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Abstract
Identification of Endocrine Disrupting Chemicals is one of the important goals of environmental
chemical hazard screening. We report on the development of validated in silico predictors of
chemicals likely to cause Estrogen Receptor (ER)-mediated endocrine disruption to facilitate their
prioritization for future screening. A database of relative binding affinity of a large number of
ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning
(STL) and multi-task learning (MTL) continuous Quantitative Structure-Activity Relationships
(QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High
predictive accuracy was achieved for ERα binding affinity (MTL R2=0.71, STL R2=0.73). For
ERβ binding affinity, MTL models were significantly more predictive (R2=0.53, p<0.05) than
STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67
agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by
putative decoys/non-binders) using the following ER structures (in complexes with respective
ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist
(PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), ERβ antagonist (PDB ID: 1L2J). We found that
all four ER conformations discriminated their corresponding ligands from presumed non-binders.
Finally, both QSAR models and ER structures were employed in parallel to virtually screen
several large libraries of environmental chemicals to derive a ligand- and structure-based
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prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental
validation.
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Introduction
Endocrine disrupting chemicals (EDCs) interfere with the synthesis, secretion, transport,
metabolism, binding, or elimination of hormones (Diamanti-Kandarakis et al., 2009).
Adverse health effects of EDCs in humans have been demonstrated to include
developmental, reproductive, neurological, cardiovascular, metabolic and immune systems
(Schug et al., 2011). A wide range of natural and man-made chemical substances may be
causing endocrine disruption and are considered as both human health and environmental
hazards (Diamanti-Kandarakis et al., 2009). Costly testing of chemicals for their endocrine
disruption potential is required in most industrialized countries (Adler et al., 2011). Because
the mechanisms of endocrine disruption are diverse and complex (e.g., interactions with
hormone and non-steroid receptors, activation of enzymatic and signaling pathways, etc.), a
wide array of in vitro and in vivo tests is used to identify EDCs (Jacobs et al., 2008; Shanle
and Xu, 2011; Sung et al., 2012; Rotroff et al., 2013).

Estrogen-like activity is one of the most common adverse effects of EDCs. Estrogen
receptors (ER) have been extensively studied (Mueller and Korach, 2001; Shanle and Xu,
2011) and two subtypes of ER have been identified, ERα and ERβ. These subtypes have
overlapping yet unique physiological roles depending on the tissue and cell type, presence of
cofactors, and ligands (Minutolo et al., 2011). With regards to the sequences of the ER
subtypes, they are most similar in the DNA-binding domain (97%), while there is less
conservation in the C-terminal ligand binding domain (56%) and N-terminal transactivation
domain (18%) (Hall et al., 2001; Koehler et al., 2005). The amino acid differences, both
inside the binding cavity and in other regions of ligand binding domain, may be responsible
for the subtype selectivity of some ER ligands.

Structure-activity modeling plays an important role in government programs in support of
protecting human populations from exposure to environmental contaminants (Demchuk et
al., 2011). Specifically, computational methods to identify chemicals that may pose
endocrine disruption hazard for additional in vitro or in vivo testing are important
prioritization approaches (Lo Piparo and Worth, 2010; Tsakovska et al., 2011). Because of
the diversity and complexity of endocrine disruption mechanisms, as well as the limited data
available for in silico modeling, most studies have focused on EDCs that act via estrogen or
androgen receptors. These modeling approaches include Quantitative Structure-Activity
Relationship (QSAR) (Tong et al., 2004; Salum et al., 2007), molecular dynamics
simulations (van Lipzig et al., 2004), docking (Celik et al., 2007; Celik et al., 2008) and
pharmacophores (Taha et al., 2010). Consequently, many of the models have been
implemented as computational tools that are available either publicly or commercially
(Table 1). Most of these tools only provide hazard classification of chemicals, e.g., as either
receptor binders or non-binders of ER subclasses or other receptors, while only few provide
quantitative estimation of the relative binding affinity [e.g., the Endocrine Disruptor
Knowledge Base (EDKB) (Ding et al., 2010), ADMET Predictor (http://www.simulations-
plus.com/), and MolCode (http://molcode.com/)].
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There are several limitations of existing computational tools for prediction of ER-mediated
endocrine disruption. First, most available computational tools focus on ERα since they
were developed using a dataset of 232 compounds tested against ERα, which is available
from the Endocrine Disruptor Screening Program (EDSP) (Branham et al., 2002). Second,
relatively few chemicals have been tested for ERβ-specific activity and therefore there are
no current tools that can predict ERβ binding, or distinguish between ER subtypes. Finally,
tools that can predict ER binding affinity are not capable of distinguishing the type of
functional activity (i.e., agonism vs. antagonism). To address these limitations, we have
assembled a large dataset including data on ER binding affinity (546 compounds for ERα
and 137 for ERβ) and functional activity (67 agonists/39 antagonists for ERα, 48 agonists/32
antagonists for ERβ) and developed QSAR models for each ER subtype. Next, QSAR and
ER subtype-specific docking were used in parallel to virtually screen a library of
environmental chemicals to identify putative ER binders and predict their selectivity and
functional activity.

