measures across adolescence and young adulthood; (3) assessment of
nicotine, alcohol and cannabis use and addiction; (4) measures of family and environmental risk;
and (5) consent for genotyping DNA from blood or saliva. After quality controls, 2,962
individuals provided over 15,000 total observations. In the first gene-environment analyses, of
alcohol misuse and stressful life events, some significant gene-environment and gene-development
effects were identified. We conclude that in some circumstances, already-collected data sets can
be combined for gene-environment and gene-development analyses. This greatly reduces the cost
and time needed for this type of research. However, care must be taken to ensure careful matching
across studies and variables.
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INTRODUCTION
“The focus of the next generation of gene-environment research will add development into
the equation and focus upon gene-environment-development interactions” (Rose and Dick
2010) (pp.1854-1855).

It is clear from twin studies that the relative significance of genetic and environmental
factors changes across some stages of development, notably childhood and adolescence
(reviewed in Dick 2011) Indeed, some have suggested that one reason for failures to
replicate gene-environment findings may be the different developmental status of the
samples. For example, Cole and colleagues have argued that one explanation for the
evolutionary maintenance of genetic features that are maladaptive late in life is that they
must be selectively advantageous earlier in life “or else they would have been eradicated
from the gene pool by adverse selection” (Cole, Arevalo et al. 2011) p. 1174. But there are
many genetically driven changes with a strong developmental component, such as puberty
or menopause, or the timing and synchronization of myelination in the central nervous
system (van Ijzendoorn, Bakermans-Kranenburg et al. 2011).

Grappling with gene-environment-development in the same study is important not only
empirically but also methodologically. “We have known for decades that failure to
incorporate both genetic and environmental factors in a joint analysis will weaken the
observed associations between a true risk factor and disease occurrence. Because the pools
of susceptible and non-susceptible persons are mixed, the observed associations tend to be
shifted toward the null..Theoretically, if we are able to measure gene-environment
interactions, we should sharpen our measurements of effects in subsets of the population and
even potentially increase our statistical power in measuring such effects.” (Khoury and
Wacholder 2009) (p.228). The same argument can be applied to the importance of
incorporating developmental measures (e.g., Chiang, McMahon et al. 2011).

Longitudinal studies with repeated, prospective assessments using standardized measures of
phenotype and envirotype offer several opportunities for improved data quality compared
with the standard methods of genetic case-control studies, which tend to rely on lifetime
retrospective assessments using multiple diagnosticians and uncertain control over the
uniformity of diagnostic criteria. In a longitudinal study diagnoses are likely to be more
consistent and there is likely to be less recall bias in participants’ psychiatric histories, which
means fewer false negatives. Both of these qualities increase statistical power in hypothesis
testing (Anastasi 1950; Luan, Wong et al. 2001; Wong, Day et al. 2003; Wong, Day et al.
2004). The timing of environmental events relative to the onset of a disorder is also likely to
be more accurate and less vulnerable to “seeking after meaning” (Spatola, Scaini et al.
2011…).

A fourth reason to explore the use of longitudinal studies for genetics in that each participant
provides multiple measures of phenotype and envirotype. This increases the total number of
observations, even after the corrections necessary to deal with the wave-to-wave correlations
within individuals {Dunlap, 1996…}.

Despite theoretical discussions of the importance of GWAS-based gene-environment studies
(sometimes called gene-environment-wide interactions studies: GEWIS (Khoury and
Wacholder 2009)), and even some discussion of developmental GEWIS (Rose and Dick
2010; Lenroot and Giedd 2011), there are few published results of GEWIS analyses in the
behavioral sciences. The few studies of developmental effects on gene-environment
interplay have focused on individual genes such as BDNF(Casey, Glatt et al. 2009); none
yet published uses a genome-wide approach to psychiatric disorders (Ackermann, Adams et
al. 2001; Lenroot and Giedd 2011).
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It is not hard to see why developmental GEWIS studies are so rare. The costs of initiating
and maintaining large longitudinal studies are extremely high, and it is important that
subjects be assessed using similar measures of both phenotype and environment over key
developmental stages. Clinical studies rarely cover sufficiently long periods of time, so
epidemiological samples are needed. Birth cohorts or other life-course epidemiologic
studies, such as the nascent US National Children’s Study, are potential sources.

