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ABSTRACT

Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK)
performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based
properties. A significant toxicological application of HTTK has been “reverse dosimetry,” in which bioactive concentrations
from in vitro screening studies are converted into in vivo doses (mg/kg BW/day). These doses are predicted to produce
steady-state plasma concentrations that are equivalent to in vitro bioactive concentrations. In this study, we evaluate the
impact of the approximations and assumptions necessary for reverse dosimetry and develop methods to determine
whether HTTK tools are appropriate or may lead to false conclusions for a particular chemical. Based on literature in vivo
data for 87 chemicals, we identified specific properties (eg, in vitro HTTK data, physico-chemical descriptors, and predicted
transporter affinities) that correlate with poor HTTK predictive ability. For 271 chemicals we developed a generic HT
physiologically based TK (HTPBTK) model that predicts non-steady-state chemical concentration time-courses for a variety
of exposure scenarios. We used this HTPBTK model to find that assumptions previously used for reverse dosimetry are
usually appropriate, except most notably for highly bioaccumulative compounds. For the thousands of man-made
chemicals in the environment that currently have no TK data, we propose a 4-element framework for chemical TK triage
that can group chemicals into 7 different categories associated with varying levels of confidence in HTTK predictions. For
349 chemicals with literature HTTK data, we differentiated those chemicals for which HTTK approaches are likely to be
sufficient, from those that may require additional data.
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Of the 30 000 chemicals that are estimated to be in wide com-
mercial use, only a small subset has been characterized as to
their potential toxicological effects in humans or wildlife

(Judson et al., 2008; National Research Council, 1984; USGAO,
2013). High-throughput screening (HTS) using in vitro assays, eg,
the ToxCast and Tox21 programs, has been proposed as one
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approach to fill these data gaps by analyzing the activity of
these chemicals across a broad range of potential biological tar-
gets (Bucher, 2008; Judson et al., 2010). One challenge associated
with the interpretation of the HTS data has been relating in vitro
bioactive concentrations with relevant in vivo dose values, and
doing so on a scale and throughput required to address the large
number of chemicals (Judson et al., 2011; Rotroff et al., 2010;
Thomas et al., 2013; Tonnelier et al., 2012; Wambaugh et al., 2013,
2014; Wetmore et al., 2012).

For pharmaceutical compounds, in vitro to in vivo extrapola-
tion (IVIVE) methods have been developed to parameterize toxi-
cokinetic (TK) models that relate blood and tissue
concentrations to therapeutic doses for clinical studies. The
IVIVE methods typically include limited in vitro measurements
of hepatic clearance, plasma protein binding, and chemical
structure-derived predictions of tissue partitioning (Jamei et al.,
2009; Lukacova et al., 2009). The IVIVE methods and resulting TK
models are considered effective since the predicted concentra-
tions are often (Wang, 2010) within �3-fold of the in vivo obser-
vations (we describe predictions as being “on the order of
magnitude” if they are within
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� 3:2�fold). Ultimately, the
human TK of a pharmaceutical compound may be fully charac-
terized in follow-on human clinical trials (Jamei et al., 2009),
which is vastly different from the data available for environ-
mental and industrial chemicals where both ethical and cost
considerations preclude human testing.

The IVIVE methods developed for pharmaceuticals have
been used to parameterize high-throughput TK (HTTK) models
for hundreds of environmental and industrial chemicals
(Rotroff et al., 2010; Tonnelier et al., 2012; Wetmore et al., 2012,
2013, 2014). The primary example of the application of HTTK
models has been to estimate the doses (mg/kg BW/day) needed
to produce steady-state plasma concentrations (Css, in units of
mM) equivalent to concentrations that produce bioactivity in
in vitro assays—this process is often described as “reverse do-
simetry” (Rotroff et al., 2010; Tonnelier et al., 2012; Wetmore
et al., 2012, 2013, 2014). Reverse dosimetry with HTTK models
can provide estimated doses for environmental and industrial
chemicals below which significant in vitro bioactivity is not ex-
pected to occur (Judson et al., 2011; Wetmore et al., 2012). The ra-
tio between the lowest bioactive dose and the maximal
expected exposure provides risk-based context to HTS data and
is one metric for prioritization of additional chemical testing
(Judson et al., 2011; Thomas et al., 2013; Wetmore et al., 2012).

When benchmarked against a limited number of environ-
mental, pesticidal, and industrial chemicals with in vivo TK
data, HTTK models have demonstrated mixed success, but have
generally provided health-protective estimates of bioactive
doses (Wetmore et al., 2012; Yoon et al., 2014). The reasons for
the discrepancies between steady-state concentrations pre-
dicted using HTTK and the concentrations from in vivo TK data
are not clear. There may be extrapolation issues for environ-
mental chemicals that are not present with pharmaceuticals.

This study evaluated the accuracy of HTTK predictions that
were made using the same physiologically motivated,
3-compartment mathematical TK model previously used in re-
verse dosimetry studies (Rotroff et al., 2010; Tonnelier et al.,
2012; Wetmore et al., 2012, 2013, 2014). This assessment was
conducted across the 349 chemicals for which the appropriate
inputs and data were available. Of these, �80% of the chemicals
(ie, 271), possessed required inputs to parameterize a generic
high-throughput physiologically based toxicokinetic (HTPBTK)
mathematical model that we employed to test some of the as-
sumptions used in the HTTK-based reverse dosimetry approach

for environmental chemicals. HTTK model predictions were fur-
ther evaluated using available human and rat in vivo measure-
ments curated from TK literature.

We found that some properties of pharmaceutical and envi-
ronmental chemicals correlated with either small or large dis-
crepancies between HTTK predictions and in vivo-derived
values. Those properties define a “domain of applicability” of
chemical property space within which HTTK models may be ex-
pected to provide an adequate alternative to more traditional
TK methods for reverse dosimetry and other applications. The
results of our analyses were integrated into a multi-element TK
triage system that organizes chemicals into different categories
based on varying degrees of accuracy (eg, on the order,
10� over-estimated, 10� underestimated) of the HTTK predic-
tions with additional categories for situations where more data
or alternative approaches are needed to develop suitable TK
models. Depending on the accuracy needed for a specific appli-
cation and the degree of confidence for a particular prediction,
this triage system separates those chemicals with which HTTK
may be used with confidence from those chemicals that may
benefit from specific types of analyses and/or additional experi-
mental data collection.

