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Abstract

Air pollutants have been associated with increased diabetes in humans. We hypothesized that 

ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular 

(ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were 

exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks 

(subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 

or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after 

exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and 

subchronic studies, and immediately after each day of exposure in the time-course study. Age-

related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute 

ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose 

intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased 

α2-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose 

intolerance at days 1 and 2 (2> 1), and a recovery 18 h post ozone. Leptin increased day 1 and 

epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor 

substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone 

induced acute metabolic impairment since transcriptional markers of ER stress increased only 
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after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic 

impairments in BN rats of all ages, likely through sympathetic stimulation.
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Introduction

Epidemiological studies have demonstrated a positive association between long-term-

exposures to ambient air pollutants, namely particulate matter (PM) and ozone (O3), and 

incidence of cardiovascular diseases. Atherosclerosis as measured by increasing carotid 

intimal medial thickness has been associated with ambient PM (Adar et al., 2013; Brook and 

Rajagopalan, 2010; Gan et al., 2011; Künzli, 2013). The role of life-stage as a determinant 

of an individual's susceptibility to the cardiovascular health effects of air pollution is poorly 

defined. Because more than 100 million Americans live in areas of the US that do not meet 

EPA air quality standards for O3 (U.S. Environmental Protection Agency, 2012) and the age 

distribution within the US is rapidly shifting upwards, age-related susceptibility has 

important public health relevance. Advancing age heralds an increased likelihood of the 

appearance of cardiovascular risk factors, systemic inflammation, endothelial dysfunction, 

insulin resistance, metabolic syndrome, diabetes, the progression of atherosclerotic vascular 

disease and subsequent clinical events. Animal studies and new epidemiological studies are 

now beginning to provide some mechanistic insights.

Recently air pollution, especially PM, has been linked to increased incidence of metabolic 

syndrome (Brook et al., 2008; Chen and Schwartz, 2008; Liu et al., 2013; Sun et al., 2013). 

Long-term exposure to vehicular traffic, as estimated by proximity of residence to highways, 

is positively associated with increased insulin resistance in children (Thiering et al., 2013). 

Yet, none of these studies provide any information about the effects of ozone and the role of 

age as a determinant of cellular metabolic response in relation to PM or O3. To address this 

gap in knowledge, we sought to characterize the metabolic response to O3 exposure in 

Brown Norway (BN) rats and the influence of age. In contrast to Sprague–Dawley, Wistar 

and Fischer 344 rats that develop spontaneous or diet related diseases and obesity (Christian 

et al., 1998; Newby et al., 1990), the BN rat represents a model of normative human aging 

without development of such complications. To simulate healthy human aging, we used BN 

rats (Lipman et al., 1996) of different ages to examine metabolic effects of acute and 

subchronic O3 exposure.

There are two potential mechanisms by which exposure to air pollutants, such as ozone, can 

cause systemic metabolic effects. 1) Lung injury from pollutant exposure might cause 

systemic release of mediators, such as cytokines, oxidatively modified proteins and lipids, or 

vasoactive substances which can provoke metabolic response in distant organs (liver, muscle 

and adipose tissues). 2) Inhalation of pollutants (ozone) can stimulate C-fiber mediated 

neuronal response that through stress pathway produce metabolic effects in distant organs. 

Cardiovascular effects of air pollutants have been postulated to occur through autonomic 
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stimulation and systemic mediators (Gackiere et al., 2011). Yet, systemic mediators or 

neurohumoral factors responsible for metabolic alterations have not been identified. It has 

been shown that chronic ambient PM exposure induces metabolic impairments and liver 

endoplasmic reticular stress (Laing et al., 2010; Özcan et al., 2004; Sun et al., 2009), 

however it is not known if O3 exposure also produces such effects in the liver, and if so, 

could produce ER stress. Moreover, it is not known whether air pollution-induced metabolic 

effects could lead to, or exacerbate, insulin resistance, obesity, and type2 diabetes in 

susceptible individuals. The primary goals of this study were to examine 1) if O3, a 

prototypic air pollutant, might induce metabolic alterations in glucose homeostasis in BN 

rats, 2) whether these alterations are associated with increased circulating cytokines or 

neurohormonal mediators of the stress response, and 3) whether there is greater 

susceptibility of very young versus very old rats relative to young adult animals, commonly 

used in air pollution and other toxicology research. We hypothesized that acute ozone 

exposure will cause impaired glucose homeostasis and liver endoplasmic reticular stress 

associated with increases in stress hormones and that these effects will be exacerbated in old 

rats due to their compromised metabolic processes. We also hypothesized that subchronic 

ozone exposure would result in exacerbated impairment in glucose homeostasis, which 

could potentially result in impaired insulin sensitivity. We examined acute and subchronic 

effects of O3 with a time-course evaluation for systemic metabolic alterations and liver ER 

stress in healthy aging BN rats.

Materials and methods

Animals

Male Brown Norway rats were purchased from (Charles River Laboratories, Kingston, NY, 

or Portage, MI). Except for 1 and 3 month old rats, retired breeders were purchased at 8–10 

month age and allowed to age at our NHEERL, EPA facility. All rats were maintained in 

AAALAC approved facilities, housed individually in polycarbonate cages (25 cm × 15 cm × 

50 cm) containing laboratory-grade pine shavings (Granville Mills, Creedmore, NC). 

Colony rooms were maintained at constant temperature (22 °C), humidity (50% RH) and a 

12 h light, 12 h dark illumination-cycle. Access to food (Rodent Chow 5001: Ralston Purina 

Laboratories, St. Louis, MO) and tap water was available ad libitum. The Institutional 

Animal Care and Use Committee (U.S. EPA NHEERL) approved the animal research 

protocol.

Ozone generation and animal exposures

A silent arc discharge generator (OREC, Phoenix, AZ) generated O3 from oxygen. Mass 

flow controllers regulated the entry of O3 into the Rochester style “Hinners” chambers. 

Photometric O3 analyzers (API Model 400) monitored the O3 concentrations in the 

chambers. Three different types of exposure studies were conducted and are described as the 

“acute”, “subchronic” and “time-course” studies (Fig. 1). Exposure chamber conditions and 

actual ozone concentrations achieved are shown in Supplementary Material, Table 1. For the 

acute study, 1, 4, 12 and 24 month old BN rats (n=8–12/age group) were exposed for 6 

h/day on 2 consecutive days to either FA (0 ppm) or O3 (0.25 ppm and 1.0 ppm) (Fig. 1a). 

