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Abstract

Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone 

(O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway 

rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic 

homeostasis and that serum metabolomic and liver transcriptomic profiling will provide 

mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to 

filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-

related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to 

FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic 

responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose 

and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-

post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty 

acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and 

metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and 

lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and 

☆Disclaimer: The research described in this article has been reviewed by the National Health and Environmental Effects Research 
Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents 
necessarily reflect the views and policies of the Agency, nor does the mention of trade names of commercial products constitute 
endorsement or recommendation for use.
*Corresponding author at: MD B105-02, NHEERL, U.S. EPA, Research Triangle Park, NC 27711, USA. Fax: +1 919 541 0026., 
kodavanti.urmila@epa.gov (U.P. Kodavanti).
1SJS and VLB are Oak Ridge Institute for Science and Education Fellows.

Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.taap.2015.03.025.

HHS Public Access
Author manuscript
Toxicol Appl Pharmacol. Author manuscript; available in PMC 2016 February 24.

Published in final edited form as:
Toxicol Appl Pharmacol. 2015 July 15; 286(2): 65–79. doi:10.1016/j.taap.2015.03.025.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.taap.2015.03.025


gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in 

apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 

exposure induces global metabolic derangement involving glucose, lipid, and amino acid 

metabolism, typical of a stress–response. It remains to be examined if these alterations contribute 

to insulin resistance upon chronic exposure.
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Introduction

The incidence of metabolic syndrome is steadily increasing worldwide, resulting in higher 

prevalence of diabetes mellitus and cardiovascular morbidity and mortality (Ford et al., 

2002). The common clinical components that comprise metabolic syndrome include, but are 

not limited to, abdominal obesity, hypertriglyceridemia, hypertension, low levels of high-

density lipoprotein cholesterol (HDL-C), prothrombotic state, glucose intolerance, and 

insulin resistance (Ford et al., 2002; Grundy et al., 2004). Conventional etiologies, including 

sedentary lifestyle, diet-related obesity and genetics have been implicated as the major 

contributors to insulin resistance and the development of metabolic syndrome (Grundy et al., 

2004). Most recently, air pollution, such as particulate matter (PM), has also been linked to 

the development of metabolic syndrome, and may serve as an effect modifier for the 

epidemiological associations between environmental factors and increased rate of 

cardiovascular diseases (Chen and Schwartz, 2008). A number of recent epidemiological 

and experimental studies have shown that chronic inhalation of airborne PM may increase 

an individual’s risk for acquiring type 2 diabetes by creating a pro-inflammatory state, 

insulin resistance, and/or obesity (Brook et al., 2008; Rajagopalan and Brook, 2012; Liu et 

al., 2013). A number of mechanistic pathways have been proposed where lung injury/

inflammation initiates systemic inflammation, which is postulated to play a central role in 

inhaled pollutant-induced insulin resistance, but the evidence remains insufficient (Shoelson 

et al., 2006; O’Neill et al., 2007; Xu et al., 2011; Yan et al., 2011; Rajagopalan and Brook, 

2012). Similar to PM, the ubiquitous air pollutant ozone (O3) has been associated with 

adverse pulmonary and cardiovascular health effects, such as lung injury/inflammation, 

decreased lung function and heart rate variability in animals and humans (Watkinson et al., 

2001; Hollingsworth et al., 2007; Ciencewicki et al., 2008; Liu et al., 2009; Farraj et al., 

2012; Wagner et al., 2014). However, the likely contribution of O3 to metabolic disorder and 

extra-pulmonary effects has yet to be systematically investigated.

Exposure to O3 has also been shown to induce cardiovascular functional changes through 

modulation of the autonomic nervous system, which regulates sympathetic and 

parasympathetic balance (Farraj et al., 2012; Gordon et al., 2014). More specifically, acute 

O3 exposure has been shown to stimulate lung vagal C-fibers through transient receptor 

potential member A1 (TRPA-1) receptors that lead to activation of neural stress-responsive 

regions in the central nervous system where lung afferents of vagus nerves terminate 

(Taylor-Clark and Undem, 2010; Gackiere et al., 2011). Stress-mediated hypothalamus 
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pituitary adrenal (HPA) axis activation is well known to modulate a variety of physiological 

processes including thermoregulation, immune elicitation, hormonal disposition, and 

systemic metabolic alterations (Ulrich-Lai and Herman, 2009). One study has recently 

shown that acute O3 exposure increased serum corticosterone in rats (Thomson et al., 2013), 

which is a marker of HPA axis activation. Recently, we have shown that O3 induced glucose 

intolerance and increased serum leptin and epinephrine in Brown Norway (BN) rats, in 

addition to inducing hypothermia and bradycardia during exposure (Bass et al., 2013; 

Gordon et al., 2014). Observed increases in serum epinephrine and corticosterone during 

acute pollutant exposure suggest a potential involvement of sympathetic and/or HPA-

associated neurohumoral factors. However, a detailed characterization of O3-induced 

metabolic impairment and involvement of neurohumoral intermediates has not been 

reported. This could aid in identifying potential mechanisms of O3-induced systemic 

metabolic effects.

The objective of this study was to utilize serum metabolomic and liver transcriptomic 

techniques together with metabolic hormonal assessment to gain insight into the 

characteristics and potential mechanisms of metabolic alterations during O3-induced 

hyperglycemia and glucose intolerance. The serum metabolomic approach used in this study 

is able to detect quantifiable metabolites in the serum released from biochemical processes 

in various tissues critical for metabolic homeostasis (Barnes et al., 2014). The detection of 

metabolites can provide insight regarding organs being affected by O3 exposure. Liver being 

the major organ for control and maintenance of metabolic processes, the assessment of liver 

transcriptional changes could provide mechanistic insights into its role in O3 systemic 

metabolic response. We hypothesized that O3-induced hyperglycemia and glucose 

intolerance will be associated with broad scale systemic metabolic impairment, and that the 

use of serum metabolomic together with liver transcriptomic approaches will provide 

insights into 1) the mechanisms by which O3 perturbs metabolic processes, and 2) the 

potential contribution of O3 to long-term metabolic alterations.

Materials and methods

Animals

Male, 10 week old, healthy Wistar Kyoto (WKY) rats (250– 300 g) were purchased from 

Charles River Laboratories Inc. (Raleigh, NC). Rats were housed (2/cage) in polycarbonate 

cages containing beta chip bedding in an isolated animal room in an animal facility 

maintained at 21 ± 1 °C, 50 ± 5% relative humidity and held to a 12 h light/dark cycle. The 

animal facility is approved by the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC). All animals received standard (5001) Purina pellet rat 

chow (Brentwood, MO) and water ad libitum unless otherwise stated. Animal procedures 

were approved by the U.S. EPA NHEERL Animal Care and Use Committee (IACUC; 

Permit Number: 13-02-003 and 16-03-003). Animals were treated humanely and all efforts 

were made for alleviation of suffering.
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O3 generation and animal exposures

O3 was produced from oxygen by a silent arc discharge generator (OREC, Phoenix, AZ), 

and its entry into the Rochester style “Hinners” chambers was controlled by mass flow 

controllers. The O3 concentrations in the chambers were recorded continuously by 

photometric O3 analyzers (API Model 400). Chamber temperature and relative humidity 

were measured continuously. Mean chamber air temperature and relative humidity were 