MATERIALS AND METHODS

In this study, we first replicated the steady-state TK model
used in previous studies and developed a new model allowing
exploration of the impact of the steady-state assumption. We
used these models to analyze the soundness of assumptions
used in previous reverse dosimetry HTTK applications as exem-
plified by the Wetmore et al. (2012) study. We then applied
statistical methods to determine the chemical-specific proper-
ties that correlate with HTTK predictive ability. Among the
chemical-specific properties examined, we investigated xenobi-
otic transporter affinities predicted using quantitative struc-
ture–activity relationships (QSAR). The methods and data used
for our analysis of HTTK have been made available as a package
for the open source R statistical analysis software platform
(R Development Core Team, 2013). The package, “httk,” can be
accessed from the Comprehensive R Archive Network (CRAN)
repository (http://cran.r-roject.org/web/packages/httk/, last
accessed 22 June 2015). All chemical-specific parameters are
listed in Supplementary Table 1 with references.

TK models used. Two general (ie, chemical independent) TK mod-
els were used. The first model was intended to replicate the
model used in previous reverse dosimetry analyses (Rotroff
et al., 2010; Wetmore et al., 2012, 2013). Those analyses were per-
formed using the SimCyp software (Jamei et al., 2009). The first
model (illustrated in Supplementary Fig. 1) was a physiologi-
cally motivated “3-compartment” model for determining
plasma concentrations that assumed no tissue partitioning,
elimination due to metabolism of the parent compound in the
liver, renal elimination by passive glomerular filtration (GF), and
is adjusted for plasma protein binding [ie, GF rate
(GFR)� fraction of chemical unbound in plasma]. Metabolism in
this model is comparable to the “well-stirred” approximation
for hepatic metabolism (Wilkinson and Shand, 1975).

The second general TK model (illustrated in Supplementary
Fig. 2) was physiologically based (PBTK) with separate tissue
compartments for the gut, liver, lung (unused for dosing in this
research, since the inhalation route was not simulated), kid-
neys, and arterial and venous blood. The rest of the tissues in
the body were aggregated. Tissue volumes and blood flows were
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taken from Birnbaum et al. (1994). Tissue flows and volumes
were scaled to cardiac output and body weights from Davies
and Morris (1993), which also provided values for GFR and hem-
atocrit. Absorption from the gut lumen into gut tissue was mod-
eled as a first-order process with an arbitrary, “fast” rate of 1/h.
Venous blood from the gut and arterial blood fed separately into
the liver, where metabolism was again modeled with the “well-
stirred” approximation.

Physico-chemical and partitioning information were col-
lated from various sources. Molecular weight and structure
were determined from the DSStox database (http://www.epa.
gov/ncct/dsstox, last accessed 22 June 2015) and hydrophobicity
was drawn for all compounds from EPI Suite (http://www.epa.
gov/opptintr/exposure/pubs/episuite.htm (last accessed 22 June
2015)—measured values used if available, predicted otherwise).
Where available, ionization association/dissociation equili-
brium constants were curated from the literature; otherwise
predictions were based on chemical structure using the SPARC
(SPARC Performs Automated Reasoning in Chemistry) model
(Hilal et al., 1995). Experimental values for membrane affinities
(ie, lipid-bilayer to water concentration ratios) were used where
available (Endo et al., 2011) or predicted using a regression of the
Endo et al. (2011) data based on hydrophobicity and
temperature:

log 10 Knpl:water
� �

¼ 0:999831� 0:016578� T þ 0:881721
� log 10 Koctanol:waterð Þ;

where T is the temperature (�C), Knpl:water is the neutral phos-
pholipid-to-water concentration ratio, and Koctanol:water is the
octanol-to-water concentration ratio.

Chemical-specific tissue to free fraction in plasma partition
coefficients were predicted using Schmitt’s method (2008a).
Tissue-specificity was based upon the cellular fraction of total
volume; water, lipid and protein fraction of cellular volume; and
distribution of types of lipid (Schmitt, 2008b). Chemical-
specificity was based upon plasma protein binding (fup), the
hydrophobicity, and any ionization association/dissociation
constants. Because we do not have a method for estimating the
rate at which chemicals diffuse into tissues, we assumed that
all tissues were perfusion-limited; ie, chemical concentrations
in tissue, red blood cells, and plasma come to equilibrium
instantaneously relative to the flow of blood.

Determination of steady state. We use the term “steady-state” to
describe the situation where the chemical concentration in
plasma caused by the assumed exposure scenario is unchang-
ing in time. With the assumption of constant infusion dosing,
as in Wetmore et al. (2012), this is a true steady-state. With con-
stant infusion dosing the flow of chemical into the body is
matched perfectly by clearance from the body. For dynamic
exposure scenarios (such as exposures separated by time inter-
vals), a quasi-steady-state is determined to occur if the plasma
concentration effectively no longer increases across a fixed
time interval. For example, if plasma concentration is the same
just before the next dose as it was before the current dose, this
is quasi-steady-state.

In order to determine if steady-state conditions were
achieved, 2 analytic equations were derived from the differen-
tial equations of the 3-compartment TK and PBTK models by
assuming constant infusion dosing. The analytic solution to the
3-compartment TK model is the equation used for steady-state
plasma concentrations (Css) in previous work (Rotroff et al., 2010;
Wetmore et al., 2012, 2013; Wilkinson and Shand, 1975). For the

PBTK model, equations were solved numerically to simulate a
series of repeated, every 8-h oral doses until the daily averaged
venous concentration, just before re-dosing, was within a small
tolerance (1%) of the concentration predicted with the analytical
solution of the PBTK model. The PBTK simulations assume an
initial body burden of no chemical, even though this may not be
the case for certain persistent, bioaccumulating, or endogenous
chemicals. The equations for the analytic solutions are given in
the captions to Supplementary Figures 1 and 2.

