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Abstract

Chronic pain is a significant healthcare problem, ineffectively treated due to its unclear etiology 

and heterogeneous clinical presentation. Emerging evidence demonstrates that microRNAs 

regulate the expression of pain-relevant genes, yet little is known about their role in chronic pain. 

Here, we evaluate the relationship between pain, psychological characteristics, plasma cytokines 

and whole blood microRNAs in 22 healthy controls (HC); 33 subjects with chronic pelvic pain 

(vestibulodynia: VBD); and 23 subjects with VBD and irritable bowel syndrome (VBD+IBS). 

VBD subjects were similar to HCs in self-reported pain, psychological profiles and remote bodily 

pain. VBD+IBS subjects reported decreased health and function; and an increase in headaches, 

somatization and remote bodily pain. Furthermore, VBD subjects exhibited a balance in pro- and 

anti-inflammatory cytokines, while VBD+IBS subjects failed to exhibit a compensatory increase 

in anti-inflammatory cytokines. VBD subjects differed from controls in expression of 10 

microRNAs of predicted importance for pain and estrogen signaling. VBD+IBS subjects differed 

from controls in expression of 11 microRNAs of predicted importance for pain, cell physiology 

and insulin signaling. MicroRNA expression was correlated with pain-relevant phenotypes and 

cytokine levels. These results suggest microRNAs represent a valuable tool for differentiating 

VBD subtypes (localized pain with apparent peripheral neurosensory disruption versus widespread 

pain with a central sensory contribution) that may require different treatment approaches.
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Introduction

Vestibulodynia (VBD) is a complex chronic pain condition (CCPC), characterized by entry 

dyspareunia, tenderness to touch and presence of erythema on the vulvar vestibule, that 

affects 10–15% of women in the United States.1, 2 VBD often co-occurs with other CCPCs 

including irritable bowel syndrome (IBS; 35%)3, temporomandibular disorder (TMD; 78%)1 

and fibromyalgia (FMS; 17%).3 VBD and related CCPCs represent a significant healthcare 

problem, together affecting up to one billion adults worldwide.4 Current treatment regimens 

remain ineffective due to the conditions’ uncertain etiology and heterogeneous clinical 

manifestation.1 To understand the nature of these complex conditions and improve standards 

of care, the identification of unique biological signatures and pathways that map onto 

distinguishing clinical features is required.

While clinical manifestations are heterogeneous, VBD and related CCPCs are associated 

with a state of pain amplification, psychological distress and enhanced inflammation.5 In 

VBD, pain is localized to the pelvis, possibly due to altered permeability or cellular 

composition of the mucosa.1 Women with VBD demonstrate higher levels of anxiety and 

somatization as well as enhanced production of pro-inflammatory cytokines.2 Compared to 

individuals with one CCPC, those with co-occurring CCPCs exhibit increased psychological 

distress1 and imbalances in pro- and anti-inflammatory mediators possibly indicative of 

abnormalities in central pain processing.6

MicroRNAs (miRNAs) represent biological determinants of pain, mood and inflammation. 

miRNAs are small, noncoding pieces of RNA that control gene expression by inhibiting 

protein translation or degrading downstream target mRNAs.7 Aberrant miRNA profiles have 

been associated with several animal models of pain and inflammation as well as painful 

conditions in humans.8 Further, miRNA profiling represents a novel and clinically-relevant 

approach for patient stratification of pain-related conditions.9 Emerging evidence also 

suggests a role for miRNAs in psychological conditions such as depression and anxiety.10 

Lastly, miRNAs regulate genes involved in activation of immune cells and secretion of 

inflammatory cytokines.11 This suggests that miRNAs are key contributors to the pain 

amplification, psychological distress and enhanced inflammation characteristic of CCPCs 

such as VBD.

We elucidate novel clinical features and biological pathways unique to women with VBD 

and to those with VBD plus a commonly co-occurring CCPC, IBS (VBD+IBS). 

Specifically, those with VBD have pain localized to the pelvis, normal self-reported pain 

and psychological profiles, increased levels of pro- and anti-inflammatory cytokines and 

dysregulation of miRNAs predicted to be involved in pain processing and estrogen 

signaling. Those with VBD+IBS have greater pain sensitivity at remote bodily sites, 

enhanced self-reported pain and somatization, imbalanced pro- and anti-inflammatory 

responses and dysregulation of miRNAs predicted to be involved in pain processing, cellular 

physiology and central sensory pathways. Collectively, these results suggest miRNA 

profiles may be useful for understanding the shared and unique mechanisms of localized 

versus widespread pain conditions.
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Materials and Methods

Subject Consent and Enrollment

All subjects were enrolled after giving informed consent as approved by the Biomedical 

Institutional Review Board of the University of North Carolina at Chapel Hill (UNC).

Inclusion and Exclusion Criteria

This study utilized data from 78 women (33 VBD, 23 VBD+IBS and 22 HC). Subjects in 

VBD and VBD+IBS groups were recruited at the UNC Pelvic Pain Clinic and subjects in the 

HC group were recruited through fliers placed on campus and in the local community 

between August 2008 and August 2010. Sample sizes were based upon prior miRNA 

studies.9, 12–14 Preliminary eligibility assessment of interested subjects was conducted via a 

phone interview. Subjects were excluded for a positive response to any of the following 

criteria: 1) age <21 or >45; 2) breastfeeding, pregnant or menopausal; 3) significant medical 

conditions such as seizure disorder, diabetes or thyroid disorder; and 4) known diagnosis of 

comorbid urogenital pain conditions such as interstitial cystitis. Subjects without 

vulvovaginal complaints were recruited as potential controls.

