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A meta-analysis of gene expression quantitative trait loci
in brain
Y Kim1,8, K Xia2,8, R Tao3, P Giusti-Rodriguez1, V Vladimirov4,5, E van den Oord6 and PF Sullivan1,2,7

Current catalogs of brain expression quantitative trait loci (eQTL) are incomplete and the findings do not replicate well across
studies. All existing cortical eQTL studies are small and emphasize the need for a meta-analysis. We performed a meta-analysis of
424 brain samples across five studies to identify regulatory variants influencing gene expression in human cortex. We identified
3584 genes in autosomes and chromosome X with false discovery rate qo0.05 whose expression was significantly associated with
DNA sequence variation. Consistent with previous eQTL studies, local regulatory variants tended to occur symmetrically around
transcription start sites and the effect was more evident in studies with large sample sizes. In contrast to random SNPs, we observed
that significant eQTLs were more likely to be near 5’-untranslated regions and intersect with regulatory features. Permutation-based
enrichment analysis revealed that SNPs associated with schizophrenia and bipolar disorder were enriched among brain eQTLs.
Genes with significant eQTL evidence were also strongly associated with diseases from OMIM (Online Mendelian Inheritance in
Man) and the NHGRI (National Human Genome Research Institute) genome-wide association study catalog. Surprisingly, we found
that a large proportion (28%) of ~ 1000 autosomal genes encoding proteins needed for mitochondrial structure or function were
eQTLs (enrichment P-value = 1.3 × 10−9), suggesting a potential role for common genetic variation influencing the robustness of
energy supply in brain and a possible role in the etiology of some psychiatric disorders. These systematically generated eQTL
information should be a valuable resource in determining the functional mechanisms of brain gene expression and the underlying
biology of associations with psychiatric disorders.
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INTRODUCTION
Psychiatric disorders like schizophrenia, bipolar disorder, major
depressive disorder, autism and substance use disorders account
for a significant proportion of disability world-wide1 and cause
enormous personal and societal burdens.2 The lifetime prevalence
estimates range from 0.1% (autism spectrum disorder) to 24%
(nicotine dependence).3 These disorders have a significant genetic
component, with estimates of heritability ranging from 37%
(major depressive disorder) to 81% (schizophrenia).3

Recent genome-wide association studies (GWAS) investigating
the genetic architecture of psychiatric disorders have identified
many common variants that meet consensus criteria for
significance and replication.4–6 Understanding the biological
mechanisms by which these common variants contribute to
complex traits is challenging. The main reason is that the majority
(490%) of disease-associated variants from many GWAS lie in
noncoding regions,7 making evaluation of their function difficult.
However, accumulating evidence suggests that these noncoding
common variants are involved in transcriptional regulatory
mechanisms such as promoter and enhancer elements8 and
enriched within expression quantitative trait loci (eQTL).8–20 In
addition, about 77% of SNPs implicated in GWAS were within or in
high linkage disequilibrium (LD) with DNase I hypersensitivity

sites, a marker for open chromatin subject to transcriptional
regulation.7,21,22

eQTL studies measure genetic variation and gene expression in
the same individuals, and thus link DNA variation to mRNA
variation.8 These studies have received particular attention due to
their inherent relevance to the control of gene expression and
because they provide a way to generate hypotheses about the
functional meaning of GWAS findings via relatively simple data
base queries.11,23,24

There are relatively few eQTL studies of human brain tissue25–28

or brain disease.23,29 Current catalogs of brain eQTLs are
incomplete and the findings do not replicate well across studies
—all existing brain eQTL studies are small and highlight the need
for a meta-analysis.30 Thus, we performed an eQTL ‘meta-analysis’
of gene expression and GWAS data for 424 normal brain samples
from five studies—Gibbs et al.,27 Colantuoni et al.,31 Myers et al.,26

Stanley Medical Research Institute (SMRI),32,33 and the NIH
Genotype-Tissue Expression (GTEx) project.34 We identified more
than 3000 genes whose expression was significantly associated
with DNA sequence variation. Many of these genes have been
implicated in psychiatric disorders. Surprisingly, we found that a
large proportion (28%) of ~ 1000 autosomal genes encoding
proteins needed for mitochondrial structure or function were
eQTLs. This suggests a potential role for common genetic variation
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influencing the robustness of energy supply in brain and a
possible role in the etiology of some psychiatric disorders.

MATERIALS AND METHODS
Gene expression data
The quality control procedures for each study are described in the
Supplementary Methods. Briefly, we included brain cortical samples from
neuropathologically normal subjects of European ancestry and aged ⩾ 20
years at death. We downloaded raw intensity files from the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and conducted
extensive quality control procedures. As in our prior work, we processed
gene expression data as consistently as possible across all studies.30,35 First,
we mapped the probe sequences for all expression arrays to the genome
(UCSC hg19) using Bowtie36 and removed probes that did not map,
mapped to multiple locations or intersected a polymorphic SNP (HapMap3
(ref. 37) and 1000 Genomes Project data38) because such probes can result
in inaccurate expression.39 Second, we excluded outlier samples on the
basis of inter-sample correlations30 or if phenotypic sex did not match
mean expression of probesets on chrX and chrY. Third, we also used
hierarchical clustering (R function hclust) and principal component analysis
(PCA) to evaluate overall performance of all arrays. Samples were clustered
using the R function hclust with the average link function. The distance
function used in clustering was defined as 1-|corr(s1, s2)|, where s1 and s2
refer to the expression profiles of two samples. PCA was conducted using
the approach of Price et al.40 To combine data from different microarrays,
probes (Illumina data) or probesets (Affymetrix data) were linked to the
corresponding Entrez gene identifiers from annotation files. We used mean
expression if there were multiple probes/probesets for an Entrez gene
identifier.