Materials and Methods
Datasets

ERα and ERβ binding affinity—For QSAR modeling (see below), we used binding
affinity (ERα and/or ERβ) data from publicly available sources (Table 2). For ERα, 414
unique organic compounds were identified in EDKB (Ding et al., 2010) and ChEMBL
(Gaulton et al., 2012), and additional 132 compounds with ERα binding affinity data were
extracted from the published literature (Kuiper et al., 1997; Taha et al., 2010). For ERβ,
binding affinity data were available for 137 chemicals (Kuiper et al., 1997; Taha et al.,
2010). For both ERα and ERβ datasets, the relative binding affinity (RBA), as compared to
17β-estradiol (E2) from ER competitive-binding assays, was calculated using Equation (1).

(1)

ERα and ERβ functional activity (agonism/antagonism)—For docking studies (see
below) we collected information on whether a compound is a known agonist/antagonist, or
is a presumed decoy, with regards to a particular receptor (Table 2). Presumed decoys are
defined as chemicals that have similar physical properties but are topologically dissimilar
from the known ligand structures and are expected not to bind the respective receptor. For
ERα, 67 known agonists and 39 known antagonists were obtained from the Directory of
Useful Decoys (Huang et al., 2006). In addition, 2570 presumed agonist decoys and 1448
presumed antagonist decoys were from the same source (Huang et al., 2006). For ERβ, 48
known agonists and 32 known antagonists were obtained from (Minutolo et al., 2011).
Because there were no publicly available decoy datasets for ERβ agonists or antagonists at
the time of this study, the dataset of 1000 drug-like compounds (Friesner et al., 2004) was
used as presumed ERβ non-binders. Partial ER agonists or antagonists were not used. The
chemical structures of agonists, antagonists, and their corresponding presumed decoys/non-
binders for both ER subtypes are included in Supplemental Table 1.

The three-dimensional conformations of the ER ligands and presumed decoys/non-binders
were prepared using LigPrep (LigPrep 2011). The ionization state of each molecule was
calculated assuming the pH value of 7.0±2.0. All molecules were subjected to energy
minimization using the MMFF force field before docking.
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ER agonist and antagonist conformations for docking—Four ER crystal structures
were used for docking in this study: ERα agonist conformation with bound ERα agonist
R,R-tetrahydro-chrysene [PDB ID: 1L2I (Shiau et al., 2002)], ERα antagonist conformation
with bound ERα antagonist GW2368 [PDB ID: 3DT3 (Fang et al., 2008)], ERβ agonist
conformation with bound ERβ agonist naphthalene [PDB ID: 2NV7 (Mewshaw et al.,
2007)], and ERβ antagonist conformation with bound ERβ antagonist (5R,11R)-5,11-
diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol [PDB ID: 1L2J (Shiau et al., 2002)]. These
ER crystal structures were selected because they had the highest resolution according to
PDB. The protein-ligand crystal structures are shown in Supplemental Figure 1. Protein
structures were prepared using Protein Preparation wizard (Protein Preparation Wizard,
2011) by following the protocols in (Mouchlis et al., 2010). A grid for each protein was
calculated using Grid Generation in Maestro (Maestro 2011), with the binding site defined
by the location of co-crystallized ligands.

Data curation—The structures for all compounds employed in this study were manually
examined and curated according to the guidelines described in (Fourches et al., 2010). All
curated structures were stored in SDF format for further analysis.

Molecular Descriptors
Molecular descriptors (represented with explicit hydrogen atoms) were computed for each
compound using Dragon software (version 5.4; Talete s.r.l., Milan, Italy). Descriptors with
low variance (standard deviation lower than 0.0001) or missing values were removed.
Furthermore, if the squared correlation coefficient (R2) between values of two descriptors
over the entire data set exceeded 0.95, one of the descriptors was randomly removed. The
final descriptor set used in this study contained 432 descriptors range-scaled to the [0, 1]
interval.

QSAR Modeling Approaches
Training, test, and external evaluation sets selection—To avoid well-documented
limitations of QSAR models developed with training sets (Golbraikh and Tropsha, 2002),
each binding affinity dataset (consisting of 546 unique organic compounds for ERα and of
137 for ERβ) was subjected to 5-fold external cross-validation procedure as detailed in
(Sedykh et al., 2011). Specifically, each dataset was randomly partitioned into 5 subsets of
similar size. Models were then independently developed such that compounds in 4 of the 5
subsets were used as modeling set and the compounds in the remaining subset were used as
an external evaluation set. The modeling set was further subdivided into 36–50 diverse
internal training and test sets of different sizes, using a sphere-exclusion method (Golbraikh
et al., 2003). Individual models were developed based on each internal training set and
internally validated by predicting the corresponding test set. All individual models showing
acceptable performance on internal training/test sets were retained in an ensemble for the
application to the external evaluation set; thus, the latter set was not used in any way in
model development or internal validation. This procedure was repeated 5 times such that
each of the five subsets was employed as external evaluation set once and the remaining
subsets were used as a modeling set.