23.3 °C (74 °F) and 46%, respectively. In the concentration-response study, rats were 

randomized by body weight into four exposure groups (n = 6/group) to make sure each 

exposure group had the same overall average body weight. Similarly, in the time-course 

study, rats were randomized by body weight into six groups (n = 8/group) for two exposure 

conditions and each time point. In the concentration-response study, WKY rats were 

exposed to either filtered air (FA) or O3 (0.25, 0.50, or 1.0 ppm), 6 h/day for two 

consecutive days and sacrificed 18 h after day 2. In the subsequent time-course experiment, 

three groups of WKY rats were used. 1) The first group was either exposed to FA or 1.0 

ppm of O3 for 6 h/day for one day (1 d–0 h), 2) a second group was exposed 6 h/day for two 

consecutive days (2 d–0 h), and 3) a third group was allowed an 18 h recovery, following 

two consecutive days of O3 exposure (2 d–18 h)

Glucose tolerance testing (GTT)

All rats that underwent GTT were fasted for 8–10 h in cage or during exposure prior to the 

assessment of blood glucose concentrations. For rats that were allowed an 18 h recovery 

period, food was removed for 10 h (overnight; 10 pm to 8 am) before GTT. Baseline blood 

glucose concentrations were measured by pricking the distal surface of rats’ tails using a 

sterile needle to obtain ~1 µl of blood. A Bayer Contour glucometer was used to determine 

blood glucose levels using test strips, which require 0.6 µL whole blood. After the first 

measurement, rats were given an intraperitoneal (I.P.) injection of glucose, 2 g/kg/10 mL 

(20% D-glucose; 10 ml/kg). Measurement with the glucometer was repeated every 30 min 

over the course of 2 h. In the concentration–response study, all animals underwent GTT 4 

days prior to O3 exposure, immediately following O3 on day 1 and immediately following 

O3 on day 2. For the time-course study, rats assigned to the 18 h recovery group were used 

for GTT. These rats underwent GTT one day before O3 exposure, immediately following O3 

exposure on day 1, immediately following O3 exposure on day 2, and also after an 18 h 

recovery period following two days of O3 exposure. In addition, rats assigned to the 2 d–0 h 

time point underwent GTT immediately following one day of FA or O3 exposure. No GTT 

was performed on the 1 d–0 h group where tissue and serum collection were performed 

immediately after exposure. The 2 d–0 h exposure group for tissue and serum collection did 

not undergo GTT on the 2nd day of O3 exposure.

Necropsy and sample collection

For the concentration–response study, all rats were necropsied 18 h after two consecutive 

days of FA or O3 exposure. For the time-course experiment, one group of rats (n = 16), 

which did not undergo GTT, were necropsied immediately after the first day of exposure (1 

d–0 h). The 2nd group of rats (n = 16) was necropsied immediately after the second day of 

O3 exposure (2 d–0 h). The recovery group (n = 16) was necropsied 18 h after the second 
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day of exposure (2 d–18 h). In each study, rats were fasted for 8–10 h before necropsy 

regardless of fasting associated with GTT. Rats were weighed and anesthetized with an 

overdose of sodium pentobarbital (Virbac AH, Inc., Fort Worth, TX; 50–100 mg/kg, i.p.). 

Blood samples were collected through an abdominal aortic puncture directly into serum 

separator vaccutainers without coagulant for serum preparation. Tubes were centrifuged at 

3500 ×g for 10 min and aliquots of serum were stored at −80 °C until analysis. In the 

concentration–response study, bronchoalveolar lavage (BAL) was performed through 

tracheal tubing using Ca2+-and Mg2+-free phosphate buffer saline, 37 °C at 28 mL total lung 

capacity/kg rat weight. Aliquots of BAL fluid were used to determine total cell counts with a 

Z1 Coulter Counter (Coulter, Inc., Miami, FL) and cell differentials were performed on 

cytospin slides stained with Diff-quick as previously described (Bass et al., 2013). The cell-

free BAL fluid was used to analyze albumin, as previously described (Bass et al., 2013). In 

the time-course experiment, in addition to collecting serum at each time point, liver tissues 

were collected and frozen in liquid nitrogen for RNA analysis.

Serum analysis

Serum samples collected from rats were analyzed for insulin, interleukin-6 (IL-6) and leptin 

using rat-specific electrochemiluminescence assays (Meso Scale Discovery, Gaithersburg, 

MD) via manufacturer’s instructions. Total cholesterol was measured in serum samples 

using kits from TECO Diagnostics (Anaheim, CA), while HDL-C and low-density 

lipoprotein cholesterol (LDL-C) were measured with kits from Thermo Fisher Scientific, 

Inc. (Middletown, VA). Both types of kits were modified for use on the Konelab Arena 30 

system (Thermo LabSystems, Espoo, Finland).

Metabolomic analysis

Serum global metabolomic profiling was performed by Metabolon Inc. (Durham, NC). 

Detailed methods are described in previous publications (Evans et al., 2009; Dehaven et al., 

2010; Reitman et al., 2011). Frozen serum samples from time-course study for 1 d–0 h and 

2d–0 h time points (n = 7–8/group) were used for this analysis.

Sample accessioning

Each sample received was accessioned into the Metabolon laboratory information 

management system (LIMS) and was assigned a unique identifier that was associated with 

the original source identifier only. This identifier was used to track all sample handling, 

tasks, results, etc. All aliquots of any sample were automatically assigned their own unique 

identifiers by the LIMS when a new task was created; the relationship of these samples is 

also tracked. All samples were maintained at −80 °C until processed.

Sample preparation

Samples were prepared using the automated MicroLab STAR® system from Hamilton 

Company. A recovery standard was added prior to the first step in the extraction process for 

QC purposes. Sample preparation was conducted using aqueous methanol extraction process 

to remove the protein fraction while allowing maximum recovery of small molecules. The 

resulting extract was divided into four fractions: one for analysis by Ultra High Performance 
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Liquid Chromatography/Mass Spectroscopy (UPLC/MS/MS) (positive mode), one for 

UPLC/MS/MS (negative mode), one for Gas chromatography/Mass Spectroscopy (GC/MS), 

and one for backup. Samples were placed briefly on a TurboVap® (Zymark) to remove the 

organic solvent. Each sample was then frozen and dried under vacuum. Samples were then 

prepared for the appropriate instrument, either UPLC/MS/MS or GC/MS.

UPLC/MS/MS

The LC/MS portion of the platform was based on a Waters ACQUITY ultra-performance 

liquid chromatography (UPLC) and a Thermo-Finnigan linear trap quadrupole (LTQ) mass 

spectrometer, which consisted of an electrospray ionization (ESI) source and linear ion-trap 

(LIT) mass analyzer. The sample extract was dried then reconstituted in acidic or basic LC-

compatible solvents, each of which contained 8 or more injection standards at fixed 

concentrations to ensure injection and chromatographic consistency. One aliquot was 

analyzed using acidic positive ion optimized conditions and the other using basic negative 

ion optimized conditions in two independent injections using separate dedicated columns. 

Extracts reconstituted in acidic conditions were gradient eluted using water and methanol 

containing 0.1% formic acid, while the basic extracts, which also used water/methanol, 

contained 6.5 mM ammonium bicarbonate. The MS analysis alternated between MS and 

data-dependent MS2 scans using dynamic exclusion. Raw data files are archived and 

extracted as described below.

