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Abstract

Presently, there are few estimates of the number of molecules occupying membrane domains.

Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on

comparing the intensities of fluorescently labeled microdomains with those of single fluorophores,

we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN

or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells

(DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN

molecules per microdomain ranges from only a few to over 20, while microdomain dimensions

range from the diffraction limit to > 1μm. The largest fraction of microdomains, appearing at the

diffraction limit, in either immature DCs or 3T3 cells contains only 4-8 molecules of DC-SIGN,

consistent with our preliminary super-resolution Blink microscopy estimates. We further show

that these small assemblies are sufficient to bind and efficiently internalize a small (~50nm)

pathogen, dengue virus, leading to infection of host cells.
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Introduction

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) in the human

immune system; they are professional APCs that can induce primary immune responses in

naïve T lymphocytes (1-3). Pathogen recognition by DCs occurs through its membrane

pattern recognition receptors (PRRs), which bind certain chemical structures on the surface

of pathogens (4). One of the PRRs, DC-SIGN (dendritic cell-specific intercellular adhesion

molecule-3-grabbing non-integrin), binds to the mannose or fucose structures present on a

variety of pathogens and thus stimulates diverse immune responses (5). Biochemical and

biophysical assays have shown that DC-SIGN forms multimers (6-9), which greatly

enhances its binding affinity to multivalent ligands (10). Furthermore, DC-SIGN forms

clusters or microdomains on the surfaces of DCs, which function as entry portals for diverse

pathogens including viruses, bacteria and yeasts (11-13). It is thus of potential clinical

interest to investigate the organization and properties of such microdomains.

Wide-field microscope imaging reveals that DC-SIGN forms discrete microdomains on the

surface of immature DCs as well as cell lines that ectopically express DC-SIGN (13). The

dimensions of these microdomains range from the diffraction limit to over one micron (13).

Moreover, application of super-resolution microscopy indicates that microdomains are

composed of one or several smaller nanodomains or clusters (14), consistent with earlier

studies by near-field scanning optical microscopy (NSOM) (12) and transmission electron

microscopy (TEM) (11). Fluorescence microscopic techniques including fluorescence

recovery after photobleaching (FRAP), line scan fluorescence correction spectroscopy (line

scan-FCS) and quantum dot single particle tracking reveal that DC-SIGN in microdomains

is largely immobile on ms to minute time scales and does not exchange with DC-SIGN in

the surround on this time scale (15). Furthermore, the microdomain stability appears to

originate in the extracellular rather than the intracellular region of DC-SIGN (16). In this

study, we focus on quantifying the occupancy of DC-SIGN molecules in a single

microdomain. For this purpose, we developed a quantitative imaging method based on total

internal reflection fluorescence microscopy (TIRFM).

TIRFM was developed by Axelrod and coworkers in the early 1980s (17-20). TIR occurs

when a light beam propagates through a medium of refractive index n1 and meets an

interface with a second medium of refractive index n2 (n2 < n1), and the incident angle θ is

larger than the critical angle θC (θC = arcsin (n2 / n1)). The incident light creates a thin

evanescent wave, propagating parallel to the interface in the second medium, whose

intensity decays exponentially with the distance from the interface. For fused silica or glass

(n1 ≈ 1.5) and an aqueous solution (n2 ≈ 1.3), by adjusting the incident angle, the

penetration depth of the evanescent wave can range from ~70 nm to ~300 nm. With such a

thin layer of illumination, TIRFM enables exclusive detection of fluorescently labeled

proteins or other molecules that are close to or on the plasma membranes of adherent cells,

with minimal fluorescence background from more distal cytoplasmic molecules. The high

signal-to-noise ratio of TIRFM enables the detection of single fluorophores, which would be

much more difficult employing wide-field excitation. Consequently, TIRFM has been

employed in diverse biological studies such as membrane protein/lipid dynamics (21-23),

cell-substrate interactions (24-26), and exo- and endocytosis (27-29).
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Our approach to estimate the number of DC-SIGN molecules in single microdomains on cell

surfaces is based on the comparison of the brightnesses of single fluorophores and the

brightnesses of DC-SIGN microdomains. DC-SIGN or its mutants were labeled with

fluorescent primary monoclonal antibodies (mAbs) or expressed as GFP fusions in NIH3T3

cells. Our results indicate that the largest fraction of microdomains in either immature DCs

or NIH3T3 cells, as imaged by TIRFM, contains an average of 4-8 molecules of DC-SIGN

(one or two tetramers). In NIH3T3 cells, mutants lacking the cytoplasmic domain or the N-

linked glycosylation site had somewhat larger domain occupancy numbers.

To examine the role of DC-SIGN microdomains in pathogen infection, we further studied

the interactions between DC-SIGN microdomains and dengue viruses (DENVs). DENVs are

mosquito-borne flaviviruses that cause up to 400 million infections each year and about 2.5

billion people are at risk of dengue infection globally (30, 31). Immature DCs in the

epidermis, Langerhans cells, are targets of DENV infection (32). DC-SIGN is one of the

conserved PRRs that DENV binds to at the cell membrane (33-36). Many reports have

shown that ectopically expressed DC-SIGN enhances productive DENV infection in

different human cell types; however, detailed molecular-level studies on interactions

between DC-SIGN membrane assemblies on cells and DENV at the initial binding stage are

lacking. In this study, we found DC-SIGN microdomains on NIH3T3 cells captured DENVs

efficiently, and, in particular, nanodomains containing only a few DC-SIGN molecules were

capable of binding and internalizing DENV.

Results

Overview

In this study we developed a quantitative imaging method centered on a prism-based TIRFM

setup (Figure 1), for which the principles are described in detail in the Materials and

Methods section. DC-SIGN microdomains on six cell sample types were quantitatively

examined in this work: human immature DCs endogenously expressing wt DC-SIGN and

NIH3T3 cells ectopically expressing five different DC-SIGN constructs including wt DC-

SIGN, GFP-DC-SIGN, DC-SIGN-Δ37, DC-SIGN-N80Q and GFP-DC-SIGN-N80Q (Figure

2A). As imaged by objective-based TIRFM, all six cell types exhibited visible DC-SIGN

microdomains; however, different cell types appeared qualitatively to possess microdomains

with slightly different cell-surface distributions, densities and/or intensities (Figure 2 B-G).

Similar images were obtained with through-prism TIRFM and these were used for

subsequent analysis of domain occupancy (Figure 1 D, E). The spatially integrated

intensities, corrected for the local evanescent excitation intensity, were measured for single,

purified GFP molecules as well as for single AlexaFluor488 probes conjugated to

monoclonal antibodies specific for DC-SIGN (Figure 3). Similar measurements were carried

out for individual microdomains containing DC-SIGN on the six cell types and used with

the single molecule data to produce histograms giving quantitative measures of the copy

numbers of DC-SIGN molecules in the microdomains (see Eqs. 1-11 and Figure 4 and 5).