Another solution to this problem is to bring together multiple data sets to conduct joint
analyses or meta-analysis. This approach depends crucially on the ability to combine the
data across studies. Even before genetic analyses can begin, it is necessary to develop and
test methods for harmonizing data across studies (Cornelis, Agrawal et al. 2010; Bookman,
McAllister et al. 2011; Fortier, Doiron et al. 2011).

The National Institute on Drug Abuse (NIDA) and the National Cancer Institute (NCI)
recognized both the promise and the problems of developmental GEWIS when they wrote in
the Request for Applications “Over many years, NIDA, other NIH Institutes, and other
organizations have funded numerous high-quality longitudinal and developmental studies
that contain a wealth of data from individuals who are at risk for, or are in the course of
development, progression, and desistance of, substance abuse and related phenotypes….The
GEDI seeks to build on this substantial public investment by soliciting applications that
integrate environmental and developmental variables with genotypic information in order to
permit comprehensive model-building and hypothesis testing for determining genetic,
environmental, and developmental contributions to substance abuse and related
phenotypes.”{R01DA024413}.

NIDA and NCI hoped to take already-existing materials and see if they could be woven into
something that, if created from scratch, would have taken twenty years and untold millions
of dollars. If successful, GEDI would be a proof-of-concept that could lead perhaps to an
expansion of the collaborative group of studies.

In summary, we report here on a proof-of-concept study to carry out gene-environment,
gene-development, and gene-environment-development analyses (both parallel and meta-
analytic) using longitudinal, population-based data sets with repeated measures over
childhood, adolescence, and early adulthood, with DNA available or obtainable, with
comparable measures of drug and alcohol use, abuse, and dependence, and also of key
environmental exposures,

MATERIALS AND METHODS
Common GEDI study characteristics

The data sets that make up the consortium have the following characteristics in common: (1)
general population samples; (2) multiple waves of data collection across childhood,
adolescence, and young adulthood; (3) detailed assessments of drug use, abuse, and
dependence (substance use disorders: SUD) and drug abuse symptoms; (4) assessments of
comorbid psychiatric disorders, diagnosed using the Diagnostic and Statistical Manual
(American Psychiatric Association 1994) and psychiatric symptoms scores; (5) measures of
a range of environmental exposures including serious life events. Methods used to collect
information on diagnoses, symptoms, and environmental factors are described first, followed
by brief descriptions of each study. Table 1 presents a summary of similarities and
differences. Further details can be found in study-specific publications cited below.

Costello et al. Page 3

Twin Res Hum Genet. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



GEDI samples
1. Virginia Twin Study on Adolescent Behavioral Development (VTSABD)
(Simonoff, Pickles etal.1997)—The VTSABD is a cohort-longitudinal study of twins
born between 1974 and 1983 ascertained primarily through the state school system and
participating private schools in Virginia. Of 1894 putative twin pairs, 1412 families (75%,
2775 children) participated and were included in the first wave of data collection. Three
subsequent waves of data collection occurred at approximately lVi-year intervals, and a fifth
wave when participants were in their mid-20s (see Table 1). The study was limited to
subjects of European ancestry as insufficient numbers from other ancestry groups were
ascertainable. Parents completed a similar assessment on both twins. After age 18, the twins
alone were interviewed individually by telephone. Over 8,500 family interview sets (parents
and twins 8-17, twins 18+) have been completed. Variable numbers of subjects completed
each interview wave, and 2289 (82%) of the Wave 1 sample have completed the fifth wave.

