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Abstract

Despite their functional and structural diversity, G protein-coupled receptors (GPCRs) share a

common mechanism of signal transduction via conformational changes in the seven-

transmembrane (7TM) helical domain. New major insights into this mechanism come from the

recent crystallographic discoveries of a partially hydrated sodium ion that is specifically bound in

the middle of the 7TM bundle of multiple class A GPCRs. This review discusses the remarkable

structural conservation and distinct features of the Na+ pocket in this most populous GPCR class,

as well as the conformational collapse of the pocket on receptor activation. New insights help to

explain allosteric effects of sodium on GPCR agonist binding and activation, and sodium’s role as

a potential co-factor in class A GPCR function.
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Early phenomena attributed to a specific sodium-dependent modulation of

GPCR function

G protein-coupled receptors (GPCRs) are the largest superfamily of membrane proteins in

the human genome and have key roles in human physiology and in the action of more than

30% of therapeutic drugs [1]. The binding of a ligand stabilizes conformational changes in

the receptor, which trigger the activation of intracellular (IC) effectors such as G proteins
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and arrestins [2], leading to a cascade of cellular responses. Although all GPCRs share a

common seven-transmembrane (7TM) architecture, they can be divided into four major

classes in humans, A, B, C, and Frizzled (F) (see Glossary), that have very little sequence

homology between them [3,4]. Out of 826 human GPCRs, more than 700 belong to Class A

[3,4] and have several highly conserved functional motifs in their 7TM domains, including

D(E)RY in helix II, FxxCWxP in helix VI, NPxxY in helix VII, and the ‘hydrogen bond

network’ between helices I, II, III, VI, and VII [5]. Although the importance of these motifs

in GPCR signaling was known for years, their precise roles in signal transduction are only

now being revealed, principally due to technological breakthroughs leading to a flurry of

GPCR structures being captured in different activation states and complexes [6,7]. One of

the most exciting major findings concerns the crystallographic discovery in class A GPCRs

of a conserved allosteric binding site for a sodium ion [8], an essential ion that is implicated

in many physiological functions.

The first hints of a specific allosteric effect of Na+ on class A GPCR function can be traced

to a study performed 40 years ago [9]. This seminal work found that Na+ negatively

modulates agonist binding to the opioid receptors, without significantly affecting the binding

affinity of antagonists. In the absence of other biochemical assays, this ‘sodium effect’ was

employed to differentiate opioid agonist from opioid antagonist candidate drugs [10]. Later,

similar biochemical phenomena were observed for more than 20 diverse GPCRs, including

adrenergic, dopaminergic, serotonergic, neurotensin, and other receptors (Table 1). These

allosteric effects were usually described at physiologically relevant Na+ concentrations

(~140 mM), supporting its biological role. Follow-up mutagenesis studies implicated a

conserved acidic D2.50 (Ballesteros–Weinstein numbering [11]) residue in helix II as being

critical for the sodium-dependent effects, suggesting that Na+ acts via binding at a specific

site within the helical bundle. Moreover, substitution of D2.50 with uncharged residues

(Table 1) dramatically reduced agonist-dependent signaling of some GPCRs, while

maintaining ligand binding and often basal signaling, thereby indicating a specific role for

this putative ‘sodium site’ in agonist-mediated GPCR signal transduction. Only now,

however, has high-resolution crystallography of GPCRs provided the critical structural

insights that are essential for unraveling the molecular underpinnings of these biochemical

phenomena, as well as for illuminating the functional and physiological consequences of

sodium binding to GPCRs.

Identification of Na+ in the crystal structures of class A GPCRs

The recently solved high-resolution (1.8 Å) structure of the A2A adenosine receptor

(A2AAR) [8] was the first to reveal a Na+/water cluster in the middle of the 7TM helical

bundle, thereby providing a detailed description of a GPCR allosteric site (Figure 1A,B).

The Na+ in the A2AAR is coordinated by two highly conserved residues, D2.50 and S3.39,

and three water molecules. These water molecules belong to a nearly continuous water-filled

passage connecting the A2AAR extracellular (EC) and IC sides. Importantly, the reliable

detection of Na+ in this allosteric site was enabled by high-resolution crystal structures and

the unambiguous location of at least five oxygen atoms, a hallmark of a Na+ coordination

shell. Sodium ions can be identified then by their characteristic coordination geometry and

short distances (2.2–2.6 Å) to the oxygen atoms [12]. Although a retrospective analysis of
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the earlier medium resolution structures (2.4–2.9 Å) suggests that some spherical electron

densities in close proximity to D2.50 (previously modeled as water) are compatible with Na+

(Figure 1D), these structures could not provide unequivocal evidence for sodium at this site.