Subtle differences in the results for different cell types are discussed below. However, the

most striking conclusion is that for all cell types the copy numbers of DC-SIGN in the
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microdomains are usually very low (although a few microdomains contain more than ~ 20

DC-SIGN molecules).

Single fluorophore brightness

As described in Materials and Methods, spatially integrated intensities were measured from

the images (Figure 3A) of single AlexaFluor488 probes conjugated to mAbs specific for

DC-SIGN or of single, purified GFP molecules. The single molecule nature of such images

was assessed from single step bleaching events (Figure 3B). The distributions of spot

intensities for the three labels employed are given in Figure 3C.

wt DC-SIGN microdomains on native cell surfaces

In this study, we examined three sets of wt DC-SIGN microdomains on cell surfaces: 1)

immature DCs endogenously expressing wt DC-SIGN; 2) NIH3T3 cells ectopically

expressing wt DC-SIGN; 3) NIH3T3 cells ectopically expressing GFP-DC-SIGN. As

summarized in Table 1, the first two sample types, DC-SIGN endogenously expressed in

immature DCs and DC-SIGN expressed in NIH3T3 cells, gave similar averages for the

numbers (N) of DC-SIGN molecules per microdomain (4 vs. 5). An unpaired t-test analysis

gave a value of p = 0.2, indicating no evidence for a statistically significant difference in the

distribution of N values for the two sample types (Figure 4 A and B). Thus, NIH3T3 cells

expressing wt DC-SIGN appear to be a reasonable model for the purpose of quantifying the

occupancy numbers of DC-SIGN in microdomains. Furthermore, because DCs were labeled

with the mAb 120507 and NIH3T3 cells ectopically expressing wt DC-SIGN were labeled

with the mAb DC6, these data provide evidence that the two different mAb had similar

binding properties. The average N and its standard deviation for wt DC-SIGN on DCs (4 ±

3) were similar to the values previously measured by super-resolution Blink microscopy (7 ±

10) (14), which also employs antibody labeling, giving confidence in these estimates.

The GFP-DC-SIGN data set gave an average value of N = 7, which is comparable to but

somewhat larger than the values for the first two data sets and the differences are statistically

significant. Two possible explanations for these differences are that the GFP tag promotes a

small degree of DC-SIGN accumulation in microdomains or that the stoichiometry of mAb

to DC-SIGN on cell surfaces is on average less than one, due to steric hindrance when

multiple antibodies are bound to single DC-SIGN molecules within an oligomer.

Nonetheless, our results show that the number of DC-SIGN molecules in a given

microdomain is almost always less than 20, indicating that, for the most part, cell surface

microdomains contain a strikingly low number of DC-SIGN molecules. In vitro assays have

shown that DC-SIGN is able to form oligomers, such as trimeric or tetrameric structures,

and cross-linking measurements on cell surfaces have suggested that the fundamental unit of

DC-SIGN is a tetramer (6-8, 37). With this assumption, our data indicate that DC-SIGN

surface microdomains, as visualized in wide-field microscopy, contain in most cases only

one or two DC-SIGN tetramers. Similarly, Figure 4C shows that GFP-DC-SIGN

microdomains in NIH3T3 cells most frequently contain only one or a few DC-SIGN

tetramers.
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Single tetramers should give diffraction-limited spots when imaged with TIRFM. Therefore,

we plotted the number of DC-SIGN molecules per microdomain vs. microdomain width.

The domain widths, δ, were calculated by fitting the domain intensity distributions to two-

dimensional Gaussian functions (Eq. 1). As shown in Figure 5 A-C (left panels), the number

per microdomain is ≤10 for δ ≤ 400 nm; thus, if a tetramer is the basic unit, microdomains

with diffraction-limited sizes usually consist of one or two of these units. The lower limits

indicate a high frequency of even less than 4 DC-SIGN molecules in single microdomains;

this observation may be a consequence of several factors that could result in underestimation

of the copy numbers (see Discussion). By contrast, the presumed basic units of DC-SIGN

tetramers in some cases did form larger sized domains. As shown in Figure 5 A-C (right

panels), the microdomain sizes (proportional to the square root of domain area) range from

the diffraction limit to ~1 μm and, for the larger sizes, some microdomains contain tens of

DC-SIGN molecules, when it is ectopically expressed.

Effects of mutating DC-SIGN on microdomains

Previously we reported that deleting the tandem repeats region or truncation of the CRD of

DC-SIGN results in loss of stable microdomains, while deleting the cytoplasmic domain

(DC-SIGN-Δ37) or mutating the N-glycosylation site (DC-SIGN-N80Q) does not affect

stable microdomain formation (16). In the studies described here, we further quantified the

numbers of those domain-forming mutants of DC-SIGN molecules per microdomain, as

compared to the values for wt DC-SIGN microdomains. Three sets of mutant DC-SIGN cell

samples were examined: 1) DC-SIGN-Δ37; 2) DC-SIGN-N80Q; 3) GFP-DC-SIGN-N80Q.

In general, these mutant forms exhibit slightly larger numbers of DC-SIGN molecules per

microdomain compared to wt DC-SIGN.

As shown in Table 1, the average number per microdomain of DC-SIGN-Δ37, 6, and the

average number per microdomain of DC-SIGN-N80Q, 8, are both higher than the average

values of wt DC-SIGN (4 in DCs and 5 in NIH3T3 cells, respectively). For these

comparisons, unpaired t-tests gave p values of 0.004 (DC-SIGN-Δ37 vs. wt DC-SIGN on

DCs), 0.06 (DC-SIGN-Δ37 vs. wt DC-SIGN on NIH3T3 cells), 0.007 (DC-SIGN-N80Q vs.

wt DC-SIGN on DCs), and 0.03 (DC-SIGN-N80Q vs. wt DC-SIGN on NIH3T3 cells).

Histograms describing the distribution of molecular occupancy in microdomains are given in

Figure 4 D-F. Similar to the wt proteins in DCs or expressed in NIH3T3 cells, DC-SIGN-

N80Q copy numbers for microdomains with δ ≤ 400 nm were very low (Figure 5 E, left

panel) but DC-SIGN-Δ37 and GFP-DC-SIGN-N80Q copy numbers for microdomains in

this range, where δ is close to the pixel size (270 nm), were somewhat larger (Figure 5 D

and F, left panels). The three mutant forms of DC-SIGN also tended to exhibit higher

molecular copy numbers for larger microdomain sizes (Figure 5 D-F, right panels) compared

to the wt DC-SIGN in DCs or NIH3T3 cells (Figure 5 A and B, right panels).