2. Great Smoky Mountains Study(Costello, Angold et ai 1996; Costello, Farmer
et al. 1997)—Three cohorts of boys and girls, aged 9,11, and 13 at intake in 1993, were
selected from a rural population of some 20,000 children using a household equal
probability design. A two-phase procedure was used for White and African-American youth,
to increase power by oversampling children at risk for psychiatric and substance use
disorders. Parents (usually mothers) of the first stage random population sample completed a
questionnaire about their child’s behavioral problems. Of 4,195 subjects selected, 95%
(N=3,896) of parents completed the screen. All children scoring above a predetermined
threshold (the top 25% of the total scores), plus a 10% random sample of the remaining
75%, were recruited for detailed interviews. Results can be back-weighted to population
levels for analyses. Half of the sample are female, and 6% are African American, reflecting
the population of the study area. The interviewed sample of white and Africian American
subjects was 1,070 (80% of those recruited). American Indian youth were oversampled
(100%) because they are an understudied group known to be at high risk for stressful events,
substance disorders, and mood disorders. Of 431 age-eligible children, 350 (81%, 49% girls)
participated. Thus, the size of total GSMS sample is 1,070+350 =1,420. Data collection is
complete for ages 9-26, and age 30 interviews are in progress. By age 26 a total of 9858
interviews had been completed; the average number of interviews per subject was 7, and by
age 26 97.3% completed two or more interviews.

3. The Caring for Children in the Community study (CCC) (Angold, Erkanli et
ai 2002)—This representative study of psychiatric illness and service use in African
American and White youth took place in four rural counties in the southeastern USA. The
two-stage sampling design and methods are similar to those used in the GSMS. Of 4,500
youth randomly selected from the 17,117 9-17-year-olds in the public school’s database,
3613 (80.0%) were successfully contacted and agreed to complete the behavioral screen. Of
the 1302 selected to participate in the study, 920 (70.7%) interviews were completed.
Because CCC was also the only study in GEDI to contain more than a very few African
American participants, these were omitted from the multi-site analyses.

4. Child Health and Development Study (CHDS) (Fergusson and Horwood
2001)—The CHDS is a longitudinal study of a birth cohort from New Zealand. The cohort
was based on an unselected sample of 1,265 consecutive births (635 male; 630 female)
occurring in the Christchurch urban region in mid-1977. The cohort has been studied at
birth, 4 months of age, 1 year of age, annual intervals to the age of 16 years, and again at
ages 18, 21, 25 and 30 years. Sample retention rates were high throughout the study and at
age 30 the study was still able to assess over 80% of the surviving cohort.
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Informed consent in each study
Participants in all studies gave consent for their DNA to be genotyped. However, depositing
biological samples and genetic data in controlled-access biorepositories (e.g., dbGaP
(Mailman, Feolo et al. 2007) required a different level of consent. This was obtained for
GSMS and VTSABD participants in Year 1 of GEDI. Further consents were not required
from CCC as the study was closed. CHDS subjects gave consent for genotyping only.

Each IRB had slightly different requirements for consent forms, but in general study
participants were given the opportunity to consent to (1) completing only the assessment
instruments; (2) assessment plus DNA collection for internal use only; or (3) assessment and
DNA collection, the anonymized data to be put into a repository.

Blood samples and genotyping
VTSABD—Nine ml. of blood were collected from VTSABD participants in the first year of
the GEDI study, i.e., when subjects were aged 25 to 34. Blood and informed consent for
genotyping and storage in dbGaP were obtained from 913 participants, of whom 281 were
co-twins.

GSMS and CCC Blood from the GSMS and CCC samples were collected at each
assessment: 10 finger-stick samples were collected on specially prepared paper, dried, and
shipped to the study laboratory where they were stored at −23°C until they were assayed. A
pilot study showed that even after 10 years of storage adequate DNA could be extracted
from these samples. Most subjects (94%) provided at least one sample; the one collected as
close to age 19 as possible was used for genotyping. Because there were so few African
American participants any of the data sets except for CCC, the multi-site analyses excluded
them, leaving 196 CCC and 784 GSMS participants with adequate genotype data and, in the
case of GSMS, consent to deposit data in dbGaP. Since CCC was a closed study, no further
consents were needed.

