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A shift in toxicity testing from in vivo to in vitro may

efficiently prioritize compounds, reveal new mechanisms, and

enable predictive modeling. Quantitative high-throughput

screening (qHTS) is a major source of data for computational

toxicology, and our goal in this study was to aid in the

development of predictive in vitro models of chemical-induced

toxicity, anchored on interindividual genetic variability. Eighty-

one human lymphoblast cell lines from 27 Centre d’Etude du

Polymorphisme Humain trios were exposed to 240 chemical

substances (12 concentrations, 0.26nM–46.0mM) and evaluated

for cytotoxicity and apoptosis. qHTS screening in the genetically

defined population produced robust and reproducible results,

which allowed for cross-compound, cross-assay, and cross-

individual comparisons. Some compounds were cytotoxic to all

cell types at similar concentrations, whereas others exhibited

interindividual differences in cytotoxicity. Specifically, the qHTS

in a population-based human in vitro model system has several

unique aspects that are of utility for toxicity testing, chemical

prioritization, and high-throughput risk assessment. First, stan-

dardized and high-quality concentration-response profiling, with

reproducibility confirmed by comparison with previous experi-

ments, enables prioritization of chemicals for variability in

interindividual range in cytotoxicity. Second, genome-wide

association analysis of cytotoxicity phenotypes allows exploration

of the potential genetic determinants of interindividual variability

in toxicity. Furthermore, highly significant associations identified

through the analysis of population-level correlations between

basal gene expression variability and chemical-induced toxicity

suggest plausible mode of action hypotheses for follow-up

analyses. We conclude that as the improved resolution of genetic

profiling can now be matched with high-quality in vitro screening

data, the evaluation of the toxicity pathways and the effects of

genetic diversity are now feasible through the use of human

lymphoblast cell lines.
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The ‘‘Registration, Evaluation, Authorisation and Restriction

of Chemicals’’ regulations in Europe and Toxic Substances

Control Act reform activities in the United States are creating

substantial pressure to develop improved methods for evalu-

ating potential chemical hazards (Plunkett et al., 2010). Current

chemical safety evaluation (National Research Council, 2007)

relies on in vivo animal testing. In Europe alone, it is expected

that 100,000þ chemicals will require new safety data; yet the

worldwide capacity to evaluate chemicals for the most animal-

intensive in vivo tests is 200–300 chemicals each year (Hartung

and Rovida, 2009).

In the United States, the Tox21 program (Collins et al., 2008) is

a collaborative initiative of four government agencies. This effort

leads the field in its use of a broad spectrum of in vitro assays,

many in quantitative high-throughput screening (qHTS) format

(Inglese et al., 2006), to screen thousands of environmental

chemicals for their potential to affect biological pathways that may

result in human disease (Xia et al., 2008). Such data on

toxicologically relevant in vitro endpoints can assist in decision

making (Reif et al., 2010), serve as predictive surrogates for

in vivo toxicity (Martin et al., 2010; Zhu et al., 2008), and

generate testable hypotheses on the mechanisms (Xia et al., 2009).

Another important consideration in assessing the potential

human health hazard is the degree of interindividual biological

variability in the human population (National Research Council,

2008). A comprehensive characterization of human genome

sequence variation is important for understanding observed

inherited variation in toxicity phenotypes. Indeed, genetic

polymorphisms can have a profound influence on disease risk

after drug or toxicant exposure (Harrill et al., 2009); yet, these

factors are difficult to quantitatively evaluate using current

in vivo animal test systems or established cell lines (Rusyn et al.,
2010). The availability of genetically diverse genetically defined

renewable sources of human cells, such as lymphoblasts from

the International HapMap (International HapMap Consortium,
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2005) and 1000 Genomes (Durbin et al., 2010) projects, enables

in vitro testing at the population scale. As the risk assessment

process shifts toward in vitro data, the quantitative assessment of

interindividual variability in responses to chemicals as well as an

understanding of the underlying genetic causes are needed so

that regulatory decisions can be based on data rather than default

assumptions.

To demonstrate the feasibility of an in vitro model system

to assess interindividual and population-wide variability of

chemical-induced toxicity phenotypes, we exposed cells from

over 80 Centre d’Etude du Polymorphisme Humain (CEPH) cell

lines (O’Shea et al., 2011) to 3 concentrations of 14 environmental

chemicals and assessed induction of caspase-3/7, indicative of

apoptosis, and cytotoxicity, based on measuring intracellular levels

of adenosine triphosphate (ATP) as a surrogate for cell number.