Role of DC-SIGN microdomains in DENV infection

DC-SIGN plays a crucial role in capturing pathogens ranging in size from viruses to yeasts.

In a different study, we found that large size pathogens such as fungal particles require

rearrangements and concentration of DC-SIGN nanodomains in pathogen-DC contact zones

for stable binding and further processing (manuscript in preparation). In the studies
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described here, we examined the role of DC-SIGN micro/nanodomains in cell binding,

internalization and infection by DENV, a very small pathogen. DENVs have an average size

of ~ 50 nm in diameter, which is close to the size of DC-SIGN nanodomains (~70 nm) (14).

Therefore, we hypothesized that DENV binding would not require rearrangements or

concentration of DC-SIGN domains. Here we used NIH3T3 cells expressing DC-SIGN as a

model system; similar results were seen with primary dendritic cells differentiated from

human blood monocytes (data not shown). For all the experiments described below, DENVs

were detected by immunofluorescence and the details of labeling are described in the

Materials and Methods section.

As shown in Figure 6 A, individual DENV particles bound to cell surface DC-SIGN

microdomains, and these domains did not change in appearance compared to controls. The

majority of the DC-SIGN microdomains with DENV bound are still at the diffraction-limit

size, and the brightnesses of those DENV-bound microdomains are comparable to the

brightnesses of other surrounding microdomains without bound DENV (Supplemental

Figure S2). In Figure 6 A the cells were pre-treated with endocytosis inhibitors (10 mM

NaN3, 2 mM NaF, and 5 mM 2-deoxy-D-glucose) for 2 min before incubating with DENVs,

to prevent fast internalization of DENVs after surface binding. After 10 minute incubation,

bound DENVs showed high colocalization percentages with DC-SIGN microdomains (80 ±

14 %, averaged from hundreds of bound DENVs on 12 cell surfaces) (Figure 6 C),

indicating that cell membrane DC-SIGN microdomains capture DENVs efficiently within

minutes of exposure. The colocalization percentages did not reach 100%, which may be due

to the fact that DENVs can bind other cell surface components such as heat-shock proteins

or heparan sulfate (33). We did observe that a small fraction of DENVs, which did not

colocalize with DC-SIGN microdomains, remained on cell surfaces even after 1-2 h

incubation. We also observed that a small fraction of DENVs could bind to the surfaces of

wt NIH3T3 cells not expressing DC-SIGN, but these viruses did not induce productive

infection even after 72 hours of incubation (Supplemental Figure S3 A and B). While the

endocytosis inhibition treatment might impair rearrangement of DC-SIGN microdomains,

nonetheless, it is evident that cell surface DC-SIGN microdomains can capture DENVs

within minutes of incubation.

If endocytosis was not initially inhibited, DENVs were quickly internalized within a few

minutes. Figure 6B shows a representative image of NIH3T3 cells expressing DC-SIGN,

incubated with DENVs for 15 min and stained for both surface bound and internalized

DENVs after permeabilization. We examined 3 min, 5 min, 10 min and 15 min DENV

incubation periods, and found DENV internalization even after 3 min (data not shown),

consistent with the observation of van der Schaar et al. (38). Thus, cell surface DC-SIGN

microdomains captured the majority of DENVs and those DENVs were efficiently

internalized within minutes after binding. Furthermore, in Supplemental Figure S4, we show

that the number of viral particles taken up is proportional to the relative expression levels of

DC-SIGN in individual cells. This result further indicates that DC-SIGN domains play the

major role in capturing DENV particles, leading to efficient internalization.

In the counting studies, most microdomains appearing at the diffraction limit contained only

4-8 DC-SIGN molecules and corresponded to single nanodomains. Furthermore, most
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DENV images were also diffraction-limited. Thus, it is likely that the dominant

stoichiometry of DC-SIGN microdomains to bound DENVs is 1:1.

We further probed whether a single DC-SIGN nanodomain was sufficient to bind a single

DENV by using dSTORM super-resolution imaging. Figure 6 D (inset), shows a single DC-

SIGN nanodomain (~ 40 nm) that is colocalized at the center of a DENV particle, strongly

suggesting that single DC-SIGN nanodomains with only a few DC-SIGN molecules are

capable of capturing small sized viral pathogens. Note that a single DENV particle, about

~50 nm in diameter, with primary and secondary Abs bound would be imaged with a

diameter of ~100 nm, consistent with what is observed. In addition, we also observed that

larger apparent sizes of viral particles, probably due to DENV aggregation, correspondingly

colocalized with larger sizes of DC-SIGN microdomains (Figure 6 D, plot).

Finally, productive DENV infection and viral replication in NIH3T3 cells expressing DC-

SIGN was detected by both fluorescence activated cell sorting (FACS) and confocal

imaging (Supplemental Figure S3 A, C and D). By contrast, wt NIH3T3 cells incubated with

DENV for 24-72h showed little productive infection (Supplemental Figure S3 A and B).

FACS results showed <1% wt NIH3T3 cells were infected (Supplemental Figure S3 A)

when DC-SIGN was not expressed. Similarly, by confocal imaging, the chance to observe

an infected cell was far below 1% (approximately less than 10 cells in a glass-bottom dish

with ~50,000 cells). Supplemental Figure S3 B shows a representative image of wt NIH3T3

cells incubated with DENV at a multiplicity of infection (MOI) equal to 15, for 72h, and

only a couple of viral particles were observed; i.e., no productive infection. We suspect that

the very small percentage of infection as observed by FACS (0.72% in Supplemental Figure

S3 A) mainly arose from dead cells with high autofluorescence, as observed by confocal

imaging. By contrast, NIH3T3 cells expressing DC-SIGN showed massive viral replication

observed by confocal imaging and over 90% infectivity by FACS (Figure S3 A, C and D).

These results indicate that, in this system, DC-SIGN is capable of attaching DENV and this

attachment leads to productive infection.

Discussion

In this study we developed a single molecule imaging approach, based on prism-TIRFM, to

quantify the molecular density of cell surface DC-SIGN microdomains by comparing the

brightnesses of single fluorophores with the brightnesses of single clusters. Our method is

similar to that employed by Jaqaman et al. (39) to quantify antibody labeled CD36 receptor

molecules on cell surfaces and to that used by Joglekar et al. (40) to count component

proteins (as fluorescent protein fusions) in kinetochores. Fluorescence Correlation

Spectroscopy (FCS) can also be employed, but this technique requires the diffusion of target

molecules (41).