Subjects were then clinically assessed during a standardized gynecological exam during 

which they rated pain using the modified Gracely Pain Scale.15 VBD was diagnosed in 

women who reported a history of pain during intercourse or tampon insertion and who 

experienced tenderness to touch upon palpation of the vestibule with a cotton swab during 

the exam.16 The threshold for pain history was a rating of 3 or more using the Gracely Pain 

Unpleasantness Scale. During the clinical exam, subjects with suspected dermatological 

disorders (e.g. lichen sclerosis, contact dermatitis) and vaginismus were excluded. All exams 

were performed by a single examiner.

Subjects were also assessed for other pain disorders including IBS, FM, TMD and migraine 

headaches. IBS case status was determined using 4 abdominal pain questions in accordance 

with Rome III Criteria.17 Multicenter Criteria were used to classify FM, defined by 

widespread pain in combination with tenderness at 11 or more of the 18 specific tender point 

sites.18 Classification of TMD was based on the Research Diagnostic Criteria for 

temporomandibular disorders, with the defining characteristics being a history of facial pain 

and examiner-evoked pain reported in the cheeks, jaw muscles, temples or jaw joints.19 

Migraine headaches (with or without aura) were classified by the International Classification 

of Headache Disorders (ICHD-2) criteria.20 As the majority of the VBD subjects with co-

occurring pain syndromes had IBS, the following 3 groups were created: subjects with VBD 

alone, subjects with VBD and IBS (including those with or without additional co-occurring 

pain disorders) and pain-free healthy controls. Healthy controls were excluded if they 

reported any psychological or pain-related conditions.

Mucosal Pressure Pain Measurement

Twelve pressure points of the vestibule were defined with reference to a clinical drawing 

annotated with a conventional clock face. The 12 o’clock position marked the anterior 

midline and the 6 o’clock position marked the posterior (in dorsal lithotomy position). Six 
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sites were assessed for pain: 3 on the upper vestibule at positions 2, 10 and 12; and 3 on the 

lower vestibule at points 5, 7 and 6, in that order.15 To account for subject-to-subject 

variability, anatomical landmarks were also used to standardize the location of vestibular 

sites between women. For each pelvic mucosal pain assay averaging the 6 site scores 

together created an aggregate score.

Intensity—In order to assess pain sensitivity in the vestibule the examiner applied pressure 

to each site with a Q-tip and instructed the subject to rate her pain on a scale of 0–10 (0=no 

pain, 10=worst imaginable). For mucosal intensity assays: HC N=21, VBD N=33 and VBD

+IBS N=23.

Threshold—A digital vestibular pressure algometer designed by the Center for Pain 

Research and Innovation at UNC and first described by Zolnoun et al15 was used to record 

the threshold to pressure pain sensitivity in the vestibule. The algometer is attached to a 

cotton swab that was applied to each site beginning at 1N and increasing until the subject’s 

first sensation of pain, at which time the subject was instructed to click a computer mouse. 

The latency was recorded in real-time. This test was repeated on each site 3 times with an 

interstimulus interval of 2 seconds. Results report the average score of the 3 tests. For 

mucosal threshold assays: HC N=13, VBD N=31 and VBD+IBS N=20.

Muscle Pressure Pain Detection Measurement

In order to test muscle pressure pain of the vulvovaginal muscles, a pressure sensor was 

affixed to a plastic thimble that was worn over the investigator’s right index finger. The 

algometer pressure sensor, which measured forces ranging from <1N to >98N, was used for 

direct and isolated palpation of the right and left puborectalis levator muscles (sites 5 and 7) 

and perineal muscle complex (site 6). An aggregate score was calculated as the average of 

the 3 muscular sites. The exam to test for muscle pressure pain was conducted transvaginally 

in accordance with conventional clinical practice.15

Intensity—Examiner applied pressure to each site on the lower vestibule and had the 

subject rate her pain (0=pressure, 1=low, 2=moderate and 3=severe). For muscle intensity 

tests: HC N=21, VBD N=33 and VBD+IBS N=23.

Threshold—Subjects were instructed to click a computer mouse at the first sensation of 

pain to find the muscle pain perception threshold, which was recorded in real-time by the 

computer. The examiner terminated the pressure if she was unable to apply additional force 

to reach the subject’s threshold. For muscle threshold tests: HC N=16, VBD N=30 and VBD

+IBS N=19.

Tolerance—The subject was then given the option to undergo tolerance testing, which was 

performed after a 5-minute rest period. 61/78, or 78% of subjects opted to participate. 

Subjects were instructed to click the computer mouse when they were no longer able to 

tolerate the pressure. For muscle tolerance tests: HC N=15, VBD N=28 and VBD+IBS 

N=18.
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Remote Bodily Pressure Pain Threshold Measurement

A digital algometer (Wagner, Greenwich, CT, USA) was applied for 3 trials to each side of 

the trapezius and the temporomandibular joint (TMJ) beginning at a pressure of 1 N and 

increasing until the subject’s first sensation of pain, at which time the threshold force was 

recorded in Newtons. Final scores report the average of left and right thresholds for each 

site. For remote bodily pressure pain measurements: HC N=23, VBD N=30 and VBD+IBS 

N=20.

Remote Bodily Thermal Windup Measurement

Thermal stimuli of 50°C were applied repeatedly to the right hand to evaluate the temporal 

summation of thermal heat pain “windup”.21 Ratings of pain in response to 10 repeated 

stimuli were evaluated. Stimuli of 0.5 sec duration were repeated once every three seconds 

and pain was rated on a 0–100 numerical rating scale (NRS). The procedure was stopped if 

the participant reported a rating of 100 or if she asked that it be stopped. For thermal windup 

measurements: HC N=21, VBD N=30 and VBD+IBS N=19.