GC/MS

The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a 

minimum of 24 h prior to being derivatized under dried nitrogen using bistrimethyl-silyl-

trifluoroacetamide (BSTFA). The GC column was 5% phenyl and the temperature ramp was 

from 40 °C to 300 °C in a 16 min period. Samples were analyzed on a Thermo-Finnigan 

Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron impact 

ionization. The instrument was tuned and calibrated for mass resolution and mass accuracy 

on a daily basis. The information output from the raw data files was automatically extracted 

as discussed below.

Quality assurance (QA)/quality control (QC)

For QA/QC purposes, additional samples were included with each day’s analysis. These 

samples included extracts of a pool of well-characterized human plasma, extracts of a pool 

created from a small aliquot of the experimental samples, and process blanks. QC samples 

were spaced evenly among the injections and all experimental samples were randomly 

distributed throughout the run. A selection of QC compounds was added to every sample for 

chromatographic alignment, including those under test. These compounds were carefully 

chosen so as not to interfere with the measurement of the endogenous compounds.

Metabolomic data extraction and compound identification

Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware and 

software. Metabolite quantification was based on area under the curve. These systems are 

built on a web-service platform utilizing Microsoft’s. NET technologies, which run on high-
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performance application servers and fiber-channel storage arrays in clusters to provide 

active failover and load-balancing. Compounds were identified by comparison to library 

entries of purified standards or recurrent unknown entities. Metabolon maintains a library 

based on authenticated standards that contains the retention time/index (RI), mass to charge 

ratio (m/z), and chromatographic data (including MS/MS spectral data) on all molecules 

present in the library. Furthermore, biochemical identifications are based on three criteria: 

retention index within a narrow RI window of the proposed identification, nominal mass 

match to the library ±0.2 amu, and the MS/MS forward and reverse scores between the 

experimental data and authentic standards. The MS/MS scores are based on a comparison of 

the ions present in the experimental spectrum to the ions present in the library spectrum. 

While there may be similarities between these molecules based on one of these factors, the 

use of all three data points can be utilized to distinguish and differentiate biochemicals. 

More than 2400 commercially available purified standard compounds have been acquired 

and registered into LIMS for distribution to both the LC and GC platforms for determination 

of their analytical characteristics.

Statistical analysis of metabolomic data

Missing values (if any) are assumed to be below the level of detection. However, 

biochemicals that were detected in all samples from one or more groups but not in samples 

from other groups were assumed to be near the lower limit of detection in the groups in 

which they were not detected. In this case, the lowest detected level of these biochemicals 

was imputed for samples in which that biochemical was not detected. Following log 

transformation and imputation with minimum observed values for each compound, Welch’s 

two-sample t-test was used to identify biochemicals that differed significantly between 

experimental groups. Pathways were assigned for each metabolite, allowing examination of 

overrepresented pathways. Significant (p < 0.05) pathway enrichment output (cumulative 

hypergeometric distribution) was assessed for each of the selected contrasts (1 d–0 h; 2 d–0 

h and 2d–18 h) using MetaboSync, version 1.0 (Metabolon, Inc. RTP, NC) to determine the 

metabolic processes impacted by O3.

Gene array

Liver tissue samples from FA or 1 ppm O3-exposed rats (n = 5–6/group) for all three time 

points from the time-course study were used for this analysis. Total liver RNA was isolated 

from ~20 mg tissue with a commercially available RNeasy mini kit (Qiagen, Valencia, CA) 

using silica gel membrane purification. Liver RNA was resuspended in 30 µl of RNAse-free 

water. RNAse inhibitor was added and RNA yield was determined spectrophotometrically 

on a NanoDrop 1000 (Thermo Scientific, Wilmington, DE). RNA integrity was assessed by 

the RNA 6000 LabChip® kit using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, 

CA). We examined global gene expression changes using the Affymetrix platform (RG-230 

PM Array strip). Biotin-labeled cRNA was produced from total RNA using an Affymetrix 

IVT-express labeling kit (cat# 901229). Total cRNA was then quantified using a Nano-Drop 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) and evaluated for 

quality on a 2100 Bioanalyzer. Fragmented cRNA were also evaluated for quality using 

2100 Bioanalyzer. Following overnight hybridization at 45 °C to Affymetrix RG-230 PM 

array strip in AccuBlock Digital Dry Baths (Labnet International Inc.), the arrays were 
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washed and stained using an Affymetrix GeneAtlas fluidics station as recommended by the 

manufacturer. Arrays were scanned on an Affymetrix Model GeneAtlas scanner. After 

scanning, raw data (Affymetrix.cel files) were obtained using Affymetrix Command 

Console Operating Software. This software also provided summary reports by which array 

QA metrics were evaluated including average background, average signal, and 3′/5′ 

expression ratios for spike-in control GAPDH.

Normalization and determination of differentially expressed genes

The Affymetrix GeneAtlas array data for each sample was normalized by Affymetrix 

Expression Console software using the plier algorithm with perfect match only probes. The 

resulting expression table was downloaded from Affymetrix Expression Console software 

into a text file. Statistical contrasts were calculated at each time point for O3 vs. the FA 

control. Each contrast was computed on a text file containing all assayed genes as rows and 

only the contrast samples as columns by a Bayes t-test using R. Subsequently, a multiple test 

correction using the Benjamin–Hochberg method with an alpha of 0.05 was applied to the 

Bayes t-test output in Excel. To support subsequent analysis, the differentially expressed 

genes (DEGs) from the three time-point contrasts were consolidated into an O3 DEG 

expression table.

Functional gene list preparation

The DEG list for each time point was also submitted to the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.7 for determination of significant 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using a modified Fisher 

Exact test with a p-value cutoff of 0.05. Functional gene lists were generated by NetAffx 

queries at the Affymetrix website (www.affymetrix.com). The query terms were 

“apoptosis”, “diabetes”, “gluconeogenesis”, “glycolysis”, “mitochondria”, “steroid 

metabolism”, “tricarboxylic acid cycle”, “unfolded protein response” and “cytokines”. The 

eight lists were exported separately from NetAffx as text files. For each gene list, 

Affymetrix probeset IDs were used to select the corresponding gene from the O3 DEG 

expression table to build an expression table that only contains the genes for a given 

function that were also O3 DEGs. Hierarchical clustering was computed for each functional 

gene list using Cluster 3.0 (de Hoon et al., 2004) and the clusters were displayed using Java 

Treeview (Saldanha, 2004). Three functional probeset lists based on queries of “steroid 

receptor”, “insulin receptor” or “fatty acid” were obtained from NetAffx. Each of these lists 

was compared to the list of DEGs for the 1 d–0 h time point to identify DEGs in each of the 

three functional categories. Each functional list was processed separately by Ingenuity 

Pathway Analysis (IPA) to produce a direct relationship graph. The graph constructed from 

the Ingenuity knowledgebase depicts some of the biological relationships among the probe 

sets on the list. The microarray data are publically available through Gene Expression 

Omnibus (accession # GSE59329).

Real time PCR confirmation of gene array findings

We selected 4 genes increased in expression from the gene array (insulin receptor 

substrate-2, IRS-2; 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1, PFKFB1; 
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aconitase-2, Aco-2; and peroxisome proliferator activated receptor gamma c1a, Ppargc1a) 

and a control transcript (β-actin) to determine the validity of gene array findings. RT-PCR 

for RNA from FA or O3-exposed rat livers at 1 d–0 h time point was conducted on an ABI 

Prism 7900 HT sequence detection system (Applied Biosystems, Foster City, CA) as 

described previously (Bass et al., 2013). Primers were purchased from ABI as inventoried 

TaqMan Gene Expression Assays, each containing a 6-carboxy-fluorescein (FAM dye) label 

at the 5′ end. Data were analyzed using ABI sequence detection software (SDS version 2.2). 