There are several physical and chemical effects that strongly suggest our values represent a

lower limit to domain occupancy values. Physically, the exponential decay of the TIRF

illumination field intensity as one moves away from the substrate-buffer interface will

produce an uncertainty in the following way. The brightnesses of single fluorophores were

measured on dyes that were immobilized on fibronectin-coated microscope slide surfaces,
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while the DC-SIGN domains that were characterized were on the ventral surface of cells,

which could be some distance away from the interface but still in the TIRF illumination

field. We make a rough estimate of this source of uncertainty as follows. The evanescent

wave in our prism-based TIRF microscope undergoes an exponential decay characterized by

the constant d = 85 nm (42). We assume that the single fluorophores immobilized on

fibronectin were within 10 nm of the substrate resulting in a decrement of excitation

intensity of ~11% due to the exponential decay of the evanescent wave. Interference

reflection microscopy (IRM) images (Supplemental Figure S1) indicate that areas which

were imaged grey, corresponding to so-called close contacts, are within ~ 30 nm of the

substrate (43); at this position, the excitation intensity will have decreased by ~30 %. Thus,

this effect would decrease the occupancy numbers by ~ 21%. In addition, there are several

chemical effects that could result in an underestimate of the domain occupation number.

Two labeling techniques were employed in this study: first, to label microdomains by using

AlexaFluor488 conjugated mAb specific for DC-SIGN; and second, to genetically tag DC-

SIGN with GFP at its cytoplasmic N-terminus. With respect to antibody labeling, even

assuming saturation binding and an average dye to antibody ratio of ~1 (see Materials and

Methods), the binding of mAb to DC-SIGN oligomers at saturation could be sterically

limited. Therefore it is plausible that less than 4 mAbs can bind to one DC-SIGN tetramer.

This fact may account for why domain occupancy numbers are about 2-fold higher for GFP-

DC-SIGN fusions as compared to numbers obtained by mAb labeling. It is also possible that

the two different mAbs employed have different monoclonal antibody: DC-SIGN

stoichiometries at saturation.

With respect to fluorescent protein labeling, while using fluorescent protein fusions usually

guarantees a 1:1 stoichiometry of label to the protein of interest, the possibility that either

the fluorescent protein sterically interferes with the packing of DC-SIGN oligomers or that it

enhances occupancy in the structure must be entertained. Such effects could produce

underestimates or overestimates, respectively. It should also be noted that we excluded from

analysis a portion of domains that were irregularly shaped and usually larger; such domains

generally have larger occupancy numbers. We assume that other factors such as homo-

FRET between labels are insignificant. Overall, though, the agreement between antibody

and GFP labeling supports the conclusion that the number of DC-SIGN molecules per

microdomain, although possibly underestimated by a factor of no more than ~4, is

surprisingly small.

One technical issue of the approach described here is that the point spread function (PSF)

was undersampled in our system setup. The Nyquist criterion requires pixel sizes ≤ (1/2) the

diffraction limited spot size. In our TIRFM setup, the pixel size is limited by the relatively

large pixel size of EMCCD chip. However, the objects imaged in this study, i.e., single

molecules on glass substrates or DC-SIGN domains on cell surfaces, were widely separated

in space so resolution is not important for the intensity measurements. The relatively large

pixel size does affect the accuracy of the size of the domains to a small extent. We simulated

DC-SIGN domains under full sampling and undersampling situations, and our simulation

results show that undersampling of PSF leads to an increase of 3-7% of the domain width, as

compared to the domain width obtained by full sampling. Thus, undersampling does not

appear to be a major source of error.
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Our results indicate that the smallest microdomains imaged by wide-field methods are

occupied by only 4-8 copies of DC-SIGN on average, which, based on the literature (6-9),

corresponds to one or two tetramers. These basic units may be collected to form larger

microdomains; however, given that super-resolution studies indicate nanodomains are

randomly disposed, as judged by the Ripley’s K or Hopkins statistic (14), on the membrane,

it may be that a stochastic clustering of nanodomains when convoluted with the point spread

function gives rise to the appearance of larger microdomains (unpublished calculations).

Both cytoplasmic truncation and a glycosylation site mutation result in somewhat higher

molecular occupancy numbers within the apparent microdomains. This result can be

compared with the report by Serrano-Gómez et al., which shows that the N80Q mutation

resulted in higher order oligomer formation of DC-SIGN (8). Since DC-SIGN captures

pathogens ranging in sizes from viruses to yeasts, our results suggest that higher order

oligomers are not essential to DC-SIGN’s pattern recognition function.

Importantly, the values obtained from this study are consistent with previous Blink

microscopy results (14), giving confidence in our result and approach. Estimation of the

numbers of DC-SIGN molecules in a microdomain by Blink was based on the assumption

that a fluorophore would give the same number of Blink localizations, regardless of whether

the fluorophore is a single dye (conjugated to Fab) on a glass surface or the fluorophore

conjugated to Fab is on a single DC-SIGN molecule in cell surface microdomains. Clearly,

this approach needs corroboration, because blinking of a single dye is a stochastic process

and thus one dye may give more or fewer blink localizations during one Blink image data

acquisition. In contrast, the quantitative TIRFM imaging approach described in this paper

directly compares the brightnesses of single fluorophores with the brightnesses of single

DC-SIGN domains, which does not depend on the blink events of single fluorophores.

Therefore, the quantitative TIRFM imaging approach is a more straightforward method,

which can be carried out on common TIRF microscopes and this approach does not require

the setup of a superresolution imaging system. On the other hand, our result is consistent

with the quantitation result by Blink, indicating that Blink microscopy may also be

employed for approximate counting measurements, in addition to providing super-resolution

imaging.

In this study, we also found that DC-SIGN domains on NIH3T3 cells captured DENV

efficiently, and, apparently one nanodomain was sufficient for the capture. Bound DENV

was internalized within minutes after attachment and viral replication was observed within

24 h following viral uptake. In contrast, incubation of wt NIH3T3 cells, not expressing DC-

SIGN, with DENV led to only small amounts of attachment and no internalization of bound

virus. These results strongly suggest that small numbers of DC-SIGN can mediate both

binding and subsequent interiorization and viral replication. This conclusion follows from

the observations that microdomains imaged at the diffraction limit are colocalized with

DENV and these microdomains most likely contain only 4-8 DC-SIGN molecules. Indeed,

using super-resolution microscopy, instances can be imaged where one DENV can be found

associated with one DC-SIGN nanodomain.

Our results indicate that, in dendritic cells, DC-SIGN is arranged in nanodomains containing

only one or two tetramers on average. This raises the semantic and conceptual issue of
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whether this degree of occupancy represents a nanodomain or simply a molecular cluster. It

is conceivable, given the stability of the cluster array (15), that proteomic/lipidomic studies

of isolated domains may reveal a distinct molecular composition associated with DC-SIGN

which would qualify these clusters as true nanodomains.