Within 18 months of the discovery of the Na+ in the A2AAR structure, direct

crystallographic evidence for sodium in an identical position was found in inactive-state

GPCR structures of an adrenergic receptor (β1AR) [13], a protease-activated receptor

(PAR1) [14], and an opioid receptor (δ-OR) [15] (Figure 1C–F). These crystal structures

together represent three of the four major branches (α, δ, γ) in the class A GPCR tree [4]. In

each of these high-resolution structures, the Na+ is coordinated by a salt bridge to D2.50

together with four additional polar interactions with receptor side chains and water

molecules. The most striking similarities can be found between the A2AAR (PDB identifier:

4EIY) and β1AR (PDB identifier: 4BVN) [13] structures. Not only are all residues of the

pocket conserved chemically and conformationally with RMSDALL_ATOM = 0.8 Å (except

Y7.53L, which was introduced as a thermostabilizing mutation in β1AR [13]), but also the

positions of Na+ and eight water molecules of the cluster are preserved to within 0.3 Å

RMSD. Considering that A2AAR and β1AR share only ~32% sequence identity in their 7TM

domains and have different ligands, this high level of structural conservation of the Na+ and

water cluster is truly remarkable and suggests its key functional role. Interestingly,

pharmacological analysis in the same study [13] shows that high Na+ concentrations do not

impact agonist binding in b1AR, suggesting that Na+ specific binding can be easily

overlooked by classical allosteric effect assessment.

Distinct types of sodium pockets in inactive GPCRs

The common binding of the Na+ in 7TM bundles, however, does not require an identical

pocket structure to that found in the A2AAR and β1AR. Interestingly, opioid receptors (in the

γ-branch) present a structural variation on the Na+/water coordination motif, whereas

conformations of the 15 conserved residues of the pocket remain similar to A2AAR and

β1AR. Indeed, the 1.8 Å resolution structure of the δ-OR [15] (PDB identifier: 4N6H)

reveals the pivotal importance of another position, 3.35, for sodium binding in opioid

receptors (Figures 1E and 2C). Although in many GPCR structures the 3.35 position has a

hydrophobic residue that points towards the lipidic membrane interface, the δ-OR structure

has an N3.35 side chain pointed to the interior of the sodium pocket. The oxygen of the N3.35

side chain in the δ-OR structure thereby directly coordinates the Na+ (at 2.45 Å distance) by

occupying the same spatial positions as a water molecule found in the A2AAR structure. At

the same time, the nitrogen of the N3.35 side chain replaces another water molecule seen in

the A2AAR structure, and participates in a water-mediated hydrogen bonding network.

Notably, N3.35 has the same conformation in the other inactive-state opioid receptor

structures [16–18], and is conserved in 78 human GPCRs (mostly of the γ- and δ-branches),

where it can also be involved in Na+ coordination.

The crystal structure of inactive PAR1 (a member of the δ-branch of GPCRs) [14] represents

a dramatic deviation in the pocket configuration (Figure 1F), with seven residues of the

pocket (1.53, 3.43, 3.35, 6.48, 7.45, 7.46, and 7.49) being different from those in the

A2AAR. Moreover, in the PAR1 structure the Na+ is shifted by about 1.5 Å towards the IC
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side and is coordinated by acidic side chains two residues, D2.50 and D7.49. Although the

7.49 position of the NPxxY motif is conserved as N7.49 in 86% of all class A GPCRs, one

can notice that other 7% of class A (PAR1 and other 51 receptors) have Asp side chains in

both the 2.50 and 7.49 positions. Interestingly, many other δ-branch GPCRs and most of the

380 human olfactory receptors have a second acidic residue in the pocket located in a

different position, 3.39. Those GPCRs with two negatively charged acidic side chains within

the ion coordination shell are likely to have distinctive ion-binding properties and might

potentially accommodate not only monovalent but also divalent cations.

The β-branch of class A GPCRs is currently represented by only one crystal structure of the

NT1 neurotensin receptor (NTSR1), which was solved in an ‘active-like’ state. As discussed

below, the sodium site is collapsed in the known active-like state GPCR structures, and

therefore sodium binding in this NTSR1 structure is not expected [19]. At the same time,

biochemical experiments [20] provide convincing evidence for D2.50-dependent Na+ binding

and allosteric effects at NTSR1 [19,20] and other β-branch receptors, such as the

gonadotropin releasing hormone (GnRHR) and urotensin receptors (Table 1). The key polar

residues coordinating the Na+ and water cluster (positions 1.50, 2.50, 3.39, 7.46, 7.49, and

7.53) are also conserved in NTSR1 (Figure 2C), supporting a putative Na+ binding site.

Variations in some non-polar residues corresponding to the pocket, however, suggest

distinct features of the Na+ pocket of β-branch receptors that remain to be

crystallographically characterized.

It is likely that other structural variations can be found in the sodium pocket across all class

A GPCR families, which could significantly affect both the sodium-binding profile and the

sodium-dependent allosteric effects. For example, access to the sodium pocket can vary

dramatically, from a rather open passage in the opioid [15,18] and muscarinic [21,22]

receptor structures to a more restricted passage in A2AAR and β1AR. The presented

examples, however, suggest that despite differences in detail, a specific sodium-binding site

may be a common feature that is preserved in many receptors from all four major branches

of class A GPCRs, in which D2.50 and the key polar side chains of the pocket are conserved.