This study showed that an in vitro genetics–anchored human

model system can be utilized in a population-level screen for

chemical toxicity, with the potential to identify candidate genetic

susceptibility factors for further study. As a next step, we report

here on a larger scale population-based qHTS using hundreds

of compounds and covering a more comprehensive range of

concentrations. The quantitative assessment of interindividual

variability in response at this scale demonstrates the potential of

this methodology for toxicity screening, hazard evaluation, and

exploration of genetic determinants of susceptibility.

MATERIALS AND METHODS

Experimental Design

Chemicals. A subset (240 compounds) of the National Toxicology

Program’s 1408 chemical library (Xia et al., 2008) was used in these experiments.

See Supplementary table 1 for a complete list of chemicals used in these

experiments. Chemicals were dissolved with dimethyl sulfoxide (DMSO) into 12

different stock concentrations ranging from 56.5nM to 10mM and were aliquoted

to 1536-well plate format via pin tool (Kalypsys, San Diego, CA). The final

concentration ranges from 0.26nM to 46.08lM in the assay plates. The negative

control was DMSO at 0.5% vol/vol; the positive control was staurosporine at the

tested concentration range.

Cell lines. A set of 81 immortalized lymphoblastoid cell lines was acquired

from Coriell Cell Repositories (Camden, NJ). The 81 cell lines were from

HapMap Consortium’s CEPH panel and consisted of 27 trios (father, mother, and

a child). Screening was conducted in three batches, and cell lines were randomly

divided into batches without regard to family structure. Cells were cultured at

37�C with 5% CO2 in suspension in flasks with upright position in RPMI 1640

media (Gibco, Carlsbad, CA) supplemented with 15% fetal bovine serum

(HyClone, South Logan, UT) and 0.1% penicillin-streptomycin (Gibco). Media

were changed every 3 days. Cell counts and viability were assessed prior to

chemical treatment using Cellometer Auto T4 Plus (Nexcelem Bioscience,

Lawrence, MA). Cells were grown to a concentration up to 106 cells/ml, volume

of at least 100 ml, and viability of > 85% before treatment. After centrifugation,

the cells were resuspended in fresh media. The cell suspension was filtered

through a 40-lm nylon cell strainer (BD Biosciences, Durham, NC). Cell stock

was diluted with fresh media to final concentrations of 3–4 3 105 cells/ml and

plated into a tissue culture–treated 1536-well white/solid bottom assay plates

(Greiner Bio-One North America, Monroe, NC) at 2000 cells per 5 ll per well

using a flying reagent dispenser (Aurora Discovery, Carlsbad, CA). To increase

the robustness of the data and evaluate reproducibility, each cell line was seeded

on multiple plates (six plates except for two cell lines where five plates were

seeded) so that each compound was screened in each cell line on 2–3 plates

(chemicals were randomly divided in half to enable screening of 120 compound

3 12 concentrations on each plate).

Cytotoxicity and caspase-3/7 assays. Two assays were chosen to evaluate

cytotoxicity according to the manufacturer’s protocols. CellTiter-Glo Luminescent

Cell Viability (Promega Corporation, Madison, WI) assay was used to assess

intracellular ATP concentration, a marker for cytotoxicity, 40 h posttreatment.

Caspase-Glo 3/7 (Promega) was used to assess activity of caspase-3/7, a marker of

apoptosis, 16 h posttreatment. These assays were selected based on their utility for

in vitro screening of cytotoxicity in cell type– (Xia et al., 2008) and individual-

independent (Choy et al., 2008) manner. Time points were selected based on

previous experiments at the National Institutes of Health Chemical Genomics

Center (NCGC) (Xia et al., 2008). A ViewLux plate reader (PerkinElmer, Shelton,

CT) was used to detect luminescent intensity in each well for both assays. Data are

publicly available from PubChem (AIDs: 588812 and 588813).

Data Processing

Response normalization and curve fitting. Data were normalized relative

to the positive/negative controls and corrected as detailed elsewhere (Xia et al.,

2008). Concentration-response titration points were fitted to a Hill equation for

each chemical. Chemicals were classified into three categories based on their

concentration-response curves: active, nonactive, and inconclusive (Huang

et al., 2008; Xia et al., 2008). Specifically, in data from cytotoxicity assay, the

curve classes �1.1, �1.2, and �2.1 were classified as ‘‘active,’’ any positive

curve class as ‘‘nonactive,’’ and others as ‘‘inconclusive.’’ For data from

caspase-3/7 assay, curve classes 1.1, 1.2, and 2.1 were classified as active, any

negative curve class as nonactive, and others as inconclusive.