For the subchronic study, 1, 9 and 21 month old BN rats (n=8–12/age group) were exposed 

Bass et al. Page 3

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2015 February 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



to FA or O3 (0.25 or 1.0 ppm) for 6 h/day × 2 days/week over a 13 week period (referred to 

here by their ages at the end of the 13 week period: 4, 12, and 24 months) (Fig. 1b). For the 

time-course study, 4 month old BN rats (n =6) were exposed to FA or 1.0 ppm O3 6 h/day 

for 1 day or for two consecutive days. One group of rats was allowed to recover for 18 h 

after 2 days of O3 exposure (Fig. 1c).

Glucose tolerance testing (GTT)

For animals undergoing subchronic FA or O3 exposure, GTT was performed 2–3 days prior 

to the first O3 exposure (baseline), and immediately after 2 consecutive days of exposure 

during week 1 and week 13, to obtain data for acute and subchronic exposures, respectively. 

For the time-course study, rats designated for the 18 h recovery group underwent GTT. In 

these rats, GTT was performed 2–3 days prior to O3 exposure, immediately after the 1st day 

of 6 h O3 exposure, immediately after the 2nd day of O3 exposure, and after an 18 h 

recovery period prior to necropsy. Rats were fasted for 8 h prior to glucose tolerance tests. 

In instances where GTT followed immediately after O3 exposure, rats were fasted during 

exposure periods. For the 18 h recovery period, food was removed 8–10 h prior to GTT and 

necropsy (overnight starting from 10 pm). Prior to glucose injections, baseline glucose 

levels were measured by pricking the distal surface of rats' tails with a sterile needle, to 

obtain ~1 µl of blood. A Bayer Contour glucose meter was used to determine blood glucose 

levels, using test strips, which require 0.6 µL whole blood. After the 1st measurement, rats 

were given an intraperitoneal injection of glucose solution with a dose of 2 g/kg/10 ml (20% 

D-glucose; 10 ml/kg). Measurement with the glucose meter was repeated every 30 min over 

the course of 2 h.

Necropsy and sample collection

For the acute and subchronic studies, rats were necropsied 18 h after the final O3 exposure. 

These rats had undergone GTT immediately after the final exposure on the day prior to 

necropsy and were not fasted prior to necropsy (Figs. 1a–b). For the time-course study, one 

group of rats did not undergo GTT and was necropsied immediately after the 1st 6 h O3 

exposure. The 2nd group of rats underwent baseline GTT as well as GTT after the first day 

of exposure, and was necropsied immediately after 2nd day of O3 exposure. The 3rd group 

underwent GTT as indicated above and was necropsied 18 h post 2nd day O3 exposure (Fig. 

1c). In each case, rats in the time-course study were fasted for 8–10 h prior to necropsy. Rats 

were weighed and anesthetized with an overdose of sodium pentobarbital (Virbac AH, Inc., 

Fort Worth, TX; 50–100 mg/kg, ip). Blood samples were collected through an abdominal 

aortic puncture directly into vaccutainers without coagulant for serum preparation. Tubes 

were centrifuged at 3500 ×g for 10 min and aliquots of serum were stored at −80 °C until 

analyzed. Heart and lung tissues were processed and preserved for a separate experiment. 

Liver, gracilis leg muscle, and abdominal adipose tissues were collected and frozen in liquid 

nitrogen for protein and RNA analysis.

Serum analysis

Rat-specific electrochemiluminescence assays (Meso Scale Discovery, Gaithersburg, MD) 

were used to measure A2M, α1-acid glycoprotein (AGP), adiponectin, glucagon, insulin, 
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interleukin 6 (IL-6) and leptin in the serum (leptin was not analyzed in the acute or 

subchronic studies). In the time-course study, epinephrine was measured in undiluted serum 

using a rat specific ELISA kit (CUSA BIO, Wuhan, China). Total cholesterol (CHOL) and 

triglycerides (TRI) were measured in serum samples using kits from TECO Diagnostics 

(Anaheim, CA) while high density lipoprotein (HDL) and low density lipoprotein (LDL) 

cholesterols were measured with kits from Thermo Fisher Scientific, Inc. (Middletown, 

VA). Both types of kits were modified for use on the Konelab Arena 30 system (Thermo 

LabSystems, Espoo, Finland).

Analysis of tissue phosphoproteins

Tissue homogenates were prepared from liver, muscle, or adipose tissue disrupted with a 

probe homogenizer in lysis buffer containing protease and phosphatase inhibitors. The 

resulting homogenates were centrifuged at 13000 × g for 10 min at 4 °C. Liver, muscle, and 

adipose tissue extracts were measured for phospho-Akt, phospho-glycogen synthase 

kinase-3β, and phospho-insulin receptor substrate 1. All assays were performed using rat 

specific kits via the manufacturer's instructions (Meso Scale Discovery, Gaithersburg, MD). 

Supernatant protein levels were analyzed using a Coomassie Plus Protein Assay kit (Pierce, 

Rockford, IL). The assay was modified and adapted for use on the Konelab Arena 30 

Clinical Analyzer (Thermo Chemical Lab Systems, Espoo, Finland).