CHDS—Beginning in 2004 (at age 28) participants were asked for consent to provide saliva
sample for DNA, and 918 (90% of the surviving cohort) consented. Consent for DNA
collection was separate from consent for the rest of the study. In 2008-2009 participants
were asked for consent for the GEDI multi-site GWAS, and 813 consented. Of these, 86%
provided peripheral blood samples, 8% provided saliva, and 6% provided buccal swabs (the
latter proved not to provide samples of sufficient quality for genotyping). After quality
control checks, good quality data were obtained on 747 participants. The New Zealand
government does not permit the data to be deposited in dbGaP.

Blood samples from the VTSABD, GSMS, and CCC samples were sent to the Rutgers
University Cell and DNA Repository for DNA extraction, and to the Genotyping Shared
Resource at the Mayo Clinic Cancer Center for genotyping. DNA for the CHDS sample was
prepared in New Zealand and also sent to Mayo for genotyping. DNA samples were
randomized to plates within studies. All samples were genotyped using Illumina
Human660W-Quad vl DNA Analysis BeadChips. Quality control was carried out in the
Department of Genetics at the University of North Carolina, Chapel Hill. In each of the
fours samples, single nucleotide polymorphisms (SNPs) with missing rate > 0.01, minor
allele frequency (MAF) <0.05, or extreme deviation (p< l”6) from Hardy-Weinberg
equilibrium (HWE) were removed from further analysis. Subjects with missing rate > 0.01
or unusual genome-wide homozygosity (|normalized homozygosity rate| > 5) were excluded.
Sex was investigated using the no-call proportions of chrY SNPs and heterozygosity
proportions for chrX SNPs. Mislabeled sex information was corrected after double-checking
with the original data, and subjects with unexplainable results were deleted. In addition,
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pairwise identical-by-descent (IBD) estimation was evaluated to identify unexpected
duplicates and relative pairs. We imputed SNP dosages in all samples using MACH (Liu,
McRae et al. 2010). The imputation reference was HapMap3 CEU (Utah residents with
Northern and Western European ancestry from the CEPH collection) for subjects of
European ancestry. All subjects with pcl<0 were grouped as “white” and were imputed
using HapMap3 CEU as reference; all subjects with pcl>0 were grouped together as “other”
and imputed using HapMap3 CEU+YRI as reference. Prior to imputation, the studies had
between 496k and 515k SNPs that passed quality control. After imputation, all studies had
over 1,193k total SNP values for analysis. The number of SNPs used in particular studies
may differed back on cut-offs used for minor allele frequency.

Unobserved population admixture due to ancestry is a well-known confound in GWAS. To
protect against false-positives due to ancestry, we extracted five principal components from
each sample to correspond with ancestral and cryptic population stratification. To improve
the efficiency of the principal components analysis (PCA) for control of population
stratification, a subset of independent SNPs were selected using the PUNK function—indep
with proper parameters (window size = 50, the number of SNPs to shift the window at each
step = 5, and the VIF threshold = 2). PCA was applied to the selected SNPs using the
smartpca module of EigenSoft (Price, Butler et al. 2008). Between 77,155 and 79,517 SNPs
were used for each of the samples that we analyzed in the ancestry PCA. All genotyping and
QC was done blind to phenotype.

The VCU samples included in the analysis were all White, and HapMap3 CEU was used as
the reference data to do the imputation for all the subjects from this data set. Most of the
New Zealand sample were also White, although some were either Maori or mixed Maori and
White. Since the number of Maori was small, we ignored the Maori’s Asian genetic
background and used HapMap3 CEU samples as the reference data to run the imputation for
all subjects. The imputation quality will not be perfect for Maori, but we used Rsq (the
imputation quality score from MACH) to remove badly imputed SNPs.

The Duke samples contained a range of populations, including White, African American,
American Indian, Hispanic and Asian, but most were either White or Black. For the
imputation purpose, we split the samples into two groups. All the subjects with pcl>0 were
grouped as “Black” and were imputed using HapMap3 CEU+YRI as reference. All the
subjects with pcl<0 were grouped as “White” and were imputed using HapMap3 CEU as
reference.