Conservation of Na+ binding across class A GPCR families and branches

Sequence analysis of all class A GPCRs confirms an exceptionally high conservation of the

pocket (Figure 2 and Figure S1 in the supplementary material online). In fact, the pocket (as

defined in A2AAR) combines 15 of the 34 residue positions that are conserved in the

majority of the non-olfactory class A GPCRs (Figure 2C). The pocket encompasses the three

previously identified conserved motifs: (i) F6.44 and W6.48 of the FxxCWxP motif in helix

VI; (ii) N7.49 and Y7.53 of the NPxxY motif in helix VII; and (iii) a 3D cluster of conserved

polar residues in helices I, II, III, VI, and VII that is sometimes referred to as a hydrogen

bonding network [5]. The only conserved cluster that is not a part of the sodium pocket is

the ‘DRY’ motif in helix III located closer to the IC side of GPCRs. Remarkably, all 15

residues of the A2AAR sodium pocket are exactly conserved in 45 GPCRs, mostly in the

aminergic and adenosine subfamilies, but also in sphingosine-1 phosphate and some orphan

receptors, as well as in the γ-branch opioid and somatostatin receptors (Figure S1 in the

supplementary material online). A simple estimation shows that the concomitant
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conservation of this group of residues is about ~2,500 fold higher than expected if the

residues of the pocket mutated independently (Table S2 in the supplementary material

online), suggesting strong evolutionary pressure for conservation of the pocket configuration

as a whole. Most other receptors in α– and γ-branches have only minor variations in the

pocket, with at least 12 residues of the pocket preserved as in A2AAR (Figure S1 in the

supplementary material online).

Across all four branches of the non-olfactory class A GPCRs, the residues of the sodium

pocket vary more significantly, although seven key acidic and polar side chains remain

conserved. These highly conserved positions include D2.50 (90% conserved as Asp), N1.50

(97% Asn), S3.39 (75% Ser), N7.45 (70% Asn, or 90% as any polar side chain), S7.46 (66%

Ser and 75% as any polar side chain), N7.49 (75% Asn, and 20% as Asp), and finally Y7.53

(89% Tyr). The variations between known Na+ binding GPCRs are mainly observed in non-

polar residues of the pocket, suggesting that a GPCR’s compatibility with sodium binding is

largely defined by these key polar positions.

The olfactory receptors also apparently have highly conserved pockets that are compatible

with Na+, although binding and allosteric effects of Na+ in this large family of GPCRs

remains to be experimentally established. All olfactory receptors have an acidic residue 2.50

(83% as Asp and 17% as Glu) and a conserved pattern of polar residues. This pattern is,

however, quite distinct from non-olfactory receptors: for example, the olfactory GPCRs

have an acidic residue 3.39 (80% as Glu and 14% as Asp), and a histidine at 6.44 (98% as

His).

It is also important to note, that in the other human GPCR classes (B, C, and F), none of the

residues corresponding to the sodium pocket is conserved. Apparently, these functionally

and evolutionary distinct GPCR classes do not have a common Na+ binding site in their

7TM domains, although this does not exclude a possibility that some of these GPCRs are

modulated by Na+ binding in the other parts of the receptor.

Class A GPCRs lacking a putative Na+ pocket have distinctive properties

Our analysis also suggests that those 36 of the class A receptors (~5%) that lack acidic

residues D(E)2.50 (Table S1 in the supplementary material online) may have functional

properties that are distinct from other class A GPCRs and, in most cases, do not possess

ligand-modulated signal transduction. Thus, of these 36 proteins, 26 are described as

‘pseudogene’, ‘non-signaling’, ‘decoy’, ‘constitutively active orphan’, or ‘putative/probable’

GPCRs, as annotated by the IUPHAR or UniProt databases. Among these 26 proteins, there

are also three orphan LGR receptors (LGR4–6) that act via binding to Frizzled receptors

[23], as well as the NT2 neurotensin receptor (NTSR2). Unlike its NTSR1 homolog, which

is fully functional, NTSR2 lacks the D2.50 side chain, and although it still binds neurotensin,

NTSR2 is not modulated by allosteric sodium and does not signal in response to neurotensin

[19,20].

The next group of nine receptors in Table S1 that lack D(E)2.50 may still have a normal

signal transduction capability in response to diffusible ligands due to an alternative acidic

residue supporting sodium binding. This group comprises six olfactory receptors that have
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another acidic residue in the pocket, E3.39, as well as three receptors with either D3.39, D7.49

or D7.50 residues, all in the sodium pocket. Among these receptors is GnRHR, which has a

neutral N2.50 side chain, but an acidic D7.49 side chain. Indeed a recent study shows that

sodium has a modest (but significant) allosteric effect on GnRHR [24], suggesting that an

alternative acidic residue in the pocket can still support sodium binding.

This remarkable correlation between the absence of the allosteric Na+ binding site on the

one hand and the lack of an established ability of the receptor to signal in response to small

molecule ligands on the other hand further corroborates importance of the allosteric Na+ for

class A GPCRs. Another interesting exception that only confirms this rule is discussed in the

next section.

Lack of Na+ binding in visual opsins

Rhodopsin (OPSD) and other visual opsins (OPSB, OPSG, and OPSR) represent an

interesting exception that deserves a closer look. The last line in Table S1 shows the absence

of D2.50 or any other acidic side chain in the allosteric pocket of blue opsin (OPSB).

Moreover, all four opsins lack polar side chains in the other two crucial sodium-coordinating

positions, 3.39 and 7.45 (Figure S1 in the supplementary material online), which is likely to

abolish specific Na+ binding. Analysis of the high-resolution (2.2 Å) crystal structure of

bovine rhodopsin [25,26] also suggests an absence of sodium binding in the 7TM pocket.