For each PCR plate, cycle threshold (cT) was set to an order of magnitude above 

background. For each individual sample, target gene cT was normalized to a control gene cT 

(β-actin) to account for variability in the starting RNA amount. Expression of exposure 

group was quantified as fold difference over FA control.

General statistical analysis

Graphpad prism 4.03 software was used for statistical analysis of GTT and biomarker data. 

Dose response study GTT was analyzed using a two-way analysis of variance (ANOVA) 

where each time blood glucose measurement was independently assessed. The two 

independent variables were day and dose. One-way ANOVA was used for data analysis of 

neutrophils and albumin in the BAL fluid. The time-course study GTT was analyzed by two-

way repeated measures MANOVA (multivariate ANOVA). The two independent variables 

were day and dose. The time course study biomarker measurements were analyzed using a 

two-way ANOVA followed by Duncan’s multiple range test. Pair-wise comparisons were 

performed as subtests of the overall ANOVA. The nominal Type I error rate (α) was set at 

0.05. No adjustments were made for multiple comparisons.

Results

O3 induces pulmonary injury and inflammation in a concentration-dependent manner

Although O3 is well studied for its potential to induce lung injury in many experimental 

settings, we wanted to determine the concentration-dependent cellular responses and 

inflammation in our experimental model to better correlate these changes with systemic 

metabolic alterations. Therefore, we first confirmed O3-induced pulmonary cellular 

responses in WKY rats by examining the BAL fluid for increases in the lung vascular 

leakage of albumin and neutrophilic inflammation at 18 h post two consecutive days of O3 

exposure. Inflammation and cellular responses have been shown to peak on the second day 

of O3 exposure (van Bree et al., 2001). The concentration response analysis showed that 1.0 

ppm O3 increased the number of neutrophils in the BAL fluid (Fig. 1A). Albumin, a lung 

protein leakage marker that exists at lower levels in the normal lung, was also elevated at 1.0 

ppm O3 (Fig. 1B). These changes were not evident in rats exposed to 0.5 or 0.25 ppm O3.

O3 exposure induces concentration- and time-dependent hyperglycemia and glucose 
intolerance

GTT in the concentration–response study was conducted to determine whether O3-induced 

cellular and inflammatory lung responses were associated with prior changes in blood 

glucose regulation. In comparison to the FA group, O3-exposed rats at 0.5 and 1.0 ppm on 

day 1 displayed marked fasting hyperglycemia (0 min time point; Fig. 1C). By contrast, the 
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2 d–0 h O3 exposure group illustrated diminished fasting hyperglycemia (Fig. 1D). Both the 

0.5 and 1.0 ppm experimental groups exhibited glucose intolerance when examined 

immediately after O3 exposure on day 1 (Fig. 1C) and day 2 (Fig. 1D). O3 at 0.25 ppm 

caused neither hyperglycemia nor glucose intolerance (Figs. 1C and D). GTT was also 

performed in the time-course study where exposure was to FA or 1.0 ppm O3. As noted in 

the concentration–response study (Fig. 1C), O3 at 1.0 ppm induced hyperglycemia and 

glucose intolerance when examined immediately after a 6 h exposure (1 d–0 h; Fig. 2A). 

Like O3 exposure on day 1, hyperglycemia and glucose intolerance persisted on day 2 of 

exposure (Fig. 2B). O3-induced hyperglycemia and glucose intolerance were largely 

reversed after 18 h in the recovery group (Fig. 2C).

O3 exposure alters the serum metabolic hormones and lipids

To determine the potential cause of hyperglycemia and glucose intolerance, we assessed the 

serum levels of metabolic hormones and cytokines through 

electroimmunochemiluminescence and colorimetric ELISA techniques. Variability was 

noted in baseline (FA control) levels of insulin between three time points, where FA-

exposed rats after 2 d–0 h had high levels of insulin relative to the other two groups. This 

increase in insulin could relate to the sustained stimulation of its release in response to the 

injection of a high dose of glucose immediately following the day 1 of FA or O3 exposure 

for performing GTT. When compared to time-matched FA group, serum insulin levels were 

lower in O3-exposed rats at 2 d–0 h time point (Fig. 3A). Serum leptin, a satiety hormone, 

increased after day 1 (1 d–0 h) of O3 exposure, but not on day 2 (2 d–0 h) or following an 18 

h of recovery (2 d–18h)(Fig. 3B). Serum IL-6 did not change after O3 exposure at any time 

point (Fig. 3C). There was a significant diurnal variation in cholesterol levels of FA-exposed 

rats such that rats necropsied in the afternoon times for 1 d–0 h and 2 d–0 h had higher 

levels than rats necropsied in the morning at 2 d–18 h time point. O3 exposure resulted in 

elevated serum total cholesterol and HDL-C at 2 d–18 h time point (Figs. 3D and F). The 

levels of LDL-C were increased on day 2 (2 d–0 h and 2 d–18 h) after O3 exposure (Fig. 

3E).

Metabolomic analysis

We conducted metabolomic analysis of serum samples from FA or 1.0 ppm O3-exposed rats 

at 1 d–0 h and 2 d–0 h to gain understanding of the nature of metabolic changes and 

potential involvement of multiple organs in homeostatic control of metabolic processes. 

Comparison of global biochemical profiles for rat serum revealed several key metabolic 

differences between O3-exposed rats vs. FA control. The metabolomic analysis identified 

strong effects of O3 exposure on metabolites that reflect changes in central energy 

metabolism. Of 313 named biochemicals identified in the serum, 81 metabolites were 

significantly increased in O3-exposed rats and 48 decreased at 1 d–0 h, while 71 metabolites 

were increased and 80 were decreased at 2 d–0 h. Pathway analysis identified a number of 

pathways that were significantly altered after O3 exposure. Those included lysine 

catabolism, branch chain amino acids (BCAA) metabolism, protein degradation, urea cycle, 

sphingolipids metabolism, fatty acid synthesis, primary and secondary bile acid metabolism 

and glutathione metabolism at 1 d–0 h. Many of these pathways also remained changed at 2 
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d–0 h, in addition to alteration in beta-oxidation pathway. A detailed analysis of metabolic 

processes affected based on individual metabolites impacted by O3 is given below.

Metabolomic analysis: O3 impairs glucose homeostasis through perturbation of glycolytic 
pathways

The metabolomic analysis confirmed hyperglycemia at 1 d–0 h following O3 exposure 

(Table 1), as evident during GTT. In addition, the metabolite 1,5-anhydroglucitol, a 

biomarker inversely related to long-term glycemic control, was markedly decreased in O3-

exposed animals at both time points (Table 1). Fructose levels were also increased at 1 d–0 h 

but not at 2 d–0 h. The glycolysis end-product pyruvate was increased on day 1 of O3 

exposure while the anaerobic glycolytic metabolite, lactate, was significantly decreased at 

day 2 in O3 exposed animals (Table 1). Several tricarboxylic acid (TCA) cycle intermediates 

(citrate, α-ketoglutarate, fumarate and malate) were less abundant in the serum samples of 

O3-exposed rats especially on day 2 (Table 1).