Environmental exposures
Each study collected extensive information on individual, family, and community risk for
psychopathology. For the first analyses we selected a measure of exposure to potentially
stressful life events (SLE), because several candidate-gene-based gene-environment studies
have demonstrated significant gene-environment interplay using this measure (Karg,
Burmeister et al. 2011). At each assessment participants in all studies were asked to indicate
whether they had experienced any of several potentially stressful like events such as losing a
friend, or moving. Each study provided count variables of the total number of stressful life
events recently. The period assessed varied by study from the previous 12 months to the
previous 3 months. Stressful life event terms were centered to the study mean to reduce
multicollinearity with interaction terms. Although studies employed different primary
periods, the parameter estimates for the association between stressful life events and
substance-related outcomes were similar across studies. The study will only focus on effects
that are robust to modest between-study differences in measurement or period assessed.
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Data Analysis
Data analytic methods for each substance (cannabis, alcohol, nicotine) varied, and will be
described in the empirical reports. However, there are some general principles that we
discuss here.

The overall goal is to determine which, if any, of the measured or imputed SNPs contribute
to the explained variance in substance involvement, after controlling for ancestry, sex, and
age. We expect that a SNP may contribute to substance involvement directly, via a main
effect of the SNP on substance involvement, but that a SNP may also have a heterogeneous
effect across individuals due to differential exposure to environmental exposures, including
time. The degree to which genetic information influences substance involvement across the
lifespan may vary over time as a function of time-specific life circumstances.

One of the issues that strongly influence the success of multi-site analyses is that of
identifying measures of phenotypes or environmental factors that are comparable across data
sets. For example, in the analyses described below, a factor score measuring alcohol
involvement was estimated using Mplus 6.0 (http://www.statmodel.com/),from measures of
quantity of use, frequency of use, and symptoms count common to all the data sets.

One of the unique features of GEDI is the rich developmental data inherent in each of the
samples that allows us to investigate if there are genetic variants that influence substance use
in a key period of development. As mentioned above each of the samples covers a different
age range (although they overlaps across some ages) and each empirical paper takes a
different approach to data harmonization and handling the developmental piece. As our first
step toward data harmonization for GEDI, in consultation with our colleagues at Duke’s
Social Science Research Institute we adopted the “transform and recode” procedure most
commonly used in harmonization studies. (BATH, DEEG et al. 2010) First, a key member
of each study team is tasked to achieve consensus regarding whether it is possible to find
variables (and associated response categories) that have the same “face value”. Next, a new
harmonized variable is created for each “comparable” existing variable set by applying the
transform and recode procedure to one or both of the original study measures, such that
existing codes for categories can be merged and re-labelled in each study depending on the
precise wording and ordering of the categories. (Fortier, Doiron et al. 2011)

For example, two primary, longitudinal measures of over-time alcohol consumption were
generated to study the main effects of alcohol consumption on genetic variants: 1) a mixed
model which explicitly models the developmental alcohol consumption trajectory spanning
adolescence and early adulthood (ages 12-30), and 2) a simple mean of alcohol consumption
(drinks per week) repeated measures collected across adolescence (ages 12-21) for each
individual. We selected these two specifications because the trajectory outcome (1) was
found to be the best fitting longitudinal model, taking advantage of all repeated measures,
while the mean adolescent consumption outcome (2) provided a simpler summary of
individuals’ drinking behavior, and thus provided greater continuity to existing
literature(Agrawal, Grant et al. 2009; Grant, Agrawal et al. 2009; Agrawal, Freedman et al.
2012) The harmonization methods used focused in this first instance on measures that are
relatively constant in meaning across development, such as number of drinks per week. With
the help of our colleagues from the Data Harmonization team at Duke, we will then tackle
measures that may change either content or meaning across development. Other proposed
analyses will rely upon using multiple items to estimate a singi Power for analysis of gene-
environment interplay.