This study and previous ones (11, 12, 14) beg the question of why this small functional unit

has evolved. Functionally speaking, DC-SIGN is a DC receptor for diverse pathogens

ranging in size from small viruses to larger yeasts. It is possible that a cluster consisting of

one or two (that are closely spaced) tetramers would provide a nanoscale platform having

the requisite avidity to successfully bind (or rebind in the case of dissociation) small viruses

such as the ~50 nm diameter dengue virus (44, 45). While the dengue virus envelope is

highly populated with the E glycoprotein, a single cluster of one or two DC-SIGN tetramers

could also bind HIV since its envelope glycoproteins, which are present in low numbers, are

capable of lateral rearrangement into a single focus on the envelope during maturation

and/or binding to target lymphocytes (46). However, following binding of viruses like

dengue, which must be endocytosed, presumably some process must occur to release the

virus-nanocluster complex for lateral transport to the internalization portal, such as a coated

pit (38). This release might occur because the pathogen displaces DC-SIGN ectodomain

interactions that laterally stabilize the cluster analogous to the SIGLEC hypothesis (47, 48).

Indeed, when larger pathogens, such as yeasts, bind DC, there is evidence that the native

nanodomain arrangement is altered suggesting that some lateral mobility has occurred to

accommodate the yeast (manuscript in preparation).

Materials and Methods

Reagents

Two labeling techniques were employed in this study: first, to label microdomains by using

AlexaFluor488 conjugated mAb specific for DC-SIGN; and second, to genetically tag DC-

SIGN with GFP at its cytoplasmic N-terminus. DC6 mAb was prepared in-house as

described elsewhere (15). 120507 mAb was obtained commercially (R&D Systems,

Minneapolis, MN). AlexaFluor488 (Invitrogen) was conjugated to the two types of mAb as

described (16); the final molar ratio of dye to antibody was ≈ 1, as assessed by absorption

spectroscopy. A fusion protein consisting of GST and GFP was expressed in E. Coli and

purified as described elsewhere (49). Dynamic light scattering data were consistent with the

preparation being mostly single molecules of GST-GFP. NaN3 was purchased from

FisherBiotech (Fair Lawn, NJ). Anti-mouse IgG-Atto488, NaF and 2-deoxy-D-glucose were

purchased from Sigma-Aldrich (St. Louis, MO). For labeling of DENVs, 2H2 mAb was

purchased from EMD Millipore (Billerica, MA) and conjugated to AlexaFluor488 as

described above. H-200 IgG was purchased from Santa Cruz (Dallas, Texas), and anti-rabbit

(Fab’)2 AlexaFluor647 was purchased from Cell Signaling (Danvers, MA).

Fibronectin-coated microscope slides

Glass microscope slides (1” × 1.5” × 1 mm) were cleaned by boiling in ICN detergent (MP

Biomedicals, Solon, OH), bath sonicating, extensive washing with deionized H2O, and

drying at 120 °C. The slides were then sterilized with 70% ethanol, dried, treated with 10
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μg/ml fibronectin (Invitrogen) in phosphate-buffered saline (PBS) at 4 °C overnight under

sterile conditions. Fibronectin-coated slides were then washed with PBS before being used

as cell substrates. For identifying single molecule brightness in our study, very small

amounts (≪ 1 μg/ml) of GFP or fluorescently labeled antibodies were added to the

fibronectin solutions before substrate treatment and imaged later under the same conditions

as cell measurements; these samples were not sterile.

Dendritic cells

Human monocyte-derived immature dendritic cells were prepared as described elsewhere

(13, 15). The cells were seeded on fibronectin-coated microscope slides and cultured in

RPMI-1640 media containing 10% fetal bovine serum (FBS), 500 U/ml of human IL-4 and

800 U/ml of human GM-CSF (Peprotech, Rocky Hill, NJ) for about one week in a 37 °C

incubator with 5% CO2. After the monocytes developed into immature dendritic cells, slides

containing adherent cells were removed from the growth media, washed several times with

PBS, treated with 4% paraformaldehyde (PFA) in PBS for 20 min at room temperature for

cell fixation and then washed with PBS again. The cells were then blocked with 0.1%

bovine serum albumin (BSA) for 15 min, stained with 8 μg/ml AlexaFluor488-conjugated

120507 monoclonal antibodies (see below) in 0.1 % BSA/PBS for 20 min, and washed

thoroughly with PBS.

NIH3T3 cells

Plasmid construction has been described previously (15, 16). NIH3T3 cells were maintained

in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) supplemented with 10%

FBS, 50 U/ml penicillin G and 50 μg/ml streptomycin at 37°C in 5% (v/v) CO2. One day

before transfection, fibronectin-coated slides were put into 60 mm cell culture dishes with

cell growth media as mentioned above. Cells were then seeded on the surface of the slides at

3 × 105 cells/dish. On the day of transfection, plasmids were introduced into the cells by

following the standard protocol employing Lipofectamine (Invitrogen) at 2 μg cDNA/dish.

After transfection, cells were maintained in normal growth medium for at least two days in a

37 °C incubator. On the day of image acquisition, cells were fixed (see above). After

fixation, cells were either directly used for imaging (for GFP constructs) or blocked with

0.1% BSA and then stained with 8-16 μg/ml AlexaFluor488-conjugated DC6 mAb (wt DC-

SIGN) or 120507 mAb (DC-SIGN-Δ37 and DC-SIGN-N80Q) in 0.1% BSA/PBS for 20

min, and washed thoroughly with PBS. Previous work has shown that 10 μg/ml DC6 mAb is

sufficient to saturate cell-surface DC-SIGN (14). Similar measurements with 120507 mAb

indicated that 8-16 ug/ml of this mAb is also sufficient for cell-surface saturation (data not

shown).

Sample preparation for TIRFM imaging

For objective-based TIRFM, cells were prepared as described above except that they were

grown on MatTek dishes (MatTek Corp., Ashland, MA). For prism-based TIRFM,

microscope coverslips (#0 thickness, 24 mm × 60 mm) were cleaned as described above for

microscope slides. Two small strips of Scotch transparent tape, used as the ‘spacer’, were

adhered to the long edges of fibronectin-coated slides containing bound cells or single

fluorescent molecules. A thin layer of UV-curing optical glue (NOA81, Norland Products
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Inc.) was applied to the tape tops prior to adding the coverslips to make the sandwiches. An

aluminum foil mask was used to cover the center of the sandwich sample to avoid any

photodamage from the UV light. Then the whole sample was illuminated with UV light for

approximately one minute to harden the glue. The inner volumes of the samples were filled

with PBS, and the two open edges were sealed with thin layers of vacuum grease before

mounting the samples, with the coverslip adjacent to the objective, on the stage of the

inverted microscope.