Indeed, among four water molecules found in proximity of the D2.50 side chain in this

structure, none has distances and coordination that are compatible with a sodium ion.

Moreover, access from the aqueous EC space into the 7TM bundle core in the rhodopsin

structure [25] (and probably in homologous opsins) is completely blocked by the EC loops

and N terminus, which makes Na+ binding in the allosteric pocket even less likely.

The visual opsins therefore present a rare case of signaling class A GPCRs that apparently

lack specific sodium binding. However, the function of these receptors also presents a major

exception among all human class A GPCRs in that opsins are activated by photochemical

11-cis to all-trans isomerization of a covalently bound retinal, rather than by a diffusible

ligand. Such photochemical isomerization provides abundant energy for the receptor

activation (ΔG ~ 35 kcal/mol [27]), which is several fold higher than the energy contributed

by small diffusible ligands. This observation suggests that the presence of the allosteric

sodium may not be required for receptors activated by large chemical energy such as opsins,

while being critical for effective signaling by small diffusible ligands in most class A

GPCRs.

Activation involves structural rearrangements in the Na+ pocket

Further evidence for a key functional role of the Na+ cluster in the modulation of

conformational transitions comes from an analysis of active state structures of class A

GPCRs (Figure 3). Our comparison of inactive- and active-state crystal structures of A2AAR

and β2AR [28,29] reveals that the Na+ and water pocket collapses in size from ~200 to <70

Å3 due to the activation-related movements of the TM helices. In particular, an inward

movement of helix VII at the NPxxY motif and an outward movement of helix VI (both

associated with receptor activation [28,29]) are the key rearrangements that are responsible
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for the pocket collapse. Conformational analysis and molecular dynamics studies for A2AAR

suggest that such a collapsed pocket in the activated states of GPCRs is incompatible with

Na+ binding [30]. Similar observations regarding the collapse of the Na+ pocket can be

made by examining the other recently solved crystal structures of either fully or partially

activated GPCRs (Figure 3). In all of these structures, the sodium pocket is reduced in size

and often split into smaller cavities, which do not provide adequate coordination for a Na+

and its hydration shell waters. The shapes and locations of the residual pockets vary between

these activated structures, probably reflecting differences between receptor types and

activation stages. Note, however, that the most pronounced helical shift, as well as the most

dramatic split and relocation of the pocket, has been observed in the fully activated complex

of β2AR with G protein [28,29], suggesting that Na+ relocation is a critical part of the GPCR

activation process.

Functional studies and challenges

Although biochemical evidence for the allosteric effects of sodium on agonist binding exists

for a number of diverse GPCRs (Table 1), a detailed understanding of the functional sodium

effect on GPCR signaling in living cells is complicated by several factors. Some evidence

for sodium’s impact on GPCR function was obtained by direct measurements of G protein

binding to isolated cell membranes [31–33] or G protein-mediated signaling in whole cells

[34,35] as a function of Na+ concentration. However, the presence of sodium-conducting ion

channels and transporters, and an overall dependence of cell signaling on physiological

concentrations of Na+, can profoundly affect a reliable delineation of the direct functional

effects of Na+ on GPCRs.

Mutagenesis of the conserved sodium-coordinating residues provides an important

alternative for evaluation of the functional effects of sodium. The majority of such

mutagenesis studies have been focused on the 2.50 position, showing that in various class A

GPCRs, D2.50 replacement by an uncharged residue can abolish or drastically reduce

agonist-induced G protein binding and activation [36–43] (see also [44]). Some studies have

also demonstrated that D2.50 substitutions can abrogate the allosteric effects of G protein on

agonist binding [37,45]. In many of these cases, it was shown that D2.50 mutants can retain

surface expression, and maintain (or even improve) agonist binding properties [45],

suggesting that D2.50A and D2.50N mutants can maintain a correct fold for binding while

affecting specific aspects of signal transduction. Mutagenesis studies have also been

performed on the other sodium coordinating residues, 7.49, 7.45, and 3.39, by changing

them to non-polar side chain residues. Similar to D2.50 substitutions, these substitutions

resulted in the disruption of normal ligand dependent signaling [43,46,47], suggesting that

Na+ itself is a major component of the signaling mechanism.

The importance of allosteric Na+ binding is further supported by gain-of-function

experiments, in which the introduction of acidic residues in the sodium pocket partially

restores signaling function in D2.50N mutants. Such studies were performed for the 5-HT2A

serotonin receptor, showing that whereas the D2.50N mutant abrogated coupling to G

protein, a D2.50N/N7.49D double mutant capable of binding Na+ regained most of the

functional activity [46]. Similarly, a D2.50N/N7.49D double mutant partially restored
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function for the μ-opioid receptor [48], whereas in sodium-dependent GnRHR, these

residues are already reversed as N2.50 and D7.49 in the wild type protein [49].