Assessment of Psychological and Self-reported Health Phenotypes

Prior to clinical examination, subjects completed questionnaires that collectively assessed 

affective components of pain, somatic symptoms related to pain, perceived control, self-

rated health and mood. The McGill Pain Questionnaire (MPQ) assessed sensory components 

of pain using 11 verbal describers and affective qualities related to pain using 5 describers. 

Responses on 4-point scales were summed to compute scores for each section.6 The Short 

Form 12 version 2 (SF12v2) assessed 6 domains: global health, physical functioning, 

physical roles, emotional functioning, emotional roles and pain interference; using an 

algorithm22 based on answers to 12 physical and mental health related questions. Each scale 

ranged from 0 to 100, with higher values signifying better function and mood.6 Answers to 

54 questions on the Pennebaker Index of Limbic Languidness (PILL) questionnaire were 

used to create a summary score of somatic symptoms (e.g. itchy eyes, dizziness). Frequency 

for each symptom was recorded on a five-point Likert scale ranging from “never or almost 

never” to “more than once a week”.6 The Comprehensive Pain and Symptom Questionnaire 

(CPSQ) assessed various components and effects of bodily pain (e.g. face, jaw, head and 

lower back pain) using individual scaled scores from answers to 55 questions.23 The 

Symptom Checklist 90-Revised (SCL-90R) used 90 questions in to assess a broad range of 

psychological symptoms such as anxiety and depression.24

Assessment of circulating cytokine protein levels

During the clinic visit, whole blood was collected into ethylenediaminetetraacetic acid-

coated Vacutainer tubes (BD Biosciences, Franklin Lakes, NJ, USA) and placed on ice. 

Plasma was isolated by centrifuging at 1520 RPM for 10 minutes at 4°C and aliquoted into 

Cryotubes (Nalge Nunc International, Lima, OH, USA), frozen with liquid nitrogen and 

stored at −80°C. Samples were thawed on ice and the Fluorokine MAP Multiplex Human 

Cytokine Panel A (R&D Systems, Minneapolis, MN, USA) was used to measure the levels 

of 22 cytokines, including monocyte chemotactic protein-1 (MCP-1), macrophage 

inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β), 
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regulated upon activation normal t-cell expressed and secreted (RANTES), epithelial-

derived neutrophil-activating peptide 78 (ENA-78), fibroblast growth factor basic (FGF 

basic), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), interferon-γ (IFN-γ), interleukin-1α (IL-1α), interleukin-1β 

(IL-1β), interleukin-1 receptor antagonist (IL-1ra), interleukin-2 (IL-2), interleukin-4 (IL-4), 

interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), 

interleukin-17 (IL-17), tumor necrosis factor α (TNFα), thrombopoietin (Tpo), and vascular 

endothelial growth factor (VEGF). A full list of cytokines including detection thresholds can 

be found here: http://www.rndsystems.com/

product_detail_objectname_fmaphumansample.aspx.

Plasma samples were incubated first with a set of color-coded beads pre-coated with 

antibodies for each of the 22 cytokines and then with corresponding biotinylated secondary 

antibodies. Samples were then incubated with streptavidin-phycoerythrin conjugate and read 

with a Luminex dual laser analyzer (Luminex Corporation, Austin, TX, USA), which detects 

the magnitude of the phycoerythrin signal in order to determine cytokine levels. Standards 

were measured in duplicate and then the mean fluorescent intensity was calculated for each 

sample. The experimenter was blinded to experimental groups for all cytokine assays.

miRNA Profiling

During the clinical visit, whole blood was also collected in PAXgene Blood RNA tubes (BD 

Biosciences, Franklin Lakes, NJ, USA) and stored at −80°C. After thawing tubes, RNA was 

isolated from blood using PAXgene blood miRNA kits (Qiagen, Germantown, MD, USA). 

RNA concentrations were measured on a NanoDrop 1000 (NanoDrop Technologies, 

Wilmington, DE, USA) and normalized to 20ng/uL using TE buffer. cDNA synthesis was 

performed using the TaqMan Reverse Transcription Kit, along with human Pool A and B 

Megaplex RT primers. cDNA was preamplified using TaqMan Preamplification Master Mix 

and human primers that corresponded to the Pool A and B RT primers. Samples were 

prepared and loaded onto OpenArray plates by the AccuFill Robot System (Life 

Technologies, Grand Island, NY, USA) using the protocol recommended by the vendor. 

Loaded OpenArray plates were run through the QuantStudio 12K Flex Real-Time 

OpenArray PCR System (Life Technologies, Grand Island, NY, USA) in order to assess 

expression of 761 miRNAs. RT-PCR was used to verify results for 5 miRNAs of interest 

using the Taqman Universal PCS Master Mix, Taqman miRNA Assays (Life Technologies, 

Grand Island, NY, USA) and the protocol recommended by the vendor. The experimenter 

was blinded to experimental groups for all miRNA assays.

miRNA Pathway Analysis

MiRNA expression profiles in blood may inform us of both peripheral and central pain 

processes affected in subtypes of CCPCs. Samples of circulating blood provide a rich source 

of pain-relevant molecules, including neurochemicals released by sympathetic nerve 

terminals and inflammatory mediators released by circulating immune cells.25 Furthermore, 

studies have shown that whole blood shares significant gene26 and miRNA27 expression 

similarities with CNS tissues.
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To determine the genes and pathways affected by miRNA expression in women with VBD 

and VBD+IBS, we performed pathway analysis using the in silico Multiple MicroRNA 

Analysis provided by the Diana Lab (http://diana.cslab.ece.ntua.gr/pathways/

index_multiple.php). The analysis generated a list of genes affected by changes in miRNA 

expression in each group and organized them into Kyoto Encyclopedia of Genes and 

Genomes (Kegg) pathways. For each pathway, a union −ln(p-value) that accounts for all 

affected genes was also generated.