Objective-based TIRFM

For comparative purposes, initial imaging of different cell types was carried by using a

conventional objective-based TIRFM instrument. The system is based on an Olympus IX81

microscope, equipped with two Melles Griot diode lasers (491nm and 561nm, respectively).

Images were taken by using a 100×, 1.49 NA objective and a conventional CCD camera.

Prism-based TIRFM

The principle and basic setup of a prism-based TIRFM system (Fig. 1 A) has been described

in detail elsewhere (18, 50). For the measurements described here, fluorescence was excited

by the evanescent wave generated by internally reflecting the 488 nm line of an argon ion

laser (Coherent Innova 90-3). Unless otherwise specified, the power of the incident beam

was 300 μW. The beam was passed through a fused silica prism optically coupled to the

microscope slides with glycerol, so that the incidence angle at the interface of the

microscope slide and inner volume was greater than the critical angle. The incident beam

was always s-polarized, the evanescent wave depth was ≈ 85 nm, and the 1/e2-radii of the

elliptically shaped Gaussian illumination area were approximately 65 μm × 20 μm.

Evanescently excited fluorescence was collected through a 60×, 1.4 NA oil immersion

objective on an inverted microscope (Zeiss Axiovert 35) coupled below the sandwich

coverslip, passed through an appropriate dichroic mirror and barrier filter, and imaged by an

EMCCD camera (Andor iXon DU-871E) driven by Andor iQ software. The pixel size of

this camera was 16 μm which, when a 60× 1.4 NA objective is employed, means that the

point spread function is under sampled. However, because we are measuring the emitted

intensity of single molecules or domains that are widely separated as opposed to creating

detailed images of those objects, this was not considered to be a limitation. Unless otherwise

specified, the EMCCD was cooled to -70 °C, the gain was set at 260, and images were

collected at 512 × 512 pixels per frame with a 300 ms exposure time. Depending on the

photostability of the fluorophores, 100-500 frames per video were recorded to observe

single-step photobleaching and calculate the brightness of single fluorophores. For imaging

DC-SIGN microdomains on cell surfaces, a single frame was collected.

Molecular Counting Data analysis

To determine the numbers of DC-SIGN molecules in microdomains, the brightnesses of

microdomains and single fluorescent molecules were compared. Ideally, this approach

requires a 1:1 labeling ratio of single fluorophores to single DC-SIGN molecules, as well as

identical optical parameters for both single molecule and microdomain imaging. The extent

to which deviations from these ideal conditions might have skewed the reported results is

discussed above.
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Prism-based TIRFM employing an incident argon ion laser beam creates a surface-

associated evanescent wave with an intensity profile in the sample plane that has an

elliptically Gaussian shape (20) as shown in Figure 1B. The evanescent excitation intensity

is higher at the middle than at positions away from the center; thus, fluorophores towards the

middle of the illuminated area will be brighter than those in peripheral regions. To account

for this effect, the local background luminescence arising from substrate impurities and

close to single fluorescent molecules or microdomains was employed as an indicator of the

local excitation light intensity. This procedure can in general be applied to any illumination

scheme, although it is particularly important for prism-based TIRFM.

For single fluorescent molecules, first, a time sequence of 100-500 images was acquired.

ImageJ software was then used to roughly localize the single molecules and generate plots

of the time-dependent, total intensities within selected regions of interest surrounding the

molecules (Figure 1C). These plots were examined to determine the time of the single-step

bleach (for GFP) or the last single-step bleach (for mAb). A frame preceding the single or

last bleach and having an integrated spot intensity approximately equal to the time-average

immediately before this bleach was then selected for further analysis, as described below.

Single fluorescent molecules or single DC-SIGN microdomains were localized in individual

frames by a particle finding algorithm in the ‘localizer’ plug-in of Igor Pro software (kindly

provided by Dr. Peter Dedecker at the University of Leuven, Belgium; the plugin can be

downloaded at: www.igorexchange.com/project/Localizer). The criteria by which spots were

identified are described elsewhere (16, 51). The counts per pixel surrounding the kth

localized centroid for single molecules, Zsm(i,j,k), or the mth localized centroid for single

microdomains, Zdomain(I,j,m), where the integers i and j denote the pixel position, were then

fit to two-dimensional Gaussian functions; i.e.,

(1)

The free parameters were A(k,m) (the amplitude of the emitted fluorescence), i0(k,m) and

j0(k,m) (a more accurate center), μ(k,m) (the spatial width), and B(k,m) (the local emitted

background luminescence). In the following discussion, we use the parameter s to denote the

length of one pixel with s equal to one; hence, s2 also equals one. Parameters i, j, i0(k,m),

j0(k,m), and μ(k,m) have the units of s. Zsm(i,j,k), Zdomain(i,j,m), A(k,m), B(k,m), and C

have the units of (detected counts)(s)-2(τ)-1, where τ was the exposure time (300 ms). More

explicitly, the A(k,m) have the units of (detected fluorescence counts)(s)-2(τ)-1 and the

B(k,m) have the units of (detected background luminescence counts)(s)-2(τ)-1. C,

representing the sum of the background luminescence which is independent of the excitation

intensity and the dark count of a single pixel on the EMCCD camera, was measured far from

the evanescently illuminated area to have an average of 165 (detected counts)(s)-2(τ)-1 and

fixed at this number during curve-fitting. This analysis gave three lists (for the different

single molecule types) containing the best-fit values of A(k), B(k), i0(k), j0(k) and μ(k),

where the index k denotes the kth single molecule of a given type. The analysis also gave six
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lists (for the different microdomain types) containing the best-fit values of A(m), B(m),

i0(m), j0(m) and μ(m), where the index m denotes the mth microdomain of a given type.

For a given single fluorescent molecule or DC-SIGN microdomain, the local evanescent

excitation intensity was accounted for in the following manner. The intensity-dependent

background luminescence’s can be expressed as

(2)

where I(k) and I(m) are the local excitation intensities for the kth single molecule or the mth

microdomain, respectively, in units of (excitation photons)(s)-2(τ)-1, and β is a

proportionality constant independent of k and m with the units of (detected background

luminescence counts)(excitation photons)-1. Single molecule and microdomain powers

(spatially integrated fluorescence emission intensities) were calculated for each single

molecule or domain, from the best-fit values of A(k,m) and μ(k,m), as

(3)

in units of (detected fluorescence counts)/τ. These parameters are also given by

(4)

where Q is a proportionality constant independent of k and m, with the units of (s2)(detected

fluorescence counts)(excitation photons)-1 and N(m) is the number of DC-SIGN molecules

in the mth microdomain. Corrected powers, which account for the local excitation intensity,

were calculated for each single molecule or microdomain as

(5)

Thus, referring to Eqs. 2 and 4, one finds that

(6)

The corrected powers do not depend on the local excitation intensity and have the units of

(s2) (detected fluorescence counts)(detected background luminescence counts)-1.