Genotype data
For each study, we excluded samples that were related (π̂40.04),
moderate relatedness with many subjects (indicating contamination or
poor quality), low call rate (o0.9), inconsistent phenotype-genotype sex
and ancestry outliers detected by principal component analysis. We
removed SNPs with low call rate (o0.9), low minor allele frequency (MAF
o0.01), deviation from Hardy–Weinberg equilibrium (PHWE o1 × 10−8),
and allele frequencies inconsistent with the 1000 Genomes Project
reference panel (MAF difference o0.07). We imputed genotype dosages
using the 1000 Genomes Project reference panel using MaCH-admix.41

MaCH-admix does not require phasing before imputation, which is suitable
for small studies. ChrX was imputed in males using the option in MaCH-
admix and females were imputed in the same way as autosomes. We
retained SNPs with imputation R2⩾ 0.3 and MAF greater than max (0.05,
5/2N).

Evaluation of covariates
Detailed information about covariate evaluation is in the Supplementary
Methods. Briefly, we selected covariates for gene expression in two steps.
First, we assessed all covariates by computing the type III sum of squares
(SAS, v9.2) that compares a full model containing all covariates to a
reduced model excluding the covariate under consideration. The impact of
a covariate was quantified by determining the number of genes with a
false discovery rate (FDR)42 o0.05. We included an ‘impactful’ covariate
when ⩾ 1% of genes met this criterion. Second, we regressed out the
selected covariates and performed PCA on the residuals. The final covariate
list included impactful covariates from the first step and the significant
principal components from the second step. For the genotype data from
each study, we excluded outliers that fall apart from HapMap3 CEU
subjects. Supplementary Figure S1 depicts genotype PC1 versus genotype
PC2 of samples in each study together with HapMap3 samples. To
determine the genomic PCs that need to be included for adjustment of
population stratification, we employed several methods. First, we
examined a scree-plot (Supplementary Figure S2) per study, which shows
the proportions of total variance in genotype data explained by various
PCs. Second, we tested genome-wide association between each PC as a
dependent variable and SNPs as independent variables and calculated the
genomic inflation factor43 from each association test. Supplementary
Figure S3 shows the contribution of each PC to genomic inflation factor. In
all studies, PC1 is clearly the major contributor to λGC. There are far lesser
contributions from PC2-5. Third, we evaluated whether inclusion of PC1 is
enough or several more PCs may be needed to control for population

substratification. For the latter approach, we included PC1-PC5 in eQTL
analysis for each study and meta-analyzed eQTLs explained below. The
meta-analysis results from the two approaches were very similar. A scatter
plot of t-test statistics from the two approaches showed that the
magnitude and direction were almost identical (Supplementary Figure
S4, Pearson’s correlation= 0.98). The clustering pattern of significant local
SNP–gene eQTLs near transcription start sites remained the same
(Supplementary Figure S11). Number of significant eQTLs at varying FDR
thresholds reduced marginally as expected (Supplementary Table S3). We
present all tables and figures in the manuscript on the basis of eQTL
analysis with genomic PC1.

eQTL analysis
We used MatrixEQTL44 to conduct the gene expression linear regression
GWAS for each study while controlling for study-specific covariates. We
evaluated all ‘local’ eQTLs (SNP–gene distance o1 Mb). We did not
evaluate ‘distant’ eQTLs given the large number of statistical comparisons
and consequent low power.30 The local eQTLs for each study were then
meta-analyzed using a fixed effects model.45 ChrX eQTL analysis was done
separately for males and females in each study and then combined using
fixed effects meta- analysis, and male and female results combined using
Fisher's test.46 FDR was used to control for multiple comparisons. FDR was
computed separately for chr1-22 and chrX as the P-values were based on
different models (t-statistics for autosomes and χ2 for chrX). We used sign
tests to compare the signs of t-statistics between the five studies. Under
the null hypothesis, half of the signs will be the same between two studies.
The significance of the observed proportion was evaluated using the
binomial distribution.