The constitutive activity of GPCRs can be dramatically affected by Na+ concentration as

well as by mutations in D2.50 and other sodium-coordinating residues. Most of the published

results are consistent with the notion that Na+ stabilizes the inactive state and thereby

reduces basal G protein activity [35,50–52], although the effects may vary somewhat

between GPCRs [13,53] and between functional readouts of signaling [20]. An interesting

example is provided by viral GPCRs (vGPCRs), which are close homologs to human

receptors but lack characteristic residues of the sodium pocket [54]. Thus, a vGPCR from

Kaposi’s sarcoma-associated herpes virus (KSHV) is closely related to chemokine receptors

but has mutations in the key conserved residues of the sodium pocket (2.50, 3.39, 7.45, and

7.49) that render it constitutively active.

Allosteric sodium site residues modulate signaling bias

Apart from G protein mediated signaling, GPCR function involves other independent

pathways, including those mediated by β-arrestin [55]. Selective up- or down-regulation of

these pathways by ligands or mutations often leads to so-called biased signaling or

functional selectivity, which is of key importance for GPCR biology and pharmacology [56–

59]. Several studies suggested that changes in the allosteric sodium pocket can also lead to

pronounced signaling bias: for example, in the angiotensin 1 (AT1R) receptor [60]. More

recently, dramatic signaling bias effects of the sodium site were observed for δ-OR signaling

[15]. Site-directed mutagenesis and functional assays in this study show that D2.50A

substitution, as well as some other substitution of the sodium-coordinating residues, such as

N7.45A and N7.49A, can still retain G protein-mediated signaling for at least some agonists,

as observed previously [61]. This study found, however, that these mutations transform

classical δ-opioid antagonists, such as naltrindole, into potent β-arrestin-biased agonists [15].

A special role was also described for the N3.35 side chain, which participates in Na+

coordination in δ-OR (Figure 1E). Substitution of this residue either reduces (N3.35V) or

abrogates (N3.35A) the allosteric effects of sodium on ligand binding, while at the same time

dramatically augmenting constitutive arrestin-mediated signaling.

These data support the notion that the allosteric sodium in the δ-OR has a more profound

impact on regulating β-arrestin efficacy, whereas its effects on canonical G-protein signaling

may depend on specific ligands and specific residue mutations. Therefore, sodium-

coordinating residues and sodium itself can act as selective ‘efficacy switches’ for distinct

GPCR functional pathways.

Possible mechanisms of sodium as a co-factor in GPCR signaling

An essential role for the Na+ and water cluster in GPCR function is supported by: (i) the

structural features of Na+ binding in the center of the 7TM bundle in the inactive state

receptors; (ii) an exceptionally high conservation of the pocket in ligand activated class A

GPCRs; (iii) dramatic activation-related changes in the Na+ pocket; and (iv) strong allosteric

effects of the Na+ on constitutive and ligand-dependent GPCR signaling. One key aspect of

the Na+ interactions with GPCRs is that, unlike most allosteric modulators, Na+ is present at
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high physiological concentrations (~140 mM) in most EC environments, which ensures

near-saturation of the specific Na+ binding sites in GPCRs with EC50(Na+) < 50 mM [30].

This omnipresence in class A GPCRs and involvement in major aspects of signaling suggest

a role of sodium as a co-factor that is essential for proper receptor function. Although the

exact nature of Na+ involvement in signal transduction has only just begun to be understood,

we suggest several hypothetical mechanisms (Figure 4) that can be further tested

experimentally and computationally:

i. Na+ bound at D2.50 along with the water cluster stabilize the inactive state [8,30]

(Figure 4a,b,c), creating a potential barrier that diminishes basal activity [52] and

reduces agonist affinity (see refs in Table 1). In some GPCRs, e.g. b1AR, Na+

appears to stabilize ligand-free receptor without affecting the equilibrium between

inactive and active states [13].

ii. Agonist binding disrupts the Na+/water cluster (Figure 4d) and relocates Na+

towards the intracellular side (Figure 4e), thus reducing the energy barrier for

receptor activation, and, thus, facilitating signaling. Disruption of the cluster also

allows formation of a new pattern of hydrogen bonds in the pocket, which may

stabilize active states of the receptor.

iii. The Na+ and water cluster facilitates coupling between the inward movement of

helix VII (which compresses the pocket) and the outward movement of helix VI

(which allows the Na+ to escape towards the cytoplasm). Note that helix VI has

been associated with G protein signaling, whereas helix VII has been associated

with β-arrestin signaling in previous studies of GPCRs [63]. Disruption of the

sodium cluster (Figure 4E,F) may facilitate the inward movement of helix VII and

uncouple it from the outward movement of helix VI, thereby differentially affecting

activation of G protein and arrestin pathways, as observed in δ-OR mutants [15].

iv. The Na+ enters the binding pocket from the EC solvent [64], thereby following a

strong concentration gradient and electrostatic potential (Figure 4A). By contrast,

entrance of the Na+ from the cytoplasm is very unlikely because it goes against the

electrochemical potential and the Na+ would have to overcome repulsion of the

highly positively charged protein interface on the IC side of GPCRs. On receptor

activation and collapse of the sodium pocket, the ion is dislocated towards the IC

side (Figure 4E), where it can interact with D3.49 of the D(E)RY motif in helix III,

freeing R3.50 for interactions with G protein [65].

