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Abstract

The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that 

can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity 

Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated 

EDC for the experimental validation. The largest database of binding affinities available at the 

time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both 

continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, 

respectively. In addition, for the first time a QSAR model was developed to predict binding 

affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ 

(R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 

agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by 

putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. 

We found that two agonist-bound THRβ conformations could effectively discriminate their 

corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations 

could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a 

chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-

mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely 

to have any EDC that would bind to the THRβ. Models developed in this study can be employed 

either to identify environmental chemicals interacting with the THR or, conversely, to eliminate 

the THR-mediated mechanism of action for chemicals of concern.
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Introduction

Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that have the 

potential to interfere with the endocrine system, often through imitating or blocking 

endogenous hormones(Rogers et al., 2013). Fetal and early life exposures appear to have 

more severe effects than exposure in adulthood on developmental, reproductive, 

cardiovascular, metabolic, and immune systems(Birnbaum and Fenton, 2003; Rubin and 

Soto, 2009).

EDCs may act via multiple pathways; however one privileged route is through their direct 

interaction with nuclear receptors (NRs), which leads to perturbation or modulation of 

downstream gene expression. The thyroid hormone receptors (THR) are important members 

of the NR family and act as regulators of metabolism, fetal development, bone remodeling, 

cardiac function, and mental status. Thus, maintenance of normal thyroid function is 

essential for psychological and physiological human well-being. Long-term exposure to 

thyroid-disrupting chemicals may potentially result in hypothyroidism and have other 

significant consequences for human health(Boas et al., 2012).

The majority of THR responses are induced by the thyroid hormone T3(Harvey and 

Williams, 2002). There are two main isoforms of THR (THRα and THRβ), and each form 

can be alternatively spliced and differentially localized across tissue types (Izumo and 

Mahdavi, 1988; Williams, 2000). THRα1 is highly expressed in cardiac and skeletal muscles 

accounting for cardiac responses to the endogenous T3. On the other hand, most of the 

hormonal effects in the liver (including the influence on the cholesterol metabolism), brain 

and other tissues are mediated through THRβ1(Takeda et al., 1992; Forrest and Vennstrom, 

2000). Thus, the ability to recognize environmental chemicals causing THRβ-mediated 

endocrine disruption is highly important. In addition, agonists and antagonists of THRβ can 

be used therapeutically for treating several thyroid and non-thyroid disorders. For example, 

THRβ antagonists serve as therapies for thyrotoxicosis whereas highly selective agonists are 

used to treat metabolic disorders such as obesity, for lowering cholesterol to treat 

hyperlipidemia, for amelioration of depression, and for stimulation of bone formation in 

osteoporosis(Grover et al., 2004; Shoemaker et al., 2012). However, development of newer 

compounds with increased selectivity is required to achieve higher precision of action and 

avoid adverse effects such as cardiotoxicity mediated by THRs(Forrest and Vennstrom, 

2000).

Several functional domains of THR have been identified, which include a DNA binding 

domain, a ligand binding domain (LBD), a ligand-independent transactivation domain 

(termed activation function 1 or AF-1), and a ligand-inducible coactivator binding domain 

(termed activation function 2 or AF-2)(Kumar and Thompson, 1999). In the absence of the 

ligand, co-repressor proteins are bound to THR preventing transcriptional activation(Chen 
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and Evans, 1995). Ligand binding to the LBD causes dissociation of co-repressors and 

allows recruitment of co-activator proteins to the AF-2 domain to regulate gene 

transcription(Ribeiro et al., 1998). Many ligands that bind to the LBD have been reported in 

the literature; for instance, several selective ligands for THRβ have been identified based on 

the structural similarity to the endogenous thyroid receptor hormones, T4 and T3 (Carlsson 

et al., 2002; Ye et al., 2003; Hangeland et al., 2004; Hedfors et al., 2005; Garcia Collazo et 
al., 2006; Koehler et al., 2006; Li et al., 2006; Garg et al., 2007; Malm et al., 2007).

Recently, a series of THR antagonists have been identified that inhibit THR-coactivator 

interaction by binding to the AF-2 domain (Arnold et al., 2005; Arnold et al., 2006; Arnold 

et al., 2007a; Arnold et al., 2007b; Estebanez-Perpina et al., 2007a; Hwang et al., 2009; 

Hwang et al., 2011; Hwang et al., 2012; Hwang et al., 2013). These compounds may be 

useful to treat metabolic disorders and hyperthyroidism without affecting thyroid hormone 

levels; however additional studies revealed significant dose-related cardiotoxicity, suspected 

to arise from ion-channel inhibition(Arnold et al., 2005; Arnold et al., 2006; Arnold et al., 
2007a; Arnold et al., 2007b; Estebanez-Perpina et al., 2007a; Hwang et al., 2009; Hwang et 
al., 2011; Hwang et al., 2012; Hwang et al., 2013).

Computational methods such as Quantitative Structure Activity Relationship (QSAR) 

modeling have been widely used to prioritize chemicals for in vivo or in vitro testing that 

may pose endocrine disruption hazard (Lo Piparo and Worth, 2010; Tsakovska et al., 2011). 

Several groups have reported QSAR models for the LBD of THR. These models are 

summarized in Table 1. Although these previous models were reported to have significant 

predictive power, all of them were created using relatively small datasets with limited 

chemical diversity and consequently, these models had a limited applicability domain (AD) 

(Tropsha, 2010). In addition, these previous models were developed to predict THR binding 

affinity but none was capable of distinguishing the type of functional activity, or efficacy 

(i.e., agonism vs. antagonism) of the ligands. Finally, to date no QSAR studies have been 

reported to predict biological activity of compounds that bind to the AF-2 domain.