In principle, biostatistical methods for testing for genetic association and gene-environment
interplay do not differ from those for testing any other association, interaction, or
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correlation. The problem, of course, is the vast number of SNPs and environments,(van den
Oord 2002) and the importance of controlling for false discoveries; i.e., concluding that a
marker affects an outcome when in reality it does not. We use an approach to control false
discoveries based on the false discovery rate (FDR)(Benjamini and Hochberg 1995). In
comparison to controlling a family-wise error rate, e.g. Bonferroni correction, the FDR (1)
provides a better balance between the competing goals of finding true effects versus
controlling false discoveries, (2) results in comparable standards for declaring significance
across studies because it does not directly depend on the number of tests, and (3) is
relatively robust against correlated tests (Borden, Brown et al. 1987; Sabatti, Service et al.
2003; Tsai, Hsueh et al. 2003; Fernando, Nettleton et al. 2004; Korn, Troendle et al. 2004).
The FDR is commonly used in many high-dimensional applications and has also
successfully been applied in the context of GWAS{Lei, 2009 #506;Liu, 2009
#1515;Beecham, 2009 #1527}. We chose a FDR threshold of 0.1 for declaring genomewide
significance,(van den Oord and Sullivan 2003) which means that on average 10% of the
SNPs declared significant are expected to be false discoveries. Operationally{Black, 2004
#1284} the FDR is controlled using q-values that are FDRs calculated using the p-value of
the markers as thresholds for declaring significance(Storey 2003). It is important to note that
performing many GWAS analyses does not present a problem for the FDR because it
controls the expected ratio of false to all discoveries. Thus, when many GWAS are
performed the number of false positives will increase and so will the number of true
positives. The expected ratio of false to all discoveries will therefore remain 0.1, our
threshold for declaring genomewide significance.

RESULTS, CROSS-VALIDATION, AND REPLICATION
The results of the first set of papers focus on the main effect of the SNP and the interaction
term between the SNP and SLE exposure. The first 3 papers, currently under review, focus
on problem alcohol use, number of cigarettes per week, and any cannabis use in the past 3
months. In each case, the environmental factor used was a measure of severe life events,
developed to be the same for all data sets.

GEDI takes two approaches to testing the validity of the results: cross-validation and
replication. For the former we present the analyses separately for each data set and compare
size and direction of effects across studies. This provides a more powerful test than the
standard replication study, because it involves complete genome-wide comparisons rather
than simply comparisons of a few sites selected from one data set. The disadvanatage is that
individual data sets are necessarily smaller than the combined GEDI data set. We are
therefore working to find other data sets with which we can carry out standard replication
studies: comparing results on the “top hits” from GEDI. there are few other data sets with
the characteristics of the studies included in GEDI (multiple measures across adolescence
and early adulthood of both substance ue and abuse and relevant environmental risk factors),
but we have identified three, with whom we are currently working (the Minnesota Twin and
Family Study (Derringer, Krueger, McGue, & Iacono, 2008), Finn Twin (Pagan et al., 2006)
and the Center for Education and Drug Abuse Research (CEDAR) sample (Tarter &
Vanyukov, 1994)), with other collaborations under development.

2. Further analyses
The next stage in the program of data analysis is to broaden it to include gene-based
analyses (Neale and Sham 2004), pathway analyses (Wang, Li et al. 2007), and polygenic
risk score analyses (Purcell, Wray et al. 2009). Gene-based analyses test whether any genes
harbor an excess of SNPs with small P-values. Such analyses must account for both gene
length and linkage disequilibrium between SNPs (see VEGAS (Liu, McRae et al. 2010) for
one example). Pathway analyses similarly test for an enrichment of SNPS with low P values
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in genes involved in specific functional pathways (such as those in the Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes databases). Optimal approaches must account
for varying gene size and SNP density, linkage disequilibrium within and between genes,
and overlapping genes with similar annotations (see INRICH (Lee, O’Dushlaine et al. 2012)
for one example). Finally, the polygenic risk score analyses test a polygenic basis for the
phenotype by looking at the variance accounted for by a given set of top SNPs determined
by a P value threshold (e.g., 0.005, 0.01, 0.10, or 0.25). In the first step, the sample is
partitioned into a discovery and replication sets. Parameter estimates, derived in the
discovery sample, are used as weights to calculate scores in the replication set.
Subsequently, a regression is performed on the disease state in the replication set from the
polygenic score and then P values and pseudo lvalues presented (see (International
Schizophrenia Consortium 2009) for example). In each case we propose to analyze the
individual data sets and also to perform a meta-analysis of the entire group. In these cases,
we are applying analytic approaches already in use in other GWAS studies to GEDI studies
as is, but by focusing on the model term related to the interaction between the environmental
exposure and SNP status, for example, this standard approach allows us to address a novel
outcome -genes that moderate the association between the exposure and the outcome.