Statistical Analysis

Summary scores from questionnaires and clinical assessments were compared among cases 

and controls using 2-tailed t-tests with the Benjamini-Hochberg procedure for multiple 

testing corrections. For all mucosal, muscle and remote bodily pressure pain measurements, 

groups were compared using one-way ANOVA and the Dunnett correction method. The 

thermal windup data were analyzed using a linear mixed model for repeated measures. The 

participant dependent variable was the numeric rating of pain in response to each stimulus. 

Fixed effects were clinical case classification (3 groups, modeled as a categorical variable), 

the stimulus sequence (continuous variable, 1–10) and the square of the stimulus sequence 

(continuous variable, 1–100). Interaction terms between case-classification and each of the 

continuous variables were included to test for differences in the rate of windup among 

clinical sub-groups. The random effect was person (categorical variable) and a variance 

components covariance structure was specified for the random effects. Cytokine expression 

levels were compared among groups using one-way ANOVA and the Dunnett correction 

method. All comparison analyses were completed using GraphPad Prism (Prism, La Jolla, 

CA, USA).

miRNA Data Analysis

Raw data of miRNA Cycle Threshold (CT) were filtered by at least 3 expressed (i.e. CT<32) 

samples within either HC group or combined case group. This filtration process permitted 

assessment of miRNAs that were present in all groups, as well as those that were largely 

increased or decreased in either case or control groups. Of the 761 human miRNAs, 250 

were excluded, leaving 511 miRNAs for analysis. The filtered data was imported into 

DataAssist (Life Technologies, Grand Island, NY, USA) in order to calculate fold changes 

using CT values and the 2ΔΔCT method. Data were normalized by the Global Normalization 

method28 using median CTs with maximum allowable CT of 32 and including max CT in 

the calculations option, then 2ΔΔCT values were exported from DataAssist software as 

relative expression values. Secondary normalization using Variance Stabilization method29 

were performed with the vsn package in Bioconductor (http://www.bioconductor.org/) and 

the output is log2 transformed normalized relative expression values. Differential expression 

of miRNAs between case and control groups was tested by ANOVA or ANCOVA models 

using Partek GenomicSuite software (Partek, St. Louis, MO, USA). Including run and plate 

as fixed effect factors in the models controlled for batch effect between different runs and 

assay plates. Selected clinical variables were included in the models, either as fixed effect 

factor for nominal measures, or covariates in ANCOVA models for numeric measures. 

miRNAs of interest from the differential expression analyses were picked based on 

combination of p-value and fold change filters indicated in the report. Linear regression 

Ciszek et al. Page 7

Transl Res. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://diana.cslab.ece.ntua.gr/pathways/index_multiple.php
http://diana.cslab.ece.ntua.gr/pathways/index_multiple.php
http://www.bioconductor.org/


analyses between miRNAs and intermediate phenotypes were performed in Partek, with 

correlation p-values adjusted for multiple testing using the Benjamini-Hochberg (step-up) 

false discovery rate. Reported correlations are with r<−0.40 or r>0.40, and adjusted p<0.05.

Results

Presence of Comorbid Pain Conditions

Data were collected from 33 women with VBD, 23 with VBD+IBS and 22 HC. Of those 

with VBD+IBS, 8 displayed additional pain conditions: TMD (n=4) or TMD and FM (n=4) 

Subjects were demographically similar (Table 1).

Pelvic Pressure Pain Associated with Case Status

Pain evoked in response to pressure applied to the pelvic muscles and mucosa is a primary 

symptom of VBD. Average responses to pelvic muscle tests were similar at each site (See 

Supplemental Figure 1) therefore data were collapsed across all 3 muscle sites. Compared to 

HC, women with VBD and VBD+IBS had increased stimulus-evoked muscle pressure pain. 

Women with VBD+IBS reported the greatest evoked muscle pain intensity ratings 

(F2,228=19.74, p<0.0001; Fig. 1A) and the lowest muscle threshold scores (F2,191=10.02, 

p<0.0001; Fig. 1B). No differences in muscle pain tolerance were observed (See 

Supplemental Figure 1G–I). Average verbal intensity and threshold responses to pelvic 

mucosal stimulation were similar at each site (See Supplemental Figure 2); therefore data 

were collapsed across all 6 mucosal sites. Compared to HC, women with VBD and VBD

+IBS reported enhanced pain intensity in response to pressure applied to the pelvic mucosa 

(F2,459 =37.26, p<0.0001; Fig. 1C). Women with VBD and VBD+IBS did not, however, 

exhibit reductions in pelvic mucosal pain thresholds (Fig. 1D) as compared to HC. These 

data suggest that muscular pain, which is characterized by increased pain intensity and 

decreased thresholds, is a primary feature of VBD and VBD+IBS. The magnitude of pain 

evoked by mucosal stimulation is less pronounced in VBD and VBD+IBS compared to pain 

evoked by muscle stimulation.

Remote Bodily Pain Associated with Case Status

Pain at remote bodily sites was evaluated to determine if pain was generalized to other body 

regions. When a pressure stimulus was applied to the trapezius (Fig. 1E) or the TMJ (Fig. 

2F), women with VBD+IBS exhibited a tendency towards reduced pain thresholds 

compared to HC or women with VBD alone. Similar group differences were observed in 

response to thermal heat repeatedly applied to the forearm. The 1st stimulus elicited similar 

ratings for all groups. Successive stimuli then elicited greater pain among VBD+IBS 

subjects compared to controls whose pain ratings plateaued after the 6th pulse, indicating 

that women with VBD+IBS have a greater capacity to temporarily summate heat pain. 