v. On receptor activation and pocket relocation, the Na+ can be further released into

cytoplasm (Figure 4F). The entrance for the new ion from the EC solvent would be

blocked by the bound agonists, thereby locking the activated receptor into a

sodium-free state until agonist dissociation. Such a ‘locking’ mechanism can help

to explain the surprising stability of specific ligand-induced activated states, which

have been described crystallographically in several GPCRs [19,28,66,67]. It may

also be implicated in persistent signaling of some receptors, including the emerging

evidence for signaling of internalized GPCRs in early endosomes [68–70].
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vi. The transmembrane transfer of Na+ is promoted by both membrane electrostatic

potentials and a Na+ concentration gradient (with a combined ΔG ~ 3 kcal/mol

[71]). Because it is coupled to conformational changes in the receptor’s 7TM

bundle, Na+ transfer can provide an energy source, assisting GPCR signaling by

small molecules (Figure 4F).

vii. The Na+ translocation may also help to explain an emerging evidence for the

voltage sensing and the gating currents in GPCRs coupled to activation of the

receptors [72–74]. Mechanisms of such voltage-dependence in GPCRs are likely to

be different from those observed in ion channels, and remain largely unknown.

The above working hypotheses are not mutually exclusive and may work concomitantly.

Thus, for example, the sodium cluster can serve as a soft barrier up to a certain stage in

activation, its disruption and potentially dislocation of Na+ into the cytoplasm would leave

the receptor in a quasi-stable activated state. Though the mechanistic illustrations in Figure 4

are oversimplified, theoretical predictions of potential measurable effects of Na+ may aid the

planning of experiments to solve outstanding questions on sodium’s role in GPCR function

(Box 1).

Box 1

Outstanding questions

• Which of the remaining untested, human, class A G protein-coupled receptors

(GPCRs) specifically bind Na+ at physiological concentrations, and how do the

variations in the pocket affect sodium affinity and allosteric effects?

• What exactly is the functional role (or roles) of the Na+ in GPCR signal

transduction, basal signaling, and coupling/decoupling between G protein and β-

arrestin signaling pathways?

• When the sodium site collapses on receptor activation, where does the Na+ go?

• If the Na+ is transported across the membrane following the membrane

electrochemical potential, how could such energy coupling benefit small

molecule signaling via GPCRs?

• Can other monovalent ions (e.g., K+) bind to the D2.50 pocket in a

physiologically/therapeutically relevant way considering the lower

concentrations of these ions in the extracellular solvent?

• How does the presence of two acidic residues in the pocket (e.g., in protease-

activated receptor (PAR1), olfactory receptors, and other receptors) change ion

affinity and selectivity, and could it support the binding of divalent ions (e.g.,

Ca2+) at physiological concentrations?

• How does changing concentrations of Na+ (e.g., in neuron synapses or

endosomes that carry internalized GPCRs [68,70]) affect the spatio-temporal

profile of GPCR signaling?
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• Could the Na+ site confer a key evolutionary advantage to class A GPCRs, the

youngest but most sprawling of all human GPCR classes [88]?

Practical implications for GPCR studies

The knowledge of sodium’s impact on GPCR function may have immediate practical

implications for GPCR structural and functional biology, beyond their early use as a screen

for ligand agonism activity [9]. Thus, the allosteric effects of sodium can inform the choice

of optimal salt conditions for structural studies. For example, antagonist-bound inactive state

receptors have been crystallized in high NaCl concentrations [8,75], whereas crystallization

of agonist-bound receptors in activated states favors low Na+ conditions [19]. Rationally

designed mutations in the sodium pocket can also modulate the receptor’s ability to adopt an

inactive, active, or biased signaling state [15], enhance surface expression in cells [76], or

stabilize a specific state for structure-based drug discovery and biochemical screening

assays. It is also clear that structural knowledge of Na+ binding and its importance in GPCR

conformational changes should be taken into account in the efforts to build predictive

atomistic models of GPCR activation mechanisms [77], and the first steps in this direction

are already yielding interesting insights [30,64,78].

The sodium pocket may also serve as a target for allosteric and bitopic ligands with unique

functional features. The size and properties of the sodium-binding pocket in A2AAR/β1AR

and other GPCR structures suggest that it can accommodate small (MW~200–300 Da)

molecules carrying a positively charged group. Indeed, this might be the case for the diuretic

drug amiloride and its derivatives, for which several studies (Table 1) demonstrated binding

to several GPCRs from class A α- and β-branches. The binding of amilorides to GPCRs was

shown to (i) compete with Na+, (ii) disappear on D2.50 mutations, and (iii) allosterically

reduce agonist binding [24,79–87]. Flexible docking of amilorides into the A2AAR sodium

pocket [8,30] suggests their snug fit into the pocket, with the positively charged guanidine

group forming a salt bridge to D2.50 (Figure 5). The predicted position of the amiloride

scaffold is further compatible with the binding of the derivatives with bulky N5

substitutions, which protrude towards the orthosteric ligand binding pocket and may impact

not only agonist but also some antagonist binding [24,30].

Although the affinities of known amilorides to GPCRs are in the micromolar range, more

effective allosteric or bitopic molecules targeting the allosteric sodium pocket could have

novel functional properties desirable for tool compounds or potential therapeutic

applications.