Curve P. To evaluate the cytotoxic potency of each compound, we

calculated a ‘‘curve P’’ value for each compound-cell line pair. Curve P is

defined as the lowest concentration, which showed a consistent deviation from

the baseline response and derived as detailed in Sedykh et al. (2011). It can be

regarded as a close approximation for the point of departure. Curve P was

derived for all compounds even if little or no toxicity was observed. For the

latter compounds, to enable the follow-up statistical analyses, the curve P was

assigned to a concentration of 50lM. Batch effects were adjusted using the

ComBat method (Johnson et al., 2007).

Data Analysis

Assessing variability across individual, chemical, and assay. The

Pearson correlation coefficient (r) between pairs of replicate plates was used

to assess experimental reproducibility. For this analysis, two replicate plates

were randomly selected for each chemical and cell line pair (240 chemicals 3 81

cell lines ¼ 19,440 total replicate pairs sampled).

Kruskal-Wallis ANOVA (Kruskal and Wallis, 1952) was used to assess the

significance of a cell line effect (vs. experimental effect) in curve P for each

chemical. The Benjamini-Hochberg false discovery rate (FDR) (Benjamini and

Yekutieli, 2001) was used to correct for multiple comparisons. To measure

potential confounding with basal metabolic rate, the Spearman (rank) cor-

relation coefficient between curve P and the average ATP level in DMSO-treated

cells was computed for each chemical. The Spearman correlation between the

average curve P value for the cytotoxicity assay and the average curve P value for

the apoptosis assay for each chemical was computed to measure an overall

relationship between the two assays. Furthermore, within each chemical, the

correlation between the two assays across cell lines (averaged over replications)

was computed separately. For both assays, chemical-by-chemical correlation

heatmaps were used to identify clusters of chemicals with similar response across

cell lines. The order of the chemicals in these heatmaps was determined by

complete-linkage distance clustering.

All computations, graphs, and heatmaps used the R programming

environment for statistical computing and graphics (2.10.0; R Development

Core Team, Vienna, Austria).

Concentration response for populations and individuals. For the ATP

assay data for progesterone, a four-parameter logistic model was fit to the assay
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versus concentration data for each cell line, using maximum likelihood and the

optim routine in R. The model can be written assay ¼ f ðconcentrationÞ þ e;
where f ðconcentrationÞ ¼ minþ ðmax�minÞðexpðb0 þ b1concentrationÞ=
ð1þ expðb0 þ b1concentrationÞÞÞ; e~Nð0;r2Þ; where (min, max, b0, b1, r2)

are cell line-specific parameter vectors. For a negative concentration-response

relationship, EC10 is the concentration for which expðb0 þ b1concentrationÞ=
ð1þ expðb0 þ b1concentrationÞÞ ¼ 0:9: The variation in the EC10 estimates

was used as illustrative of population variation in true EC10 values, although

additional sampling variation underlies each EC10 estimate. An overall logistic

concentration-response curve was fit to the aggregated data across all

individuals.

Assessing heritability and genetic associations. Heritability calculations

were used to determine overall familial effects among the 27 CEPH trios for

each chemical, on both assays. Calculations were motivated by the mid-parent

regression model y ¼ b0 þ b1
�
ap þ am

�
þ e; where y is the child’s response,

ap is the father’s response, am is the mother’s response, and e is an error term.

A likelihood ratio significance test is then based on the heritability h2: the

variability in response due to shared genetics as a proportion of total variability

in response. For this analysis, curve P values for each chemical were quantile

normalized to the standard Gaussian distribution.

To measure genotype-toxicity relationships, genome-wide association studies

(GWAS) were performed in R using the GenABEL package (Aulchenko et al.,

2007). Phase III genotype data, on approximately 1.4 3 106 single-nucleotide

polymorphisms (SNPs), were obtained for each cell line from the International

HapMap Project (International HapMap Consortium, 2005). GWAS were

performed for each chemical on both assays, with quantile-normalized curve

P values as the response phenotype. The significance of an association between

a given SNP and the response was measured using a likelihood-based score test

(Schaid et al., 2002) (qtscore in GenABEL). For our initial screen, the familial

trio relationships were not used for the analysis, due to the low evidence for

overall heritability, on the grounds that methods such as transmission

disequilibrium testing would reduce power and with the intent to follow any

significant findings with further testing. LocusZoom (Pruim et al., 2010) was

used to visualize the genomic context for suggestive loci determined by GWAS.