Variable selection k-nearest neighbors (kNN) QSAR modeling—Candidate
models were built using variable selection kNN method (Zheng and Tropsha, 2000).
Specifically, a set of nvar descriptors are randomly selected (nvar is set to multiple values
during successive modeling attempts in order to find the best fitted model). The activity of
any compound can then be predicted by averaging the activities of the k compounds most
similar to it, as measured by Euclidean distance calculated in the multidimensional space
defined by nvar selected descriptors (k ranges from 1 to 5 and is also subject to independent
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optimization). This candidate model is then evaluated by leave-one-out cross-validation,
where each compound is eliminated from the training set and its ER binding affinity is
predicted from that of its k nearest neighbors. The correlation between the predicted
affinities and the actual values is then calculated using leave-one-out cross-validated R2 (q2)
as metric. The descriptor selection is optimized to achieve the highest q2 using simulated
annealing approach with Metropolis-like model acceptance criteria Further details of this
approach can be found elsewhere (Zheng and Tropsha, 2000).

Single-task learning and multi-task learning kNN QSAR modeling—In traditional
QSAR modeling, a correlation between values of multiple chemical descriptors (or
independent variables) and a single type of biological activity, e.g., estrogenic activity, is
sought: this type of modeling can be termed single task learning (STL). However, it is often
feasible that two partially overlapping groups of compounds may interact with related
biological targets causing similar biological response (e.g., two receptor subtypes); in this
case it may be advantageous to build a model correlating descriptor values with both
biological responses simultaneously, i.e., employ multi-task learning (MTL). Herein, in
addition to traditional STL-kNN methodology (Zheng and Tropsha, 2000), we used MTL
approaches (Figure 1). MTL trains a model on multiple tasks in parallel and benefits from
the inductive transfer of knowledge between related tasks (Varnek et al., 2009). In our
implementation of MTL-kNN method, compounds from all tasks are mapped onto the same
chemical descriptor space, and the variable-selection procedure is driven by optimizing the
cumulative fitness-value calculated across all tasks. The algorithm considers neighbors of
each compound only within the same task; thus, the predictions for each task are based on its
own data, but all tasks drive the variable-selection jointly. The MTL-kNN modeling
approach was applied to the simultaneous modeling of ERα and ERβ binding affinities.

Selection and validation of QSAR models—The kNN QSAR models were considered
acceptable using the following criteria as detailed in (Zhang et al., 2008; Tropsha, 2010): (i)
leave one out cross-validated q2; (ii) square of the correlation coefficient between the
predicted and observed activities; (iii) coefficients of determination (predicted versus
observed activities, and observed versus predicted activities); and (iv) slopes k and k′ of
regression lines (predicted versus observed activities, and observed versus predicted
activities) forced through the origin.

Applicability domain—Since kNN models interpolate activities from the nearest
neighbor compounds in training sets, a special applicability domain (i.e., similarity
threshold) was introduced to avoid classifying test set compounds that differ from the
training set molecules. Applicability domains for all models were calculated according to
(Golbraikh et al., 2003).

Robustness of QSAR models—Y-randomization (randomization of response) is widely
used to establish robustness of QSAR models (Rucker et al., 2007). The process involves
rebuilding models using randomized response values in the training set and subsequent
assessment of the model prediction accuracy. It is expected that models obtained for the
training set with randomized response values should have significantly lower prediction
accuracy. Y-randomization was applied in duplicate to all training/test dataset divisions
considered in this study as detailed in (Golbraikh and Tropsha, 2002).

Docking Studies
All ERα and ERβ agonists and antagonists, as well as their respective presumed decoys/non-
binders, were docked into the corresponding protein structures using Glide XP (Friesner et
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al., 2004) with default flexible ligand docking settings and the ligands were ranked by
docking scores, using Glide XP scoring function.

Virtual Screening
QSAR and docking models developed in this study were used to virtually screen (i.e.,
predict RBA values and agonist/antagonist docking scores with respect to ERα and ERβ)
two additional libraries of chemicals. First, we used a list of compounds in EDKB (Ding et
al., 2010) that have reported log relative potency (logRP) value (with E2 as the reference
compound) in uterotrophic assay (Supplemental Table 5). There were 1707 compounds with
logRP values in EDKB; of these, 970 were unique (see curation procedure described above)
and were not overlapping with the list of compounds used to develop either QSAR or
docking models. Performance of the QSAR and docking models developed in this study was
evaluated only for these 970 compounds, 34 had logRP≥0 (considered as “active”), and 936
had logRP<0 (considered as “inactive”). Second list of compounds was obtained from the
Endocrine Disruptor Screening Program at the US Environmental Protection Agency (EPA)
(http://epa.gov/endo/pubs/edsp_chemical_universe_list_11_12.pdf). After chemical
structure curation, 3557 unique compounds were used for virtual screening and
prioritization.