RNA isolation and real-time reverse transcriptase polymerase chain reaction (RT-PCR)

Total liver and abdominal adipose tissue RNA was isolated from ~20 mg tissue each with a 

commercially available RNeasy mini kit (Qiagen, Valencia, CA) using silica gel membrane 

purification. RNA was resuspended in 40 µl RNAse free water. RNAse inhibitor was added 

and RNA yield was determined spectrophotometrically on a NanoDrop 1000 (Thermo 

Scientific, Wilmington, DE). Each RNA sample was diluted to a uniform concentration of 

25 ng/ul and stored until RT-PCR was carried out. One-step real-time RT-PCR was done 

using the SuperScript III One-step RT-qPCR kit from Invitrogen (Grand Island, NY). All 

reactions were run in duplicate using 25 ng total RNA. 18S ribosomal RNA (18S) was run 

as an endogenous control for each sample separately. RT-PCR was conducted on an ABI 

Prism 7900 HT sequence detection system (Applied Biosystems, Foster City, CA). RT-PCR 

conditions were as follows: 20 min at 53 °C for reverse transcription, 2 min at 95 °C for 

inactivation of reverse transcriptase, followed by 40 cycles of 15 s at 95 °C and 45 s at 60 

°C. PCR for each transcript was run separately (parallel amplification). Primers were 

purchased from ABI as inventoried TaqMan Gene Expression Assays, each containing a 6-

carboxy-fluorescein (FAM dye) label at the 5′ end. RT-PCR methods are detailed previously 

(Gordon et al., 2013). Data were analyzed using ABI sequence detection software (SDS), 

version 2.2. For each PCR plate, cycle threshold (Ct) was set to an order of magnitude above 

background. For each individual sample, target gene Ct was normalized to a control (18S) 

Ct to account for variability in starting RNA amount. Expression of each exposure group 

was quantified as fold difference over FA control, at the corresponding timepoint.
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Statistical analysis

Acute and subchronic study markers and GTT were analyzed using a two-way analysis of 

variance (ANOVA). The two independent variables were age and exposure. The time-course 

GTT was analyzed by a two-way repeated measures MANOVA (multivariate ANOVA). 

The two independent variables were day and exposure. Time-course study biomarker 

measurements were analyzed using a one-way analysis of variance (ANOVA). The 

independent variable was formed by combining the three variables: day, exposure, and 

sacrifice time.

For acute and subchronic studies (biomarkers and other endpoints) ANOVA was used. In all 

cases, if the ANOVA assumptions were not satisfied by the data, a transformation was 

applied to that data and then, if the assumptions were satisfied, the ANOVA was performed 

on the transformed data. If the original data and the transformed data failed to address the 

violations of the assumptions, a distribution free method was employed. Pair wise 

comparisons were performed as subtests of the overall ANOVA. The nominal Type I error 

rate (α) was set at 0.05. No adjustments were made for multiple comparisons. While this 

results in an increased overall Type I error, the Type II error rate (β) remained in control.

Sigma Stat 3.5 was used to compare age effects in GTT baseline data. The 4 month group 

was compared with all other age groups using a one way ANOVA followed by Dunnett's or 

Dunn's post hoc comparison for significance at p=0.05. The data for each timepoint were 

analyzed independently. Epinephrine data were analyzed using two-way ANOVA followed 

by Duncan's multiple range test.

Results

Age and ozone effects on baseline blood glucose and glucose tolerance

Age effects—Baseline age-related differences in glucose tolerance were observed prior to 

exposure. Fasting glucose measured prior to O3 exposure was lowest in 1 month old rats 

when compared to other age groups (Fig. 2 insert). Additionally, clearance of 

intraperitoneally injected glucose was fastest in 1 month old rats and slowest in 24 month 

old rats. Compared to 4 month old rats, 24 month old rats had elevated blood glucose at all 

post-glucose injection timepoints during GTT (Fig. 2).

Ozone effects—O3 exposure resulted in marked glucose intolerance in all three studies 

when measured immediately after exposure. Figs. 3a–d show glucose tolerance after 2 

consecutive days of O3 exposure for all four age groups in the acute study. One, 12, and 24 

month old rats showed elevated fasting blood glucose after 1 ppm O3 exposure. Rats in all 

age groups exposed to 1 ppm O3 had impaired clearance of glucose, relative to FA groups.

In rats subchronically exposed to O3 over 13 weeks, glucose tolerance remained impaired, 

but to a lesser degree than in the acute exposures (Figs. 3e–g). All age groups exposed to 1.0 

ppm O3 had elevated blood glucose at the end of GTT, relative to FA exposed rats, but 

fasting blood glucose was not elevated by ozone in any age group when compared to FA 

exposed rats.

Bass et al. Page 6

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2015 February 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



GTT was performed immediately after the final O3 exposure in the acute and subchronic 

aging studies. However, tissue analysis in these studies was done the following day, 18 h 

after final exposure. To determine whether the O3 effects on tissues coincided with glucose 

intolerance immediately after each day of O3 and after 18 h recovery, a time-course study 

was conducted using 4 month old BN rats. Time-course analysis showed that in 4 month old 

rats, O3 induced hyperglycemia on day 1 but not on day 2 (no hyperglycemia was seen after 

2 days in 4 month old rats even in the acute study). Glucose intolerance began on day 1 of 

acute 1 ppm O3 exposure and increased on day 2 of exposure (Figs. 4b–c). At 18 h after 

exposure, glucose tolerance returned to baseline levels, equivalent to glucose tolerance in 

the FA exposed group (Fig. 4d).

Serum lipids

Age effects—Serum triglycerides and cholesterols were compared for age-related 

differences relative to 4 month old FA exposed rats (acute and subchronic studies). 

Significant differences existed in levels of serum lipids among the examined age groups. 

Elevated total cholesterol, HDL, LDL, and triglycerides were noted in 1 month old rats 

relative to 4 month old rats (Table 1). Twenty-four month old rats had elevated serum total 

cholesterol and triglycerides in both acute and subchronic study groups when compared to 4 

month old rats. Additionally, 24 month old rats had higher HDL cholesterol than 4 month 

old rats in the subchronic study, but this trend did not reach significance in the acute study.

Ozone effects—O3 at 1 ppm increased serum HDL cholesterol of rats 12 months old in 

both the acute and subchronic studies (Table 1). These were no other significant O3 

exposure-induced changes in total cholesterol or LDL cholesterol in any other age groups. 

Time-course analysis of 4 month old rats exposed to 1 ppm O3 showed no significant 

changes in any of the serum lipids tested (Data not shown).

Serum biomarkers of inflammation, acute phase response and metabolic syndrome

Age effects—Age-related increases were seen in IL-6, insulin, A2M, and adiponectin, 

while GLP-1 and glucagon were decreased with increasing age (Table 2). In 1, 4, 12 and 24 

month old rats (FA exposed, acute study), AGP showed no clear age-related trends, except 

for elevated levels in 1 month old rats relative to the 4 month old group. In the subchronic 

study, FA exposed rats (4, 12, and 24 month old) appeared to follow the same general age-

related trends in serum markers, with increases of insulin, A2M, and adiponectin.