In vitro chemical data. In vitro data used in this study was
extracted from published literature. For environmental, pestici-
dal, and industrial chemicals, in vitro experimental data were
obtained primarily from Wetmore et al. (2012) and Tonnelier
et al. (2012). For pharmaceutical compounds these values were
compiled from Obach (1999), Jones et al. (2002), Shibata et al.
(2002), Lau et al. (2002), Naritomi et al. (2003), Ito and Houston
(2004), McGinnity et al. (2004), Schmitt (2008a), and Obach et al.
(2008).

Two types of in vitro data were extracted in order to parame-
terize the TK models—intrinsic hepatic clearance and plasma
protein binding. The intrinsic metabolic clearance of the parent
compound (CLint) by primary hepatocytes (substrate depletion
approach) was measured in wells on a multi-compound plate
(Shibata et al., 2002). Since only the unbound chemical in the
hepatic clearance assay is available for metabolism, CLint was
determined from the observed clearance (CLuint) which was div-
ided by the estimated fraction of chemical unbound in the hep-
atocyte intrinsic clearance assay (fuhep), as estimated using the
method of Kilford et al. (2008). The Kilford et al. (2008) method
includes a distribution coefficient estimated from hydrophobic-
ity and ionization. In Wetmore et al. (2012), 2 chemical concen-
trations (1 and 10 mM) were tested, in part to test for saturation
of metabolism. We have used only the 1 mM values. Fraction of
chemical unbound in the presence of plasma protein (fup) was
assessed using rapid equilibrium dialysis (RED) in which 2 wells
are separated by a membrane that is permeable to smaller mol-
ecules but prevents the plasma protein from migrating from
one well to the other (ie, the relative chemical concentration in
the 2 linked wells gives the free fraction of chemical) (Waters
et al., 2008).

Monte Carlo simulation and parameter distributions. Previous
reverse dosimetry analyses (Rotroff et al., 2010; Wetmore et al.,
2012) used the SimCYP software (Jamei et al., 2009) to perform a
Monte Carlo (MC) simulation of human variability and we have
implemented a similar MC simulation ability. To match the
assumptions used by SimCYP, normal distributions that were
truncated to ensure positive values were used with mean values
drawn from the references above and a coefficient of variation
of 0.3. Body weight, liver volume, hepatic blood flow, glomerular
filtration rate, and CLuint were all varied in this manner. In a
change from previous MC simulations, the values for protein
binding, fup, were drawn from a censored normal distribution:
values were sampled from a uniform distribution between 0%
and the limit of detection (LOD) (default of 1% unbound) at a
rate proportional to the number of samples from the truncated
normal distribution below the LOD. For each chemical, 1000 dif-
ferent combinations of parameters were used to determine Css,
allowing estimation of the 5th, median, and 95th percentiles.

In vivo chemical data. In Wetmore et al. (2012), in vivo TK and
PBTK modeling data for the environmental, pesticidal, and
industrial chemicals were collected from the literature and used
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to assess the predictive ability of the human in vivo Css estima-
tion, assuming a 1 mg/kg/day daily oral administration. For
pharmaceutical compounds, the measured human clearance (l/
day) and volume of distribution (l) in Obach et al. (2008) was
used to determine Css for the same dose.

Model compounds for rat IVIVE were chosen based on the
availability of HTTK input parameters CLuint and fup. A list was
constructed from Ito and Houston (2004), complemented by a
group of compounds to which reverse dosimetry was applied in
earlier studies (Krug et al., 2013; Piersma et al., 2013). For these
compounds, we searched public sources for studies reporting
plasma concentration time course data in rat following oral or
intravenous administration. Pharmacokinetic data were
retrieved from those studies (Supplementary Table 2) by digitiz-
ing published figures using TechDig v2.0.

In silico transporter predictions. We used the method of Random
Forest (Breiman, 2001) to develop QSAR predictions of trans-
porter affinity (Sedykh et al., 2013). We used the R package
“randomForest” by Liaw and Weiner (2002). Experimental data
characterizing interaction of chemicals with membrane trans-
porters were compiled from multiple available public sources
(Sedykh et al., 2013). The chemicals were represented using
Chemistry Development Kit descriptors (Steinbeck et al., 2003)
determined from Simplified Molecular-Input Line Entry System
strings (Weininger, 1988). Chembench (Walker et al., 2010) was
used to standardize chemical structures as well as normalize
chemical descriptors to range between 0 and 1. Inhibitors were
defined based on a potency threshold of 10 lM except for pep-
tide transporter 1 (PepT1), organic cation transporter 1 (OCT1),
and organic anion-transporting polypeptide 2B1 (OATP2B1), for
which 100 lM threshold was used due to lower levels of affinity
of reported inhibitors. Scores equal to 0 or 1 imply high-confi-
dence predictions that a chemical is a non-substrate or a sub-
strate, respectively, whereas a score of 0.5 indicates an
ambiguous prediction (Sedykh et al., 2013). The full list of trans-
porters modeled is identified in Supplementary Table 1, which
also contains the QSAR predictions for each compound.

A second model, based upon Bayesian classification, was
used to predict interactions of the compounds with organic
anion transporter protein (OATP) 1B1 (Van de Steeg et al., 2015).
The classification model is based on a database recording the
inhibitory potential of 640 FDA-approved drugs from a commer-
cial library (10 lM) on the uptake of [3H]-estradiol-17beta-D-glu-
curonide (1 lM) in Human Embryonic Kidney 293 cells stably
transfected with human OATP1B1. The structural similarity
(feature-connectivity bit string 4) to the nearest similar chemi-
cal in this training set is used as a measure for potential interac-
tion with OATP1B1. Although this model predicts inhibition of
OATP1B1-mediated uptake rather than uptake itself, we assume
here that the inhibition is mostly competitive and therefore
identifies potential transporter substrates.