In this study, we have assembled the largest dataset (as compared to all data reported in the 

open literature) of ligands tested for their interaction with the THR, including data on the 

THRβ1 binding affinity (129 compounds binding at the LBD and 181 compounds binding at 

the AF-2 domain) and functional activity (57 agonists/15 antagonists binding at the LBD, 

210 antagonists binding at the AF-2 domain). Using OECD(Organization for Economic 

Cooperation and Development)-compliant predictive QSAR modeling workflow(Tropsha, 

2010), we have developed both continuous and categorical QSAR models for ligands of both 

the LBD and the AF-2 domain. Furthermore, we have identified co-crystalized complexes 

between THR and several ligands in the Protein Data Bank that allowed the use of molecular 

docking to classify ligands binding at the LBD as either agonists or antagonists. The 

predictive models developed in this study are suitable to use in virtual screening to identify 

putative THR binders and non-binders in environmental chemical libraries and classify them 

into agonists or antagonists. Here we present an example of such a study using the EPA 

Tox21 database of suspected endocrine disrupting chemicals. In addition, these models can 

be employed to exclude THR-mediated mechanism of endocrine disruption for 

environmental chemicals of concern.
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Materials and Methods

Datasets

THRβ binding affinity—129 unique organic compounds with known binding affinity to 

the LBD of the THRβ were collected from ChEMBL(Gaulton et al., 2012). Their binding 

affinities and structures were verified against published literature(Hedfors et al., 2005; Liu 

and Gramatica, 2007; Malm et al., 2007; Valadares et al., 2007; Vedani et al., 2007; Du et 
al., 2008). The affinity data were reported as IC50 values determined from the radioligand 

binding assay as described by Ye(Ye et al., 2003). For the AF-2 domain, 210 ligands were 

found; however, only 181 had well-defined IC50 values(Arnold et al., 2007b; Hwang et al., 
2009; Hwang et al., 2012) (see Table 2). The IC50 values associated with inhibition of co-

regulatory peptide SRC2-2 binding to THRβ were determined using fluorescence 

polarization(Arnold et al., 2007b; Hwang et al., 2009; Hwang et al., 2012).

Collected IC50 values varied from 0.0191 nM to 32 µM and from 0.310 µM to 100 µM for 

LBD and AF-2 domains, respectively. The IC50 values were converted to −logIC50 (pIC50). 

As can be seen in the Supplemental Figure 1, pIC50 values of ligands for both domains 

showed normal distribution; however, most of the AF-2 domain ligands were not very 

potent. The chemical structures for 129 and 181 compounds able to bind at the LBD and 

AF-2 domains, respectively, are included in the Supplemental Table 1.

THRβ functional activity—57 known agonists and 15 antagonists for the LBD were 

obtained from ChEMBL(Gaulton et al., 2012) and their functional annotation was verified 

using published literature(Carlsson et al., 2002; Ye et al., 2003; Hedfors et al., 2005; Garcia 

Collazo et al., 2006; Garg et al., 2007). In addition, 5101 presumed decoys were obtained 

from the DUD-E (Database of Useful Decoys: Enhanced) database (Mysinger et al., 2012). 

Presumed decoys are defined as chemicals that have similar physical properties but are 

topologically dissimilar from the known ligand structures and are expected not to bind to the 

respective receptor. For the AF-2 domain, 210 known antagonists were obtained from the 

published literature (Arnold et al., 2005; Arnold et al., 2006; Arnold et al., 2007a; Arnold et 
al., 2007b; Estebanez-Perpina et al., 2007a; Hwang et al., 2009; Hwang et al., 2011; Hwang 

et al., 2012; Hwang et al., 2013). Since there were no publicly available decoy datasets for 

AF-2 domain antagonists at the time of this study, the DUD-E package was used to create 

decoys. All data used for docking studies are summarized in Table 2. Note that datasets used 

for QSAR and docking validations studies were different, but there was some overlap. For 

QSAR modeling, we used chemicals with known binding affinities/inhibition activities 

whereas for docking studies we only needed to know if compounds were agonists, 

antagonists, or (presumed) decoys, i.e., the knowledge of binding affinity was not essential. 

The chemical structures of agonists, antagonists and presumed decoys for LBD and AF-2 

domain of THRβ are included in Supplemental Tables 2 and 3, respectively.

The 3D conformations of the THRβ ligands and presumed decoys/non-binders were 

prepared using the LigPrep wizard in Schrodinger Suite (http://www.schrodinger.com/). The 

ionization state of each molecule was calculated assuming the pH value of 7.0±2.0.
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THRβ conformations for docking—Three THRβ crystal structures were used for 

docking. Two had agonists bound at the LBD: [4-(3-benzyl-4-hydroxybenzyl)-3,5-

dimethylphenoxy]acetic acid (PDB ID: 1Q4X) (Borngraeber et al., 2003) and [4-(4-

hydroxy-3-isopropyl-phenoxy)-3,5-dimethyl-phenyl]-6-azauracil (PDB ID: 1N46) (Dow et 
al., 2003). The third structure was of THRβ with an antagonist bound at the AF-2 domain 

that directly inhibits the association of the receptor with its essential co-activators (PDB ID: 

2PIN) (Estebanez-Perpina et al., 2007b). This was the only structure of THRβ with an 

antagonist at the AF-2 domain, which was found in the PDB at the time of this study. The 

protein-ligand crystal structures are shown in the Supplemental Figure 2. The 

crystallographic structures found in the PDB were treated using the Protein Preparation 

wizard in Schrodinger Suite (http://www.schrodinger.com/) (Mouchlis et al., 2010). A grid 

for each protein was calculated with the Grid Generation module in Schrodinger Suite, with 

the binding site defined as the location of the respective co-crystallized ligands.

Data curation—Stuctures for all compounds employed in this study were manually 

examined and curated according to the guidelines described elsewhere (Fourches et al., 
2010). All curated structures were stored in the SDF format for further analysis.

Molecular Descriptors

2D molecular descriptors for compounds represented with explicit hydrogen atoms were 

computed using Dragon software (version 5.4; Talete s.r.l., Milan, Italy). Descriptors with 

low variance (standard deviation lower than 0.01) or missing values were removed. 