Concluding remarks

The ‘sodium effect’ on GPCR agonist binding has captivated researchers for more than 40

years. Only now, however, have high-resolution crystallographic studies revealed a common

structural basis for Na+-specific binding in the center of the 7TM helical bundle, which

explains this and other sodium effects on GPCRs. The observed activation-related collapse

of the sodium pocket implicates a specific role for the Na+ in the signal transduction

mechanism, where the ion translocates towards or into the cytoplasm. The exceptionally
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high evolutionary conservation of the sodium binding site in most class A GPCRs (and its

absence in light-activated visual opsins, non-signaling GPCRs, or GPCRs of other classes)

also points to a critical role of the Na+ in the function of those class A GPCRs that are

activated by small diffusible ligand binding in the 7TM domain. These crystallographic and

evolutionary insights, combined with biochemical evidence, support the physiological

omnipresence of sodium as a key co-factor in GPCR functional mechanisms. The robust 3D

structural platform in combination with biochemical, biophysical, and computational

approaches opens a path towards deciphering further specific details and variations in the

Na+-dependent mechanisms in about 680 receptors of class A GPCRs. Some of the

remaining key questions regarding the functional role of sodium are challenging, but the

answers could help to clarify GPCR signaling mechanisms and enable the discovery of new

allosteric and bitopic ligands with distinct functional properties.

Supplementary Material
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Glossary

Allosteric
modulation

modification of the orthosteric ligand binding and/or receptor

signaling by another ligand or ion that binds to a distinct (allosteric)

site

Ballesteros–
Weinstein residue
numbering

uses the X.YY format to denote the transmembrane helix number

(X) and residue position (YY) relative to the most conserved

residue in this helix (X.50). The numbering is used to refer to

structurally equivalent residue positions in different G protein-

coupled receptors (GPCRs)

Biased signaling
(or functional
selectivity)

preferential signaling via certain signaling pathways by specific

ligands (or in a mutant receptor), as compared to endogenous

ligands (or wild-type receptors). In many cases, signaling bias was

observed between G protein and β-arrestin-dependent pathways

Bitopic ligand ligand binding to both allosteric and orthosteric sites

Co-factor a non-protein chemical compound that is required for the protein’s

biological activity

Constitutive (or
basal) activity

receptor signaling in the absence of a bound ligand
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GPCR classes and
branches

about 826 human GPCRs are classified into four classes (A, B, C,

and F) on the basis of sequence similarity. Class A comprises about

715 GPCRs, subdivided into α, β, γ and δ branches (or groups), as

well as a separate group of ~380 olfactory receptors

Orthosteric ligand ligand that binds to the same site of the receptor as the endogenous

agonist
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Highlights

A Na binding site is found in high-resolution structures of several diverse GPCRs

This allosteric site in the middle of 7TM domain is highly conserved in class A

GPCRs

Specific binding of Na+ explains its biochemical and functional effects on GPCRs

Collapse of the pocket and Na+ relocation are involved in GPCR signaling
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Figure 1.
Na+ and water cluster detected in G protein-coupled receptor (GPCR) structures. (A) The

high-resolution A2A adenosine receptor (A2AAR) structure [8] shown with waters (red

spheres) and Na+ (blue sphere) in the narrow passage connecting the extracellular (EC) and

intracellular (IC) sides of the receptor. (B) Close-up of the A2AAR allosteric pocket

comprising Na+ and a cluster of 10 water molecules. Acidic residue D2.50 and all residue

positions of the pocket involved in polar interaction with the cluster are shown as sticks.

Roman numerals show numbering of the transmembrane helices. (C) Close-up of the β1AR

allosteric pocket [13], colored orange. Ten water molecules and the Na+ position from

A2AAR are shown for comparison as red dots and a blue dot, respectively. Note the

Y3437.53L mutation. (D) A list of medium-resolution structures (2.3–2.8 Å) [18,75,104–

107] with electron densities in the proximity of D2.50 that are potentially compatible with

sodium binding. (E) Close-up of the δ-opioid receptor (δ-OR) allosteric pocket [15], colored

green. (F) Close-up of the protease-activated receptor (PAR1) allosteric pocket [14], colored

magenta.
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Figure 2.
Structural and sequence conservation of the Na+ and water pocket in G protein-coupled

receptors (GPCRs). (A) Overview of the A2A adenosine receptor (A2AAR) crystal structure,

showing residues with higher than 50% conservation in all non-olfactory class A GPCRs as

sticks with green carbons. (B) A close-up of the central allosteric pocket (transparent blue

surface), showing the side chains located within 5 Å from the 10 waters of the sodium ion/

water cluster (green sticks: A2AAR; gray thin lines: the corresponding side chains of the

overlaid GPCR crystal structures in inactive state). The helix VII backbone in the

foreground has been removed for clarity. (C) Sequence conservation of the 16 pocket

residues. The top part shows the residue conservation profile in all non-olfactory class A

GPCRs, where the height of the residue letter represents the share of the residue in this
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position. The bottom part shows individual residues in all available class A crystal

structures, with conserved residues highlighted in green. Greek letters on the right denote the

four major branches of class A GPCRs. Receptors with sodium binding determined by a

high-resolution crystal structure are in bold and marked with ‘*’. Rhodopsin, which lacks a

Na+ binding pocket, is shown in red. (D) Sequence alignment in seven-transmembrane

helices of representative class A GPCRs from all four major branches. Residues of the Na+

pocket are highlighted by red boxes, and conserved residues are highlighted in green. The

most conserved residues in each helix (X.50) are marked by arrows.
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Figure 3.
Activation involves collapse of the sodium pocket in class A G protein-coupled receptors