RNA-Seq expression versus toxicity assays. The 42 cell lines in common

between Montgomery et al. (2010) and the present study were matched with

HapMap IDs, using RNA-Seq tag counts mapped to the genome as previously

described for 20,000 genes (Zhou et al., 2011). For computational efficiency,

simple read proportions consisting of number of tag counts per gene divided by the

mapped library size (Zhou et al., 2011) were used in linear regression as predictors

for the cytotoxicity assays. FDR q values were then obtained for the entire set of

genes and chemicals, using p.adjust() in R. For the caspase assay, ~5000 genes

were determined to have at least one chemical with q < 0.01, and these genes were

retained for clustering. Hierarchical clustering with average linkage was performed

directly on the FDR q values using the heatmap function in R.

RESULTS

qHTS in a Population of Human Lymphoblasts Yields Robust
and Reproducible Data

Screening was conducted in a 1536-well plate format using

a robotic system. The 81 cell lines were randomly subdivided

into three batches, and each line was screened against 240

chemical substances (see Supplementary table 1 for a complete

list) at 12 concentrations (0.26nM–46.0lM). Each 1536-well

plate contained one cell line exposed to 120 chemicals

accompanied by concurrent vehicle (DMSO) and positive

controls. To increase the robustness of the data, duplicates or

triplicates of each plate were run. Assays for intracellular ATP

content and caspase-3/7 activity were used based on their

utility for in vitro screening of cytotoxicity and apoptosis,

respectively, in cell type– and individual-independent manner

(Choy et al., 2008; Xia et al., 2008). A combination of the two

assays allows for the role of apoptosis in the cytotoxicity

response to be evaluated (Shi et al., 2010).

Several metrics were used to evaluate the reproducibility of

the toxicity phenotypes. First, the concentration-response curve

class (Parham et al., 2009) was identical across replicate plates

95.2% of the time for cytotoxicity and 94.1% for apoptosis.

Second, the pair-wise Pearson correlation among replicate plate

pairs using log (AC50) values for the compounds with active

curve classes for the cytotoxicity and apoptosis assays was

r ¼ 0.99 and r ¼ 0.98, respectively. Third, to evaluate the

effects correlation for all compounds, we calculated a

‘‘curve P’’ value, the lowest concentration that showed

a consistent deviation from the baseline response (Sedykh

et al., 2011), which can be regarded as a close approximation

for the lowest observed adverse effect level. For chemicals

exhibiting no effect across the concentrations tested, the curve

P was assigned to 50lM to enable straightforward statistical

analyses. The pair-wise correlation among replicate plates of

the log (curve P) values was equally high (r[cytotoxicity] ¼
0.91, r[apoptosis] ¼ 0.95) when all compounds were included

(Figs. 1a and b). Finally, there were eight duplicates among the

compounds screened. High concordance in median and range

of responses for these was observed (Figs. 1c and d).

Range in Cytotoxicity Across the Chemicals

The chemicals selected for screening were a subset of

1408 compounds previously tested in one or more traditional

toxicological assays and had been profiled for cytotoxicity

and caspase-3/7 induction by the National Toxicology Program

and NCGC using qHTS (Xia et al., 2008) in (i) 13 human and

rodent cells derived from liver, blood, kidney, nerve, lung, and

skin; and in (ii) 26 human lymphoblast cells (data available from

PubChem AIDs: 963–989). Of these, 240 compounds that were

clearly active in those experiments were selected for the

current study (iii).

Comparison of the cytotoxicity average log (curve P) from the

current study showed high concordance with that in panels (i) and

(ii), see above. Pair-wise correlation analysis for the 240 chemicals

across three data sets was highly significant (p < 0.0001). High

correlation (r ¼ 0.87; rank correlation ¼ 0.83) was observed

between lymphoblast panels (ii) and (iii), whereas the correla-

tions with the diverse panel (i) were moderately high (r ¼ 0.74

or 0.75; rank correlation ¼ 0.72 or 0.75 with (ii) and (iii),

respectively). Together, the results indicate high external

reproducibility for this measurement of cytotoxicity and,

importantly, the potential utility of lymphoblast cell lines as

a toll for population-based toxicity screening.