Metabolomic analysis: O3 exposure increases serum amino acids

A number of BCAA and their metabolites were increased in the serum following O3 

exposure (Table 1). The data showed several signatures of altered protein and amino acid 

catabolism. Urea, generated to eliminate nitrogenous waste made from amino acid 

catabolism, was more abundant with O3 exposure. One muscle-specific protein catabolite (3-

methylhistidine) and one possible muscle protein catabolite (N-acetyl-1-methylhistidine) 

were more abundant after 2 days of O3 exposure, suggesting their release from muscle 

(Table 1). Increases were observed in the BCAA themselves (leucine, valine and isoleucine) 

as well as several metabolites generated when BCAA are catabolized to enter the TCA 

cycle. Some of these metabolites (alpha-hydroxyisocaproate, alpha-hydroxyisovalerate and 

2-hydroxy-3-methylvalerate) are typically present at low abundance unless dehydrogenase 

reactions are defective, or with mitochondrial dysfunction. Combined with the observed 

decrease in TCA cycle intermediates, these metabolite changes may reflect mitochondrial 

dysfunction.

Metabolomic analysis: O3 exposure increases serum free fatty acids (FAA) and cholesterol 
while decreasing bile acids

All detectable short- and long-chain FFA were noticeably more abundant in O3-exposed rats 

at both time points. These increases included essential, non-essential, saturated, 

polyunsaturated and hydroxy fatty acids ranging in length from C12 to C22, as well as, 

palmitoyl and stearoyl sphingomyelin (Table 2). Additionally, O3 exposure reduced 

mitochondrial β-oxidation metabolites (beta-hydroxybutyric acid, propionylcarnitine and 

butyrylcarnitine) (Table 2).

Bile acids are synthesized in the liver from cholesterol, further metabolized by the gut 

microbiome, and released into the intestine to facilitate dietary fat absorption. In this study, 

several cholesterol and bile acid metabolites were changed by O3 exposure. Serum 

cholesterol was elevated, while virtually all serum bile acid metabolites were decreased in 

O3-exposed rats at both time points (Table 3). The observed increase in diet-derived 

phytosterols (fucosterol, beta-sitosterol and campesterol) suggests increased dietary 
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absorption of cholesterols or decreased metabolism/excretion of cholesterol. While rats were 

not provided food during O3 exposure, the changes in circulating cholesterol and bile acids 

might be due to decreased metabolism and/or release in the circulation. The observed 

decreases in several bile acids and an intermediate in bile acid synthesis from cholesterol (7-

hoca) suggest decreased bile acid production may contribute to elevated serum cholesterol 

(Table 3).

Liver transcriptomic profiling reveals its role in homeostatic control of O3-induced 
systemic metabolic alterations

Because the liver is the primary organ that regulates glucose, amino acid, cholesterol and 

fatty acid metabolism, we conducted global gene expression profiling of liver to determine 

its role in systemic metabolic impairment induced byO3 exposure. Overall, the effect of O3 

on the liver transcriptome was greatest at 1 d–0 h with reduction in number of genes affected 

at 2 d–0 h and 2 d–18 h. At 1 d–0 h, 2335 genes were found to be significantly different in 

O3-exposed rats compared to FA controls, while on 2 d–0 h there were only 72 genes and 2 

d–18 h there were 247 genes differentially expressed. KEGG pathway analysis of liver 

DEGs at day 1 indicated that steroid biosynthesis, TCA cycle, and glyoxylate and 

decarboxylate metabolism pathways were significantly altered by O3. When genes 

associated with various metabolic processes, apoptosis, mitochondria, unfolded protein 

response and diabetes were separated from master DEGs list, probe sets assigned to each of 

this process represented 11–34% of the total probes on the array, suggesting widespread 

liver gene expression impact of O3 exposure implicating metabolic processes 

(Supplementary Information (SI) Table 1). The heatmaps of cytokine network showed 

inhibition of many genes with induction of some genes (SI Fig. 1A – C). Many genes 

belonging to apoptosis pathway were impacted by O3 exposure (SI Fig. 2A – F). Genes 

involved in steroid and fatty acid metabolism and insulin signaling were of interest and 

showed that O3 impacted key regulatory genes involved in these processes (SI Fig. 3 and 

Fig. 4A – C).

O3 increased hepatic expression of numerous glycolytic genes including insulin receptor 

substrate-2, lactate dehydrogense A, aldolase A, phosphoglycerate mutase-1, enolase 1-

alpha, pyruvate kinase, 6-phosphofructo-2-kinase-fuctose-2,6 bisphosphatase, and 

glycerol-3-phosphate dehydrogenase-2 at 1 d–0 h and 2 d–0 h (Fig. 4), suggesting a central 

stimulation to increase glycolysis. However, the expression of glucokinase, an important 

enzyme for conversion of circulating glucose to glucose-6-phosphate, was decreased in O3-

exposed rats. Interestingly, O3 exposure also increased the expression of some of the 

gluconeogenic genes, such as the phosphoenolpyruvate carboxykinase 1-soluble, glucose-6-

phosphatase, and phosphofructo-2-kinase-fuctose-2,6 bisphosphatase, which is a multi-

functional protein that plays a role in gluconeogenesis, as well as, glycolysis. In addition, O3 

increased expression of genes involved in amino acid metabolism that feed into 

gluconeogenesis. Those included glutamate-ammonia ligase, tyrosine aminotransferase, 

serine dehydratase, and glycine-N-methyltransferase (Fig. 4). O3 also elevated expression of 

genes encoding the TCA cycle enzymes such as fumarate hydratase, acontinase-2, and 

isocitrate dehydrogenase 3 NAD-alpha and gamma suggestive of enhanced energy 

expenditure in the liver.
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Because many genes involved in glycolysis and TCA cycle were induced, we presumed that 

liver mitochondrial function might also be affected by O3 exposure. Many of the observed 

glycolysis, gluconeogenesis, and TCA genes modified by acute O3 exposure were seen in 

heat maps generated for mitochondria gene cluster (Figs. 5A and B). These also included 

genes involved in steroid metabolism. Mitochondrial heat maps (Figs. 5A and B) showed 

that O3 decreased the expression of genes involved in cholesterol and steroid metabolism. 

These genes included farnesyl diphosphate synthase, ATP citrate lyases, and MLX 

interacting protein. Meanwhile, O3 increased the expression of genes involved in glycolytic 

and fatty acid catabolic processes, such as acyl CoA thioesterase 1, acyl CoA thioesterase 2, 

acyl CoA thioesterase 7, 3-hydroxybutarte dehydrogense type 1, and pyruvate 

dehydrogenase phosphatase catalytic subunit 2 (Fig. 5B). Interestingly, O3 increased 

expression of genes encoding enzymes involved in mitochondria biogenesis and 

homeostasis in the liver, such as the peroxisome-proliferator-activated receptor gamma, 

involved in liver homeostatic control. O3-exposed rats also showed increases in 

mitochondria apoptotic genes such as the Bcl-2 interacting protein containing the BH3 

subunit and other genes involved in apoptotic pathways (Fig. 5B; SI Fig. 2).