Furthermore, if the squared correlation coefficient (R2) between values of two descriptors 

over the entire data set exceeded 0.95, one of the descriptors was removed. The final 

descriptor set used in this study for ligands binding at the LBD or AF-2 domains contained 

508 and 493 descriptors, respectively. The descriptors were range-scaled to the [0, 1] 

interval.

QSAR Modeling Approaches

Training, test, and external evaluation sets selection—Random Forest (RF) 

machine learning technique implemented in R was used for modeling. To avoid well-

documented limitations of QSAR models developed with training sets only (Golbraikh and 

Tropsha, 2002), each dataset (consisting of 129 unique organic compounds for the LBD and 

of 181 unique compounds for the AF-2 domain) was subjected to 5-fold external cross-

validation procedure as detailed elsewhere (Sedykh et al., 2011). Specifically, each dataset 

was randomly partitioned into five subsets of similar size. Models were then independently 

developed such that compounds in four of the five subsets were used as modeling set and 

compounds in the remaining subset were used as an external evaluation set. The data within 

each modeling set were further divided into multiple pairs of training and test sets for 

internal validation. Individual models were developed based on each internal training set and 

internally validated by predicting the corresponding test set. All individual models showing 

acceptable performance on internal training/test sets were retained in an ensemble for the 

application to the external evaluation set; thus, the latter set was not used in any way in 

model development or internal validation. This procedure was repeated five times such that 
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each of the five subsets were employed as an external evaluation set once while the 

remaining subsets were used as a modeling set.

Validation of QSAR models—All reported model predictivity measures such as 

specificity, sensitivity and CCR for classification models and R2 for continuous models were 

obtained from 5-fold external cross-validation. Specificity denotes the true negative rate, or 

the rate of correctly predicted compounds with low activity (pIC50>10nM for ligands of the 

LBD). Conversely, sensitivity, or true positive rate denotes the rate of correctly predicted 

compounds with high activity (pIC50≤10nM). CCR is the average of the rates correctly 

predicted within each class.

(1)

R2 is the slope of a regression line (observed vs. predicted) forced through the origin.

Robustness of QSAR models—Y-randomization (randomization of response) is widely 

used to establish robustness of QSAR models(Rucker et al., 2007). The process involves 

rebuilding models using randomized activities of the training set and subsequent assessment 

of the model statistics. It is expected that models obtained for the training set with 

randomized activities should have significantly lower accuracy than those built using a 

training set with real activities. If this condition is not satisfied, models built for a training 

set with real activities are considered as not reliable and should be discarded. Y-

randomization was applied to all training/test dataset divisions considered in this study 

following protocols as described previously (Golbraikh and Tropsha, 2002).

Docking Studies

All THRβ agonists and antagonists, as well as their respective presumed decoys/non-binders 

detailed in Table 2, were docked into the corresponding protein structures using Glide SP 

(Friesner et al., 2004) with default setting for flexible ligand docking as implemented in 

Schrodinger Suite. Protein conformations with each cognate ligand used for docking studies 

with the LBD or the AF-2 domain are shown in the Supplemental Figure 2. Glide results for 

each ligand are grouped and sorted by Emodel (scoring function used by Schrodinger Suite 

for selecting the "best" pose of a ligand), and then the ligand blocks are sorted according to 

the empirical scoring function (gscore) of the top member. This scoring function 

approximates the ligand binding free energy. The performance of the docking models in this 

study were assessed not only by ability to correctly distinguish known ligands from a larger 

pool of compounds but also discriminate between agonists and antagonists when possible.

To evaluate the efficiency of docking methods, the enrichment factors and receiver operating 

characteristic (ROC) curves were calculated. The enrichment factor (EF; Equation 2) reflects 

how many seed compounds (or known ligands) were found within a defined “early 

recognition” fraction of the ranked list relative to a random distribution:

(2)
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where Hscr is the number of target-specific ligands recovered at a specific % level of the 

ligand/decoy datasets; Htot is the total number of ligands for the target; Dscr is the number of 

compounds screened at a specific % level of the database; Dtot is the total number of 

compounds in the database. The ROC curves were generated by plotting sensitivity 

(Equation 3) against [1 – specificity (Equation 4)] for a binary classifier system as its 

discrimination threshold is varied. In the case of virtual screening for recovering the ith 

known active from the inactive decoys (or presumed decoys), the sensitivity and specificity 

were defined as follows:

(3)

(4)

The area under the ROC curve is the metric widely accepted for assessing the likelihood that 

a screening method assigns a higher rank to known actives than to inactive compounds. The 

area under the curve values at a specific percentage of the ranked database were calculated 

from Equation (5) where n is the total number of known actives in the screening database.

(5)

Virtual screening

Out of 129 compounds used to develop QSAR model for the LBD, 101 compounds did not 

have a functional annotation as either agonists or antagonists. These 101 compounds were 

used as an external set for virtual screening to predict their annotation using docking.

Recently, approximately 8000 chemicals were screened by the EPA as part of their Tox21 

program (Tice et al., 2013) in order to detect compounds with potential to interfere with the 

endocrine system. One of the assays used was the luciferase reporter gene assay that was 

developed based on the TH-responsive rat pituitary tumor GH3 cell line, which 

constitutively expresses both THR isoforms (Freitas et al., 2011). This assay was confirmed 

as an in vitro tool for identification and quantification of specific THR-disrupting chemicals 

(Freitas et al., 2011). Moreover, this assay allowed discriminating between THR agonists 

and antagonists. Chemicals tested in this assay were virtually screened using both QSAR 

and molecular docking models developed in this study.