Enrichment analyses
Common variants identified from GWAS may influence susceptibility to
diseases via regulation of gene expression.8,9 We evaluated this broad
hypothesis using enrichment analyses.
First, we assessed whether SNPs associated with psychiatric disorders

were enriched among genetic variants that were part of a cortical eQTL
(that is, SNP–gene pair) using permutation tests.10 Specifically, we
evaluated the overlap between eQTLs in human cortex with five
psychiatric disorders studied by the Psychiatric Genomics Consortium
(PGC): attention-deficit hyperactivity disorder, autism, bipolar disorder,
major depressive disorder and schizophrenia (SCZ).5 We obtained results
files from the PGC website (https://pgc.unc.edu/Sharing.php#SharingOpp)
from a GWAS meta-analysis of these disorders in independent cases and
controls.47 There were 1 065 656 GWAS SNPs common to the five PGC
results files and our brain eQTL SNPs. We excluded the extended major
histocompatibility locus (eMHC, chr6:25–34Mb) given its high gene
density, LD and functionally clustered genes. We compared LD-pruned
sets of GWAS SNPs generated via PLINK (—indep-pairwise 100 25 0.8).48

For each disorder, we generated 10 000 randomized SNP sets, each the
same size as the original list of associated GWAS SNPs at a given P-value
threshold matched on MAF distribution of the original list and sampled
without replacement from the null set. For each set, we determined the
number of significant eQTL SNPs at FDR threshold of 0.05. These
permutations yielded an empirical enrichment P-value, calculated as the
proportion of 10 000 randomized sets in which the number of eQTL SNPs
exceeds the originally observed number of eQTL SNPs at the FDR
threshold. We repeated this analysis for a recent larger SCZ GWAS.49

Second, we evaluated whether genes that were part of a SNP–gene
eQTL in brain were enriched for functional roles in biological pathways or
similar cellular functions. We evaluated the following gene sets previously
associated with SCZ: expert-curated lists of synaptic genes,50 genes
encoding postsynaptic density proteins,51 genes encoding the NMDA (N-
methyl-D-aspartate) receptor52 and activity-regulated cytoskeleton-asso-
ciated protein complex,52 genes whose mRNAs interact with FMRP,53

genes encoding components of voltage-gated calcium channels (all CACN*
RefSeq genes)49 and genes whose proteins interact with a calcium channel
subunit.54 We also evaluated OMIM disease genes,55 genes with an eQTL in
peripheral blood from the largest human eQTL study,30 and the human
orthologs of genes with local eQTLs in mouse brain.56 We tested for
enrichment using a right-sided Fisher’s exact test compared with all 17 537
autosomal genes tested in our meta-analysis and for 9855 brain-expressed
genes (defined as mean expression greater than the 25% quantile in three
of the five studies in this meta-analysis).
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Bioinformatic evaluation
We evaluated whether brain eQTLs were enriched for variants implicated
in complex diseases using the NHGRI GWAS catalog (http://www.genome.
gov/26525384, downloaded September 2013).57 We selected GWAS SNP
associations with reported P-values o1 × 10− 9 and keeping the SNP-trait
association with the smallest P-value. Many local eQTLs span an extended
region containing multiple eQTL SNPs with significant correlation. These
are not independent associations but result from high LD between
associated eQTL SNPs. We summarized these regions using ‘clumping’
(that is, the index eQTL SNP with the strongest association plus the
genomic range defined by other eQTL SNPs in high LD with the index SNP)
for each significant gene.49 We focused on genes with qo0.05 and
performed clumping using PLINK to retain eQTL SNPs with r2o0.6 within
500-kb windows (—clump-P1 0.05—clump-P2 0.05—clump-r2 0.6—clump-
kb 500). To guard against a falsely inflated intersection rate with the GWAS
catalog SNPs, we used q-values rather than P-values as input for clumping
and identified GWAS catalog SNPs with reported P-values o1× 10−9 that
were intersecting the clumped regions.

RESULTS
Meta-analysis of eQTL
We first conducted eQTL analyses for each of the five cortical
studies. After quality control, sample sizes ranged from 24 to 189
and the numbers of transcripts ranged from 10 038 to 15 857 per
study (17 537 genes evaluated at least one study). Supplementary
Figures S5–S9 show plots of gene location versus eQTL location.
We defined a local eQTL as an SNP–gene eQTL ± 1Mb of the
transcription start or end sites for a gene and distant otherwise. As
expected, local eQTLs tended to have stronger effects than distant
eQTLs. Studies with small sample sizes showed much weaker
local eQTLs.
We next conducted a meta-analysis of 424 brain samples across

five studies to identify regulatory variants influencing gene
expression in human cortex (Table 1). As previous eQTL
studies14,30,35,58 reported that distant eQTLs are usually weaker
than local eQTLs, replicate poorly and require considerably larger
sample sizes for reliable detection, we restricted our meta-analysis
to the detection of local eQTLs. To evaluate the consistency of
effects between studies, we performed sign tests between all pairs
of studies (Supplementary Table S1). Sign tests were done in two
ways: selecting SNP–gene pairs from the first study with
Po1 × 10−5 and evaluating the signs for the same SNP–gene
pairs in the second study, and by reversing the procedure. Sign
tests for the results of the three studies with N450 were always
highly significant (concordance rates = 69–80%, P= 1.5 × 10−7 or
smaller). More stringent P-value cutoffs gave similar results. The
sign tests indicate the general comparability of the five data sets
and also show the dramatic effect of increased sample size.
The number of eQTLs at varying FDR thresholds is summarized

in Supplementary Table S2. We used a standard FDR threshold
o0.05 throughout the paper. At this threshold, there were
176 794 significant autosomal SNP–gene pairs arising from
159 151 SNPs and 3520 genes. This includes more SNP–gene
pairs than that found in individual studies (Table 2). As expected,
we detected more eQTLs from studies with larger sample sizes.