HTTK-in vivo discrepancy analysis. The Random Forest algorithm
was used to analyze the correlation of chemical descriptors
with the discrepancy between HTTK predictions and results
based on in vivo data. The Random Forest method is cross vali-
dated (Breiman, 2001), performing multiple analyses based on
different subsets of chemicals and different subsets of chemical
descriptors. Fifty thousand regression trees were constructed
using random subsets of the data, with a subset of 17 factors
considered at each split in the tree, and a minimum terminal
node size of 5. Performance of each regression tree was eval-
uated against the chemicals not used to build that tree. The

most important factors in the random forest model were calcu-
lated using the method of decrease in node impurities (essen-
tially, a leave 1 factor out method) (Archer and Kimes, 2008). We
used the R package “rpart” by Therneau et al. (2014) to perform
the method of recursive partitioning (Breiman et al., 1984) to
develop a regression tree for the full dataset (ie, not cross-vali-
dated). Finally, a random forests approach was used to construct
a classifier tree for 5 exclusive categories (“on the order,” “3.2�
under-predicted,” “10� under-predicted,” “3.2�over-predicted,”
“10� over-predicted”), with a subset of 17 factors considered at
each split, and a minimum terminal node size of 1.

RESULTS

Our HTTK models require chemical-specific data on CLint and
fup to predict human Css. We obtained data from the peer-
reviewed literature for a total of 349 chemicals. These chemicals
include (non-uniquely) 312 Tox21 chemicals, 248 ToxCast
chemicals, 74 pharmaceuticals, and 35 chemicals for which
human exposure is monitored by the Centers for Disease
Control National Health and Nutrition Examination Survey
(CDC, 2012). The distribution of the non-zero values of the CLint

and fup data is roughly log-normal and is similar across the
curated literature (Supplementary Figs. 3 and 4).

Figure 1 illustrates our ability to reproduce the Wetmore
et al. (2012) results. As in Wetmore et al. (2012), we simulated
population variability to determine the median, lower 5th, and
upper 95th percentile of plasma concentrations for individuals
exposed to the same, fixed dose (1 mg/kg BW/day). Since the
upper 95th percentile individuals have higher plasma concen-
trations for the same exposure, they are considered to be an
example of a sensitive population. Any 1 chemical in Figure 1 is
indicated by 3 plot points connected by a line. The 3 points cor-
respond to the median, lower 5th, and upper 95th percentiles of
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FIG. 1. Comparison of the median, upper, and lower 95th healthy adult human

percentiles of steady-state plasma concentration (Css) predicted on the y-axis

using SimCyp (Wetmore et al., 2012) and on the x-axis using assumptions refined

to better reflect screening for environmental chemicals. The Css values were

estimated assuming a steady-state infusion of 1 mg/kg BW/day. Each chemical’s

median and upper and lower 95th percentiles are connected by a line. The

dashed line indicates the identity (perfect predictor) line.
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the Css. The dashed line indicates the identity (perfect predictor)
line—the further a prediction is from the identity line the
greater the discrepancy. We describe predictions with large dis-
crepancies as “outliers.”

There was good agreement (R2¼ 0.84) between our simula-
tions and those in Wetmore et al. (2012) for all 3 percentiles.
However, this comparison did identify 2 groups of outliers for
which the predictions differ due to differing assumptions.

The first group of chemicals in Figure 1 with differing predic-
tions is those that have an upper 95th percentile Css that was sig-
nificantly higher than previously estimated, though the median
and lower percentile values were unchanged. These chemicals
are indicated in Figure 1 by a bent line connecting the 3 quantiles.
This predicted difference indicates greater risk for the most sensi-
tive individuals. This difference was due to replacing a default
value with a censored distribution for chemicals with a failed
RED assay for measuring fup (protein binding). Among other rea-
sons (eg, binding to membrane), the RED assay can fail because
the amount of free chemical is below the LOD. In Wetmore et al.
(2012), the RED assay failed for �38% of the chemicals. For these
chemicals, Wetmore et al. (2012) assumed a default value of 0.5%
free (roughly half the average LODs). For the analysis shown in
Figure 1, we have replaced this default value with a censored dis-
tribution in our MC variability simulation (essentially, simulating
many different values between 0 and 1%).

There was a second group of chemicals in Figure 1 where the
current modeling provided plasma concentration estimates dif-
ferent from Wetmore et al. (2012) due to a change in assump-
tions. This group contained chemicals where differences in the
analysis of the hepatic clearance assay results led to different
concentrations predicted for all 3 population percentiles in
Figure 1 (ie, 3 quantiles connected by a line that are all distant
from the identity line). Due to measurement variability and
other factors, a linear model may not describe the decrease in
parent chemical concentration as a function of time. Previously,
a P-value threshold of .10 (probability of the null hypothesis of
no disappearance of chemical was <10%) was used to determine
if the chemical showed significant intrinsic clearance over the
time examined. For the results shown in Figure 1, we have
required that P-values be <.05. For those with a P-value >.05, we
use a default value of 0 (ie, no hepatic clearance) which acts to
increase the estimated plasma concentration for a fixed dose.

Most discrepancies between our predictions and Wetmore
et al. (2012) disappear (R2� 0.90, Supplementary Fig. 5) if we
replace our revised assumptions with the original assumptions
of Wetmore et al. (2012). However, 8 discrepant chemicals
remain due to issues such as the only Css available in Wetmore
et al. (2012) was calculated using the 10 mM clearance data. The
lone chemical for which we under-predict the value from
Wetmore et al. (2012) for all 3 population percentiles is
Chlorpyrifos-methyl, for which the 10 mM clearance assay was
not statistically significant, leading Wetmore et al. (2012) to use
0 clearance. Since the clearance assays conducted at 1 mM was
statistically significant, we used that value, leading to a larger
predicted clearance.