Results and Discussion

Testing of the previously published models

For this study we have assembled the largest dataset of IC50 values for a series of THRβ 

ligands reported thus far (Table 2). This dataset included compounds used in previously 

published models of THRβ ligands that were developed using both conventional QSAR (Liu 

and Gramatica, 2007; Valadares et al., 2007) and multidimensional QSAR with docking 
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(Vedani et al., 2007) approaches (cf. Table 1). This allowed us to test these previously 

published models for their ability to predict new data, i.e., those compounds in our collection 

that were not employed in previous studies. Specifically, we have evaluated a 

multidimensional QSAR model developed by the Vedani group (Vedani et al., 2007), which 

is publicly available via their web portal (http://www.biograf.ch/index.php?

id=projects&subid=virtualtoxlab) as well as the MLR QSAR model developed by Gramatica 

group (Liu and Gramatica, 2007). Specific DRAGON descriptors and respective regression 

coefficients employed by the latter model were published (Liu and Gramatica, 2007) 

allowing us both to recreate the model and apply it to new compounds. We have identified 

47 new compounds in our extended dataset tested for their binding with the LBD using the 

same experimental assay (Carlsson et al., 2002; Hangeland et al., 2005; Garcia Collazo et 
al., 2006; Koehler et al., 2006; Garg et al., 2007; Malm et al., 2007) that were not part of the 

datasets used in previous modeling studies. For both models, no correlation between 

predicted and experimental data for compounds not used in developing the original model 

was observed (Supplemental Figure 3). Our further analysis of the Gramatica model (Liu 

and Gramatica, 2007) revealed that descriptors were selected to optimize the MLR model 

using the entire dataset and then coefficients were adjusted for the respective training set. 

Such an approach using variable selection does not prove the external predictivity of the 

models since the training set should be first set aside and then followed by descriptor 

selection. Only then should the training set model be validated using a completely 

independent test set, which was never used in any way for model development (Dearden et 
al., 2009).

Parameters used in the model published by the Vedani group were not available making it 

impossible for us to reproduce the model. However, our negative external validation results 

indicate that most likely this model also suffers from overfitting. Thus, negative results of 

preliminary evaluating the best published models reinforced our desire to develop new 

models of THRβ binding using both an expanded dataset (Table 2) and rigorous external 

validation procedures.

QSAR Modeling of Ligand Binding Domain (LBD)

We have developed continuous QSAR models using the RF modeling approach and Dragon 

descriptors. The model showed relatively low but statistically significant external predictive 

accuracy for experimental vs. predicted pIC50 (R2=0.55 for 5-fold external cross validation) 

(Figure 1a). Figure 1b shows absolute prediction errors, ΔpIC50 (calculated as absolute 

difference between experimental and predicted pIC50) plotted vs. experimental pIC50. Larger 

errors were observed for compounds with the highest and the lowest activities. Furthermore, 

the panel in Figure 1b shows frequency distribution of absolute prediction errors, ΔpIC50. 

Overall, about 50% of compounds had an absolute prediction error of greater than 0.5 pIC50 

units.

Next, we built a binary classification QSAR model (Figure 2) discriminating strong vs. weak 

binders. The threshold to classify THRβ ligands into strong and weak binders was set to 

pIC50 of 8 (i.e., 10 nM), below which the compounds were classified as weak binders and 

above which they were classified as strong binders; this threshold was chosen to achieve a 
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balance between the numbers of strong and weak binders. Because compounds close to the 

margin were expected to be predicted with less confidence we have evaluated the effect of 

changing the threshold on the prediction performance. While alternative thresholds yielded 

models with slightly higher CCR (data not shown), the underlying datasets were unbalanced 

with respect to the ratio of strong vs. weak binders. The models developed with pIC50 

threshold of 8 showed good separation between weak and strong THRβ binders with a CCR 

of 0.76 and balanced specificity and sensitivity of 0.7 and 0.83, respectively (Figure 2a). 

Since most of the ligands in the dataset were within the AD, filtering by the AD did not have 

a significant effect on the predictive accuracy. To better understand where the largest mis-

predictions were most likely to occur, the frequency of mis-predicted compounds at each 

activity bin was calculated (Figure 2b). As expected, the largest percentage of mis-predicted 

compounds using the classification model was found around the threshold value. Conversely, 

the largest percent of mis-predictions for the continuous model was found at the margins of 

the activity distribution (Supplemental Figure 1) and the predicted activities ranged from 

pIC50 values of 5.8 to 9.8, which was more narrow than the experimental range of pIC50 

values between 4.5 and 10.7 (Figure 1a).

In addition to building the binary QSAR model we have also evaluated the accuracy of 

predicting the compound class when predicted continuous values were converted to 

respective classes using the same threshold of pIC50=8. Interestingly, we found that this 

results in the slight increase of classification accuracy (CCR of 0.80 without the AD) (Figure 

3a). Although the prediction accuracy did not change much, the number of misclassified 

chemicals at each activity bin was reduced and the maximum percentage of such chemicals 

per bin was 40% (Figure 3b), as opposed to 52% in predictions resulting from the 

classification model (Figure 2b). This analysis suggests that the most accurate predictions 

for an external dataset can be obtained by using continuous model and then converting the 

predicted values into the respective categories, i.e., high or low affinity binders (using the 

pIC50 threshold of 8).

QSAR Modeling of the AF-2 Domain dataset

Recent studies have identified a novel set of 210 compounds that disrupt the interaction 

between THRβ1 and its co-activator, SRC2, in the presence of T3 (Arnold et al., 2005; 

Arnold et al., 2006; Arnold et al., 2007a; Arnold et al., 2007b; Estebanez-Perpina et al., 
2007a; Hwang et al., 2009; Hwang et al., 2011; Hwang et a.l, 2012; Hwang et al., 2013); all 

of these studies were conducted by the same group. However, the IC50 values have been 

reported for only 181 compounds (Table 2 and Supplemental Table 1). Predictive models 

using this data were developed using the RF machine learning technique and the Dragon 2D 

descriptors as described in Methods. Figure 4a shows good external predictive accuracy for 

experimental vs. predicted pIC50 (R2=0.70 for 5-fold external cross validation). Frequency 

distribution of the absolute prediction errors, shown in Figure 4b, indicates a relatively small 

range of errors with mean absolute error of 0.24 when more than 70% of compounds have 

ΔpIC50 of less than 0.3. Y-randomization testing, as briefly described in Methods, was 

conducted for the AF-2 domain model. We have demonstrated that the accuracy of a QSAR 

model built with the original data was significantly higher than that of models built using Y-
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randomized datasets (p-value <0.05). This result implies that the high accuracies of QSAR 

models of the AF-2 dataset were not due to a spurious correlation.