(GPCRs). (A) Activation-related conformational changes, in particular inward movement of

helix VII and outward movement of helix VI, cause collapse and relocation of the allosteric

pocket in A2A adenosine receptor (A2AAR), which makes it incompatible with binding of

the Na+ and water cluster. (B) Collapse of the pocket between inactive and activated states

found in A2AAR structures (PDB identifiers 4EIY and 3QAK, respectively) is even more

pronounced in β2-adrenergic receptors ((PDB identifiers 2RH1 and 3SN6). (C) Most other

inactive class A GPCR structures have pockets that are compatible with sodium binding. (D)
The pocket is also collapsed in the arrestin-biased activated structure of 5HT2B (right bottom

panel). Allosteric pockets are shown by semitransparent surfaces, and the D2.50 side chain is

labeled in all panels. The position of Na+ in the A2AAR-antagonist complex (PDB identifier

4EIY) superimposed on the other inactive structures is shown as dark blue spheres, whereas

Na+ superimposed on the active-state structures is indicated as empty circles in light blue.

Katritch et al. Page 23

Trends Biochem Sci. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Hypothetical mechanisms of Na+ involvement in GPCR activation. (A) In the inactive

apostate receptors, sodium gains access from the extracellular side into the conserved

allosteric pocket, where it forms a network of ionic and polar interactions as a part of Na+

and water cluster. (B) Antagonist (Ant) or (C) inverse agonist (InvAgo) binding in the

orthosteric pocket is compatible with allosteric Na+ binding and can further stabilize the

inactive state. (D) GPCR activation by agonists (Ago), as seen in crystal structures of

activated receptors, involves an inward movement of helix VII and an outward movement of

helix VI, leading to a partial collapse/reshaping of the allosteric pocket. The resulting

collapse of an optimal Na+/water cluster potentiates displacement of Na+ along the internal

passage towards the intracellular side of membrane, where it can either (E) engage in

transient interactions with other conserved acidic residues [e.g., D(E)3.49 of the D(E)RY

motif] and G proteins or (F) exit the protein altogether, traversing the membrane along the

Na+ electrochemical gradient, estimated at about 3 kcal/mol.
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Figure 5.
Predicted binding of amilorides in the conserved allosteric Na+ pocket. The flexible docking

poses of amiloride (A) and 5-(N,N-Hexamethylene)amiloride (HMA) (B) in the sodium

pocket of inactive A2AAR suggest that both ligands optimally fit the sodium cavity with

only slight conformational changes from the crystal structure (PDB identifier: 4EIY).

Neither amiloride ligand (shown with carbon atoms colored magenta) makes direct contact

with the orthosteric antagonist ZM241385 (with yellow carbons, positioned as in 4EIY).

Their impact on ZM241385 binding can be mediated by the shift in the W2466.48 side chain,

which is predicted to be especially pronounced for HMA, in agreement with the stronger

negative modulation of antagonist binding by HMA. The receptor is shown by a cyan

cartoon with the carbon atoms of the side chains of D522.50 and W2466.48 colored cyan

when shown in the crystal structure conformation and colored in yellow for the flexible

model conformation. The binding cavity is shown as a semitransparent surface in light

green.
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Table 1

Published evidence for allosteric effects of sodium and amilorides, and their dependence on D2.50 mutations

GPCR families Na+ allosteric effect on
ligand binding

D2.50 controls
allosteric effects of
Na+

D2.50 mutation effects on
G protein coupling and
activation

Allosteric effect of
amiloride and
analogs

Adenosinea [89]b A1 [79,90], A2Aa

[8,30,79], A3 [79,81]
A1 [90], A2Aa [80],
A3 [81]

– A1 [79], A2Aa

[8,30,79,80], A3
[79,81]

Adrenergica α[91], α2A [92– 94] α2A [92–94] α2A [93,94] α2 [82], α1 [83]

Dopamine [64,95]* D2 [84,96] D2 [84,96] D2 [84,96] [84], D1, D2, D3, D4
[85]

Muscarinic – M3 [45], M1 [97], M1,
M2, M3, M4 [98]

[86]

5HT – 2A [46], 1B [87] 1B [87]

Opioida [9,10,31], μ-OR [34],
NOP [99,100], δ-OR [15]

δ-ORa [15,61] All subtypes [48] –

Somatostatin SSTR2 [101] SSTR2 [101] – –

Neurotensin NTSR1 [19,20] NTSR1 [19,20] NTSR1 [19,20] –

Gonadotropin- releasing hormone GnRHR [24] – GnRHR [49] GnRHR [24]

Urotensin UTR [102] UTR [102] UTR [102] –

Cannabinoid CB1 [41] CB1 [41] CB1,CB2 [41,53] –

Angiotensin – AT1R [36] –

Endothelin – ETAR, ETBR [39] –

Cholecystokinin – CCKB [103] –

Bradykinin B2 [50] B2 [50] B2 [50] –

a
G protein-coupled receptor (GPCR) subfamilies and subtypes for which crystallographic evidence of Na+ binding in the conserved pocket have

been obtained.

b
Review and/or modeling studies.
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