Figure 1a shows distribution of q-values for the most significant
association for each gene in autosomes and chromosome X.
Figure 1b depicts a Manhattan plot for the primary results,
showing the q-value of the most significant SNP for each of 17 546
autosomal genes and 650 genes tested on chrX. The most
significant association was in CRYBB2 (rs997872, q= 1.75 × 10−38).
CRYBB2 encodes βB2-crystallin, which is a structural protein in the
ocular lens,59 but recent studies demonstrated that this gene is
expressed in several regions of the mammalian brain60 and βB2-
crystallin has a role in hippocampal function and behavioral
phenotypes.59 The second most significant signal was for CHURC1
(churchill domain containing protein 1; rs10131002,
q= 1.18 × 10− 30). A prior study61 identified CHURC1 as a potential
candidate gene for autism. Another top association signal was for
NSUN2 (rs567289, q= 1.94 × 10−23) which encodes a tRNA
methyltransferase and causes an autosomal form of mental
retardation (OMIM 611091).62,63

The X chromosome is enriched for genes important in brain
development, mental retardation and intellectual disability.64–68

Of 650 chrX genes, there were 1486 significant SNP–gene pairs
arising from 1321 SNPs and 64 genes (Figure 1b). Comparison of
significant eQTL genes with OMIM revealed that several genes
previously implicated in mental retardation showed association
signals from sex-combined analysis: OPHN1 (OMIM 300127,
q= 0.004 with rs618306 ), ARHGEF6 (OMIM 300267, q= 0.005 with
rs150810369), ACSL4 (OMIM 300157, q= 0.01 with X:108198176),
SRPX2 (OMIM 300642, q= 0.03 with rs35728723), IGBP1 (OMIM
300139, q= 0.03 with rs12846068), IL1RAPL1 (OMIM 300206,
q= 0.04 with rs7471803).
We next asked whether there are genomic regions with

unusually higher or lower numbers of eQTLs. We evaluated the
relationship between the numbers of genes and eQTLs within
each 1 Mb interval of the genome. The MHC region (chr6:31–
33Mb) showed more significant genes than expected (41 of 93
genes were significant eQTLs). On the other hand, none of the 32
genes in chr1:152–153Mb was an eQTL. This region contains a

Table 1. Sample summary

Study Subjects Cortical region Genes SNPs RNA array DNA array

Colantuoni et al.31 56 Frontal 14 308 7 887 134 IL Human 49 K Oligo array IL 650 K
Gibbs et al.27 124 Frontal 12 010 7 874 224 IL HumanRef-8 IL 550 K
GTEx 24 Frontal 13 524 7 780 852 RNA-seq (IL HiSeq 2000) IL Omni 5 M
Myers et al.26 189 Frontal, temporal 15 857 6 391 052 IL HumanRef-8 AF 500 K
SMRI 31 Frontal 10 038 6 779 110 AF HG-U133a AF 5.0

Abbreviations: AF, Affymetrix; GTEx, Genotype-Tissue Expression project; IL, Illumina; SMRI, Stanley Medical Research Institute; SNP, single-nucleotide
polymorphism. Number of European-ancestry subjects aged ⩾ 20 after quality control.

Table 2. Summary of meta-analysis results in autosomes (qo0.05)

Study SNP–gene
eQTL pairs

Unique
SNPs

Unique
genes

Genes overlapping
with meta-analysis

Colantuoni
et al.31

10 792 10 767 364 250 (7%)

Gibbs et al.27 110 541 103 099 2101 1279 (36%)
GTEx 0 0 0 0 (0%)
Myers et al.26 67 534 63 768 1308 864 (25%)
SMRI 1018 1018 42 22 (1%)
Meta-analysis 176 794 159 151 3520 3520 (100%)

Abbreviations: GTEx, Genotype-Tissue Expression project; SMRI, Stanley
Medical Research Institute; SNP, single-nucleotide polymorphism. Over-
lapping genes compare an individual study to the 3520 genes with
qo0.05 in the meta-analysis.
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cluster of late cornified envelope genes, which are specifically
expressed in skin.