Model Interpretation for the Ligand Binding and the AF-2 Domains

Previously, we have developed QSAR models for predicting the estrogen receptor (ER) 

binding affinity (Zhang et al., 2013). By analyzing these QSAR models we have extracted 

significant chemical features that influence ER binding affinity; these features can be used to 

suggest structural modifications to diminish the ER binding potential of chemicals. To 

analyze chemical features that influence THR binding affinity, descriptors were ranked 

based on their importance: a Z-score was calculated for each descriptor and the values were 

normalized. Figure 5 shows the 35 most statistically significant descriptors (p<0.05 by Z-

test) for the LBD dataset based on a continuous model. For these descriptors we have 

compared mean values for strong and weak THR binders defined by the activity threshold of 

1nM and 1µM, respectively (those with a binding affinity below 1 nM were considered 

strong binders and those with a binding affinity above 1 µM were considered weak binders). 

From these values, we have calculated the impact (i.e., the difference between the mean 

descriptor values for all strong vs. all weak binders) of individual descriptors on the relative 

binding affinity to THRβ. Figure 5a shows that many descriptors exhibited substantially 

different mean values between the two groups, with most descriptors having higher values 

for strong binders. Such variation implies that these descriptors could potentially serve as 

determinants of the THR binding affinity. Indeed, Figure 5b shows patterns of chemical 

descriptor profiles for a typical strong binder in comparison with a typical weak THR binder. 

This plot illustrates that not only average but also individual chemical descriptor profiles 

show appreciable divergence between values of most descriptors for strong vs. weak binders.

Figure 6 shows the 27 most statistically significant descriptors (p<0.05 by Z-test) for the 

AF-2 dataset based on the respective continuous model. For these descriptors we have 

compared mean values for the strong and weak AF-2 domain binders defined by activity 

threshold of 1µM and 10µM, respectively (i.e., those with the a binding affinity below 1µM 

are considered strong and those with a binding affinity above 10µM are considered weak) 

and calculated the impact of individual descriptors on relative binding affinity to the AF-2 

domain as described above for the LBD model. Although the ligand descriptors for the AF-2 

domain dataset is very difficult since most of the compounds in the dataset are not very 

potent, Figure 6a shows that many descriptors still exhibited substantially different mean 

values between the two groups of binders. Figure 6b shows patterns of chemical descriptor 

profiles for the strongest and weakest THR binders (pIC50 above 6.5 or below 4, 

respectively).

In many cases, the nature of Dragon descriptors employed in this study does not allow for 

straightforward model interpretation in terms of chemical functional groups. However, some 

Dragon descriptors found to be statistically significant in QSAR models could still be useful 

in assessing what chemical modification may affect THR binding potential. Several 

examples of such modifications affecting the binding affinity of known LBD and AF-2 

domain binders are shown in Table 3. The underlying descriptors may have either positive or 

negative impacts on binding affinity as shown in Figures 5a and 6a. For instance, one of the 
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modifications shown in Table 3 is the substitution of CF2HO for hydrogen that resulted in 

the increase of both experimental (from 8.54 to 9.1) and predicted pIC50 (from 7.76 to 8.65). 

The edge adjacency index EEig03d (Eigenvalue 3 from edge adjacency matrix weighted 

dipole moments) was found to be the second most important descriptor that had a positive 

impact on compound binding affinity to the LBD of the THRβ (cf. Figure 5). This descriptor 

correlates with molecular polarity; its value increased from 0.44 to 0.74 as a result of the 

structural modification shown in the first example in Table 3. Interestingly, in the previous 

QSAR study of selective ligands for THRβ using Dragon descriptors(Vedani et al., 2007), 

descriptor of the same type was found to significantly affect binding affinity of chemicals to 

the LBD of THRβ.

To summarize this part, the RF modeling procedure allows estimating the relative 

importance of the descriptors employed by the model (Kuz'min et al., 2011). By interpreting 

the significant molecular descriptors, it is possible to gain insight into structural features 

responsible for the binding affinity of ligands to THR. Furthermore, the interpretation of 

molecular descriptors can help with guiding structural modifications that will modulate 

binding affinity of the ligands to THR. However, although the examples discussed above 

illustrate that individual highly significant descriptors resulting from QSAR modeling may 

be helpful in interpreting or predicting the observed changes in binding affinity when pairs 

of ligands are compared, such an analysis should be conducted with an extreme care. The 

reason for this cautionary note is that the underlying models employing these significant 

descriptors are created as a result of multivariate statistical analysis of the experimental data 

and the significance of individual descriptors is evaluated only in the context of other 

descriptor variables contributing to the model. If this were not true it would be very easy to 

obtain a high accuracy of discrimination between two ligand classes with single variables 

that would be naturally revealed by RF, which is obviously not the case. These 

considerations explain why it is not always true that statistically significant descriptors 

resulting from multivariate model are found universally significant at the level of an 

individual pair or a group of compounds.

Indeed, there are statistically significant descriptors found among those shown in Figures 5a 

and 6a that nevertheless have small differences in their average values for the strongest and 

the weakest binders. One should also remember that when a new chemical feature is added 

to a compound, not only does it cause a change in a particular descriptor value but other 

descriptors change their values as well. For instance, consider the first example in Table 3, 

where the value of the edge adjacency index EEig03d is increased. This change results in 30 

of the 35 significant descriptors (i.e., 86%) for the same pair of compounds to change their 

values as well. Some of these changes are expected, i.e., the values for those descriptors that 

generally have positive impact on the binding affinity (cf. Figure 5a) do increase; however, 

there are also descriptors that change their values against such expectations. For instance, 

Supplemental Figure 5 shows a comparison of descriptor profiles for the three LBD 

compounds shown in Table 3 that have different activity. Indeed, the trend in changing 

descriptor values from compound to compound is for the most part as expected from the 

analysis of their relative impact on binding affinity, but there are cases when the trend is 

reversed. For example, the value of descriptor nCb- (cf. Table 3) increases with activity as 

expected from Figure 5a. However, descriptor BLTA96, that is supposed to have the same 
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tendency as descriptor nCb- to increase its value with the increase in binding affinity, has the 

largest value for a compound with the lowest binding affinity.