QSAR-based virtual screening—QSAR models developed in this study were used to
virtually screen both uterotrophic and EDSP datasets in order to identify potential ERα and/
or ERβ ligands. Specifically, MTL-kNN models were used to predict the ERα and ERβ
binding affinity for every compound identified within the respective models’ applicability
domain. Consensus prediction of ERα or ERβ binding affinity was calculated by averaging
the individual predictions across all models that passed internal validation criteria in five-
fold external cross-validation procedure.

Docking-based virtual screening—Procedures described above were followed and the
results of docking runs were organized into the following four ranked lists: 1) ERα agonists;
2) ERα antagonists; 3) ERβ agonists; 4) ERβ antagonists.

Virtual screening performance metrics—To compare the relative efficiency of QSAR
and docking methods, enrichment factors and receiver operating characteristic (ROC) curves
were calculated. Both of these metrics assess the ability of a method to distinguish known
ligands from a larger pool of tested compounds. The enrichment factor (Equation 2) reflects
how many seed compounds (or known ligands) were found within a defined “early
recognition” fraction of the ranked list relative to a random distribution where Hscr is the
number of target-specific ligands recovered at a specific % level of the ligand/decoy
datasets; Htot is the total number of ligands for the target; Dscr is the number of compounds
screened at a specific % level of the database; Dtot is the total number of compounds in the
database.

(2)

The ROC curves were generated by plotting sensitivity (Equation 3) against [1–specificity
(Equation 4)] for a binary classifier system as its discrimination threshold is varied. In the
case of virtual screening for recovering the ith known active from the inactive decoys (or
presumed decoys), the sensitivity and specificity were defined as follows:

(3)
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(4)

The area under the ROC curve is the metric widely accepted for assessing the likelihood that
a screening method assigns a higher rank to known actives than to inactive compounds. The
area under the curve values at a specific percentage of the ranked database were calculated
from Equation (5) where n is the total number of known actives in the screening database.

(5)

In addition, in order to compare or combine the performances among different models, the
predicted binding affinity by QSAR models or the calculated docking score by docking
program were converted into Z-scores respectively. The consensus prediction for each
chemical by different types of models was then calculated by averaging all individual Z-
scores.

Results and Discussion
QSAR Modeling

The ERα and ERβ binding affinity (logRBA) datasets assembled for this study include 546
ERα ligands and 137 ERβ ligands, respectively. These datasets are among the largest
reported thus far [Table 1 and (Lo Piparo and Worth 2010)]. For the ERα dataset, logRBA
ranged from −4.50 to 2.81; the logRBA range for ERβ dataset was −2.00 to 2.91. Because
ERα binding affinity data was derived from several public sources, for some compounds
multiple measurements were reported. A concordance analysis of these duplicate
measurements from different sources revealed high correlation (R2=0.86, N=18) of binding
affinity suggesting a reasonably high reliability and consistency of the information.

There were 131 overlapping compounds between ERα and ERβ binding affinity datasets.
Although the correlation between ERα and ERβ binding affinity for these 131 compounds is
significant (R2=0.46, p<0.001), a number of these ER ligands still have largely different
binding affinities to ERα and ERβ (i.e., many are ER subtype-selective ligands). Therefore
separate computational predictors for ERα and ERβ binding affinity were developed.

QSAR models for ERα and ERβ were built separately using conventional STL QSAR
modeling approach. STL QSAR models of ERα binding affinity showed high external
predictive accuracy (R2=0.73 for 5-fold external cross validation) (Figure 2). This result
appears similar to or better than those reported previously (Lo Piparo and Worth, 2010).
However, direct comparison among models is difficult because our dataset was larger than
any of the previous modeling sets with continuous binding affinity data. Generally, the
increased size of a modeling set should enlarge the AD of resulting models. This is
particularly important for QSAR models that aim to predict environmental chemical
hazards, because those compounds tend to be structurally diverse. For instance, the AD of
our ERα models (based on 546 compounds) was compared with the AD of the models
reported in the literature for the well-known EDKB binding affinity dataset (232 chemicals).
ADs were calculated based on the same set of 432 Dragon descriptors for both datasets. The
comparison showed that all compounds found in the EDKB binding affinity dataset were
within the AD of our ERα models, while only 73% of the 546 compounds in our ERα
dataset were within the AD of models developed based on the EDKB dataset. Relatively
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high concordance between the ADs of these datasets is probably due to the fact that the
majority of ER binders belong to a small number of chemical classes (phenols, steroids,
etc.); thus, once a dataset has representatives from these classes, inclusion of additional
compounds may have minor impact. Still, it can be concluded that the large size of our
newly compiled dataset resulted in an extended AD for the new models.