Characteristics of local SNPs
We examined functional consequences of significant SNPs with
qo0.05 (143 679 unique SNPs) using the Ensembl Variant Effect
Predictor (VEP) tool.69 VEP reports a set of consequence terms
defined by the Sequence Ontology (http://www.sequenceontology.
org). Detailed information can be found at http://useast.ensembl.
org/info/genome/variation/predicted_data.html#consequences. We
used options (--most_severe, --per_gene) to output only the most
severe consequence per gene. If a gene has multiple transcripts,
an SNP was assigned to the transcript with the most severe
predicted consequence. If more than one transcript has the same
predicted consequence, VEP tool selected the transcript at
random. Most significant SNPs were intronic (65.9%) followed by
intergenic (14.6%), or upstream (7.1%) or downstream (5.8%) of
protein coding sequence. Notably, only a small number of SNPs
were exonic (2.0%). As shown in Figure 2a, SNPs in the 5’-
untranslated region had the highest overlap with regulatory
features (69.4%), and intergenic SNPs had the lowest overlap
(10.6%). The overall proportion of variants in a regulatory feature
was 13.6%. Next, we asked whether similar functional conse-
quences could be observed from nonsignificant SNPs. We
randomly selected the same number (143 679) of MAF-matched
SNPs from SNP–gene pairs with q40.5 and repeated the
procedure (Figure 2b). Similar to the significant eQTL SNPs, most

of the nonsignificant SNPs were intronic (50.1%), followed by
intergenic (39.3%), upstream (4.4%), downstream (3.8%) and
exonic regions (0.6%). Notably, the percentage of SNPs in
intergenic regions increased by 25%. SNPs in the 5’-untranslated
region again had the highest rate (63.8%) of overlap with
regulatory features and SNPs in intergenic regions had the lowest
rate (6.7%) of overlapping with regulatory features. The overall
proportion of variants that fall in a regulatory feature was lower
(9.2%) than the set of significant SNPs.
We evaluated whether there were significant differences

between the classifications of significant and randomly selected
nonsignificant eQTL SNPs. The overall distributions were signifi-
cantly different between the two sets of SNPs (χ2 Po1 × 10− 4).
Each functional consequence relative to intergenic also revealed
significant difference between the two sets of SNPs
(Supplementary Table S4). Odds ratios ranged from 3.5 to 9.2
and all P-values were o1 × 10−4. SNPs in 5’-untranslated region
showed the largest difference and were 9.2 times more likely to be
significant eQTLs.
Prior studies observed clustering of significant local SNP–gene

eQTLs near transcription start sites.11,26,30,70,71 We replicated this
pattern (Supplementary Figure S10) which was more evident in
the studies with larger samples.

Brain eQTLs and psychiatric disorders
We evaluated enrichment of brain eQTLs in regard to SNPs
associated with five psychiatric disorders studied by the PGC and a

Figure 1. Distribution of q-values and Manhattan plot. (a) Distribution of q-values for the most significant association for each gene in
autosomes and chromosome X. Red dotted line denotes q-value of 0.05. (b) Manhattan plot of − log10(q) for the most significant association
for each of 17 546 autosomal genes and 650 genes in chromosome X. Genes with − log10(q) 420 are highlighted. Red dotted line denotes
q= 0.05.
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recent larger SCZ GWAS (Table 3). As shown in prior studies,47

SNPs associated with SCZ and bipolar disorder showed highly
significant enrichments for eQTLs. This enrichment in brain eQTLs
remained significant regardless of different statistical cutoffs used
to generate the SNPs of interest. SNPs associated with attention-
deficit hyperactivity disorder, autism and major depressive
disorder showed much less enrichment in eQTLs, possibly owing
to smaller sample sizes and fewer significant SNPs in the GWAS
results.
To complement the permutation-based enrichment tests, we

also applied the Bayesian framework implemented in SHERLOCK72

to the Sweden SCZ GWAS results.49 Briefly, SHERLOCK aligns the
genetic architecture of SCZ against eQTL results to evaluate
overlap and to summarize the evidence that a given SNP supports
a functional role for the gene. A gene showing a high positive
Bayes factor supports the evidence that it is more likely to be
associated with SCZ via transcriptional regulation. Supplementary
Table S5 lists the top predicted genes and their supporting SNPs
of SCZ that meet logarithm Bayes factor 44.0 (that is, the
posterior probability of the gene being associated with SCZ is4e4

or 455 times more likely). Among 27 predicted genes with
logarithm Bayes factor 44.0 (Supplementary Table S5), many are
associated with SCZ as expected and also in regions known to be
associated with bipolar disorder (ITIH4, GLT8D1, GNL3, NEK4), five

major psychiatric disorders (FTSJ2, PCGEM1, C10orf32) and
Parkinson’s disease (C10orf32). Some of these genes were in high
LD regions (for example, chr10:104.5–105.2 Mb and chr3:52.2–
53.2 Mb, Supplementary Figures S12 and S13).

Gene set enrichment
Genomic studies of SCZ have implicated biological pathways
using multiple types of genomic data (common variation, rare
CNVs and rare exonic variation).49,50,52,73,74 We asked whether
genes in significant SNP–gene eQTLs in human cortex were
enriched for pathways previously implicated in SCZ. Table 4
summarizes the results of enrichment tests using the gene sets
selected from the literature. In either all genes or brain-expressed
genes, we did not observe enrichment of eQTL genes among any
gene sets hypothesized to be associated with SCZ.
We conducted a series of enrichment analyses with the list of

genes with significant eQTL evidence (Table 4). First, using
functional annotation clustering in DAVID,77 genes with eQTL
evidence were very significantly enriched (Fisher’s exact test P-
value = 3.24 × 10− 9) for GO gene sets related to multiple
mitochondrial gene sets (Supplementary Table S6). To adjust for
common biases due to gene size, LD within and between genes,
and pathway sizes, we generated a set of independent, nominally
associated genomic intervals using clumping implemented in

Figure 2. Predicted functional consequences of local eQTL SNPs. (a) Functional consequences of significant eQTLs (qo0.05, 143 679 unique
SNPs) using Ensembl Variant Effect Predictor tool. Each SNP was assigned to the most severe predicted consequence. The ratio on each bar
represents number of SNPs with regulatory features divided by number of SNPs in each functional category. (b) Functional consequences of
randomly selected, MAF-matched, insignificant eQTLs (q40.5, 143 679 unique SNPs). eQTL, expression quantitative trait loci; MAF, minor allele
frequency; SNP, single-nucleotide polymorphism.