Similarly, two significant descriptors found as a result of model generation for the AF-2 

domain and chosen for illustration purposes show positive correlation between binding 

affinity and their relative impact. However, while the activity value predicted by the model is 

quite accurate (predicted value of pIC50 is 5.62 vs. an experimental value of 6.04), even 

significant individual descriptors (i.e., chemical alerts) can not be used to predict the 

direction of the change in activity. This analysis suggests a concordant utility of chemical 

alerts resulting from model interpretation and quantitative predictions of a binding affinity 

(or the binder category) made by the models. For instance, structural alerts resulting from 

model interpretation can drive the design of compounds with a lower toxicity that are 

modified to exclude a specific structural group (recognized as a toxicity alert). However, 

each single descriptor (mapped on a structural alert) in a compound can not be viewed in 

isolation from other descriptors that also change their values in response to such 

modification. The global effect of any single sructural modification can only be predicted 

based on multivariate QSAR model; this task can not be accomplished by looking at a 

structural alert alone. This analysis suggests the synergistic use of the chemical alerts and 

QSAR models for designing novel compounds and predicting their toxicity, respectively.

Docking Studies

It is important to predict the functional behavior, or efficacy of chemicals, i.e., whether 

binders will act as receptor agonists or antagonists. We have recently employed structure-

based docking studies using agonist- or antagonist-bound conformations of the x-ray 

characterized estrogen receptor (ER)(Zhang et al., 2013). We found that a molecular docking 

approach could discriminate known receptor ligands from presumed non-binders. Most 

importantly, agonist-bound ER conformations were also able to discriminate between 

agonists and antagonists.

Herein, we have employed a similar molecular docking approach in an attempt to 

discriminate binders vs. non-binders for both the LBD and AF-2 domain of THR as well as 

agonists vs. antagonists for the LBD (only antagonists for the AF-2 domain have been 

reported). To this end, we have used x-ray characterized THR structures deposited to the 

PDB. To the best of our knowledge no receptor conformation with an antagonist bound at 

the LBD was deposited into the PDB by the time of this study. Docking studies were 

conducted with 57 THR agonists, 15 antagonists and 5101 presumed decoys for the LBD as 

well as using 210 antagonists and 12249 presumed decoys for the AF-2 domain. Compounds 

binding to the LBD were docked to two agonist THRβ protein conformations (see Methods), 

and enrichment factors and AUCs were calculated to establish the discriminatory power of 

this structure-based functional annotation of the THRβ ligands (Figure 7). We found that 

these protein conformations were able to discriminate their corresponding ligands (agonists) 

from the presumed decoys effectively (Figure 7a and 7b). Moreover, all protein 

conformations could successfully enrich their corresponding ligands with high selectivity 

(EFmax of 91) (Figure 7a and 7b). These results indicate that each receptor conformation is 

capable of accurately recognizing the type of molecules it is expected to bind.
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Importantly, one of the agonist conformations of THRβ, i.e., PDB 1Q4X, was capable of 

separating agonists from antagonists (Figure 7a, AUCs for agonists and antagonists were 0.9 

and 0.58, respectively). Another agonist conformation of THRβ, i.e., PDB 1N46, was also 

capable of separating binders, either agonists or antagonists, from their presumed decoys; 

however the AUC for agonists was only slightly better than for antagonists (Figure 7b, 

AUCs for agonist and antagonists are 0.94 and 0.90, respectively).

Structure-based docking studies performed at the AF-2 domain, i.e., with PDB 2PIN 

resulted in failure to discriminate between binders (antagonists) and presumed decoys 

(Figure 7c). The AF-2 domain contains a hydrophobic groove located at the receptor surface. 

It has been stated in the literature that docking becomes very challenging when the binding 

pocket is shallow and solvent exposed (Schulz-Gasch and Stahl, 2003); such exercises often 

lead to an inaccurate ranking of ligands. Proper parameterization of solvation effects is a 

major limitation of current scoring functions used to rank ligand binding. In addition, it was 

previously shown that nonspecific receptor ligands, such as those used in the case of the 

AF-2 domain are mostly false positives (Schapira et al., 2003).

Virtual Screening

After putative THRβ binders were selected by the QSAR-based predictions of binding 

affinity, the docking models were used to establish the functional activity of each binder. The 

agonist conformation, PDB 1Q4 demonstrated the best performance in discriminating 

agonist and antagonist ligands bound at the LDB of THRβ; it was therefore selected to 

characterize 101 ligands with unknown functional activity from the compounds used for 

QSAR modeling. The results of virtual screening are shown in Figure 8. In the process of 

docking known agonists and antagonists into 1Q4X the first known antagonist had a docking 

gscore of −9.95. The gscore of the first known agonist docked into 1Q4X was −13.96 and 

the gscore of the first active compound out of all 101 screened compounds was −14.18. 

Analysis of gscores for the active compounds screened and the ROC curves for known 

agonists docked (Figures 7a and 7b) lead us to assume that the actives are most likely to be 

agonists.