Ozone effects—With respect to O3 exposure, serum proteins in rats 1 month old were the 

most affected. Increased levels of the acute phase response protein A2M and adiponectin 

were observed in 1 month old rats exposed acutely to 1 ppm O3 (Table 2) compared to FA 

control. There were no O3-related effects in any of the serum markers analyzed in 

subchronically exposed rats. Serum markers in the time-course analysis using 4 month old 

rats showed O3 exposure-related changes. Acute phase proteins A2M and AGP were 

increased on the 2nd day of O3 exposure, but returned to baseline at 18 h of recovery after 2 

days of O3 (the timepoint that corresponds with serum collection for the acute and 

subchronic analyses) (Fig. 5). Leptin was increased after the 1st day of O3 exposure which 

coincided with ozone induced hyperglycemia but not after the 2nd day or 18 h recovery 
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(Fig. 5). MCP-1 was lower after the 1st day of O3 exposure and GLP-1 was not changed 

(Supplementary Material, Table 2). Serum IL-6 was not changed by O3 during the time-

course study (Fig. 5). Insulin, while not significantly changed, appeared to be lowered in rats 

exposed to 1 ppm O3 on the 2nd day. Lipocalin appeared to be increased during day 1 and 2 

of O3 exposure, although not significantly (Fig. 5).

Serum epinephrine levels were analyzed in the time-course study to determine the possible 

contribution of sympathetic stimulation. Epinephrine, a neurohumoral regulator of the 

sympathetic nervous system, was increased markedly in serum after 1 ppm O3 exposure, on 

the 2nd day of exposure and remained elevated at 18 h recovery, relative to the FA group 

(Fig. 6). A trend of epinephrine increase was noted also on the first day of O3 exposure (Fig. 

6).

Tissue levels of phosphoproteins involved in insulin signaling

Age effects—Proteins phosphorylated during insulin signaling were measured in liver and 

adipose tissues to determine whether there were underlying age-related differences (in FA 

exposed rats) in insulin sensitivity. Liver tissue from control rats (FA exposed–acute study) 

showed decreased levels of phosphorylated insulin receptor substrate (pIRS1) as animals 

aged, with 24 month old rats having less than half the amount found in 4 month old rats 

(Supplementary Material, Table 3). Similar but less apparent trends were noted in the 

subchronic study (Supplementary Material, Table 4). The levels of two other 

phosphoproteins involved in insulin signaling, phosphorylated AKT (pAKT) and 

phosphorylated glycogen synthase kinase 3β (pGSK-3β), did not show age-related variation 

in the liver of FA exposed rats in the acute study. In the subchronic study, 24 month old rats 

had higher levels of liver pAKT and pGSK-3β than corresponding 4 month old rats 

(Supplementary Material, Table 4). Adipose tissue GSK-3β was lower in 24 month old rats 

when compared to 4 month old rats in the acute study (Supplementary Material, Table 5). 

Additionally, 12 and 24 month old FA exposed rats had lower levels of adipose tissue pIRS1 

relative to the 4 month old group (Supplementary Material, Table 5, 6), suggesting reduced 

insulin signaling.

Ozone effects—Although no significant O3-induced effects on pIRS1, pGSK or pAKT 

levels were noted in liver or adipose tissues following acute exposure (Supplementary 

Material, Table 4), in the subchronic study, pAKT decreased significantly in liver tissue 

from 24 month old rats exposed to 1 ppm O3 (Supplementary Material, Table 5). No 

significant O3-induced changes were noted in other phospho-protein markers from adipose 

tissue in acute and subchronically exposed rats (Supplementary Material, Table 5, 6). Time-

course analysis of phosphoprotein markers in liver, adipose, and muscle tissue of 4 month 

old rats exposed to 1 ppm O3 for 1 or 2 days showed no significant changes in any of the 

markers except an increase in muscle pAKT on the 1st day of O3 exposure (Supplementary 

Material, Table 7).

Liver gene expression for ER stress markers

Age effects—Among several markers examined, baseline mRNA expression levels of the 

ER-stress gene Eif2α appeared to be higher in the liver of 1 month old rats, relative to 4 
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month old young adult controls in the acute study (Supplementary Material, Table 8). No 

other ER-stress related gene markers were significantly different between age groups in the 

acute or subchronic studies (Supplementary Material, Table 9).

Ozone effects—In the acute study, 2-day exposure to 1 ppm O3 increased liver BiP 

(Hspa5), as well as α1-acid glycoprotein (Orsm1) expression in 1 month old rats. CHOP 

(Ddit3) expression increased in 4 month old rats and Eif2α and Crtc2 mRNA increased in 

livers of 24 month old rats after 1 ppm O3 exposure (Supplementary Material, Table 8). 

Subchronic exposure to 1 ppm O3 increased Crebzf, Eif2α and Crtc2 expression in the livers 

of 4 month old rats (Supplementary Material, Table 9). With time-course analysis, ER stress 

markers BiP (Hspa5) and CHOP (Ddit3) showed increased mRNA expression in liver tissue 

after O3 exposure in the 18 h recovery group (Table 3). Other markers tested, Atf6b, Eif2α, 

and Eif2αk3 also showed changes at 18 h after 2 day O3 exposure (Table 3). In general, 

acute and subchronic exposure induced liver ER stress markers, and these changes were 

reflected in later time-points in the time course study.

Gene expression of metabolic markers

Age effects—Expression levels of genes involved with glucose homeostasis and insulin 

signaling were examined in liver and adipose tissues. Age-related differences were apparent 

in the expression levels of several markers when FA exposed animals of different ages were 

compared. In the acute study, 1 month old rats expressed more liver Irs2 and Pdha1 than 4 

month old rats (Supplementary Material, Table 8). Fatty acid binding protein (Fabp4) was 

also highly expressed in the liver of 1 month relative to 4 month old rats. In the subchronic 

study, Pparg in the liver of 12 month old rats was significantly increased when compared to 

4 month old rats (Supplementary Material, Table 9).