Table 3. eQTL enrichment analysis of LD-pruned SNPs from PGC GWAS meta-analyses

GWAS threshold PGC autism PGC ADHD PGC bipolar PGC MDD PGC SCZ Sweden SCZ

Po0.0001 6 (6e− 4) 0 (1.0) 9 (2e− 4) 0 (1.0) 9 (0.0047) 86 (o1e− 4)
Po0.01 91 (0.11) 61 (0.89) 153 (o1e− 4) 78 (0.40) 165 (o1e− 4) 816 (o1e− 4)
Po0.1 719 (0.141) 630 (0.88) 580 (o1e− 4) 756 (0.0075) 982 (o1e− 4) 3639 (o1e− 4)

Abbreviations: ADHD, attention-deficit hyperactivity disorder; eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LD, linkage
disequilibrium; MDD, major depressive disorder; PGC, Psychiatric Genomics Consortium; SCZ, schizophrenia; SNP, single-nucleotide polymorphism. eQTL SNPs
with qo0.05 were used for enrichment tests. Each cell gives the number of overlapping SNPs between eQTL SNPs and SNPs at the given threshold for a GWAS
data set. The parentheses are empirical P-values obtained after 10 000 permutations with ‘o1e− 4’meaning that none of 10 000 simulations yielded an eQTL
count greater than the observed count. Due to high LD, the extended MHC region (chr6: 25–34 Mb) was removed. The first five data sets were imputed to
HapMap3, and the rightmost column to 1000 Genomes and so the numbers of overlapping SNPs are greater.
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PLINK and then tested it for enrichment in GO gene sets using
InRich.78 Analysis was restricted to 4074 GO categories containing
genes between 5 and 3000 to account for pathway sizes. We used
permutation to get empirical P-values per pathway and to correct
for multiple-testing. Multiple GO pathways related to mitochon-
drial structure and function were ranked as top pathways
(Supplementary Table S7). This result is consistent with the DAVID
results, indicating that mitochondrial pathways are robust findings
regardless of different gene-set enrichment methods. We tested
for enrichment in mitochondrial pathways by further analyses
using nuclear-encoded mitochondrial genes from MitoCarta
(http://www.broadinstitute.org/pubs/MitoCarta),75 autosomal oxi-
dative phosphorylation genes,76 and nuclear-encoded transcrip-
tional regulators of mitochondrial genes.76,79 Of 914 nuclear-
encoded mitochondrial genes, 257 genes (28%) overlapped with
genes showing significant eQTL evidence. We observed strong
enrichment of significant eQTL genes in autosomal mitochondrial
genes (odds ratio = 1.60, P= 1.3 × 10− 9 using all genes; odds
ratio = 1.39, P= 1.0 × 10− 4 using brain-expressed genes). However,
no enrichment was observed for nuclear regulators of mitochon-
drial genes (P= 0.80 using all genes, P= 0.95 using brain-expressed
genes) and oxidative phosphorylation genes (P= 0.06 using all
genes, P= 0.11 using brain-expressed genes).
Second, genes expressed in multiple tissues tend to have local

regulatory elements.80 To evaluate the hypothesis, we compared
eQTL genes in peripheral blood30 with genes having local eQTLs in
our meta-analysis. We found strong overlap between eQTLs in
these two tissues. Of 6662 genes with significant local eQTL
evidence in peripheral blood (qo0.001), 1578 genes (24%)
overlapped with genes with local eQTL evidence in brain (odds
ratio = 1.43, P= 9.4 × 10− 21 using all genes). Restricting to 5261
genes expressed in both tissues, 70.7% of 1193 eQTL genes in
brain were eQTL genes in blood (Supplementary Figure S14).
Third, gene regulation might be conserved across species. We

compared our brain eQTL genes with their mouse orthologs with
local eQTL evidence in a carefully conducted brain RNA-seq study.
The enrichment of human brain eQTLs in genes from mouse brain
samples was significant (odds ratio = 1.11, P= 0.003).56

Brain eQTLs, GWAS and OMIM
To assess the biological relevance of brain eQTLs for annotation of
variants implicated in human diseases, we compared unique SNPs
in autosomes and chrX (after filtering at qo0.05 and keeping the