Once we were satisfied that we could reproduce previous
results for the majority of chemicals, and understood those
cases where we differed, we proceeded to evaluate 3 key
assumptions for the calculation of Css. Previously, chemical par-
titioning into tissues (eg, volume of distribution) was not deter-
mined from HTTK data, necessitating the use of Css as a dose
metric because the concentration at steady-state does not
depend on the amount of chemical in tissues. This means that
we assume that humans reach steady state with respect to

environmental exposures. Using the analytic solution for Css

requires the further assumption of constant infusion dosing.
Constant infusion dosing requires that we assume that steady-
state plasma concentrations are a reasonable surrogate for peak
concentrations which would be caused by other exposure sce-
narios (eg, exposure at meal times only). Further, constant infu-
sion dosing requires either the assumption that 100% of the
chemical is absorbed or the use of additional models to predict
absorption. Wetmore et al. (2012) selected 100% absorption as
being conservative (causing overestimated plasma concentra-
tion). By constructing non-steady-state, PBTK models, we can
assess the plausibility of these 3 assumptions.

We developed HTPBTK models using Schmitt’s method for
tissue partitioning (Schmitt, 2008a). We used a generic PBTK
model structure that could be parameterized for any chemical
using CLint and fup and experimental or QSAR-derived physico-
chemical properties. Schmitt’s method requires a value for pro-
tein binding in order to make predictions; therefore, we could
only build HTPBTK models for 271 chemicals. Further assump-
tions about chemical absorption and bioavailability (ie, rapid
absorption and 100% bioavailability) were required in order to
parameterize the HTPBTK models.

Figure 2 illustrates our evaluation of the HTPBTK model pre-
dictions by comparison to literature in vivo time course data in
rats for 22 chemicals. For a given chemical, the specific TK prop-
erties, dose, and route of administration result in different
plasma concentration kinetics that we have summarized by the
time-integrated plasma concentration (Area Under the Curve,
AUC). Neglecting route of administration, we find that HTPBTK
is predictive (R2¼ 0.68) of in vivo data (Fig. 2A). When we esti-
mate a difference between oral exposures (which are subject to
absorption and bioavailability) and intravenous and subcutane-
ous dose routes (which are not), we find slightly greater predic-
tive ability (R2¼ 0.73). We systematically over-predict AUC for
chemicals administered orally. The average difference between
oral and intravenous doses is 6.4 (95% confidence interval
2.3–18), ie, on average AUCs from oral doses are roughly 6 times
lower than predicted. This result indicates that the absorption
assumptions we used for HTPBPTK are conservative and health
protective since they produce higher predicted exposures. In
Figure 2B, we show that peak plasma concentration (Cmax) also
appears to be well described by the HTPBTK model (R2� 0.68)
and that there is a systematic bias toward over-prediction. The
treatments that are over-estimated are predominantly for intra-
venous doses while predictions for oral doses are more evenly
scattered about the identity line. The handful of cases where
HTPBTK under-predicts Cmax are all for oral administration.

Having established that our HTPBTK model predictions are
consistent with the in vivo data that was available for 22 chemi-
cals (Fig. 2), we conducted a simulation study to evaluate the
assumptions used to calculate Css in previous HTTK reverse
dosimetry analyses. In the simulation study, we replaced the
infusion dose assumption with a dosing scenario of 3 daily
doses totaling 1 mg/kg BW/day (eg, exposure at meal times or
from consumer product use), to better reflect the near field
sources of exposure that appear to be dominant for environ-
mental chemicals (Wambaugh et al., 2013). As illustrated in
Figure 3A, 70% of chemicals (182 of 271) reach steady-state
within 28 days, and 90% of chemicals (252 of 271) reach steady-
state within 1000 days. However, there were 19 chemicals that
required more than 1000 days to reach steady-state (Table 1).
TK analyses based upon Css are inappropriate for these chemi-
cals, suggesting a need for alternative approaches. Approaches
based on dynamic TK simulation of the tissue concentrations
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likely to be caused over a life-time of exposure may be
more appropriate. The 5 chemicals that never reach steady-state
(ie, the ratio of the simulated average daily concentration to the
analytic Css never approaches 1) are polychlorinated biphenyls
(PCBs), which are known to have long human half-lives (Ritter
et al., 2010) and are no longer deliberately in commerce.

With the HTPBTK models and more realistic exposure simula-
tion, we then compared predicted peak concentrations with the
Css derived from the analytical solution to the 3-compartment TK
model (Fig. 1). As shown in Figure 3B, the peak concentration for
repeated dosing is not different (R2� 0.95) from the Css predic-
tions under the assumption of constant infusion dosing.
Similarly, the average daily concentration at steady-state was
nearly identical (R2� 0.96) to the analytical result for Css used in
Wetmore et al. (2012) and elsewhere (Supplementary Fig. 6). For
rapidly cleared compounds, the peak concentrations from 3 daily
doses were within an order of magnitude of Css.

We then compared HTTK predictions of Css based on in vitro
data with Css values inferred for humans from in vivo studies for
11 environmental chemicals (Wetmore et al., 2012) and 74 phar-
maceuticals (Obach et al., 2008). Figure 4A illustrates that there
is a weak predictive ability (R2� 0.34), but that the errors are
mostly conservative (ie, the predicted plasma concentrations
based on in vitro data are higher than the in vivo data indicates).
When the perfluorinated chemicals (PFCs) are removed, the R2

drops to �0.23. We note that the correlation between the HTTK
Css versus the Css inferred for humans from in vivo studies is
lower than observed for AUC and Cmax predictions in Figure 2.
At steady-state, all Css values are compared for the same fixed
dose rate of 1 mg/kg/day. When the HTPBTK predictions are
normalized for administered dose, the R2 for AUC and Cmax drop
to �0.48 for both, indicating that a portion of the predictive abil-
ity of the HTPBTK might be due to the data varying linearly with
dose for those chemicals.
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To identify chemical-specific properties that correlate with
reduced HTTK predictive ability, we analyzed the difference
between in vivo measurements and HTTK predictions (ie, the
residuals), shown by thick grey lines in Figure 4A. The method
of random forests was used to predict the residual for each
chemical with in vivo data, as shown in Figure 4B. Chemical
properties included chemical-specific physico-chemical proper-
ties, in vitro intrinsic hepatic clearance, in vitro plasma protein
binding, and QSAR predictions of transporter affinity.
Transporters were included because predictors were available
(Sedykh et al., 2013) and they constitute an often important
driver of TK (Giacomini et al., 2010; Shugarts and Benet, 2009)

that is not included in the steady-state model. A large predicted
residual for a specific chemical corresponds to a large expected
error. The random forest approach ensures cross-validated pre-
dictive ability by averaging the predictions of many models con-
structed from random subsets of the chemicals and chemical
descriptors. The relative importance of the top 10 chemical
properties for predicting HTTK residuals (errors) is illustrated in
Figure 4C. These factors are described in detail in Tables 2 and
3. Note that all transporters that were included as potential pre-
dictors of error were anticipated to be relevant to TK. The rela-
tive rankings of specific transporters in Table 2 may reflect the
chemical evaluation set that was used.