Ozone effects—Following acute exposure to 1 ppm O3, liver Fabp4 mRNA expression 

increased in 12 month old rats relative to their age-matched FA controls. Crtc2, a gene 

involved with glucagon signaling as well as an ER stress response pathway, increased after 1 

ppm O3 exposure in 24 month old rats. The expression of other metabolic genes, such as 

G6pc, Irs2, and Pparg was unchanged after acute O3 exposure in rats of all ages 

(Supplementary Material, Table 7). After subchronic exposure to 1 ppm O3, Irs2, Pck1 and 

Crtc2 expressions were increased in 4 month old rats relative to FA controls (Supplementary 

Material, Table 9).

In time-course analysis, after the 1st and/or 2nd day of exposure to 1 ppm O3, significant 

inhibition of G6pc, HSPA5, ATF6, Eif2α, Eif2αk3, and Gys2 was noted (Table 3). G6pc, 

the catalytic unit of glucose 6 phosphatase, is transcriptionally regulated and converts 

glycogen stores into free glucose in the process of gluconeogenesis, suggesting increased 

circulating glucose might not have resulted from increased gluconeogenesis at very early 

time-point. Fabp4 mRNA expression, measured in white adipose tissues, was induced in rats 

immediately after the 2nd day of O3 exposure, but this increase was reversed after 18 h of 

recovery. In the time-course study (Table 4), one day of O3 exposure inhibited glycogen 

synthase (Gys2) mRNA expression (protein involved in glycogen synthesis).
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Discussion

In this study we show that, acute O3 exposure produced profound metabolic effects in rats of 

all ages characterized by acute hyperglycemia, impaired glucose tolerance, and increased 

circulating leptin, but not the pro-inflammatory cytokine, IL-6. These effects accompanied a 

trend of decreased insulin as well as liver and adipose phospho IRS-1, suggesting modest 

insulin insensitivity. Importantly, the time-course study showed marked increases in 

circulating epinephrine at all times suggesting the contribution of sympathetic 

neurohormonal activation. Our data show that ER stress was a consequence of initial 

hyperglycemia and glucose intolerance based on initial inhibition after a single 6-hour O3 

but subsequent induction of ER stress responsive genes after 2 days of O3 exposure in time-

course experiment. Increased ER stress was also supported by the induction of ER stress 

genes after O3 exposure in the acute and subchronic studies. These metabolic effects, 

induced by O3 exposure, occurred in all age groups with no apparent O3-age interaction. 

Modest exacerbation of glucose intolerance was seen in senescent 24 month old rats relative 

to 4 month old rats. Furthermore, some degree of attenuation of metabolic effects was noted 

after 13 weeks of episodic O3 exposures in all age groups. Our studies show that O3 

exposure causes metabolic effects in rats of all ages likely by initial sympathetic stimulation 

followed by diminution of these effects during the adaptation phase. These metabolic effects 

could increase the susceptibility of those with underlying metabolic disorders such as 

diabetes and obesity.

Our data demonstrate that like in humans (Puntmann et al., 2011), age influences metabolic 

risk factors in healthy, aging BN rats. These include age-dependent increases in glucose 

intolerance, circulating lipids, inflammatory proteins, and insulin, together with decreases in 

glucagon. Also age-related, changes in several tissue phosphoproteins and genes were 

suggestive of insulin resistance. BN rats have been used as a model for healthy aging 

because they are not predisposed to obesity or age-related pathologies (Lipman et al., 1996). 

We show that, as in the case of humans (Kmiec, 2010), even in normally aging rats, 

circulating insulin and glucose intolerance continue to increase starting from 1 month to 24 

months of age. The clearance rate of glucose from the blood might be reflective of age-

related decreases in the rate of uptake and metabolism of glucose by the muscle and brain. 

Biomarkers associated with insulin resistance and decreases in glucagon in 24 month old 

rats are suggestive of glucose intolerance and insulin resistance at this age. As noted in 

aging humans (Flannery et al., 2012), BN rats also show old age-related hyperlipidemia. The 

hypercholesterolemia in very young rats (1 month old) was in concordance with increased 

cholesterol in juveniles (Kit et al., 2012) and might reflect an active metabolic state of 

peripheral tissues and growth related movement of lipids.

Our data show that acute O3 exposure induces profound metabolic changes, characterized by 

short-lived hyperglycemia and glucose intolerance, which are rapidly reversible after 

termination of exposure. A number of potential mechanisms can explain impaired 

metabolism after O3 exposure. O3 is known tomodulate the release of neurohumoral factors 

(Gackiere et al., 2011), oxidize lipoproteins and membrane proteins (Pulfer et al., 2005), and 

induce lung injury with attendant release of pro-inflammatory mediators, all of which could 

influence peripheral and systemic metabolism. In order to assess the potential contribution 
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of various mechanisms, an elaborate analysis was performed for neurohormones, acute 

phase response proteins, and biomarkers of insulin regulation in blood and insulin signaling 

in tissues.

Although increased circulating cytokines have been postulated to cause a systemic response 

after PM exposure (Tsai et al., 2012), our data do not support the contribution of cytokines 

such as IL-6 in O3-induced metabolic impairment. Lipocalin levels were increased after 

acute O3 exposure but this increase was only noted after 2 days, again suggesting that this is 

not likely the cause of acute hyperglycemia and glucose intolerance. Similarly, increases in 

circulating acute phase proteins were noted later, after a 2-day O3 exposure, and therefore, 

the acute phase response might not be involved in O3-induced impairment of glucose 

homeostasis. Because acute phase proteins AGP and A2M are made primarily in the liver 

(Blackburn, 1994), O3's impact on the liver over a longer time period cannot be excluded.

ER stress has been shown to be involved in the dysregulation of glucose homeostasis (Özcan 

et al., 2004). Moreover, increased ER stress has also been linked to air pollution (Laing et 

al., 2010). Therefore, we initially wanted to examine whether O3 caused liver ER stress and 

if this ER stress was associated with impaired glucose homeostasis. Examination of 

transcriptional targets of ER stress in all three studies indicated that O3 caused modest ER 

stress after a 2-day exposure following an initial inhibition of genes responsive to ER stress 

after 1-day exposure. The data for increased ER stress from the acute and subchronic studies 

support the conclusion that ER stress was induced following 2 day ozone exposure. ER 

stress is produced by accumulation of unfolded proteins (unfolded protein response) causing 

decreased protein translation and increased production of protein chaperones that remove 

unfolded proteins (Muoio and Newgard, 2004). This process helps restore cellular 

homeostasis, and in severe stress conditions, induces the apoptosis pathway (Hummasti and 

Hotamisligil, 2010). Liver ER stress can be produced by conditions of hypoxia, glucose 

deprivation, changes in redox status, and changes in calcium homeostasis (Muoio and 

Newgard, 2004). Because glucose intolerance preceded effects on liver markers of ER 

stress, we believe that acute O3-induced metabolic impairment is not caused by liver ER 

stress and that liver ER stress might be caused by initial systemic metabolic response.