SNP with the smallest q-value if there were multiple SNP–gene
pairs) to the NHGRI GWAS catalog.57 We restricted our search to
GWAS SNPs with Po1 × 10− 9, yielding 2946 SNPs for 471 traits
from 869 papers. Of the 2946 SNPs implicated by GWAS, 528
(17.9%) were part of a local eQTL (178 directly associated with 94
traits and 350 SNPs indirectly via a proxy SNP with r240.2). The 10
most frequent traits were height (12 SNPs), inflammatory bowel
disease (11), Crohn’s disease (9), plasma phospholipid levels (6),
total cholesterol (5), chronic kidney disease (4), coronary heart
disease (4), HDL cholesterol (4), metabolite levels (4) and red blood
cell traits (4). We evaluated brain eQTLs that overlap with the SNPs
associated with central nervous system-related phenotypes
(Table 5), and identified overlap with bipolar disorder, Parkinson’s
disease and nicotine dependence.
We compared our eQTL genes to OMIM55 which catalogs genes

often containing rare variation with strong effects. We observed
significant enrichment of genes with significant brain eQTL
evidence in OMIM disease genes (odds ratio = 1.15, P= 0.009).
Mitochondrial complex I deficiency and Leigh syndrome were the
second most frequent diseases in our data (FOXRED1, NDUFA2,
NDUFA10, NDUFAF1, NDUFAF2, NDUFAF4 and NDUFS2).

Protein–protein interaction
We used DAPPLE81 to evaluate whether genes with strong
evidence of local eQTLs connected via protein–protein interac-
tions. Genes with evidence of local eQTLs showed somewhat
higher network connectivity (direct P= 0.04 and indirect P= 0.01).
However, many of these genes were in small networks rather than
a single network, suggesting that there is no a dominant
functional network related to all these genes (Supplementary
Figure S15).

DISCUSSION
We performed a meta-analysis of local regulatory variation of 424
postmortem brain samples from five human brain eQTL studies.
Our analysis of local eQTLs in this relatively large sample size
allowed us to identify more eQTLs than those from individual
studies.
Consistent with prior findings, we observed that local regulatory

variants tend to occur symmetrically around transcription start
sites, and effect was more evident in studies with large sample
sizes. Significant eQTLs tended to be near 5’-untranslated regions

Table 4. Enrichment test of eQTL genes (qo0.05) in gene sets

Gene set Genes Overlap OR1 (P) OR2 (P)

Implicated in schizophrenia
FMRP interactor53 780 125 0.75 (0.99) 0.72 (0.99)
Synaptic functional gene group50 947 170 0.86 (0.96) 0.82 (0.98)
Synaptic signaling pathways50 121 29 1.26 (0.17) 1.28 (0.18)
Calcium channel subunit interactor54 189 28 0.69 (0.98) 0.68 (0.97)
Calcium subunit49 24 4 0.80 (0.74) 0.62 (0.83)
Postsynaptic genes51 687 113 0.78 (0.99) 0.68 (0.99)
NMDA receptor52 58 9 0.73 (0.85) 0.65 (0.91)
ARC52 24 2 0.36 (0.97) 0.31 (0.98)

Other gene sets
Nuclear-encoded mitochondrial genes75 914 257 1.60 (1.3 × 10−9) 1.39 (1.0 × 10− 4)
Oxidative phosphorylation genes76 88 24 1.50 (0.06) 1.41 (0.11)
Nuclear regulators of mitochondria genes76 14 2 0.66 (0.80) 0.31 (0.95)
OMIM55 2914 609 1.06 (0.12) 1.15 (0.009)
‘godot’ eQTL study in blood (qo0.001)30 6662 1578 1.43 (9.4 × 10− 21) 1.36 (6.9 × 10− 11)
Significant strain effect in mouse brain diallel56 9534 1986 1.11 (0.003) 0.90 (0.98)

Abbreviations: ARC, activity-regulated cytoskeleton; eQTL, expression quantitative trait loci; NMDA, N-methyl-D-aspartate; OMIM, Online Mendelian Inheritance
in Man. For enrichment tests, we used 3520 eQTL genes in autosomes with false discovery rate (FDR) qo0.05. OR1 is odds ratio using all tested autosomal
genes (17 537), and OR2 is odds ratio using brain-expressed, autosomal genes (9855). P-values are from right-sided Fisher’s exact tests.
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and intersect with regulatory features. In accordance with
previous eQTL studies showing that eQTLs are more likely to
overlap with SNPs implicated in GWAS,10 we observed that SNPs
associated with SCZ and bipolar disorder were enriched among
brain eQTLs. Many brain eQTLs are also associated with central
nervous system-related diseases (Table 5).
We compared our results with previous findings from the

literature. Myers et al.26 and Liu et al.28 reported significant
associations between RPS26 and rs11171739 in prefrontal cortex.
Cheung et al.82 reported a significant association between RPS26
and rs2271194 (in high LD with rs11171739) in lymphoblastoid
cells. We observed strong associations for both RPS26–
rs11171739 (q= 7.7 × 10−11) and RPS26–rs2271194
(q= 1.3 × 10− 10). Another eQTL study of human liver identified
a significant RPS26 and rs2292239 relationship and suggested
RPS26 as a candidate susceptibility gene for type 1 diabetes.83