Intermediate effects were observed for the VBD group (Fig. 2G). In sum, these data suggest 

that women with VBD+IBS experience enhanced pain in response to pressure and thermal 

stimuli at remote bodily regions, indicative of central sensitization.
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Self-reported Clinical Pain and Psychological Characteristics Associated with Case Status

Compared to HC, women with VBD+IBS displayed greater levels of affective, aching, 

tender and stabbing pain (Table 2). Women with VBD+IBS also demonstrated decreases in 

perceived general and physical health status, while women with VBD demonstrated lower 

perceived mental health status. Additionally, VBD+IBS subjects reported more 

somatization. Lastly, women with VBD+IBS demonstrated a greater number of headaches 

and impact of pain on daily activity in the past 6 months. In sum, VBD subjects were similar 

to HC in self-reported pain and psychological characteristics, whereas VBD+IBS subjects 

reported greater clinical pain and decreased perceived health. Although not tabulated, no 

differences in SCL-90R subscale scores were observed between groups. Significance is 

p<0.05 and overall p-values for all variables are reported (Table 2).

Cytokines Associated with Case Status

Circulating cytokine levels were measured in subjects to determine if inflammatory 

mediators correlate with case status. Of the cytokines measured, IL-8 and IL-1ra were 

statistically significant between groups. Of the remaining 20 cytokines, 9 failed to exhibit 

differences between groups (MCP-1, MIP-1β, ENA-78, FGF basic, G-CSF, IL-6, TNFα, 

Tpo, and VEGF) and 11 were undetectable (MIP-1α, RANTES, GM-CSF, IFN-γ, IL-1α, 

IL-1β, IL-2, IL-4, IL-5, IL-10, and IL-17). Compared to HC, women with VBD and VBD

+IBS had increased expression of pro-inflammatory cytokine IL-8 (F2,79=6.337, p=0.0028; 

Fig. 2A). Women with VBD, but not with VBD+IBS, displayed a compensatory increase in 

anti-inflammatory cytokine IL-1ra (Fig. 2B). These data suggest that women with VBD

+IBS, but not VBD alone, have an impaired anti-inflammatory response.

miRNAs Associated with Case Status

We measured miRNA expression profiles to determine if miRNAs map onto distinguishing 

clinical features of CCPCs. Compared to HC, VBD subjects had downregulation of 7 

(miR-449b, miR-34b, miR-645, miR-503, miR-485-5p, miR-1294, miR-520f) and 

upregulation of 3 miRNAs (miR-200b, miR-133b, miR-520D-3p) at p-value<0.05 (Fig. 3A). 

VBD+IBS subjects had downregulation of 6 (miR-1825, miR-1288, miR-593, miR-485-5p, 

miR-1294, miR-520f) and upregulation of 5 miRNAs (let-7f-2#, miR-512-3p, miR-125a-3p, 

miR-661, miR-520D-3p) (Fig. 3B). Downregulated miRNAs (fold change < -2) are depicted 

by red dots and upregulated miRNAs (fold change > 2) by blue dots (Fig. 3A–B). All 

miRNAs are listed with corresponding fold change and p-value. miRNAs listed under 

“Both” were dysregulated in VBD and VBD+IBS subjects (Fig. 3C). Results were verified 

for 5 of the dysregulated miRNAs using RT-PCR (See Supplemental Figure 3).

Specific miRNAs were associated with pain-relevant cytokines and intermediate 

phenotypes, with the direction of correlation varying according to miRNA and phenotype 

(See Supplemental Table 1). Specifically, 3 miRNAs were associated with IL-1ra expression 

and 2 miRNAs were associated with IL-8 expression. MiRNAs were also associated with 

self-reported pain and function, such that 12 miRNAs were associated with ‘stabbing pain’, 

1 miRNA was associated with ‘affective pain’ and 2 miRNAs were associated with impact 

of pain on daily activity. Finally, miRNAs were associated with experimental pressure pain, 

such that 9 miRNAs were associated with pressure applied to the TMJ and 11 miRNAs were 
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associated with pressure applied to the trapezius. Some miRNAs (miR-645, RNU44, 

miR-543 and miR-213) were associated with more than one phenotype and, thus, may play a 

key role in pain-relevant processes. All correlations with absolute values >0.40 and p<0.05 

are reported (See Supplemental Table 1).

miRNA Pathways Associated with Case Status

We performed in silico pathway analysis using DIANA-miRPath v2.0 to identify genes and 

downstream pathways affected by miRNA dysregulation in CCPCs.30 In both groups, 

miRNA dysregulation is predicted to disrupt transforming growth factor beta (TGF-β), 

mitogen-activated protein kinase (MAPK) and Wnt signaling pathways (Fig. 4, green). For 

example, upregulation of miR-520D-3p causes decreased levels of SMADs in the TGF- β 

pathway. Downregulation of miR-485-5p and miR-520f causes increased levels of MAPK 

genes such as protein kinase B (AKT1) and mitogen-activated protein 3-kinase 14 

(MAP3K14). Downregulation of miR-485-5p results in increased levels of myc-associated 

factor X (MAX), another MAPK gene. Upregulation of miR-520D-3p causes increased 

levels of deubiquitinating enzymes (DUSPs), which act as MAPK phosphatases.31 MAPKs 

and SMADs are also involved in Wnt signaling.