As mentioned above, the luciferase reporter gene in vitro assay was used as part of the EPA 

Tox21 screening program (Tice et al., 2013) to identify and quantify the potency of specific 

THR disrupting chemicals. Moreover, this assay was reported to be capable of detecting 

both agonists and antagonists (Freitas et al., 2011). Out of 8000 chemicals screened, 629 

were reported as either agonists or antagonists (Tice et al., 2013). Both QSAR models and 

docking were used to assess the 629 chemicals from this screening dataset. However, no 

correlation was found between the reported activities and binding affinities predicted by 

QSAR models (Supplemental Figure 6a). In addition, we could not classify the Tox21 

chemicals into actives and inactives similar to the classification done for the modeling set 

because data for the Tox21 chemicals were reported using different units than the binding 

affinity expressed as pIC50 for the modeling set. Regardless of this limitation, none of the 

chemicals was predicted as active when the classification model was applied to the same 

dataset. Furthermore, docking studies also failed to identify any of the Tox21 compounds as 

binders (Supplemental Figure 6b).
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These negative results could be, of course, explained by the limited prediction power of our 

computational models when applied to the external Tox21 dataset; in fact, we have reported 

above the inability of models previously published by other groups to accurately predict new 

compounds reported in the literature. However, there are several considerations that should 

be discussed here to support the notion that our case is different. One important difference is 

that all of the data used to develop and validate previous models were obtained in THR 

binding experiments so we still suggest that previous QSAR models failed to predict new 

compounds due to issues related to the over fitting of such data. In contrast, the reporter 

gene assay used to evaluate compounds in the Tox21 library measures luciferase activity on 

the lysed cells and not direct binding affinity as was done for the training set chemicals. We 

suggest that the lack of a plausible outcome for our computational predictions could be 

explained by the incompatibility of biological assays used for the training and Tox21 

datasets as well as by mechanisms influencing the outcome of the gene reporter assays for 

most Tox21 compounds (with possible exception of T3 and T4 used to validate the 

assay(Freitas et al., 2011)) that do not involve binding to the THR.

To support this supposition, Figure 9 shows the results of a network analysis of compound 

chemical similarity conducted with an open source software, gephi (https://gephi.org/). Each 

node represents a chemical from either the modeling or Tox21 datasets, respectively color-

coded blue or red. An edge connects chemicals with the Tanimoto similarity score higher 

than 0.8. This figure shows that chemical space occupied by the modeling dataset is 

relatively small: all the chemicals in the modeling set are highly similar and form a relatively 

tight cluster except for very few compounds with low activity. This result is expected since 

the active site of the THR is uniquely suited to accommodate compounds with similar 

scaffolds (most of the known active chemicals are derivatives of an endogenous hormone, 

T3). Chemical space, occupied by both the modeling and virtual screening Tox21 sets, is 

visualized in Figure 9, which shows that chemicals tested by Tox21 are very different from 

those in the modeling dataset. This observation explains why these chemicals were not 

accurately predicted by the QSAR models built with the current training set, and indeed the 

absolute majority of active Tox21 chemicals are found outside of the AD for the QSAR 

models. Furthermore, results from the docking studies, which do not have the AD limitation 

by default, further suggest that Tox21 compounds do not bind to the THR. Thus, our 

computational analysis raises an important question as to whether the results of the 

luciferase gene reporter assays can be unambiguously interpreted in terms of compound 

binding to the THR receptors. The luciferase gene reporter assays may be still valuable to 

detect EDCs acting via THR-dependent mechanisms. However, we believe that additional 

experimental studies using chemicals from our modeling sets with known THR binding 

affinities to either the LBD or AF-2 domain are needed to validate these assays in terms of 

detecting EDC chemicals acting via direct interaction with the THR.

Conclusions

We have described the generation of both continuous and classification QSAR models for 

the LBD of THRβ based on the largest dataset available at the time of this study, which 

included 129 chemicals. In addition, a QSAR study was performed for the first time to 

predict biological activity for compounds binding at the AF-2 domain of THRβ. All models 
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were developed using an OECD-compliant validation workflow and analyzed for their most 

statistically significant chemical descriptors. As a result of this analysis we have concluded 

that the task of rational design of new compounds with the desired THR binding by targeted 

modification of an existing compound cannot be accomplished on the basis of THR-

dependent structural toxicity alerts revealed by QSAR model interpretation. We showed that 

although individual alerts could be revealed by mapping some of the significant molecular 

descriptors onto functional chemical groups, the multivariate nature of the underlying 

statistical QSAR models cannot reliably single out one or several descriptors. In fact, most 

of the focused structural modifications affect multiple descriptor values (cf. Supplemental 

Figure 5 and Table 3). However, such individual alerts could be very helpful in suggesting 

specific design strategies, and the impact of such design on the modified compound binding 

affinity can be evaluated by the QSAR model.

The majority of the previous studies reported in the literature pursued either statistical 

QSAR modeling or chemical alert strategies (often combined with read across (Low et al., 
2013)) in evaluating the toxicity of new chemicals. As discussed above, the analysis of 

QSAR modeling results in our study suggests the synergistic use of chemical alerts (revealed 

by model interpretation) and QSAR models for designing novel compounds and predicting 

their toxicity.

In addition to ligand based strategies, structure-based docking was used to complement 

QSAR models by predicting the functional activity (agonism or antagonism) of compounds 

able to bind at the LBD of THRβ. The two agonist protein conformations tested were able to 

discriminate corresponding ligands from presumed decoys. Moreover, one of the agonist 

conformations was also able to discriminate between agonists and antagonists. This is the 

second time where we show the successful use of the structure-based method as a 

complement to ligand-based approaches for evaluating potential endocrine disruptors (cf. 

our previous study of ER ligands (Zhang et al., 2013)). However, we also present the 

limitations of this method, which are related to the type of the binding pocket being 

evaluated (i.e., a surface or buried binding site). Thus, structure-based docking studies 

performed with the surface-exposed AF-2 domain resulted in failure to discriminate between 

binders (antagonists) and presumed decoys probably due to problem of active-site 

definitions and the scoring of ligand binding complicated by solvation effects. Conversely, 

despite the fact that most antagonists of the AF-2 domain were not very potent, the 

respective QSAR model had a good external predictive accuracy for experimental vs. 

predicted pIC50 (R2=0.70 for 5-fold external cross validation) with a mean absolute error of 

0.24 when more than 70% of compounds had a ΔpIC50 of less than 0.3. This result 

encourages us to use the QSAR model for virtual screening of chemical libraries to identify 

hits with an ability to treat metabolic disorders and hyperthyroidism without affecting 

thyroid hormone levels. Finally, the computational strategies employed in both this and the 

previous (Zhang et al., 2013) studies should be expanded to other nuclear receptors involved 

in the endocrine disruption caused by environmental chemicals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• This is the largest curated dataset for ligand binding domain (LBD) of the THRβ

• We report the first QSAR model for antagonists of AF-2 domain of THRβ.