TABLE 1. Chemicals Predicted to Require Long Time Periods to Reach Steady-State

Compound CAS Analytic
Css (mg/l)

HTPBTK
Average
Daily Conc.
(mg/l)

Ratio of
HTPBTK
to Analytic
After
100 Years

Years to
Steady-State

Vd (l) Kel (h)

Fenpropathrin 39515-41-8 0.36 0.36 0.99 3.0 651.3 0.000162
Perfluorooctanoic acid 335-67-1 81.55 81.39 0.99 3.5 3.4 0.00015
Imazalil 35554-44-0 13.37 13.17 0.99 4.1 24.8 0.000128
Maprotinline 10262-69-8 0.8 0.8 0.99 4.9 480.9 0.000106
Tetraconazole 112281-77-3 15.92 15.67 0.99 5.7 28.9 9.22E�05
Perfluorooctane sulfonic acid 1763-23-1 81.83 81.66 0.99 6.6 6.4 7.92E�05
Isoxaben 82558-50-7 8.4 8.25 0.99 6.8 65.5 7.71E�05
Ddt 50-29-3 0.04 0.04 0.99 7.3 15127.0 3.84E�05
S-bioallethrin 28434-00-6 1.66 1.63 0.99 9.0 434.5 5.85E�05
Fenvalerate 51630-58-1 0.88 0.88 0.99 13.7 1235.3 3.71E�05
Zoxamide 156052-68-5 37.87 37.69 0.99 34.0 71.3 1.55E�05
Oxyfluorfen 42874-03-3 3.21 3.18 0.99 41.7 1033.9 1.26E�05
D-cis, trans-allethrin 584-79-2 1.35 1.33 0.99 46.7 2763.0 1.13E�05
Emamectin benzoate 155569-91-8 282.45 281.50 0.99 77.7 21.8 6.77E�06
PCB136 38411-22-2 37.68 1.08 0.03 >100 34485.6 3.21E�08
PCB153 35065-27-1 76.7 0.86 0.01 >100 43391.9 1.25E�08
PCB155 33979-03-2 75.67 1.36 0.02 >100 27407.8 2.01E�08
PCB77 32598-13-3 76.21 10.56 0.13 >100 3314.2 1.65E�07
PCB80 33284-52-5 77.06 11.26 0.14 >100 3093.6 1.75E�07
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Although the random forest method produces a cross-vali-
dated predictor, the interpretation of how those predictions are
achieved can be difficult since the predictions are the average of
many different models. A single regression tree for predicting
Css residuals based on all chemicals and all available chemical
properties can be created for descriptive purposes (Fig. 5). Error
in the HTTK models (ie, large residuals) appears to be driven by
predicted Css, fup, chemical ionization, and 2 of the transporters
described in Table 2. We note 2 broad classes of chemicals—
those chemicals where HTTK predictions are on the order (ie,
within �3.2� or 101/2�) of the observed in vivo values (�65% of
the chemicals), and those chemicals where the errors can be
several orders of magnitude (28% of the chemicals were �6�
overestimated, and 8% of chemicals 120� overestimated on
average). For this final group of chemicals, the large overestima-
tion by the HTTK models leads to conservative reverse dosime-
try predictions (ie, errors that would lead to lower predicted
ratios between bioactive doses and the maximal expected expo-
sures, thus leading to a higher predicted risk).

Motivated by the regression tree analysis in Figure 5, which
classified all the data but was not suitable for prediction, a sec-
ond random forest (ie, predictive, rather than descriptive) analy-
sis was conducted. The analysis used the same descriptors as
before to classify chemicals into 5 categories based on residual:
those chemicals with predictions on the order of the in vivo Css

(within �3.2�), those that were between �3.2� and 10� over or
underestimated, and those that were >10� over or underesti-
mated. The cross-validated classifier had a sensitivity of 79%, a
specificity of 54%, and a balanced accuracy of 64% when predict-
ing whether or not a HTTK Css prediction will be on the order of
the in vivo measured Css. Chemicals for which the residuals are
predicted to be on the order or overestimated are within the
domain of applicability of our HTTK approach; ie, we expect to
have either small or conservative errors for reverse dosimetry.
Along with identifying those chemicals that never reach
steady-state (Table 1) and those chemicals for which the plasma
protein binding assay failed, the 5 categories from this random
forest classifier allow each chemical to be placed into 1 of 7
categories, as illustrated in Figure 6.

By integrating the various analyses in this study, we devel-
oped a TK triage framework that provides guidance on the
degree of confidence for a particular prediction and indicates
which chemicals may benefit from specific types of analyses or
experimental data collection (Table 4). The first step is the col-
lection of basic in vitro TK data that allows a prediction to be
made for Css. Second, the parameterization of HTPBTK models
using physico-chemical properties and predicted partition coef-
ficients, if possible, allows a determination of the plausibility of
reaching steady state. Third, chemical properties that are corre-
lated with large deviations between predicted and observed

TABLE 2. Transporters Associated With Differences Between HTTK Model Predictions and Human in vivo Css

Abbreviation
(Gene)

Full Name Transporter References Random
Forest
Importancea

Included
in Tree
Made From
All Data

BSEP (ABCB11) Bile Salt Export Pump Hepatocyte bile secretion efflux
transporter

Faber et al. (2003) and
Giacomini et al. (2010)

10.3

BCRP (ABCG2) Breast cancer resistance
protein

Hepatocyte bile and intestinal
secretion efflux transporter

Giacomini et al. (2010) 9.97

OCT1 (SLC22A1) Organic Cation Transporter
1

Hepatocyte influx and intestinal
secretion influx transporter

Faber et al. (2003) and
Giacomini et al. (2010)

6.64

MCT1 (SLC16A1) Monocarboxylate
Transporter 1

Ubiquitous Transporter Halestrap and Meredith (2004) 6.6 Y

OATP2B1
(SLCO2B1)

Solute carrier organic anion
transporter family mem-
ber 2B1

Hepatocyte and blood-brain barrier
influx transporter

Giacomini et al. (2010) 5.77 Y

PEPT1 (SLC15A1) Peptide transporter 1 Intestinal and kidney secretion
influx transporter

Giacomini et al. (2010) 5.54 Y

aLarger value indicates greater relative importance. When multiple predictors for same transporter were available, only the highest reported importance is reported.