Next steps: 3. Candidate gene selection for next generation sequencing
In addition to GWAS, we will employ targeted capture(Gnirke, Melnikov et al. 2009) and
massively-parallel next generation sequencing(McKernan, Peckham et al. 2009), to
exhaustively determine all genetic variation at selected genomic loci with evidence for
involvement in SUD etiology. This approach uses a solution-based capture method(Gnirke,
Melnikov et al. 2009), where genomic DNA from each subject is mixed with a “library” of
synthetic oligonucleotides, designed to be complementary to the genomic regions of interest.
Molecular tags on these oligonucleotides allow them to be pulled out of solution, bringing
the bound, complementary genomic DNA with them. This “captured” DNA from each
individual is labeled with a unique identifier and sequenced using next-generation, ultra high
throughput technology(Smith, Heisler et al. 2010). This approach uses similar methods to
exome sequencing(Ng, Turner et al. 2009), but here we will sequence the entire genomic
region of each gene of interest, rather than just the exons, in order to capture all relevant
variation.

We selected regions to include in our targeted capture library as follows:

1. GEDI GWAS findings for smoking and alcohol. For each SNP showing significant
association at the genome-wide level (q-value < 0.1), we targeted the genomic
region encompassing it (+/−25 kb) for sequencing, plus any genes that fall within
this 50 kb window. For SNPs showing “potentially interesting” associations {q-
values 0.1-0.2), we chose only those that fell within 25kb of a gene, based on the
principle that potentially interesting associations are more likely to be real if they
are in, or close to, a gene. These criteria led us to select 17 loci covering 3.5 Mb of
genomic DNA sequence.

2. Genes identified through published GWAS alcohol(Schumann, Coin et al. 2011)
and smoking GWAS meta-analyses(2010; Liu, Tozzi et al. 2010; Thorgeirsson,
Gudbjartsson et al. 2010), plus gene nominations by expert colleagues (17 loci
covering 2.5 Mb).

3. All human alcohol and aldehyde dehydrogenases, the key enzymes involved in
alcohol metabolism(Edenberg 2007) (28 loci covering 1.3 Mb).
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4. Reward system genes, including dopaminegic(Di Chiara and Imperato 1988),
opioid(Le Merrer, Becker et al. 2009) and cannabinoid(Solinas, Yasar et al. 2007)
receptors and related metabolic genes (16 loci covering 1.09 Mb).

5. All remaining human nicotinic acetyl choline receptors not already selected (12 loci
covering 0.42 Mb).

6. Additional priority genes close to GWAS hits (4 loci covering 0.35 Mb).

7. Prioritized candidate genes. We compiled 3 lists of candidate genes, the first based
on previous associations in the literature with SUDs, the second comprising all
known human genes involved in absorption, distribution, metabolism and excretion
(ADME) of drugs (www.pharmaadme.org), and the third included all human
neuroactive ligand receptors from the KEGG database(Kanehisa and Goto 2000;
Kanehisa, Goto et al. 2011). We ranked genes by the number of times they co-
occurred in the literature with the search terms “smoking”, “alcohol” or “cannabis”
and filled the remainder of our targeted capture library with the top-ranked genes
from this list (31 loci covering 1.1 Mb).

After removing overlap and collapsing neighboring genes into single loci, our selection
encompassed 121 unique loci, covering a total of 10.2 Mb. However, human genomic DNA
includes repetitive elements, including RNA and DNA transposons, which constitute
approximately 45% of the human genome(Lander, Linton et al. 2001). These contribute no
useful sequence information, because they are difficult to align to unique positions. After
elimination of these repetitive elements, our final library encompassed approximately 5.5
Mb. We are currently sequencing this library in 1000 individuals selected from the
VTSABD and CHDS.