While metabolomics data indicated marked changes in FFA and steroid metabolism, DEGs 

belonging to these processes were separated from a master DEGs list of liver genes. Since 

these metabolic pathways operate in mitochondria, some of these genes were readily seen in 

the heat maps for mitochondrial genes. A heat map of steroid metabolism genes further 

confirmed that O3 exposure decreased expression of genes that encode enzymes necessary 

for cholesterol synthesis in the liver, including but not limited to, lanosterol synthase, 

farnesyl diphosphate synthase, mevalonate diphospho-decarboxylase, isopentenyl-

diphosphate delta isomerase, sterol regulatory element binding transcription factor 1/2, and 

more (Fig. 6A). In contrast, O3 increased the expression of genes that encode for the 

proteins arginase, argininosuccinate lyase, and argininosuccinate synthetase, which are 

essential for liver ammonia detoxifying processes and the progression of the urea cycle (Fig. 

6B). O3-exposed rats also demonstrated higher expression of genes that encode for nuclear 

receptors, such as, estrogen, thyroid, and RAR-related orphan receptor A (Fig. 6B).

Since increases in circulating BCAA occurred likely due to increased muscle protein 

catabolism, we wanted to determine whether genes involved in liver amino acid metabolism 

responded to this systemic response. Some of the genes involved in the use of amino acids 

for gluconeogenesis providing precursors for TCA cycle were induced by O3, as indicated 

earlier. These gene included dihydrolipamide S-succinyltransferase, serine dehydratase, 

aminoadipate-semialdehyde synthase, butyrobetaine, 2-oxoglutarate dioxygenase 1 and 

more (Fig. 7).

We confirmed the validity of the liver gene array findings using RT-PCR for four transcripts 

at 1 d–0 h time point (Fig. 8). All four transcripts that are important in metabolic regulation, 

including IRS-2, PFKFB1, Aco-2, and Ppargc1a, were found to be increased when 

expression was analyzed using RT-PCR, confirming that the array technique provided 

satisfactory results (Fig. 8).

Miller et al. Page 13

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2016 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Recent epidemiological and experimental studies have shown that O3 and ambient PM, in 

addition to causing respiratory effects in humans and animals, may also contribute to a 

number of systemic health outcomes such as neuronal, reproductive, cardiovascular and 

metabolic effects, including insulin resistance (Campbell, 2004; Thomson et al., 2013; Liu et 

al., 2013; Pedersen et al., 2014). The mechanisms of these systemic effects are poorly 

understood. We have recently shown that acute O3 exposure in BN rats induces glucose 

intolerance, leptinemia and catecholamine release generally observed during a stress 

response (Bass et al., 2013). O3 exposure has been shown to induce lung injury and 

inflammation (van Bree et al., 2001), activate stress responsive regions in the brain 

(Gackiere et al., 2011), and induce hypothermia and bradycardia (Gordon et al., 2014). In 

this study, our goal was to characterize the homeostatic metabolic response of the WKY rat 

to O3 exposure using serum metabolomic and liver transcriptomic approaches to better 

understand the potential mechanisms responsible for systemic metabolic alterations.

In WKY rats, O3-induced fasting hyperglycemia, glucose intolerance, and serum leptin 

increases that were much more pronounced than responses we recently reported in BN rats 

(Bass et al., 2013). These metabolic and hormonal changes were accompanied by rapid and 

reversible increases in serum protein degradation byproducts, FFA and cholesterol, depictive 

of a systemic metabolic response, and decreases in TCA cycle intermediates, which might 

relate to hypothermia observed in rats after an O3 exposure (Gordon et al., 2014). Liver gene 

expression changes were coherent with changes in serum metabolites and showed inhibition 

of genes involved in steroid biosynthesis but stimulation of genes involved in 

gluconeogenesis, glycolysis, β-oxidation and energy expenditure. O3-induced release of 

short- and long-chain FFA into the circulation, likely involving adipose lipolysis, was 

coincided with decreased expression of hepatic lipid biosynthesis genes. The concomitant 

increase in circulating cholesterol may be a result of reduced catabolism in the liver as a 

consequence of inhibition of bile acid synthesis evidenced by the decrease in circulating bile 

acid metabolites. Further, our data show increased flux of BCAA into the circulation, which 

corroborated with increased expression of hepatic enzymes that utilize precursor amino 

acids for gluconeogenesis. Overall,we show that these acute systemic effects of O3 exposure 

involve a broad scale derangement of glucose, lipid, and protein metabolism reflective of a 

sympathetic and HPA-mediated stress response. If and how this reversible derangement 

might relate to chronic development of metabolic disorders will require studies involving 

long-term exposures.

As observed in our study, O3-induced lung injury and inflammation peaks one day after an 

acute exposure (van Bree et al., 2001). We have shown that O3 initially induces acute 

hypothermia during exposure but this is followed by hyperthermia and lung inflammation 

the following day. The temporal pattern of metabolic changes seen in the present study 

suggests that neuronal response might be stimulated prior to inflammation. A number of 

animal studies have shown that O3 can induce neuroinflammation and activate 

catecholeminergic neurons likely through lung vagus afferents (Gackiere et al., 2011; 

Martínez-Lazcano et al., 2013). Activation of these central nervous system locations can 

stimulate sympathetic and HPA-mediated release of adrenal stress hormones in the systemic 
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circulation, which can perturb metabolic functions involving glucose, lipids, and amino 

acids (Seematter et al., 2004). We have also observed an increase of epinephrine after an 

acute O3 exposure in BN rats (Bass et al., 2013). In addition, O3 has been shown to increase 

corticosteroidal activities in multiple tissues likely through activation of HPA-axis 

(Thomson et al., 2013). The systemic metabolic changes such as hyperglycemia, glucose-

intolerance, lipidemia, and amino acid influx induced by O3 are similar to those induced 

during a neuronally-mediated stress response following an organ injury (Molina, 2005; 

Wang et al., 2007). Although stress-mediated metabolic disorder has been very well 

established, no prior air pollution studies have linked a stress response to subsequent 

systemic metabolic impairment.

Temporal differences were noted in O3-mediated hyperglycemia, leptinemia and glucose 

intolerance. Leptinemia was observed only on day 1, which coincided with fasting 

hyperglycemia, increased circulating pyruvate and 2-hydroxybutarate on day 1 and 

decreased lactate on day 2, while glucose intolerance persisted over both days. This may 

relate to a number of potential interactive mechanisms governing glucose intolerance and 

could explain the reversible nature of metabolic effects upon termination of O3 exposure. It 

is not clear what stimulates leptin release immediately after O3 exposure, which coincides 

with release of FFA on day 1 but not on day 2. The stimulation of sympathetic nerves is 

known to result in inhibition of leptin secretion (Sandoval and Davis, 2003), but the 

activation of HPA has been associated with its increase (Roubos et al., 2012). Leptin is 

made primarily in adipocytes and has major impact on metabolic and immune processes 

(Mainardi et al., 2013). Since adipose lipolysis is likely stimulated after O3 exposure, it is 

possible that the release of FFA into the circulation stimulates concomitant leptin release. 

However, leptin increase was not sustained on day 2 while FFA continued to be increased. 

Acute release of leptin from adipose tissue can directly signal the hypothalamus to mediate 

peripheral fat oxidation and suppress food intake (Roubos et al., 2012). It has been shown 

that increased leptin can inhibit the neurons co-expressing neuropeptide Y (NPY) and 

Agouti-related peptide (AgRP) in the arcuate nucleus in the medio-basal hypothalamus 

(Morton, 2007). Thus, leptin can contribute to the reduction of acute fasting hyperglycemia 

observed on day 2 of O3 exposure.