In VBD, but not VBD+IBS, the dorsal-ventral axis formation, gonadotropin-releasing 

hormone (GnRH) and gap junction pathways may be affected (Fig. 4, blue). For example, 

downregulation of miR-34b and miR-449b leads to increased levels of dorsal-ventral axis 

proteins including receptor tyrosine-protein kinase erbB-4 (ERBB4), protein C-ets-1 (ETS1) 

and RAF proto-oncogene serine/threonine-protein kinase (RAF1). Downregulation of 

miR-200b causes increased levels of many gap junction proteins including: epidermal 

growth factor receptor (EGFR), GTPase KRas (KRAS), adenylate cyclase type 9 (ADCY9), 

phospholipase C beta-4 (PLCB4), cAMP-dependent protein kinase catalytic subunit beta 

(PRKACB), protein kinase C (PRKCA) and lysophosphatidic acid receptor 1 (LPAR1). 

Many of these proteins (i.e. RAF1, ADCY9, KRAS, PLCB4, PRKACB and PRKCA) are 

also vital to the GnRH pathway.

In VBD+IBS, but not VBD, the extracellular matrix (ECM), insulin resistance and 

dentatorubral-pallidoluysian atrophy (DRPLA) pathways may be affected (Fig. 4, red). 

Downregulation of miR-593 causes increased expression of ECM proteins including 

fibronectin type III domain containing 1 (FNDC1) and integrin alpha 5 (ITGA5). 

Upregulation of let-7f and miR-661 causes decreased levels of ECM proteins alpha-1 type I 

collagen (COL1A1) and dystroglycan 1 (DAG1), respectively. Upregulation of 

miR-125a-3p and miR-512-3p causes decreased levels of integrin beta 1 (ITGB1), another 

ECM protein; and insulin (INS), insulin receptor (INSR) and phosphatidylinositol-4,5-

bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), each of which is involved with 

insulin resistance. The insulin resistance and DRPLA pathways greatly overlap, sharing 

proteins such as INS and INSR. Full lists of the top 20 affected pathways for each group are 

reported with names and union −ln(p-values) for target genes (See Supplemental Tables 2–

3). Shared and unique pathways identified in VBD versus VBD+IBS may provide insight on 

the mechanisms underlying localized and widespread pain.
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Discussion

Complex and chronic pain conditions are heterogeneous in nature and have limited effective 

therapeutic options. Here, we identify two subtypes of chronic pain patients, those with 

localized pain (VBD) and those with widespread pain (VBD+IBS) that differ with respect to 

pain phenotypes, psychological profiles, circulating cytokine expression and miRNA 

profiles. Pathway analysis of miRNA targets further suggests mechanisms that are common 

and unique to VBD and VBD+IBS.

Historically, VBD has been defined as a vulvar mucosa condition.15 Our results, however, 

demonstrate that enhanced pelvic pressure pain in VBD and VBD+IBS is experienced 

predominantly in the muscles, suggesting modest increases in mucosal pain may exist as a 

byproduct of muscle pain. These data are in line with recent evidence that proposes a 

complex pathophysiology for VBD, involving the muscles as well as the peripheral and 

central nervous systems.32 This suggests that VBD is, and should be treated as, a 

musculoskeletal pain condition.

Although VBD and VBD+IBS groups had similar pelvic pain phenotypes, they differed in 

remote bodily pain phenotypes and psychological profiles. Increased responses to 

mechanical and thermal stimuli at remote bodily sites in VBD+IBS indicates central 

enhancement in the processing of pain-evoking sensations.33 Our results are in line with 

those from studies that suggest chronic pain conditions such as VBD likely reflect localized 

sensory dysregulation in the affected area34 whereas widespread bodily pain often involves 

dysregulation in central pain processing, perhaps due to sensitization of spinal nociceptors35 

or impairments in descending noxious control systems.36 This probably explains why there 

was co-occurrence of TMD or FM for several of the VBD+IBS subjects and it raises the 

possibility that those, or other, overlapping pain conditions might likewise be associated 

with circulating cytokine expression and miRNA profiles. Unfortunately, there were too few 

TMD and FM subjects to address that question with sufficient power in this study, although 

it merits investigation in future studies.

Women with VBD also differed from those with VBD+IBS in circulating cytokine 

expression. Women with VBD had elevated levels of pro-inflammatory cytokine IL-8 and 

anti-inflammatory cytokine IL-1ra. This is consistent with studies that have demonstrated 

elevated inflammatory cytokine levels in pain conditions such as TMD and FM.37, 38 

Women with VBD+IBS had elevated levels of IL-8 with no compensatory increase in 

IL-1ra. IL-1ra, a negative regulator of inflammation, can suppress IL-8 expression and block 

IL-8-induced mechanical pain.39, 40 Our finding is similar to that of a study that indicates an 

imbalance between IL-8 and IL-1ra in individuals with TMD plus widespread pain.6 In sum, 

women in this study can be divided into two subsets: (1) those with localized pelvic pain, 

whose pain at other bodily sites resembles that of HC, who otherwise report good health and 

who have intact anti-inflammatory responses; and (2) those with co-occurring pain 

conditions, more pain at remote bodily sites, poorer self-reported health and impaired anti-

inflammatory responses.
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As miRNAs are key regulators of processes related to pain, psychological variables and 

inflammatory responses, we explored their expression in VBD and VBD+IBS by miRNA 

profiling. Shared dysregulation of miRNAs may help to elucidate the mechanisms 

underlying CCPCs. Both VBD and VBD+IBS groups in this study demonstrate 

dysregulation of miR-485-5p, miR-1294, miR-520f and miR-520D-3p. Previous studies 

have found the same miRNAs to be associated with other diseases. For example, 

miR-485-5p41, 42 and miR-520D-3p43 have been linked with cancer, and miR-1294 has been 

linked to Alzheimer’s 44 and Parkinson’s disease.45 While little is understood about the 

function and role of miR-520f in human disease, the miR-520 family is known to regulate 

IL-8.46 Downregulation of miR-520f, but not upregulation of miR-520D-3p, can explain the 

increased IL-8 levels measured here in women with VBD and VBD+IBS. It is important to 

note that miRNA regulation is dynamic and complex. MiRNA expression can be affected by 

the presence of downstream mRNAs or proteins, and can be indirectly influenced by 

miRNAs within the same family. Several interactions, particularly in the form of negative or 

positive feedback loops, have been established within miRNA families.47 Additional 

experiments are necessary in order to confirm the relationship between the miR-520 family 

and IL-8 in VBD and VBD+IBS, and to measure the concerted effect of these and other 

miRNAs on cytokine expression.