DISCUSSION
As noted earlier, there is an abundance of literature recommending that genomics move in
the direction of genome-wide gene-environment-development analyses, but very few data -
in fact, we have found no empirical “developmental GEWIS” (Khoury and Wacholder 2009)
studies so far. The few developmental gene-environment studies published have used a
candidate gene approach (e.g., Adkins, Daw, McClay, & Van den Oord, 2012; Casey et al.,
2009; Cole et al., 2011), and carry many of the limitations that have long plagued these
studies (Sullivan, Eaves et al. 2001).

Thus, we undertook GEDI partly as a proof of concept of the feasibility of a developmental
GEWIS. Despite the lack of empirical data, most discussions in the literature take a gloomy
view of the feasibility of development GEWIS, concentrating on the large sample sizes
needed and the unreliability of measures of the envirotype (Thomas 2010). We acknowledge
these problems unreservedly. On the other hand, there are other aspects of the situation that
should be considered. First, estimates of sample sizes tend to be based on experience with
early genetic studies that have collected cases and controls using what is often very
unreliable data: lifetime psychiatric histories, or clinical diagnoses from hundreds or
thousands of different clinicians. These methods result not only in false positives, but also in
considerable numbers of false negatives (cases included non-cases because subjects have
forgotten past episodes of illness). Both of these type of error inflate the sample size needed.
In their paper on estimating the size of gene-environment interactions in the presence of
measurement error (Wong, Day et al. 2004), and related papers(Luan, Wong et al. 2001;
Wong, Day et al. 2003), Wong and colleagues pointed out that accuracy in measuring all the
related elements — genotype, phenotype, and exposure - critically affect the sample size
needed for a given power. For example, “the difference between unreliable (correlation with
true score=0.4) and reliable (r=0.7) measurements corresponds to a 20-fold difference in
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sample size” (Moffitt, Caspi et al. 2005) p.476. Furthermore, Wong et al. noted that
“Improving the measurement can be achieved by taking repeated measurements”(Wong,
Day et al. 2003) p.54; thus, the longitudinal studies preferred for developmental analyses
will also increase their power to test hypotheses.

Advantages of the GEDI consortium are that it includes only data sets with longitudinal,
repeated assessments of subjects, taken across the period of adolescence and young
adulthood. We can expect subjects to be less vulnerable to either false remembering or false
forgetting than those in studies using lifetime retrospective data. The use of repeated
assessments also means that even a relatively small number of subjects yield a large number
of person-observations (for example, the 1,420 GSMS subjects yielded 9,858 person-
observations by age 26). Even after controlling for non-independence of observations, this
approach substantially increases the effective sample size and therefore power. Third, the
studies used reliable assessments of symptoms and diagnoses created using a single
taxonomy (DSM-IV) and highly-structured diagnostic algorithms. Fourth, the studies used
reasonably similar measures of key environmental risk factors.

The results of our first analyses (Copeland et al. Stressful life events and Alcohol use: A
longitudinal GxE GWAS Meta-analysis, submitted) appear to provide tentative empirical
evidence that the combination of prospective, longitudinal assessment and careful attention
to data harmonization can, to some extent, compensate for a modest sample sizes. However,
regardless of these benefits, there remains an acute need to build a broader, more inclusive
consortium of qualifying longitudinal data sets. Our strongest recommendation from this
experiment is for the creation of an international “developmental dbGaP” of such data sets
to optimize power in future investigations of environmentally and developmentally
contigent genetic effects on behavioral outcomes.
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Table 1
Characteristics of the studies

GSMS ccc vcu CHDS

Number of data waves 7-10 3 5 18

2 or more developmental periods?
Age range from start to most recent wave

Yes
9-26

Yes
9-17

Yes
8-30

Yes
1-30

Number of participants recruited at baseline 1,420 920 913
Twin
pairs

1,265

Number of participants successfullYes
genotYesped

784 518 913
(632
unique
families)

747

Representative population sample? Yes Yes Yes
(twins)

Yes

=Great Smoky Mountains Study

CCC= Caring for Children and the Community

VCUABD=Virginia Twin Study of Adolescent Behavioral Development

CHDS=Christchurch Health and Development Study
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