Enhanced expressions of some of the genes involved in glycogenolysis, gluconeogenesis, 

and glycolysis after O3 exposure are suggestive of the changes induced following a stress 

response (Raz et al., 1991; Dufour et al., 2009). The O3-induced increases in corticosterone 

(Thomson et al., 2013) may augment hepatic glucose production by stimulating 

glycogenolysis and gluconeogenesis. However, the increase in blood glucose is 

accompanied by increases in 2-hydroxybutarate on day 1 and decreases in 1,5-

anhydroglucitol in serumat both time points, suggesting compromised glycemic control 

(Buse et al., 2003). Concomitantly, the glycolytic metabolite pyruvate accumulated only on 

day 1 with a slight reduction on day 2, suggesting that glycolysis does not progress into the 

TCA cycle at least in the early phase of O3 exposure in the tissues. In contrast, lactate 

decrease in the O3-exposed group on day 2 may indicate subsequent reduction of anaerobic 

glycolysis in the peripheral tissues that may coincide with the rebound effect on body 

temperature in rats following termination of exposure as previously noted (Gordon et al., 

2014). O3 exposed rats showed reduced serum levels of TCA cycle and β-oxidation 
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intermediates despite stimulation of genes in the liver. These changes suggest that the 

O3-induced metabolic response likely involves reduced energy expenditure byperipheral 

tissues, such as the muscle, while maintaining homeostatic activities in the liver.

O3 exposure decreased serum insulin levels despite glucose intolerance, particularly on day 

2, suggesting that β-cells in the pancreas may be impacted. It has been shown that the 

autonomic nervous system can have inhibitory effects on insulin production and secretion 

into systemic circulation by islet β-cells (Bloom et al., 1978; Buijs et al., 2001; Kiba, 2004). 

Additionally, short-term leptin increases have also been observed to suppress β-cells’ insulin 

production through sympathetic activation in rodents (Park et al., 2010). It is possible that 

this is an adaptive mechanism involving short-term insulin resistance in the peripheral 

tissues in the midst of O3-induced stress to ensure adequate glucose supply to the brain and 

other organs actively involved in maintenance of homeostasis, such as the liver.

The release of FFA into the circulation from adipose lipolysis is one of the hallmark features 

of stress-induced metabolic alterations. O3-induced increases in circulating FFA could be 

due to sympathetic action on white adipocytes (Nonogaki, 2000). It is has been shown that 

catecholamines during a stress response stimulate lipolysis and the mobilization of FFA in 

adipose tissue through activation of the β-adrenergic receptors (Carey, 1998). β-adrenergic 

receptor activation results in stimulation of adenylyl cyclase, followed by increases in 

intracellular cAMP, leading to the degradation of triglycerides and shuttling of FFA into the 

systemic circulation (Carey, 1998). In addition, activation of the HPA axis can also cause 

increased release of FFA from adipose tissues (Carey, 1998). Increased circulating FFA are 

known to induce insulin resistance by increasing serine phosphorylation of IRS-1 and 

halting insulin-mediated glucose uptake (Schulman and Zhou, 2009), which may explain 

O3-induced glucose intolerance.

O3-induced increase in circulating cholesterol further supports the contribution of 

sympathetic or HPA axis activation (Kunihara and Oshima, 1983). Despite, rats being fasted 

during O3 exposure, the observed increases in circulating cholesterol and phytosterols 

suggest decreased catabolism of cholesterol. Bile acid production is one important 

mechanism for eliminating cholesterol through excretion. The observed decreases in several 

bile acids and an intermediate of bile acid synthesis from cholesterol suggest that decreased 

bile acid production may contribute to elevated serum cholesterol. These data are supported 

by evidence that the transcription of essential genes involved in cholesterol and steroid 

synthesis was suppressed in the liver.

Notably, O3-induced increases in several circulating BCAA including muscle-specific 

protein catabolites, combined with the observed decrease in TCA cycle intermediates, may 

reflect increased protein catabolism and mitochondrial dysfunction. Given the fact that 

BCAA are known to regulate insulin production (Lu et al., 2013), their increases in the 

circulation after O3 exposure might influence insulin action in peripheral tissues. Stress has 

been shown to augment the catabolic state and therefore increases the utilization of BCAA 

for energy production in organs such as liver (Biolo et al., 1997; Porter et al., 2013). It has 

been shown that muscle protein catabolism is stimulated under stress to provide necessary 

precursor amino acids for the liver to synthesize large amounts of acute phase proteins 
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(Biolo et al., 1997). In addition, the increases in the expression of gluconeogenic enzymes 

involving BCAA suggests their use in energy production by the liver.

Changes in liver gene expression were not restricted to metabolic processes, rather genes 

involved in apoptosis and mitochondrial function were remarkably impacted by O3. O3 

exposure also changed the expression of several genes involved in inflammatory processes 

that tended to be inhibited rather than induced. Air pollution has been recently linked to non-

alcoholic liver disease, also known as liver steatohepatitis (Zheng et al., 2013; Lin et al., 

2014). One experimental study involving long-term exposure to concentrated ambient PM 

has shown liver inflammation, fibrosis and changes in markers of insulin signaling (Zheng et 

al., 2013). Marked acute effects of O3 on liver gene expression reflecting apoptosis, 

alteration of mitochondrial function and metabolic processes in the present study support the 

hypothesis that air pollutants could, over a long period of time, induce liver disease. The 

mechanisms by which O3 may lead to acute changes in liver gene expression and contribute 

to long-term disease will need to be examined further.

Although a number of studies have shown an increased release of inflammatory mediators 

from the lung into the circulation following exposure to air pollutants, specifically PM 

(Finnerty et al., 2007; Mutlu et al., 2007; Delfino et al., 2008), O3 did not significantly 

increase serum IL-6 levels in this study. We and others have previously shown that acute O3 

alone did not influence other serum inflammatory biomarkers such as TNF-α (Urch et al., 

2010; Bass et al., 2013). Additionally, metabolic impairment was noted at 0.5 ppm without 

changes in indicators of lung injury or inflammation, suggesting that the immediate 

metabolic response likely resulted from neurohumoral activation and not from cytokines 

released systematically.

Some of the metabolic effects of O3 observed immediately following day 1 were reduced 

upon the second day of exposure, and most were reversed upon an 18 h recovery period. 

This is critical in considering the relevance of these observations to humans who are 

exposed episodically over their lifetime. The reduction of O3 effects upon subsequent 

exposure might relate to the adaptation that has been widely reported in pulmonary injury 

and inflammation (Brink et al., 2008; Hamade and Tankersley, 2009); however, the 

mechanisms are poorly understood. We observed that the adaptation response to O3 might 

also involve reduced metabolic impairments upon subsequent exposure. It is likely that the 

degree of adaptation responses vary between animal species and strain (Hamade and 

Tankersley, 2009). In our prior study, we observed that episodic subchronic O3 exposure 

might reduce some of the acute metabolic effects in BN rats; however, glucose intolerance 

was still apparent after a 13 week episodic exposure (Bass et al., 2013). Thus, the metabolic 

consequences of low-level episodic O3 exposure are likely dependent upon the nature of that 

episodic exposure, the underlying genetic susceptibility and the biomarker of interest. 