Time- and dose-dependent neuronal activation in the dorsolateral regions of the nucleus 

tractus solitarius and in interconnected central structures such as the caudal ventrolateral 

medulla, the parabrachial nucleus, the central nucleus of the amygdala and the 

paraventricular hypothalamic nucleus has been shown after acute O3 exposure (Gackiere et 

al., 2011) and linked to the activation of catecholeminergic mechanisms (Cottet-Emard et 

al., 1997; Genc et al., 2012). In our time-course experiment O3 exposure sharply increased 

circulating epinephrine at all time-points suggesting a potential contribution of sympathetic 

stimulation mediated by neuronal activation in O3-induced metabolic impairment. It is of 

interest to determine which brain region might be responsible for this metabolic impact. We 

are currently investigating the role of sympathetic activation on O3-induced metabolic 

effects in different organs such as liver, adipose tissues, muscle, and if this O3 effect can 

promote or contribute to obesity and diabetes.

Bass et al. Page 11

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2015 February 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Because the metabolic effects of O3 are likely mediated by neurohumoral activation, the role 

of nociceptive stimulation and acute neuroreflux mechanisms will need to be examined in 

relation to metabolic impairments. Acute hyperglycemia was noted in the time-course 

experiment immediately after exposure on day 1, when glucose intolerance was also readily 

apparent, and this was accompanied by a trend of increased leptin on day 1 but not day 2. 

This is contrary to the decrease in leptin expected during fasting (Dubuc et al., 1998), which 

occurred in our studies during exposure/prior to necropsy. Leptin has been proposed as an 

indicator of energy balance, and hyperleptinemia is associated with diet-induced obesity 

(Brennan and Mantzoros, 2006; Margetic et al., 2002). The presence of increased leptin after 

initial O3 exposure indicates hormonal involvement in the metabolic response to O3 

exposure, however this hypothalamic control of leptin release which coincided with 

hyperglycemia was short lived and likely independent of glucose intolerance response 

suggesting that the acute sympathetic stimulation might concurrently induce homeostatic 

metabolic mechanisms.

Subchronic O3 exposure resulted in milder glucose intolerance than that measured after 

acute exposure, suggesting an adaptive response to repeated episodic exposure. The adaptive 

response, as determined by reduced O3-induced inflammatory (JÖRres et al., 2000) and 

functional pulmonary changes in man (Schelegle et al., 2003), has been previously 

characterized. Rodents are also known to exhibit adaptation upon repeated O3 exposure 

(Kirschvink et al., 2002; van Bree et al., 2002). We show here that metabolic effects on 

glucose homeostasis are likely responsive to similar adaptive mechanisms. Because these 

systemic metabolic changes are accompanied by decreases in body temperature and 

bradycardia in rodents (Watkinson et al., 2001), further characterization of this response and 

how this might relate to humans that lack this response (Watkinson et al., 2001) will need to 

be examined.

Metabolic syndrome in humans at an advanced age is likely impacted by genetic and 

physiological factors (Eckel et al., 2005). Accordingly, we postulated that older BN rats will 

be impacted to a greater extent than young adult rats by O3. We noted that while O3 effects 

were seen in both young and old rats, the clearance of glucose was only slightly exacerbated 

after O3 exposure in senescent rats with already impaired glucose clearance at baseline, 

despite the presence of other age-related metabolic changes. Our data suggests that old rats 

undergoing healthy aging might not be markedly more sensitive to acute O3 exposure due to 

well preserved adaptive mechanisms. It is also likely that other pollutants such as PM might 

produce more chronic impact on metabolic processes as has been reported (Sun et al., 2013) 

and that these effects are likely exacerbated in old rats. The precise nature of how senescent 

rats will be impacted metabolically by O3 relative to young rats will need to be examined 

with emphases on neurohumoral mechanisms, sympathetic regulation, and neuronal 

plasticity at an old age.

In conclusion, we report that O3 produces acute metabolic alterations characterized by 

impaired glucose homeostasis and modest impairment of peripheral insulin sensitivity 

regardless of age. These metabolic alterations are not likely mediated by circulating 

cytokines, acute phase proteins or liver ER stress. Rather, neurohumoral sympathetic 

modulation might be important in metabolic effects in rodents. Although advanced age is 
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associated with impaired glucose homeostasis and likely insulin resistance, O3 metabolic 

effects are only slightly exacerbated in geriatric rats. Further, acute metabolic impairments 

are rapidly reversible after the termination of exposure and repeated episodic exposure 

results in diminution of O3's metabolic effects. If and how these metabolic impairments seen 

in rats contribute to obesity and diabetes, and relate to human metabolic syndrome will 

require further study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Drs. Andrew Ghio, Michael Madden and Barbara Buckley for their critical review of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.taap.

2013.09.029.