Interindividual Variability in Response Across Cell Lines

In contrast to the highly invariant reproducible results found

within individual cell lines, the chemicals induced a wide range

580 LOCK ET AL.

http://www.toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfs023/-/DC1


of responses among the lymphoblast lines. The percentage of

compounds classified as active in the cytotoxicity assay varied

from 28 to 56% (Fig. 2a); an equally broad range of activity

(i.e., 24–45%) was seen in the caspase-3/7 assay (Fig. 2b).

Among actives, a wide range of potency, assessed from

the curve P, was observed for each cell line in both assays

(Figs. 2c and d).

Some chemicals were classified as active for cytotoxicity and

caspase-3/7 induction in all of the lymphoblast lines, whereas

others were not active for either endpoint (Figs. 3a and b).

In both assays, most chemicals were active in some cell lines,

whereas not active in others, indicative of interindividual

(cell line) variability in response. The significant correlation

(rank correlation ¼ 0.77; p ¼ 2.2 3 10�16; all compounds

tested) between the chemical’s average curve P for cytotoxicity

and caspase-3/7 (Fig. 3c) indicates the primary cause of cell

death for these compounds is most likely via apoptosis.

A heatmap shows correlations between average log (curve P)

for all chemicals in both assays (Fig. 3d). Clusters of chemicals

with highly concordant responses across cell lines were evident

for cytotoxicity, apoptosis, or both phenotypes. A significant

(FDR < 5%) correlation between responses in cytotoxicity and

apoptosis assays was observed for most of the compounds

screened.

Interindividual variability in cytotoxicity was visualized

using boxplots of log (curve P) for each chemical (Figs. 4a

and b). Although median cytotoxicity differed between chemicals

tested, interindividual variability was observed even for the most

active chemicals. Variance components heritability testing for

each chemical/assay showed that none of the derived h2 statistics

was significant after adjusting for multiple comparisons, an

observation which was confirmed using mid-parent assays’

values compared with those of the offspring (data not shown).

Interindividual (between cell lines) versus experimental

(between replicates) variability for each chemical was

evaluated using Kruskal-Wallis ANOVA (Kruskal and Wallis,

1952). Most chemicals show a significant (FDR < 5%) cell line

effect (Figs. 4c and d). It has been suggested that differences in

chemical’s toxicity among lymphoblast lines could be partly

attributed to differences in baseline growth rate and metabolic

status (Choy et al., 2008). Correcting for these measurements

reduces effect correlation that would otherwise make responses

across chemicals appear more similar. We therefore normalized

for control levels of intracellular ATP (e.g., metabolic activity)

FIG. 1. Intraexperimental reproducibility for cytotoxicity (panels a and c) and caspase-3/7 (panels b and d) assays. Panels a and b show log (curve P) values for

randomly selected pairs of replicate plates within each chemical and cell line (240 chemicals 3 81 cell lines ¼ 19,440 replicate pairs displayed). Panels c and d show

side-by-side boxplots for eight duplicate compounds that were tested in two independent wells on each plate.

IN VITRO SCREENING IN A POPULATION MODEL 581



and basal activity of caspase-3/7 as well as for the response of

the positive control cytotoxicant. In addition, we directly

assessed for each chemical whether the basal metabolic rate,

an endpoint which correlates closely with the growth rate

(Choy et al., 2008), significantly correlated with cytotoxicity.

Approximately 80% and 90% of chemicals (Figs. 4c and d;

black dots) exhibited no correlation (FDR > 0.05) between

basal metabolic rate (ATP level in vehicle-treated cells) and

cytotoxicity or apoptosis, respectively, across the cell panel.

Assessing Relationships Between Cytotoxicity and Genotype

With variability among cells from different individuals

demonstrated, we then asked if we could identify genetic

loci responsible, utilizing toxicity phenotypes as quantitative

traits and publicly available genotypes (International HapMap

Consortium, 2005) (Fig. 5). The top two plots in Figure 5 show

p values for the most significant SNP associated with cyto-

toxicity (Fig. 5a) or induction of caspase-3/7 (Fig. 5b) for each

chemical. The inset shows a plot of �log10 (p values) for SNP

endpoint associations for the selected chemicals. Progesterone

had the lowest p value SNPs on chromosome 9, whereas

guggulsterones Z (4,17(20)-pregnadiene-3,16-dione, z-isoform)

exhibited many suggestive associations on chromosome 6p.

Figures 5c and d provide a zoomed-in view of the genomic

context for these suggestive regions.