Chronic stress has been linked to a rise in circulating lipids, insulin resistance and increased 

incidence of diabetes (Kelly and Ismail, 2015). Thus, it remains to be established if long-

term O3 exposure might be linked to insulin resistance and diabetes predisposition through 

chronic stress and persistent metabolic alterations. The EPA.gov site states that the average 

O3 concentration that humans are exposed to across the United States is at or below the 

National Ambient Air Quality Standard of 0.075 ppm, with higher levels (0.2 to 0.3 ppm) 
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seen frequently in regions with hot climates (Calderón-Garcidueñas et al., 2000). The 1.0 

ppm O3 concentration used in this study for most analysis is considered high compared to 

human relevant doses. However, it has been shown that rats require three to four times the 

concentration of O3 to acquire an equivalent dose to humans (Hatch et al., 1994). Thus, the 

concentrations of O3 used in our study, although higher than ambient levels, are appropiate 

for rodent exposures.

In conclusion, we show that the inhaled pulmonary irritant O3 is able to induce systemic 

metabolic changes, as seen by hyperglycemia, glucose intolerance, leptinemia, increased 

serum FFA, cholesterol, and BCAA together with varied changes in liver transcriptome 

expression involving the processes of apoptosis, mitochondrial dysfunction and the 

alterations of glucose, protein and lipid metabolism. The known increases in epinephrine 

(Bass et al., 2013) and corticosterone (Thomson et al., 2013), together with the nature of 

systemic metabolic changes involving multiple central and peripheral tissues, provides 

supportive evidence for the involvement of a stress response in O3-induced systemic 

metabolic impairment. Further studies will be required to determine the likely long-term 

consequences of these metabolic alterations on insulin resistance. Although the immediate 

metabolic responses are not associated with the systemic increases in inflammatory 

cytokines, the contribution of chronic systemic inflammation might be important in the 

development of metabolic disorders.
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Abbreviations

O3 Ozone

WKY Wistar Kyoto Rat

FA Filtered Air

FFA Free Fatty Acids

BCAA Branched Chain Amino Acids

BN Brown Norway Rat
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HDL-C High Density Lipoprotein-Cholesterol

LDL-C Low Density Lipoprotein-Cholesterol

IL-6 Interleukin-6

TNF-α Tumor Necrosis Factor-alpha

HPA Hypothalamus Pituitary Adrenal

GTT Glucose Tolerance Test

I.P. Intraperitoneal
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Fig. 1. 
O3-induced cellular and inflammatory responses in the lung are associated with 

hyperglycemia and glucose intolerance in WKY rats. Rats were exposed to FA or O3 (0.25, 

0.5 or 1.0 ppm) for 6 h/day for two consecutive days. Immediately after day 1 (1 d–0 h) and 

day 2 (2 d–0 h) of exposure GTT was performed. Rats were necropsied 18 h after day 2 

exposure (2 d–18 h) and BAL fluid was analyzed for lung toxicity markers. (A) Neutrophils, 

as a marker of inflammation. (B) Albumin, as an indicator of vascular protein leakage. (C) 

Blood glucose at baseline and during GTT in rats exposed to FA or O3 (1 d–0 h). (D) Blood 

glucose at baseline and during GTT in rats exposed to FA or O3 (2 d–0 h). The values in the 

bar graphs are displayed as mean ± SE of n = 6/exposure group. The GTT curve shows 

mean value ± SE of n = 6/group with repeated measures over 2 h. The 0 min time point 

shows fasting glucose levels in each group. * Indicates significant difference from respective 

FA-exposed groups at a given time (* = p < .05, ** = p < .01, *** = p < .001).
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Fig. 2. 
Acute O3 exposure induces reversible hyperglycemia and glucose intolerance. GTT was 

performed in rats exposed to FA or 1.0 ppm of O3 immediately after first day of 6 h O3 (1 

d–0 h) (A); immediately after second day of 6 h O3 (2 d–0 h) (B); and at 18 h after second 

day of 6 h O3 exposure (2 d–18 h) (C; recovery group). Each value represents mean ± SE of 

n = 8/group. *Indicates significant difference from FA exposed rats for a given time point 

(** = p < .01, *** = p < .001).
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Fig. 3. 
Acute O3 exposure alters circulating mediators, metabolic hormones and lipids in rats. 

Metabolic hormones and cholesterols were measured in the serum of FA and O3 exposed 

rats at various time points (1 d–0 h, 2 d–0 h, 2 d–18 h). Each value indicated in the bar 

graphs represents mean ± SE (n = 6–8/group). *Indicates significant difference from time-

matched FA exposed rats (* = p < .05, ** = p < .01, *** = p < .001).
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Fig. 4. 
Altered transcription levels of genes involved in glucose metabolism in the livers of O3-

exposed rats. Functional gene lists were generated by NetAffx queries at the Affymetrix 

website (www.affymetrix.com) and identified from DEGs list based on the query terms, 

“glycolysis”, “tricarboxylic acid” cycle and “gluconeogenesis”. These genes were selected 

to prepare expression value tables for each sample. Genes were then median centered with 

average linkage, hierarchically clustered using Cluster 3.0 and displayed through Java 

Treeview. Red indicates genes that have high expression values across all groups, green 

indicates genes that have low expression values across all groups, and black indicates 
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median expression. Note that this heat map is truncated to show important clusters affected 

by O3 exposure (n = 5–6/group).
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Fig. 5. 
Acute O3 exposure modulates the expression of genes involved in liver mitochondrial 

function. Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from DEGs list based on the query term, 

“mitochondrial genes”. Genes were then median centered with average linkage, 

hierarchically clustered using Cluster 3.0 and displayed through Java Treeview. (A) A 

cluster of mitochondria genes showing lower expression after O3 exposure relative to FA. 

(B) A cluster of genes showing higher expression in rats exposed to O3 relative to FA-

exposed rats. Red indicates genes that have high expression values across all groups, green 

indicates genes that have low expression values across all groups, and black indicates 

median expression (n = 5–6/group).
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Fig. 6. 
Modification of steroid metabolism genes in the livers of rats after O3 exposure. Functional 

gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com) and identified from DEGs list based on the query term, “steroid 

metabolism genes”. Genes were then median centered with average linkage, hierarchically 

clustered using Cluster 3.0 and displayed through Java Treeview. (A) A cluster of steroid 

metabolism genes showing lower expression after O3 exposure relative to FA (B) A cluster 

of steroid metabolism genes showing higher expression in rats exposed to O3 relative to FA. 

Red indicates genes that have high expression values across all groups, green indicates 

genes that have low expression values across all groups, and black indicates median 

expression (n = 5–6/group).
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Fig. 7. 
O3 exposure alters expression of genes involved in amino acid metabolism in the liver. 

Functional gene lists were generated by NetAffx queries at the Affymetrix website 

(www.affymetrix.com ) and identified from DEGs list based on the query term, “amino acid 

metabolism”. Genes were then median centered with average linkage, hierarchically 

clustered using Cluster 3.0 and displayed through Java Treeview. Heat map of DEGs with 

significant O3 effect Red indicates genes that have high expression values across all groups, 

green indicates genes that have low expression values across all groups, and black indicates 

median expression (n = 5–6/group).
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Fig. 8. 
O3-induced increases in expression of selected genes confirmed using RT-PCR. Total liver 

RNA from FA and O3-exposed rats(1 d–0 h) was used for RT-PCR (n= 6/group). The 

expression values were first normalized for individual rats using β-actin as a control 

transcript and then relative fold change from O3 was calculated using FA values. *Indicates 

significant difference from FA-exposed rats for a given time point (** = p < .01, *** = p < .

001).
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