References

Adar SD, Sheppard L, Vedal S, Polak JF, Sampson PD, Diez Roux AV, Budoff M, Jacobs DR Jr, Barr 
RG, Watson K, Kaufman JD. Fine particulate air pollution and the progression of carotid intima-
medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air 
pollution. PLoS Med. 2013; 10:e1001430. [PubMed: 23637576] 

Blackburn WD Jr. Validity of acute phase proteins as markers of disease activity. J. Rheumatol. Suppl. 
1994; 42:9–13. [PubMed: 7529838] 

Brennan AM, Mantzoros CS. Drug insight: the role of leptin in human physiology and 
pathophysiology—emerging clinical applications. Nat. Clin. Pract. Endocrinol. Metab. 2006; 
2:318–327. [PubMed: 16932309] 

Brook RD, Rajagopalan S. Particulate matter air pollution and atherosclerosis. Curr. Atheroscler. Rep. 
2010; 12:291–300. [PubMed: 20617466] 

Brook RDMD, Jerrett MP, Brook JRP, Bard RLMA, Finkelstein MMMDP. The relationship between 
diabetes mellitus and traffic-related air pollution. J. Occup. Environ. Med. 2008; 50:32–38. 
[PubMed: 18188079] 

Chen JC, Schwartz J. Metabolic syndrome and inflammatory responses to long-term particulate air 
pollutants. Environ. Health Perspect. 2008; 116:612–617. [PubMed: 18470293] 

Christian MS, Hoberman AM, Johnson MD, Brown WR, Bucci TJ. Effect of dietary optimization on 
growth, survival, tumor incidences and clinical pathology parameters in CD Sprague–Dawley and 
Fischer-344 rats: a 104-week study. Drug Chem. Toxicol. 1998; 21:97–117. [PubMed: 9530534] 

Cottet-Emard JM, Dalmaz Y, Pequignot J, Peyrin L, Pequignot JM. Long-term exposure to ozone 
alters peripheral and central catecholamine activity in rats. Pflugers Arch. 1997; 433:744–749. 
[PubMed: 9049165] 

Dubuc GR, Phinney SD, Stern JS, Havel PJ. Changes of serum leptin and endocrine and metabolic 
parameters after 7 days of energy restriction in men and women. Metabolism. 1998; 47:429–434. 
[PubMed: 9550541] 

Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005; 365:1415–1428. 
[PubMed: 15836891] 

Flannery C, Dufour S, Rabol R, Shulman GI, Petersen KF. Skeletal muscle insulin resistance promotes 
increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. 
Diabetes. 2012; 61:2711–2717. [PubMed: 22829450] 

Bass et al. Page 13

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2015 February 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://dx.doi.org/10.1016/j.taap.2013.09.029
http://dx.doi.org/10.1016/j.taap.2013.09.029


Gackiere F, Saliba L, Baude A, Bosler O, Strube C. Ozone inhalation activates stress-responsive 
regions of the CNS. J. Neurochem. 2011; 117:961–972. [PubMed: 21466555] 

Gan WQ, Koehoorn M, Davies HW, Demers PA, Tamburic L, Brauer M. Long-term exposure to 
traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. 
Environ. Health Perspect. 2011; 119:501–507. [PubMed: 21081301] 

Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. 
J. Toxicol. 2012; 2012:782462. [PubMed: 22523490] 

Gordon CJ, Jarema KA, Lehmann JR, Ledbetter AD, Schladweiler MC, Schmid JE, Ward WO, 
Kodavanti UP, Nyska A, MacPhail RC. Susceptibility of adult and senescent Brown Norway rats 
to repeated ozone exposure: an assessment of behavior, serum biochemistry and cardiopulmonary 
function. Inhal. Toxicol. 2013; 25:141–159. [PubMed: 23421486] 

Hummasti S, Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and diabetes. 
Circ. Res. 2010; 107:579–591. [PubMed: 20814028] 

JÖRres RA, Holz O, Zachgo W, Timm P, Koschyk S, MÜLler B, Grimminger F, Seeger W, Kelly FJ, 
Dunster C, Frischer T, Lubec G, Waschewski M, Niendorf A, Magnussen H. The effect of 
repeated ozone exposures on inflammatory markers in bronchoalveolar lavage fluid and mucosal 
biopsies. Am. J. Respir. Crit. Care Med. 2000; 161:1855–1861. [PubMed: 10852757] 

Kirschvink N, Fievez L, Bureau F, Degand G, Maghuin-Rogister G, Smith N, Art T, Lekeux P. 
Adaptation to multiday ozone exposure is associated with a sustained increase of bronchoalveolar 
uric acid. Free Radic. Res. 2002; 36:23–32. [PubMed: 11999700] 

Kit BK, Carroll MD, Lacher DA, Sorlie PD, DeJesus JM, Ogden C. Trends in serum lipids among US 
youths aged 6 to 19 years, 1988–2010. JAMA. 2012; 308:591–600. [PubMed: 22871871] 

Kmiec Z. Central control of food intake in aging. Interdiscip. Top. Gerontol. 2010; 37:37–50. 
[PubMed: 20703054] 

Künzli N. Air pollution and atherosclerosis: new evidence to support air quality policies. PLoS Med. 
2013; 10:e1001432. [PubMed: 23637577] 

Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, Gow A, Chen AF, Rajagopalan S, Chen 
LC, Sun Q, Zhang K. Airborne particulate matter selectively activates endoplasmic reticulum 
stress response in the lung and liver tissues. Am. J. Physiol. Cell Physiol. 2010; 299:C736–C749. 
[PubMed: 20554909] 

Lipman RD, Chrisp CE, Hazzard DG, Bronson RT. Pathologic characterization of brown Norway, 
brown Norway × Fischer 344, and Fischer 344 × brown Norway rats with relation to age. J. 
Gerontol. A Biol. Sci. Med. Sci. 1996; 51:B54–B59. [PubMed: 8548501] 

Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S. Epidemiological and experimental links between air 
pollution and type 2 diabetes. Toxicol. Pathol. 2013; 41:361–373. [PubMed: 23104765] 

Margetic S, Gazzola C, Pegg G, Hill R. Leptin: a review of its peripheral actions and interactions. Int. 
J. Obes. 2002; 26:1407–1433.