TABLE 3. Other Factors Associated With Difference Between HTTK Model Predictions and Human in vivo Css

Factor Description Random Forest
Importancea

Included in
Tree Made
From All Data

fup Fraction unbound to plasma protein as measured in vitro 51.0 Y
Predicted Css Steady-state concentration predicted from in vitro measured fub and

Clint

43.1 Y

Ionization (pKa_Donor) Acid dissociation equilibrium constant 20.2
Elimination rate (ke) Elimination rate as calculated from total clearance (renalþhepatic)

predicted from in vitro data, divided by Vd

16.9

Log Kow Log transformed hydrophobicity (ratio of concentration in octanol to
water)

8.86

Perfluorinated compound (PFC) (yes/no) 6.65

aLarger value indicates greater relative importance.
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behavior can be used to screen out those chemicals for which
HTTK is not expected to perform well. The 4th element of triage
addresses those remaining chemicals in greatest need of alter-
native, perhaps traditional approaches. Different elements of
triage may be applied concurrently, depending on the informa-
tion that is available.

We applied the TK triage (Table 4) to the entire 349 chemical
set in Figure 6. We find that a plurality (140) of the chemicals are
estimated to be “on the order,” ie, the HTTK predicted Css will be
within �3.2� of the literature value. The third largest category
is chemicals for which the protein binding assay failed (80), pre-
cluding analysis of time to reach steady-state. However, only
7% of chemicals analyzed for time to reach steady-state did not

do so within 1000 days, and we might assume this figure to be
similar for these 80 chemicals. Of the remaining 110 chemicals,
most (102) are predicted to be overestimated, leading to conser-
vative errors when conducting reverse dosimetry. In total, we
predict that the reverse dosimetry assumptions will be appro-
priate for 89% of the chemicals where the protein binding assay
was successful.

DISCUSSION

Efforts to implement the vision outlined in Toxicity Testing in
the 21st Century (National Research Council, 2007) include
in vitro assays to identify potential biological targets of environ-
mental and industrial chemicals (eg, ToxCast, Judson et al.,
2010). IVIVE methods are then needed to translate in vitro bioac-
tive concentrations into administered doses (Blaauboer et al.,
2012; Wetmore et al., 2012). HTS data might then be used in a
risk-based context through the comparison of estimated bioac-
tive doses to estimated exposures (Judson et al., 2011; Thomas
et al., 2013; Wetmore et al., 2012). Herein, we develop a method
for identifying the degree of confidence with which we may
apply HTTK in order translate HTS data for chemicals without
other TK data. We have formalized this process in a triage sys-
tem that has categorized 349 chemicals into 7 categories, 5 of
which indicate varying degrees of confidence in the HTTK
approach and 2 indicate a need for additional data or alternative
approaches.

We examined 3 key assumptions in the previous HTTK
research: that humans can reach a steady-state with respect to
environmental exposures, that steady-state concentration is a
reasonable surrogate when exposure is more episodic, and that
100% absorption is reasonable. These assumptions were tested
using both simulation studies and direct comparison to in vivo
data for both pharmaceuticals and environmental chemicals.
Based on our analysis we organize HTTK testing into a TK triage
framework for environmental chemicals (Table 4). Each element
of the framework depends on data collection and/or analysis,
and distinguishes those chemicals for which that sort of data is
useful from those chemicals for which the approach does not
apply. Based on this approach we expect the in vivo values to be
within �3.2� of predictions for �59% the 246 chemicals that
both had a successful plasma protein binding estimate and we
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predict will reach steady-state. We expect conservative errors
for an additional �37% of these 246 chemicals.

The final element of triage incorporates additional in vitro or
in vivo testing for those chemicals that are most in need of addi-
tional attention. Admittedly, the domain of applicability for this
approach is limited by the domain of chemicals used to conduct
this analysis. Since there may be chemical properties that drive
HTTK error that may be underrepresented by these chemicals,
it will also be important to study at least a few members of
diverse and novel classes of environmental and industrial
chemicals.

The application of in vitro methods to TK is different in the
pharmaceutical versus environmental chemical screening
domains. For instance, it is expected that some samples of
some compounds will be below the LOD of the cost-effective
analytical chemistry that is required for the rapid TK screening
of thousands of environmental and industrial chemicals (Rousu
et al., 2010; Wetmore et al., 2012). When screening environmen-
tal and industrial chemicals, resources may not exist for follow-
up work and the data must be used as is. This study found that
typical assumptions such as half the LOD for protein binding
(fup) (Wetmore et al., 2012) may result in an underestimation of
Css values, which may not be health protective. However, this
may be offset by other assumptions in the HTTK modeling that
tend to produce an overestimate of Css.

For the metabolic clearance assay, stricter statistical limits
are more conservative since they lead to overestimated Css val-
ues (ie, setting metabolic elimination to 0 for P-value <.05
instead of P-value <.1). However, many of the chemicals that
we estimate to have 0 or non-significant clearance in the in vitro
assays analyzed here may yield significant clearance in more

physiological conditions, such as plated hepatocytes over a lon-
ger time period. Follow-up measurement of clearance rates
using a plated hepatocytes system (Smith et al., 2012) and/or
longer times may ensure a more accurate hepatic clearance
estimate.