In the idealized case in which other sources of noise are not present, for GFP, ηsm,c(k)

should not depend on the particular kth single molecule (Eq. 6). Thus, an average, ηGFP,c,

was calculated as

(7)

where ηsm,c(k) denotes the measured corrected power for the kth single GFP molecule and

TGFP denotes the number of single GFP molecule images analyzed. Then, for each
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microdomain in which the fluorescence was reported via GFP, the number of DC-SIGN

molecules in this microdomain was computed as (see Eqs. 6)

(8)

For the two different mAbs, the situation is a bit more complex. Computing experimentally

obtained, average corrected powers for the two types of mAbs gives

(9)

where ηsm,c(k) denotes the measured corrected power for the kth single mAb of a given type

and TmAb denotes the number of single mAb molecule images analyzed. Because the

experimental values of ηsm,c(k) were measured for the last single-step bleach, ηmAB,c =

[ηmAB,c]expt is the measured, average corrected power for a single AlexaFluor488

conjugated to a mAb. In general, for an average labeling ratio of γ ≈ 1 of AlexaFluor488

probes per mAb, and assuming a Poisson distribution for the number of fluorophores per

mAb, the average corrected power is, theoretically,

(10)

Thus, because γ ≈ 1 and because only frames immediately prior to the last single step bleach

for the mAbs were used, the fact that some mAb have 0, 1, 2 or more conjugated

fluorophores can be accounted for. Worth noting is that a similar procedure can be used

when γ ≠ 1, by multiplying [ηmAb,c]expt by γ. For each microdomain in which the

fluorescence was reported via a mAb, the number of DC-SIGN molecules in this

microdomain was computed as (see Eqs. 6)

(11)

The spot widths (for single molecules) or microdomain widths are denoted by δsm(k) and

δdomain(m), respectively, and were calculated in nm as δsm(k) = μ(k)σ or δdomain(m) = μ(m)σ

where σ = (16 μm)/(60) = 270 nm was the pixel size (16 μm is the pixel dimension of the

camera and the objective was 60X). Apparent microdomain areas were determined as

Adomain(m) = πδdomain
2(m). As noted in Figure 1D, large ill-defined microdomains were

excluded from analysis as it was impossible to ascertain whether such domains were a

collection of smaller microdomains.
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DENV

In this study we used DENV serotype 2 strain S-16803 (denoted as DENV in this paper),

which was produced in C636 insect cells as previously described (52). The titer of the

infectious virus stock is 1.57 × 107 FFU/ml.

Confocal imaging and colocalization analysis

For DENV and DC-SIGN microdomain colocalization analysis, NIH3T3 cells expressing

DC-SIGN plated on 35 mm MatTek dishes were first incubated with endocytosis inhibitors

(10 mM NaN3, 2 mM NaF, and 5 mM 2-deoxy-D-glucose) for 2 min, then incubated with

DENVs at 15.7 MOI for 10 min, thoroughly washed several times with Dulbecco’s

phosphate-buffered saline (DPBS) and fixed with 2% paraformaldehyde (PFA) for 20 min.

After fixation, the cell dishes were separated into two groups: nonpermeabilized and

permeabilized. Nonpermeabilized cells were used to image only cell-surface DENV and

DC-SIGN microdomains for surface colocalization analysis. For this group, the cells were

washed three times with DPBS, and submerged in 1% normal mouse serum (NMS) in DPBS

for 30 min for blocking. Permeabilized cells were used to image both surface and

internalized DENVs and DC-SIGN. For this group, the cells were washed three times with

DPBS, submerged in Perm Buffer (2% BSA, 0.1% saponin, 0.02% NaN3 in sterile DPBS)

and washed twice with Perm Buffer. After permeabilization the cells were incubated with

blocking buffer (1% NMS in Perm Buffer) for 30 min. After blocking, antibodies for

staining DENVs or DC-SIGN were diluted either in 1% NMS in DPBS for

nonpermeabilized cells, or in 1% NMS in Perm Buffer for permeabilized cells. The cells

were stained with anti-DENV 2H2-AlexaFluor488 at saturation concentration for 1 h at

37°C, washed thoroughly several times with DPBS, incubated with primary anti-DC-SIGN

H-200 IgG at 6 μg/ml for 20 min, washed thoroughly several times with DPBS, treated with

anti-rabbit (Fab’)2 AlexaFluor647 for 20 min, and finally washed thoroughly several times

with DPBS.

Confocal imaging of DENV and DC-SIGN on NIH3T3 cells was carried out on a Fluoview

FV1200 laser scanning microscope (Olympus) with an oil-immersion 60x NA 1.35

objective. An excitation wavelength of 488 nm at 2% power was used to image DENVs

stained by 2H2-AlexaFluor488 mAb and an excitation wavelength of 635 nm at 2% power

was used to image DC-SIGN stained with secondary anti-rabbit AlexaFluor 647 (Fab’)2.

The emission detection wavelength ranges were 500-550 nm and 650-710 nm, respectively.

Image frames contained 1024 × 1024 pixels, with a pixel size of 69 nm.

Colocalization analysis was carried out with a plugin named JACop on ImageJ (53). After

pre-processing and setting the thresholds in both green and red channels, Manders’

coefficients were calculated and read out as indications for colocalization percentages.

Manders’ overlap coefficients are based on Pearson’s correlation coefficients (54), and

range from 0 (no colocalization) to 1 (100% colocalization). Since, in our images the

numbers of DENVs were much less than the numbers of DC-SIGN microdomains on cell

surfaces, we used M1, the ratio of green DENV signals that overlap with red DC-SIGN

signals to the total green signals. Calculation of the number of DENV particles was done by

using the Mosaic Particle Tracker 2D/3D plug-in in Image J (55).
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dSTORM

Cell sample preparation for dSTORM was similar to the sample preparation for

colocalization imaging on nonpermeabilized cells. The main difference arose from the fact

that Atto488 is better suited for dSTORM than AlexaFluor488. Therefore, we used a

primary mouse mAb 12C1 against DENVs, and a secondary anti-mouse Atto488 IgG to

stain DENVs. Staining of DC-SIGN was performed by using primary H-200 IgG and

secondary anti-rabbit AlexaFluor647 (Fab’)2. As dSTORM is more sensitive compared to

conventional confocal imaging, the blocking step was prolonged to over 1.5 h and washing

steps were more extensive. At the time of observation, the cells were merged in fresh-

prepared STORM imaging buffer with cysteamine (MEA), kindly provided by Nikon, and

dSTORM imaging was performed on a Nikon N-STORM super-resolution microscope

(Nikon). Data analysis was carried out in situ on the N-STORM scope computer after

imaging.