Muoio DM, Newgard CB. Insulin resistance takes a trip through the ER. Science. 2004; 306:425–426. 
[PubMed: 15486283] 

Newby FD, DiGirolamo M, Cotsonis GA, Kutner MH. Model of spontaneous obesity in aging male 
Wistar rats. Am. J. Physiol. 1990; 259:R1117–R1125. [PubMed: 2260722] 

Özcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, 
Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. 
Science. 2004; 306:457–461. [PubMed: 15486293] 

Pulfer MK, Taube C, Gelfand E, Murphy RC. Ozone exposure in vivo and formation of biologically 
active oxysterols in the lung. J. Pharmacol. Exp. Ther. 2005; 312:256–264. [PubMed: 15316091] 

Puntmann VO, Taylor PC, Mayr M. Coupling vascular and myocardial inflammatory injury into a 
common phenotype of cardiovascular dysfunction: systemic inflammation and aging—a mini-
review. Gerontology. 2011; 57:295–303. [PubMed: 20551624] 

Schelegle ES, Walby WF, Alfaro MF, Wong VJ, Putney L, Stovall MY, Sterner-Kock A, Hyde DM, 
Plopper CG. Repeated episodes of ozone inhalation attenuates airway injury/repair and release of 
substance P, but not adaptation. Toxicol. Appl. Pharmacol. 2003; 186:127–142. [PubMed: 
12620366] 

Bass et al. Page 14

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2015 February 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, 
Parthasarathy S, Brook RD, Moffatt-Bruce SD, Chen LC, Rajagopalan S. Ambient air pollution 
exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. 
Circulation. 2009; 119:538–546. [PubMed: 19153269] 

Sun Z, Mukherjee B, Brook RD, Gatts GA, Yang F, Sun Q, Brook JR, Fan Z, Rajagopalan S. Air-
pollution and cardiometabolic diseases (AIRCMD): a prospective study investigating the impact of 
air pollution exposure and propensity for type II diabetes. Sci. Total Environ. 2013; 448:72–78. 
[PubMed: 23182147] 

Thiering E, Cyrys J, Kratzsch J, Meisinger C, Hoffmann B, Berdel D, von Berg A, Koletzko S, Bauer 
CP, Heinrich J. Long-term exposure to traffic-related air pollution and insulin resistance in 
children: results from the GINIplus and LISAplus birth cohorts. Diabetologia. 2013; 56:1696–
1704. [PubMed: 23666166] 

Tsai DH, Amyai N, Marques-Vidal P, Wang JL, Riediker M, Mooser V, Paccaud F, Waeber G, 
Vollenweider P, Bochud M. Effects of particulate matter on inflammatory markers in the general 
adult population. Part. Fibre Toxicol. 2012; 9:24. [PubMed: 22769230] 

U.S. Environmental Protection Agency. The Green Book Nonattainment Areas for Criteria Pollutants. 
2012. http://www.epa.gov/oar/oaqps/greenbk/ancl2.html.

van Bree L, Dormans JA, Koren HS, Devlin RB, Rombout PJ. Attenuation and recovery of pulmonary 
injury in rats following short-term, repeated daily exposure to ozone. Inhal. Toxicol. 2002; 
14:883–900. [PubMed: 12122568] 

Watkinson WP, Campen MJ, Nolan JP, Costa DL. Cardiovascular and systemic responses to inhaled 
pollutants in rodents: effects of ozone and particulate matter. Environ. Health Perspect. 2001; 
109(Suppl. 4):539–546. [PubMed: 11544160] 

Bass et al. Page 15

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2015 February 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.epa.gov/oar/oaqps/greenbk/ancl2.html


Fig. 1. 
Schematics of the study design for acute, subchronic and time-course experiments. Timing 

of glucose tolerance test (GTT), O3 exposures, and necropsy/serum and tissue collection are 

shown for each sub-study. Post-exposure GTTs were done immediately following exposure 

whereas necropsy and tissue and serum collection were done either 18 h after exposure 

(acute, subchronic, and group 3 time-course study) or immediately following exposure 

(group 1 and 2 time-course study).
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Fig. 2. 
Glucose tolerance test (GTT) comparison of 1, 4, 12, and 24 month old BN rats prior to the 

start of O3 exposure. Inset graph shows fasting blood glucose levels for all ages. Each value 

is the mean blood glucose measurement ± S.E. of 18 to 21 rats. Mean values of blood 

glucose at each timepoint are compared for age-factor, relative to 4 month old rats († = p < 

0.05 †† = p < 0.01). 0 ppm indicates FA exposure.
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Fig. 3. 
Glucose tolerance test (GTT) comparison of BN rats after acute or subchronic exposure to 

FA or O3, performed immediately after O3 exposure. Each value is the mean blood glucose 

measurement ±S.E. of 4 to 10 rats. The individual plots show acute GTT results; a) 1 month 

b) 4 month c) 12 month d) 24 month; and subchronic GTT results, e) 4 month f) 12 month g) 

24 month. Mean values of blood glucose at each timepoint are compared for age-factor, 

relative to 4 month old rats († = p < 0.05 ††=p < 0.01). Significant exposure effects are 
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indicated relative to FA exposed group (* = p < 0.05 ** = p < 0.01). 0 ppm indicates FA 

exposure.
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Fig. 4. 
Glucose tolerance test (GTT) comparison of BN rats after exposure to FA or O3 in the time-

course study. Each value is the mean blood glucose measurement ± S.E. of 4 to 10 rats. 

Mean values of blood glucose at each timepoint are compared for significant exposure 

effects relative to FA exposed group (* = p < 0.05 ** = p < 0.01). 0 ppm indicates FA 

exposure.
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Fig. 5. 
Comparison of serum biomarkers in BN rats exposed to FA or O3 in the time-course study. 

Serum was collected during necropsy immediately after 1 day or 2 days O3 exposure, or 18 

h after 2 days O3 exposure and analyzed as described in methods. Control values may vary 

due to diurnal variation and the injection of glucose in glucose tolerance tests for animals in 

the 2 day 18 h timepoint group. Abbreviations: interleukin 6 (IL-6), α1-acid glycoprotein 

(AGP), α2-macroglobulin (A2M). Each value is the mean ± S.E. of 6 rats. Mean values of 

markers are compared for significant exposure effects relative to FA exposed group (* = p < 

0.05 ** = p < 0.01). 0 ppm indicates FA exposure.
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Fig. 6. 
Comparison of serum epinephrine in BN rats exposed to FA or O3 in the time course study. 

Serum was collected during necropsy immediately after 1 day or 2 days O3 exposure, or 18 

h after 2 days O3 exposure and analyzed for epinephrine. Control values may vary due to 

diurnal variation and the injection of glucose during glucose tolerance testing for animals in 

the 2 day 18 h timepoint group. Each value is the mean ± S.E. of 4–6 rats. Mean values of 

markers are compared for significant exposure effects relative to FA exposed group (* = p < 

0.05). 0 ppm indicates FA exposure.
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