Predictive accuracy of STL ERβ models (R2=0.32 for 5-fold external cross validation
results) was considerably less than that of ERα. One possible explanation of this result is the
smaller size and higher diversity of the ERβ dataset (the average Tanimoto coefficient
between each chemical and its 10 nearest neighbor compounds (i.e., local similarity) ERβ
was 0.81, while it was 0.85 for ERα).

Next, we explored whether MTL method would improve the accuracy of the ERβ models.
MTL method was substituted for STL kNN in the standard QSAR modeling workflow,
which allowed for the simultaneous modeling of ERα and ERβ binding affinity. Previous
MTL QSAR studies suggested that this method, along with other inductive knowledge
transfer approaches, improves prediction accuracy when the tasks are related (Varnek et al.,
2009). ERα and ERβ can be considered as related since they belong to the same protein
family, have moderately conserved ligand binding domains, and binding affinity for
common ligands is moderately correlated (R2=0.46, N=131, p<0.001). We found that MTL
method significantly improved predictive accuracy of ERβ binding affinity models (Figure
2, R2 increased from 0.32 to 0.53, p<0.05 by two-tailed Student’s t-test between prediction
errors by STL vs. MTL models). At the same time, predictive accuracy of MTL ERα models
(R2=0.71) was not different from that of STL ERα models (R2 =0.73).

Several factors that may be responsible for the improvements in predictive accuracy
achieved by MTL model have been suggested (Caruana, 1997). Our results show that
overlapping compounds [present in both ERα and ERβ binding affinity datasets, so-called
“representation bias” (Caruana, 1997)] were not essential for the improved predictive
accuracy by MTL models (Supplemental Figure 2). Alternative explanation of the
improvement is data amplification: the size of ERβ dataset may be insufficient to afford
predictive conventional (STL) QSAR models. However, by training ERα and ERβ models
simultaneously using MTL method, the ERβ dataset was effectively enlarged by additional
information from the ERα dataset (joint fitness function and common variable selection).
Thus, predictive accuracy of ERβ, but not ERα, models was significantly improved. Similar
findings were reported by (Varnek et al., 2009) who found that MTL improves model
predictivity, especially for relatively smaller datasets.

Filtering by applicability domain yields only a modest increase in predictive accuracy of
both STL and MTL models (Figure 2). Y-randomization test demonstrated the robustness of
all QSAR models. For example, there were 276 MTL models satisfying the acceptance
criteria (see Methods) for both training and test sets; however, no models satisfying these
criteria were obtained in the Y-randomization test.

Model Interpretation by the Means of Descriptor Analysis and Implications for the Design
of Chemicals to Minimize Endocrine Disruption Potential

Some descriptors occurred repeatedly in both STL and MTL models, suggesting that they
represent important chemical features for predicting ER binding affinity. We focused on a
set of 87 most frequently utilized descriptors that were shared by STL ERα and both MTL
models (STL ERβ models were excluded due to inferior predictivity). For these descriptors
(see Supplemental Tables 2 and 3), we compared mean values for the strong and the weak
ER binders (defined by activity thresholds of logRBA=1 and −1, respectively). Figure 3 (left
panel) shows that for ERα, many descriptors exhibited substantially different mean values
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between the two groups when all chemicals were considered. Such variation implies that
these descriptors could potentially serve as determinants of ERα binding affinity. Similar
observation was made for ERβ (figure not shown, data is included in Supplemental Table 3).
Indeed, Figure 4 shows patterns of chemical descriptor profiles for several examples of
strong and weak ERα or ERβ binders. These plots clearly illustrate that not only average, but
also individual chemical’s descriptor profiles show appreciable divergence between certain
descriptor values for strong vs. weak binders.

We posit that such analysis affords the interpretation of QSAR models in terms of inherent
chemical properties that may contribute to the chemical’s endocrine disruption potential.
Indeed, the nature of Dragon descriptors employed in this study (e.g., topological descriptors
or connectivity indices, or atom and bond counts) does not allow for straightforward model
interpretation in terms of common ER scaffolds, such as steroids or phenols. However, those
descriptors that map onto relatively small chemical features and are discriminatory can be
useful in assessing what chemical modification may affect ER binding potential. For
illustration, several examples of chemical modifications (suggested by the descriptor
analysis as described above) that reduce the binding affinity of a known ERβ binder are
shown in Table 3. For example, ARR (aromatic ratio) and B01[NO] (presence of N-O motif)
have a negative impact on binding affinity to ERβ, while B09[CO] (presence of C…O motif
at topological distance of 9) and nArOH (number of OH groups attached to aromatic ring)
have a positive impact. In order to reduce the binding affinity of this ER binder, the values
of descriptors with negative impacts should be increased, or the values of descriptors with
positive impacts should be decreased. For instance, the aromatic ratio (descriptor ARR)
could be increased by removing aliphatic atoms (Table 3). Indeed, by doing so, both
predicted and experimentally-derived binding affinity of the resulting compound are −0.44
and −0.68, which is about 1 log unit less than the affinity of the original chemical.