In order to further understand how these miRNAs could contribute to CCPCs, we performed 

pathway analysis of predicted downstream targets. Both the VBD and VBD+IBS groups 

share predicted disruption of pain-relevant pathways. For example SMADs, which are 

downregulated in CCPCs, are responsible for regulating anti-inflammatory cytokines of the 

TGF-β family and controlling inflammatory response.48, 49 Our results are in line with those 

from the TMD study previously mentioned that demonstrates suppression of the TGF-β 

pathway in individuals with either TMD or TMD plus widespread pain.6 We demonstrate 

potential upregulation of AKT1, MAP3K14, MAX and DUSPs in CCPCs, each of which 

may contribute to pain sensitization, pro-inflammatory mediator synthesis and the 

development of chronic pain via the MAPK pathway.31, 50–53 MAPKs and SMADs are also 

involved in Wnt signaling, a pathway that alters production of pro-inflammatory cytokines 

and sensitivity of peripheral sensory neurons, thereby contributing to development of 

neuropathic pain.54, 55 We conclude that dysregulation of miRNAs and downstream 

pathways may promote a constant state of inflammation and pain in women with VBD and 

VBD+IBS.

Dysregulated miRNAs that do not overlap between the two groups represent unique 

pathways of vulnerability. Women with VBD have dysregulation of miR-449b, miR-34b, 

miR-645, miR-503, miR-200b and miR-133b. MiR-449b,56 miR-34b,57 miR-645,58 

miR-50359, miR-200b60 and miR-133b 61 have been implicated in cancer. Notably, 

miR-449b is known to regulate neurokinin-1 receptor (NK1R) in chronic bladder pain 

syndrome (BPS). 62 The NK1 pathway is important for pain transmission and neuroimmune 

modulation63 and may be affected similarly in VBD and BPS.

Based upon miRNA dysregulation, our pathway analysis predicts that women with VBD 

have increased levels of ERBB4, ETS1 and RAF1, each of which may contribute to 

inflammation or the development of neuropathic pain.64–67 Other proteins targeted in VBD 

Ciszek et al. Page 12

Transl Res. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



include EGFR, KRAS, ADCY9, PLCB4, PRKACB, PRKCA and LPAR1, which are all 

linked to inflammation.68–70 Interestingly, another common denominator of the genes and 

pathways affected in VBD is estrogen.71–75 RAF1, ADCY9, KRAS, PLCB4, PRKACB and 

PRKCA are vital to the GnRH pathway, in which neuropeptide GnRH interacts with 

estrogen via a negative feedback loop to maintain hormone levels.76 Other affected targets, 

such as ETS1, ERBB4 and LPAR1 interact directly with estrogen or estrogen 

receptors.72, 77, 78 Our results predict that women with VBD will have blunted estrogen and 

GnRH activity. This provides a possible explanation for why estrogen and GnRH effectively 

reduce pain in endometriosis and other pelvic pain conditions.79, 80 From these results we 

conclude that miRNA dysregulation of estrogen-relevant genes contributes to localized 

pelvic pain characteristic of VBD.

We found that subjects with VBD+IBS show dysregulation of miR-1825, miR-1288, 

miR-593, let-7f-2#, miR-512-3p, miR-125a-3p and miR-661. MiR-1825,81 miR-593,82 

let-7f-2#,83 miR-512-3p,84 miR-125a-3p85 and miR-66186 have all been shown to contribute 

to cancer. In addition, miR-1825 has been associated with avian influenza;87 miR-1288 with 

ectopic pregnancy;88 and let-7f-2# with lupus.89 Most relevant to our results, miR-125a-3p 

has been shown to promote orofacial pain through upregulation of p38 MAPK.90

In VBD+IBS, our pathway analysis predicts that miRNA dysregulation will affect genes of 

the ECM including COL1A1, ITGB1 and ITGA5. Alterations in the ECM, which provides 

structural and mechanical support to surrounding tissue, have been previously linked to 

many painful conditions.91, 92 INS and INSR, also affected in VBD+IBS, have been 

implicated in nociception via the insulin resistance pathway.93 In addition, each of the 

pathways and molecules affected by miRNA dysregulation in VBD+IBS share an 

involvement in both muscle function and sensory processing. For example, COL1A1 has 

been implicated in skeletal muscle atrophy.94 Decreases in ITGB1, PIK3CA and INS have 

all been linked to impairments in muscle development and function.95–97 ITGA5 interacts 

with fibronectins to influence astrocyte physiology98 and ITGB1 is necessary for normal 

axon formation.99 Decreased DAG1 expression is associated with abnormal myelin sheath 

folding and muscle impairment.100 In sum, dysfunction of pathways such as muscle and 

sensory nerve processes may lead to central sensitization and generalized body pain in VBD

+IBS.

While the present study did not enroll women with IBS alone, an emerging literature 

demonstrates the contribution of miRNAs, particularly the miR-29 family, to IBS.101, 102 

Interestingly, we did not observe an overlap between the miRNAs associated with IBS in 

other cohorts and those associated with VBD or VBD+IBS in our cohort. This might reflect 

the differential expression of miRNAs in different sample types (e.g., whole blood used in 

the present study versus colon tissue and microvesicles commonly used in IBS studies). 