We observed a strong correlation for the RPS26–rs2292239 pair
(q= 5× 10− 5) as well.
There are expression variants that are specific to tissues, cells,

anatomical regions and diseases.14,34 However, the substantial
overlap (24%) between eQTLs from the largest eQTL study in
peripheral blood30 and eQTLs in brain implies that there are
many local regulatory variants showing more ubiquitous effects
independent of tissue types. Indeed, sample size is a key factor
in replicating findings within and between tissues30 may be the
most important factor of successful eQTL mapping. Another
study that examined eQTLs in blood, adipose tissue and liver
reported that about 30% of local eQTLs overlap in those three
tissues, suggesting that there are shared expression control
mechanisms between tissues.83

We identified a significant number of brain eQTLs that
influence the expression of nuclear-encoded genes involved in
mitochondrial function and strong evidence of functional
clusters related to mitochondrial function (for example,
nuclear-encoded mitochondrial genes, P= 1.3 × 10− 9). Moreover,
mitochondrial complex I deficiency genes involved in local eQTL
were a frequent overlap. This raises an intriguing possibility, that
common genetic variation influences the expression of sets of
autosomal genes that influence the number and/or function of
mitochondria. Nuclear-encoded autosomal genes (~1000 based
on MitoCarta75) and mitochondrial-encoded genes (13 genes in
human84) are involved in ATP synthesis, cellular energy
metabolism and oxidative phosphorylation, as well as regulation
of cellular calcium levels, steroid synthesis, production of free
radicals and regulation of apoptosis.85 The central nervous
system has a very high metabolic rate because neurons require
large amounts of ATP for maintenance of ionic gradients across
the cell membranes and for neurotransmission. Neuronal
function and survival depend critically on mitochondrial
function and oxygen supply.86 Thus, it is conceivable that minor
deviations from normal mitochondria functioning can have
devastating consequences on the integrity of cells and influence
a variety of diseases, including aging,87 cancer,88 metabolic
traits,89 neurodegenerative diseases85 and psychiatric
disorders.90,91

Although most patients with psychiatric disorders do not have
classical mitochondrial diseases caused by mutations of nuclear
or mitochondrial DNA, multiple lines of evidences support that
impairment in any processes related to normal mitochondria
function may be critical in neurobiology of psychiatric
disorders.85,91 A study of large, rare CNVs in SCZ observed
significant enrichment in gene products localized to
mitochondria.92 Impaired neuronal differentiation in hair
follicle-derived induced pluripotent stem cells from SCZ cases
is associated with mitochondrial dysfunction.93 A recent meta-
analysis of autism spectrum disorders suggests an association
with mitochondrial dysfunction.94 Mutations and deletions in
mitochondrial DNA have been reported to be associated withTa
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mood disorders and bipolar disorder.95,96 Postmortem brain
samples of bipolar disorder cases showed a pronounced decrease
in the expression of nuclear genes regulating oxidative
phosphorylation.97 Taken together, gene pathways or networks
involving mitochondria function may have an etiological role for
some psychiatric disorders.
There are several limitations of this study. First, more data are

required. Our sample size was less than that required for confident
local eQTL identification.30 Second, this investigation included
only normal adult brain samples. Inclusion of data from cases with
psychiatric disorders or from earlier developmental stages would
likely be informative. Third, although consistent quality control
steps were applied, different DNA and RNA platforms across
studies may have impacted our findings. To evaluate the impact of
between-study heterogeneity, we performed a random-effect
meta-analysis using ‘REML’ method in metaphor R package
(Supplementary File, http://cran.r-project.org/web/packages/meta-
for/index.html). We observed that the P-values from random-effect
model tend to be larger than fixed-effect model. This is not
surprising since fixed-effect models are known to produce tighter
confidence intervals and more significant P-values than random-
effect models in the presence of between-study
heterogeneity.98–100 The genomic control inflation factors for the
fixed-effect and random-effect analyses were 1.08 and 0.87,
respectively. Top signals from random-effect model and fixed-
effect model were quite different. Many significant SNP–gene
pairs from fixed-effect model became nonsignificant via random-
effect model.101 Small sample sizes, different expression platforms
and unknown differences across our studies could possibly
introduce such a large variation in effect sizes and thus inflated
between-study heterogeneity. We need to be more cautious
about interpretation of the fixed-effect results. On the other hand,
there can be a large uncertainty in meta-analysis about the
presence and the extent of between-study heterogeneity with
limited number of studies. It was pointed out that strong
inferences about heterogeneity or lack thereof should be
avoided.98 Finally, analysis of postmortem human brain tissues
face many challenges as we cannot fully control for all potential
confounders that might have impacted the integrity of brain
expression assessment (for example, antemortem history, medica-
tion use, licit or illicit substance use disorders, cause of death or
postmortem delay).
Despite these limitations, the eQTLs and pathways identified in

this investigation warrant further exploration as potential candi-
dates involved in pathogenesis of psychiatric disorders. Annotat-
ing SNPs identified from GWAS of psychiatric disorders with brain
eQTL information will be a valuable resource to characterize the
functions of causal variants and generate testable hypotheses for
the mechanism underlying GWAS findings.
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