While the potency-defining descriptors may guide structural modifications and lead to the
enhancement or reduction of ER binding potency, it is usually difficult to determine whether
and by how much the binding affinity of a compound can be changed merely by considering
few individual descriptors. Instead, these descriptors (and underlying chemical features)
should be viewed as having high priority for chemists to consider when structural
modifications modulating the estrogenic potential of chemicals are desired. It must be
emphasized that resulting changes to the entire descriptor profiles need to be considered in
order to determine whether a structural modification is desirable or not. For example, if
structural modifications leading from strong to weak binding are taken as favorable, and
aromatic ratio is to be increased as in the first example of Table, 92% of the 87 frequent
descriptors will also change in the favorable direction (i.e., the values of descriptors with
positive (negative) impacts are reduced (increased)). This understandably leads to a large
decrease in binding affinity for the compound of interest (logRBA from 0.64 to −0.68).

Figure 3 (right panel) also illustrates a comparison between the impact of selected
descriptors on ERα vs. ERβ binding affinity, when assessed as the differences of mean
descriptor values of strong and weak binders. Interestingly, most of the selected descriptors
have a similar impact on binding affinity for both ER subtypes (black and white bars are in
the same direction). However, the impacts of B09[CO] (topological index) and ARR are
subtype-independent, while JG16 (topological charge index) and nPyrazoles (number of
pyrazoles) are subtype-selective. These comparisons could also provide more specific
suggestions for structural modifications to chemists who aim to convert potential EDCs into
safer compounds in an ER-subtype specific manner. For the purpose of identifying potential
environmental hazards, which could be ERα and/or ERβ binders, subtype selectivity may
not be as critical as in drug design selective ER modulation is desired.
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Docking Studies
It is important to predict functional behavior of chemicals, i.e., whether ER binders will act
as receptor agonists or antagonists; thus, structure-based docking studies using agonist- or
antagonist-bound receptor conformations were conducted. ER agonists/antagonists (67/39
for ERα and 48/32 for ERβ) were compared to presumed decoys (2570/1448 for ERα, and
1000/1000 for ERβ). We confirmed that agonists/antagonists and their respective presumed
decoys have similar physico-chemical properties (Supplemental Figure 3).

Compounds were docked to the ERα or ERβ agonist or antagonist protein conformations
and their enrichment factors and AUCs were compared to establish the discriminatory power
of structure-based functional annotation of ER ligands. We found that all protein
conformations were able to discriminate their corresponding ligands from presumed decoys
(Figure 5). Moreover, all protein conformations could successfully enrich their
corresponding ligands (agonists or antagonists) with high selectivity (EFmax ranges from 15
to 229) (Figure 5). These results indicate that each receptor conformation is capable of
accurately recognizing the type of molecules it is expected to bind.

ERα agonist conformation was superior for separating ERα agonists from antagonists
(Figure 5 top left, AUCs for agonists/antagonists by ERα agonist confirmation are
0.92/0.59). Both ER antagonist confirmations were less capable than ER agonist
confirmations of separating their respective ligands (Figure 5, AUCs for recognizing
antagonists by ERα and ERβ antagonist conformations are 0.89 and 0.91, with no significant
difference from their AUCs for agonists, 0.93 and 0.93, respectively). For comparison,
AUCs for agonists by ERα and ERβ agonist confirmations are 0.92 and 0.93, higher than
their AUCs for antagonists, 0.59 and 0.91, respectively. A possible explanation is that ER
agonist conformations have relatively smaller ligand binding pocket than antagonist
conformations due to the position of the helix 12 (see Supplemental Figure 1); as a result, it
is quite difficult for antagonists to fit into agonist conformations as they are usually larger
molecules than agonists (for instance, the average molecular weight is 286 and 427 for the
ERα agonists and antagonists employed in this study, respectively).

QSAR- and Docking-based Virtual Screening
All four receptors were used, along with QSAR models, for parallel virtual screening of
several external datasets. We reasoned that the consensus of all models represents a more
reliable approach for discriminating ER binders from non-binders. After putative ER binders
are selected by the consensus QSAR predictions of binding affinity, the docking models
may be used to establish the functional activity of the binders. Based on our results
described above, ERα agonist conformation demonstrated the best performance with regards
to estimating putative binding affinity and characterizing agonism/antagonism of for ERα
ligands.