Further, it might indicate that the pathophysiological processes that drive IBS are distinct 

from those that drive VBD or VBD+IBS.

In conclusion, we have identified separate pathways for localized versus widespread pain as 

predicted by miRNA profiles. miRNA dysregulation in VBD is predicted to affect estrogen-

relevant pathways, explaining why pain is localized to the pelvis. In contrast, miRNA 
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dysregulation in VBD+IBS may be linked to alterations in muscle, nerve and glial cell 

function, thereby contributing to widespread pain. While these results suggest that miRNAs 

hold promise as biomarkers for chronic pain, it is important to note that existing miRNA 

studies of human CCPCs are underpowered statistically and our knowledge of miR-1294, 

miR-645, miR-1825 and miR-1288 is extremely limited. Further studies are required to 1) 

identify miRNA profiles in a larger population of chronic pain patients; 2) observe miRNA 

expression profiles in sample types other than whole blood (e.g., plasma, tissue, specific cell 

types); 3) validate changes in the expression levels of the predicted targets (e.g., estrogen 

and insulin); 4) correlate miRNA profiles with response to treatments that target different 

pathophysiologic processes (e.g., topical estrogen therapy to improve local vestibular 

tone103 versus anticonvulsant medication to calm the activity of nociceptive 

neurons104–106); and 5) assess the effectiveness of targeting miRNAs and downstream 

pathways to reduce and manage symptoms of chronic pain patients. Accomplishing these 

next steps will facilitate the use of miRNA screening tools in the clinic to determine the 

most effective treatment with minimal risk for patients with chronic pain. Such studies 

should help inform the development of novel therapeutics targeted against one of several 

key elements along the canonical pathway from gene to protein.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Pelvic muscle and mucosa pressure pain is enhanced in women with VBD and VBD+IBS, 
while remote bodily muscle pain and thermal windup is enhanced only in women with VBD+IBS
Women with VBD or VBD+IBS reported greater pain intensity and decreased pain 

thresholds in the pelvic muscle (A–B) and mucosa (C–D). Women with VBD+IBS 

demonstrated a trend towards decreased pressure pain thresholds in the trapezius (E) and 

temporomandibular joint (F) as compared to HC and VBD. (G) For the thermal data, there 

was a significant interaction between study group and stimulus sequence, although not 

between study group and the square of stimulus sequence. VBD+IBS women exhibit the 

greatest degree of pain in response to the windup thermal heat assay. Data are Mean ± SEM. 

*p<0.05, ***p<0.001, ****p<0.0001 compared to HC; †p<0.05 as compared to HC and 

VBD.
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Fig. 2. Cytokine expression is altered in women with VBD and VBD+IBS
Compared to HC, women with VBD exhibit elevated levels of pro-inflammatory cytokine 

IL-8 (A) and anti-inflammatory cytokine IL-1ra (B). Women with VBD+IBS exhibit 

elevated levels of IL-8, but no compensatory increase in IL-1ra. Data are Mean ± SEM. 

*p<0.05, **p<0.01 compared to HC; †p<0.05 compared to HC and VBD+IBS.
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Fig. 3. miRNA expression signatures are altered in women with VBD and VBD+IBS
Compared to HC, women with VBD exhibit significant downregulation of 7 and 

upregulation of 3 miRNAs (A), while women with VBD+IBS exhibit significant 

downregulation of 6 and upregulation of 5 miRNAs (B). Red dots represent downregulated 

miRNAs and blue dots represent upregulated miRNAs compared to HC. Four miRNAs are 

dysregulated in both VBD and VBD+IBS women. Dysregulated miRNAs are listed with 

fold change and p values (C).
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Fig. 4. miRNA dysregulation affects multiple genes and pathways in women with VBD and VBD
+IBS
miRNA dysregulation in women with VBD and VBD+IBS leads to dysregulation of genes 

involved in pain-relevant pathways including the TGFβ, MAPK, and Wnt signaling 

pathways (shown in green). Pathways that do not overlap between women with VBD and 

VBD+IBS represent separate pathways of vulnerability. Pathways unique to VBD (shown in 

blue) include the dorso-ventral axis formation, GnRH signaling and gap junction pathways. 

Pathways unique to VBD+IBS (shown in red) include the ECM, DRPLA and insulin 

resistance pathways. A considerable amount of interaction and communication is 

demonstrated between genes and across pathways. See Supplemental Content for 

abbreviations.
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Table 1

Demographic Data

Demographic Data HC VBD VBD+IBS

N 22 33 23

Age 26.09 (1.04) 28.06 (1.10) 28.13 (1.36)

Weight (kg) 69.90 (0.66) 63.63**** (0.45) 60.88**** (0.66)

RACE

White 16 25 16

Black 2 4 2

Hispanic 1 1 0

Other 3 3 5

EDUCATION

High school 1 1 1

Some college 3 4 4

College grad 6 13 10

Post grad 12 15 8

INCOME

0–39k 7 12 10

40–79k 7 9 6

80–149k 2 6 2

150k+ 3 2 1

refused or left blank 3 4 3

COMORBID CONDITIONS

VBD + IBS only N/A N/A 15

VBD + IBS + TMD N/A N/A 4

VBD + IBS + TMD + FM N/A N/A 4

Abbreviations: healthy control (HC), vestibulodynia (VBD), irritable bowel syndrome (IBS), temporomandibular joint disorder (TMD), 
fibromyalgia (FM). For age and weight, data are mean (SEM). For other categories, N is reported for each group.

****
p<0.0001 compared to HC.
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