Infectivity assay by FACS

Two different concentrations of DENVs were used (15.7 and 1.57 MOI). NIH3T3 cells

stably expressing DC-SIGN were plated on 35 mm cell culture dishes, and incubated with

the two concentrations of DENVs for 24 h, 48 h, and 72 h, respectively. At the time of

observation, cells were washed several times with DPBS, trypsinized, centrifuged at 1500

rpm for 5 min, resuspended in DPBS, centrifuged at 1500 rpm for 5 min, and resuspended in

2% PFA for 20 min. After fixation, the cells were washed with DPBS, and permeabilized

with Perm buffer. Staining of DENVs using 2H2-AlexaFluor488 and staining of DC-SIGN

using H-200/anti-rabbit AlexaFluor647 was performed as described above in the confocal

imaging section. The cells were finally transferred into a 96-well plate and infectivity assays

were carried out on a Guava easyCyte 8HT flow cytometer (Guava). The data analysis was

performed using Guava Express software (Guava).

Infectivity assay by confocal imaging

NIH3T3 cells expressing DC-SIGN plated on 35 mm MatTek glass-bottom dishes were

incubated with the two concentrations of DENVs introduced above for 24 h, 48 h, and 72 h.

Fixation and staining were carried out as described above, except without trypsinization.

Confocal imaging of infected cells was carried out on a Zeiss780 laser scanning microscope

(Carl Zeiss).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Principle of the quantitative TIRFM setup
A) Schematic drawing of prism-based TIRFM. B) Prism-TIRFM creates an elliptical

Gaussian illumination profile. The image was taken on a highly concentrated AlexaFluor488

solution. C) Fluorophores (yellow arrow) at the center of the Gaussian profile exhibit higher

brightnesses compared to those at the periphery (pink arrow), due to the different local

excitation intensity. The image was taken on a highly diluted, single-molecule level

AlexaFluor488 solution. Inset, an example of single-step photobleaching of the

AlexaFluor488. D) Prism-based TIRFM image of antibody-labeled DC-SIGN on A DC

membrane. The green circle illustrates spots used for data analysis while red circle illustrates

an ill-defined domain that was excluded from analysis. The latter domains were generally

somewhat larger. E) Prism-based TIRF image of GFP-DC-SIGN expressed in NIH3T3 cells.

Bars = 10 μm.
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Figure 2. Constructs and sample cell images
A) Schematic drawing of the different DC-SIGN constructs. B-F) Sample images of

NIH3T3 cells expressing wt DC-SIGN (B), GFP-DC-SIGN (C), DC-SIGN-Δ37 (D), DC-

SIGN-N80Q (E), and GFP-DC-SIGN-N80Q (F). G) A dendritic cell endogenously

expressing DC-SIGN. Images were taken on a commercial Olympus objective-based

TIRFM scope. Bars =10 μm.
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Figure 3. Determination of single-fluorophore brightnesses
A) Sample images of single fluorophores (arrows) in prism-based TIRFM illumination. Left,

single AlexaFluor488-conjugated DC6 mAb; middle, single AlexaFluor488-conjugated

120507 mAb; right, single GFP. B) Sample single-step photobleaching traces of single

AlexaFluor488-conjugated DC6 mAb (left), single AlexaFluor488-conjugated 120507 mAb

(middle), and single GFP (right). C) Histogram plots of the brightness distributions of single

fluorophores. Left, single AlexaFluor488-conjugated DC6 mAb; middle, single

AlexaFluor488-conjugated 120507 mAb; right, single GFP.
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Figure 4. Histograms of the number of molecules per microdomain
A) Dendritic cells. B-F) NIH3T3 cells expressing wt DC-SIGN (B), GFP-DC-SIGN (C),

DC-SIGN-Δ37 (D), DC-SIGN-N80Q (E), and GFP-DC-SIGN-N80Q (F). Note that a few

data points with numbers per domain > 40 are not shown in the plots.
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Figure 5. Scatter plots of numbers per domain vs domain width
Left columns, scatter plots of numbers per domain with domain width δ < 400 nm. Right

columns, scatter plots of numbers per domain vs domain area for the entire range of domain

sizes. A) DC-SIGN in dendritic cells. B-F) NIH3T3 cells expressing wt DC-SIGN (B), GFP-

DC-SIGN (C), DC-SIGN-Δ37 (D), DC-SIGN-N80Q (E), and GFP-DC-SIGN-N80Q (F).

Liu et al. Page 25

Traffic. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. Colocalization of DENVs with DC-SIGN micro/nano-domains
A) Representative confocal images of DENVs (left), DC-SIGN microdomains (middle left),

overlay of the two (middle right), and an enlarged view of the inset in middle right (right),

on cell surfaces. In this experiment, NIH3T3 cells expressing DC-SIGN were pretreated

with endocytosis inhibitors (10 mM NaN3, 2 mM NaF, and 5 mM 2-deoxy-D-glucose) for 2

min, then incubated with DENV for 10 minutes prior to fixation. B) Representative confocal

images of DENVs (left), DC-SIGN microdomains (middle left), and overlay of the two

(middle right), and an enlarged view of the inset in middle right (right), after cell

permeabilization. Bars in the first three panels, 10 μm. Bar in the fourth panel, 1 μm; in this

experiment, DENV was incubated with 3T3 cells expressing DC-SIGN for 15 minutes prior

to fixation and permeabilization. C) Colocalization percentages of DENVs with DC-SIGN
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microdomains before (left bar) and after (right bar) permeabilization. Error bar, standard

deviation. D) Plot of DC-SIGN micro/nano-domain diameters with corresponding

colocalized DENV (single or aggregates) diameters, from dSTORM images. Inset, a

representative dSTORM image of a single DC-SIGN nanodomain (left), DENV particle

(middle) and overlay of the two (right). Bars, 100 nm.
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TABLE 1

Number of DC-SIGN molecules per domain as measured by quantitative TIRFM imaging

Cell sample set Sample size

wt DC-SIGN, dendritic cell 4 ± 3 91

wt DC-SIGN, NIH3T3 cell 5 ± 4 95

GFP-DC-SIGN 7 ± 9 189

DC-SIGNΔ37 6 ± 6 340

DC-SIGN-N80Q 8 ± 13 118

GFP-DC-SIGN-80Q 9 ± 8 272

D/3D plugin in Image J.
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