For most environmental and industrial chemicals it is
unlikely that there will ever be controlled human TK data. As
evaluated by comparison to in vivo data, the predictive ability of
the HTPBTK methods based on both IVIVE and QSAR-related
methods was considerably greater than the HTTK models that
assumed steady-state conditions. One possible explanation is
that although the evaluation data for the HTPBPTK model pre-
dictions (in vivo AUCs and Cmax values) were drawn from diverse
literature, the in vitro data for this comparison were from a sin-
gle source (Wetmore et al., 2013). For the steady-state HTTK
model evaluation, both the in vivo and the in vitro data were
drawn from diverse literature sources.

Pharmaceuticals are typically small and well-absorbed mole-
cules that are designed for specific biological targets (Lipinski,
2004). In contrast, environmental and industrial chemicals are
structurally heterogeneous and may have multiple biological
targets (Richard, 2006). Given the diversity of intended applica-
tions for environmental and industrial chemicals, their proper-
ties can vary greatly from those of pharmaceuticals.
Unfortunately, though in vitro TK data have been collected for
many of the 309 ToxCast Phase I chemicals, only 13 in vivo Css

values were available for those chemicals (Wetmore et al., 2012).
Although the HTPBTK models appear promising for predict-

ing AUC and Cmax, the in vivo evaluation data in Figure 2 are
drawn from various treatments of only 15 pharmaceutical
chemicals and 7 environmental chemicals, thus final

TABLE 4. Elements of HTTK Triage for Environmental Chemicals

TK Data Targeted
Chemicals

TK Prediction/Consequence Confidence Domain of Applicability

1 In vitro clearance of
parent compound by
hepatocytes and bind-
ing to plasma protein

HTS compounds Plasma Css from constant infusion
exposure

If comparison with pre-
dicted exposure indicates
large AER then infusion
Css should be sufficient

Soluble low volatility
(HTS appropriate)
compounds

1a CYP-specific in vitro data
(Wetmore et al., 2014)

Chemicals with AER
near one for general
population

Population variability, life-stage
variability

Human variations in CYP
expression are well
characterized

Same as in 1

2 Physico-chemical prop-
erties (measured or
QSAR)

All chemicals with suc-
cessful binding in vitro
assay

Prediction of partition coefficients
allows HTPBTK steady-state pre-
dictions (including time to
steady state) for more realistic
exposure modeling

If comparison with pre-
dicted exposure indicates
large AER then HTPBTK
should be sufficient (ie,
conservative due to 100%
absorption)

QSAR-defined (eg, train-
ing set, extrapolation
methodology)

3 QSARs for likely trans-
porter substrates

All chemicals with suc-
cessful binding in vitro
assay

Assumptions of perfusion-limited
tissue partitioning and passive
renal excretion by glomerular fil-
tration may be questionable

Can identify those chemi-
cals where the impact is
negligible (Fig. 4b)

Chemicals predicted to
reach steady state in
Tier 2 (Fig. 3a)

3b Transporter-specific
in vitro data

Chemicals indicated by
QSAR

Tissue-specific accumulation,
active secretion/resorption in
kidney

Well characterized for non
high-throughput
applications

Same as in 3

4 In vivo oral and iv dose
TK study, plasma
only

Chemicals with large
predicted residuals
(Fig. 4b) and those
that cannot be tested
in vitro

Oral bioavailability, absorption
rate, volume of distribution, and
clearance (refined PBTK model)

If volume of distribution
from HTPBTK model and
in vitro estimate of clear-
ance hold, then refined
PBTK model should be
excellent

Any compound

AER is the Activity to Exposure Ratio between HTS bioactive reverse dosimetry predictions and exposure.
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assessments of the HTPBTK methodology is not yet possible. An
effort is needed to collect and organize additional in vivo data on
environmental and industrial chemicals to confirm the useful-
ness of HTTK approaches. Generating the data necessary to
evaluate HTTK methods does not necessarily require large
resources: small, short term, in vivo studies—perhaps added to
routine toxicological studies—could provide essential informa-
tion for chemicals and chemical classes that are currently not
well modeled. In addition, making existing TK-related data
more accessible by creating databases and curating literature or
legacy studies could inexpensively expand the available TK
information. These in vivo TK data can inform important proc-
esses that are currently not assayed by HTTK.

The HTTK models analyzed here may omit or inaccurately
estimate drivers of TK including: extra-hepatic metabolism;
secretion in bile and enterohepatic recirculation; active trans-
port in renal, hepatic, and other tissues; and absorption/bioa-
vailability (Rotroff et al., 2010). Until rapid and cost-effective
in vitro assays are developed for these processes, QSAR models
would seem to provide one-way forward. Unfortunately, QSAR
is not yet capable of providing reliable rate constants (eg, trans-
porter velocity); rather, QSAR can estimate how likely or
unlikely it is that a process will occur (Sedykh et al., 2013). By
integrating the available QSAR predictions into a model to pre-
dict when the difference between HTTK predictions and in vivo
data will be large, we can better identify those compounds in
need of follow-up study. However, those chemical properties
found to increase predictive error in this current analysis (and
therefore indicate that we may be outside the domain of applic-
ability for our methods) apply only to the chemical space we
have analyzed thus far. As the approach is applied to new
chemicals, additional properties might be identified that play a
more significant role in the TK prediction of some of these other
chemicals. We must target for further study those chemicals
most likely to be subject to transport processes or other drivers
of uncertainty as indicated by large errors in HTTK model
predictions.

HTTK is intended to complement HTS assays that identify
bioactivity of chemicals in vitro. As with most HTS assays, we so
far have only the means to deal with the parent compound, and
do not yet have the tools to deal with any metabolites in a high
throughput manner. If these tools were to become available,
they would become an important tier in TK triage.

We have shown that HTTK models can be developed from
in vitro data for many environmental chemicals. The steady-
state predictions of these models allow concentrations showing
biological activity in HTS assays to be converted into adminis-
tered dose values. We have evaluated the predictions of these
models using comparison to in vivo values and HTPBTK simula-
tion studies to identify when HTTK may be used with confi-
dence and when additional, targeted measurements may be
necessary.
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