• A combination of QSAR and docking enables prediction of both affinity and 

efficacy.

• Models can be used to identify environmental chemicals interacting with THRβ.

• Models can be used to eliminate the THRβ-mediated mechanism of action
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Figure 1. 
Results of continuous QSAR modeling of the LBD dataset (see Table 2): a) experimental vs. 

predicted pIC50 (R2=0.55); b) absolute prediction errors, ΔpIC50, calculated as absolute 

difference between experimental and predicted pIC50 vs. experimental pIC50. The left panel 

in Figure 1b shows frequency distribution of ΔpIC50; the ΔpIC50 value corresponding to the 

mean absolute error (MAE=0.68) is identified by a horizontal line.
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Figure 2. 
Results of binary QSAR modeling (two categories of compounds are defined using threshold 

of pIC50 = 8) for the LBD dataset (see Table 2): a) External prediction accuracy estimated 

from 5-fold external cross validation with and without filtering by the applicability domain); 

b) Frequency distribution of all compounds across activity bins (white bars); frequency of 

misclassified compounds in each activity bin is also shown (black bars).
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Figure 3. 
Accuracy of binary classification of compounds when compounds are assigned into two 

classes based on pIC50 values (using cutoff of pIC50=8) predicted by continuous QSAR 

model for the LBD dataset. a) External prediction accuracy estimated from 5-fold external 

cross validation with and without filtering by the applicability domain. b) Frequency 

distribution of all compounds across activity bins (white bars); frequency of misclassified 

compounds in each activity bin is also shown (black bars).
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Figure 4. 
Results of continuous QSAR modeling of the AF-2 dataset (see Table 2): a) experimental vs. 

predicted pIC50 (R2=0.70); b) Absolute prediction errors, ΔpIC50, calculated as absolute 

difference between experimental and predicted pIC50 vs. experimental pIC50. The left panel 

in Figure 4b shows frequency distribution of ΔpIC50; the ΔpIC50 value corresponding to the 

mean absolute error (MAE=0.24) is identified by a horizontal line.
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Figure 5. 
The impact of 35 most significant chemical descriptors for the LBD dataset on ligand 

binding affinity based on the continuous model. a) Each bar shows the difference between 

mean descriptor values for strong (binding affinity equal or below 1 nM) vs. weak (binding 

affinity equal or above 1µM) binders. b) Comparison of the descriptor profiles for a strong 

(solid line) vs. a weak (dotted line) THRβ1 binders.
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Figure 6. 
The impact of 27 most significant chemical descriptors for the AF-2 dataset on ligand 

binding affinity based on continuous model. a) Each bar shows the difference between mean 

descriptor values for strong (binding affinity below 1µM) vs. weak (binding affinity above 

10µM) binders. b) Comparison of the descriptor profiles for strong vs. weak AF-2 binders.
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Figure 7. 
ROC and enrichment factor curves obtained as a result of docking studies. a) Docking was 

done using a THRβ structure with an agonist bound to the LBD domain (PDB code 1Q4X). 

b) Docking was done using another THRβ structure with an agonist bound to the LBD 

domain (PDB code 1N46). c) Docking was done using the THRβ structure with an 

antagonist bound to the AF-2 domain (PDB code 2PIN). Blue solid lines in all plots indicate 

THRβ agonists and red dotted lines indicate THRβ antagonists. The numbers of known 
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THRβ ligands and presumed decoys/non-binders are shown in Table 2. The chemical 

structures are included in Supplemental Tables 2 and 3.
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Figure 8. 
ROC curve for docking of the 101 LBD ligands with unknown functional annotation (see 

Methods) using the THRβ structure with an agonist bound to the LBD domain (PDB code 

1Q4X) that could discriminate agonists vs. antagonists (cf. Figure 7a).
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Figure 9. 
Network analysis of a modeling dataset and compounds found to be active in an assay used 

by Tox21. Each node represents a chemical of either modeling or Tox 21 datasets color 

coded blue or red, respectively. An edge connects two chemicals with high similarity 

(Tanimoto coefficient of 0.8 or higher).
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Table 1

Previous QSAR studies of THRβ1

Reference/Website Modeling method description Number of
compounds in
dataseta

Reported prediction
accuracy for test sets
(R2)

Liu and Gramatica., 2007 MLR with variable selection.
(0–3)D Dragon descriptors

85(21) 0.73

VirtualToxLab
Vedani et al., 2007

Multi-dimensional QSAR
(Quasar and Raptor software)

82(18) 0.796

Valadares et al., 2007 Classical QSAR with 2D
Dragon descriptors and
Hologram QSAR (specialized
fragment fingerprints)

68(13) 0.84

Du et al., 2008 3D QSAR (CoMFA and
CoMSIA)

61(12) 0.68

Ren et al., 2007 Projection Pursuit Regression
(PPR) with variable selection.
CODESSA descriptors

80(13) 0.893

a
number of compounds in test set is given in parenthesis
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Table 2

Modeling approaches and datasets of THRβ ligands employed in this studya

Modeling method Data type Number of compounds

QSAR (LBD) pIC50 129

QSAR (AF-2) pIC50 181

Docking (LBD) Agonists 57

Antagonists 15

Presumed decoys 5101

Docking (AF-2) Antagonists 210

Presumed decoys 12249

a
See Methods for data sources and for the additional information about these datasets
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Table 3

Effect of structural modifications on binding affinity (based on the analysis of significant descriptors in QSAR 

models)
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*
Red circle identifies a fragment in the modified compound that differs from the respective fragment in the parent compound.
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