The uterotrophic assay is an in vivo (rats or mice) endocrine disruption screening program
screening test (EPA, 2012) for evaluating the ability of a chemical to elicit biological
activities consistent with agonists or antagonists of natural estrogens (e.g., 17β-estradiol). A
high correlation (R2=0.76) between logRP and logRBA was observed for 32 compounds in
EDKB that were tested in both uterotrophic and ER binding affinity assays, which confirms
the utility of this dataset in the validation of ER models. Both QSAR models and docking
were used to evaluate their retrieving power for the 34 estrogenic chemicals from this virtual
screening dataset. We found that QSAR models and ERα agonist conformation were
capable of enriching active compounds (Figures 6A and C, AUC>0.7). Interestingly, a fairly
high enrichment power by ERβ QSAR model (Figure 6A, AUC=0.89) indicates that this
model is able to differentiate ERβ binders vs. non-binders. This observation further suggests
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that the relatively low external predictive accuracy of the ERβ model (R2=0.53) was
probably due to the small size and structural diversity of the modeling and test datasets. In
addition, 10 out of the 34 estrogenic compounds were ranked high by ERβ models but not
ERα models (the predicted ERβ binding affinity was at least 1 log unit higher than the
predicted ERα binding affinity), which suggests the ability of QSAR models to detect
subtype-selective ER ligands. As expected, when comparing the performance of the four
protein models in virtual screening, ERα agonist protein conformation outperformed others
(Figures 6C and D). A possible explanation for this is that most of the active compounds in
uterotrophic assay act via the activation of ERα (i.e., they are ERα agonists) which favors
the ERα agonist conformation.

It should be noted, however, that it is difficult to select the best model that would be most
predictive for identifying compounds with a potential for ER activation-related hazard.
Previous studies [e.g., aquatic toxicity (Zhu et al., 2008)] suggest that the consensus
prediction based on the results obtained by all predictive models provide the most stable and
reliable solutions. Therefore, the consensus predictions for the uterotrophic dataset
compounds by QSAR models (CONSQSAR), docking models (CONSdock) and both QSAR
and docking models (CONSall) were compared. Enrichment factors and ROC curves were
plotted for each consensus predictor in order to compare their performance with each other,
as well as with the individual models (Figures 6B and D). Indeed, we found that consensus
prediction by both QSAR and docking models outperformed other models (Figure 6 and
Supplemental Table 5).

Based on the encouraging results observed in the virtual screening of the uterotrophic
dataset, both QSAR and docking models were then applied to the chemical library of ~3,500
compounds in the EDSP dataset. By averaging the predictions by MTL for ERα and ERβ
QSAR models as well as by using four protein models, the consensus predictor initially
ranked all compounds. Application of a conservative threshold (consensus Z-score=1)
resulted in selection of 286 chemicals from this chemical library as potential ER-active
EDCs with the highest confidence by the consensus between all models (Supplemental
Table 4). These chemicals may be considered of the highest priority for further in vitro and
in vivo endocrine disruption testing.

Conclusions
We have developed QSAR models for quantitative prediction of binding affinity to both
subtypes of ER and showed the use of MTL was critical to improve the model prediction
power for the smaller ERβ dataset. We have analyzed the models for significant chemical
descriptors. As a result of this analysis, we posit that descriptors that were most frequently
used in QSAR models may be interpreted as chemical features that influence ER binding
affinity and thus may be used to suggest structural modifications to diminish potential ER
binding hazard. Several examples (Table 3) were used to illustrate how such descriptor
analysis as part of model interpretation may facilitate the design of safer chemicals. Another
important methodological outcome of this study is the concurrent use of structure-based
docking as a complement to QSAR models for binding affinity. All four protein
conformations were able to discriminate corresponding ligands from presumed decoys/non-
binders. In addition, ERα agonist conformation worked best in discriminating agonists from
antagonists. Thus, structure-based methods (when possible due to the availability of target
protein structures) may serve as a crucial complement to ligand-based approaches for
understanding the mechanism of endocrine disruption and facilitating the identification of
previously unknown ligands in chemical libraries. Indeed, virtual screening of the EDKB
uterotrophic dataset demonstrated that the consensus predictions by QSAR and protein
models outperformed individual models. A prioritized (i.e., potential ER-mediated endocrine
disruptors) set of 286 compounds was generated from a large library of EDSP chemicals to
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show that models developed and employed in this study (publicly available from (http://
chembench.mml.unc.edu/)) can be used as effective computational pre-screening tool to
prioritize chemicals for further experimental testing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• This is the largest curated dataset inclusive of ERα and β (the latter is unique)

• New methodology that for the first time affords acceptable ERβ models

• A combination of QSAR and docking enables prediction of affinity and function

• The results have potential applications to green chemistry

• Models are publicly available for virtual screening via a web portal
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Figure 1. QSAR modeling workflow for STL- and MTL-kNN QSAR modeling
Numbers of ligands included in each dataset used in model development are shown within
the circles at the top of the figure.
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Figure 2. External prediction accuracy of MTL (black bars) and STL (white bars) QSAR models
estimated from 5-fold external cross validation
AD - applicability domain; STL - conventional single-task learning QSAR modeling
approach; MTL - multi-task learning QSAR modeling approach. Vertical lines above bars
indicate the mean absolute prediction error. *, Significantly different (p<0.05) between
models as indicated by brackets.
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Figure 3. Frequency profiles of chemical descriptors for ER binders
Activity threshold to define strong and weak binders is logRBA=1 and logRBA=−1,
respectively. Shown are the 87 descriptors used most frequently in STL ERα and MTL (both
receptors) models. Descriptor values were normalized to fall within the range of [0, 1]. Left
panel, descriptor profile comparison for strong (solid line) vs. weak (dashed line) binders of
ERα. Right panel, impact of the individual descriptors on the relative binding affinity to
ERα vs. ERβ. Each bar shows the difference between mean descriptor values for strong vs.
weak binders for ERα (black bars) and ERβ (white bars).
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Figure 4.
Examples of the descriptor profiles for strong and weak ERα (left panel) and ERβ (right
panel) binders.
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Figure 5. ROC and enrichment factor curves obtained as a result of docking studies using ER
agonist and antagonist protein conformations
Blue solid lines and numbers indicate ER agonists, and red dotted lines and numbers
indicate ER antagonists. Enrichment Factor (EF) is defined in the Methods. The numbers of
known ER ligands and presumed decoys/non-binders are stated in Table 2.
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Figure 6. Results of virtual screening of the EDKB uterotrophic dataset using both QSAR
models and ER docking
ROC curves resulting from the use of QSAR models and docking models to identify 34
known estrogenic compounds in the uterotrophic dataset. (A) QSAR models; (B) enrichment
factor curves of QSAR models; (C) Docking studies; (D) enrichment factor curves of
docking studies. Consensus All: consensus results using all six models; Consensus QSAR:
consensus prediction using both ERα and ERβ QSAR models; Consensus Docking:
consensus results of docking using all four protein models.
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Table 1

Software/toolbox/web portals capable of predicting endocrine disrupting potential of chemicals.

In silico System Availability Description

ChemBench
(Walker et al., 2010)
http://chembench.mml.unc.edu/

Publicly available

Quantitative prediction
of binding affinity to
ERα and ERβ (this
work)

Endocrine Disruptor Knowledge Base (EDKB)
(Tong et al., 2004)
http://www.fda.gov/scienceresearch/bioinformaticstools/endocrinedisruptorknowledgebase/
default.htm

Publicly available

Quantitative prediction
of binding affinity to ER
and Androgen Receptor
(AR)

OECD (Q)SAR Toolbox
http://www.oecd.org/document/54/0,3746,en_2649_34379_42923638_1_1_1_1,00.html Publicly available Binary prediction of ER

binders/non-binders

ACD/Tox Suite (ToxBoxes)
http://www.acdlabs.com/products/pc_admet/tox/tox/modules.php Subscription-based Binary prediction of

ERα binders/non-binders

ADMET Predictor
http://www.simulations-plus.com/ Subscription-based

Qualitative and
quantitative prediction of
binding affinity to ER

Derek Nexus
http://www.lhasalimited.org/ Subscription-based

Classification models
(different levels of
likelihood) based on 23
alerts for developmental
toxicity; 4 alerts for
estrogenicity

MolCode Toolbox
http://molcode.com/ Subscription-based

Quantitative prediction
of binding affinity to ER
and aryl hydrocarbon
receptor (AhR)

TIssue MEtabolism Simulator (TIMES)
(Serafimova et al., 2007)
http://oasis-lmc.org/

Subscription-based
Binary prediction of ER,
AR and AhR binders/
non-binders

VirtualToxLab
(Vedani and Smiesko, 2009; Vedani et al., 2009)
http://www.biograf.ch

Subscription-based

Prediction of endocrine
disruption potential
based on simulations of
compound interactions
with AR, AhR, ER,
thyroid, glucocorticoid,
liver X, mineralo-
corticoid, peroxisome
proliferator-activated
receptors, as well as
CYP450 3A4 and 2A13
enzymes

This table is sorted by availability and alphabetical order. More extensive description of the available tools may be found in (Lo Piparo and Worth,
2010).
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Table 2

Datasets of ER binding affinity and functional activity used in this study.*

Modeling Method Dataset ER Subtype Number of Compounds

QSAR Binding Affinity (logRBA)
(Kuiper et al., 1997; Ding et al., 2010; Taha et al., 2010; Gaulton et al., 2012)

ERα 546

ERβ 137

Docking Known Agonists, Known Antagonists, and Presumed Decoys
(Friesner et al., 2004; Huang et al., 2006; Minutolo et al., 2011)

ERα

67 agonists
39 antagonists

2570 agonist decoys
1448 antagonist decoys

ERβ

48 agonists
32 antagonists

1000 agonist decoys
1000 antagonist decoys

*
See Supplemental Table 1 for a complete list.
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