Progesterone was not highly cytotoxic, yet showed an

appreciable degree of interindividual variability in curve

P values (Fig. 5c inset). A characteristic pattern of SNPs with

low p values in linkage disequilibrium is evident in a ~300 kb

region containing two genes, structural maintenance of chro-

mosomes protein 5 (SMC5) and MAM domain containing

2 (MAMDC2). Guggulsterones Z, a bioactive constituent of

resinous sap from Commiphora mukul, is a farnesoid X

receptor antagonist and is used widely as a nutraceutical. It is

known to suppress expression of antiapoptotic genes, promote

apoptosis, and inhibit nuclear factor-kappa B (NF-jB)

(Shishodia and Aggarwal, 2004). In our study, it was

moderately active in inducing caspase-3/7 (Fig. 5d inset) and

exhibited interindividual variability. A narrow 100 kb region on

chromosome 6p, containing the gene human immunodeficiency

virus type I enhancer binding protein 1 (HIVEP1), shows

association with the apoptosis phenotype.

Concentration Response for Populations and Individuals

The availability of cytotoxicity screens on 80þ individuals,

with the assays performed under controlled conditions, enables

FIG. 2. Distribution of cytotoxicity across chemicals for cytotoxicity (panels a and c) and caspase-3/7 (panels b and d) assays. Panels a and b give the

percentage of chemicals classified as ‘‘active,’’ ‘‘nonactive,’’ or ‘‘inconclusive’’ for each cell line. Panels c and d give the range of potency (curve P) for active

chemicals in each cell line.
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sensitive investigation of variation in individual dose-response

profiles (National Research Council, 2008). This concept is

illustrated in Figure 6a, in which the ATP assay values for

cycloheximide are shown in gray for each concentration for

all individuals. Separate logistic curve fits were performed,

providing for each individual cell line an ‘‘effective concen-

tration 10%’’ (EC10) the estimated concentration at which the

response deviates by at least 10% from the control baseline,

and these are shown as a histogram. The mean of these EC10

values offers a population-wide summary of the activity (e.g.,

cytotoxicity, caspase-3/7) of a chemical and is very similar

to the EC10 produced when the data are first pooled for all

individuals and then fit using a single concentration-response

curve (red-dashed curve in Fig. 6a). However, aggregation

across the population ignores the variability in toxic suscep-

tibility, and the EC10 estimated fifth percentile may be used to

illustrate the concept of a ‘‘vulnerable’’ subpopulation.

Defining Mode of Action Chemical-Perturbed Pathways

Gene expression data form another rich source of publicly

available data, which can be matched with cytotoxicity profiles

to provide further evidence of toxicity pathway activity. Many

of the HapMap cell lines have been profiled for expression in

a number of studies, including highly sensitive RNA-Seq

profiling (Montgomery et al., 2010). For the 42 cell lines for

which RNA-Seq data are publicly available, expression values

for each of ~20,000 genes were compared with the caspase-3/7

and cytotoxicity assay results, with a number of highly

significant associations. A heatmap of clustering performed

on FDR q values (Fig. 6b) shows striking patterns of gene-

chemical relationships, with much of the structure resolving

into distinct sets of genes associated with sets of chemicals.

The results for progesterone are shown as a highly specific

subgroup, with lymphoblast cytotoxicity for several chemicals

being significantly associated with background RNA levels for

six transcripts and several microRNAs.

DISCUSSION

New paradigms for the rapid and accurate evaluation of

the potential health hazard from environmental chemicals are

needed, given the large number of environmental chemicals

to be evaluated, and the high cost and low throughput of

FIG. 3. The percent of cell lines exhibiting activity for each chemical for cytotoxicity (panel a) and caspase-3/7 (panel b) assays. Panel c displays the rank of

the mean ATP curve P value versus the mean caspase curve P value for each chemical. Panel d shows a heatmap of the correlations between log (curve P) values

for all chemical-assay combinations.
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traditional toxicity testing approaches (Collins et al., 2008).

Development of in vitro toxicity tests that can be utilized

in a tiered framework is necessary, feasible, and consistent

with the needs of scientifically rigorous high-throughput risk

assessment (Kavlock et al., 2009). A particular challenge in

developing such next generation toxicity testing schemata is

the assessment of differential susceptibility among individu-

als. The results presented here provide proof of principle of

such a testing system, demonstrating the feasibility and utility

of screening a panel of cells from genetically diverse

individuals, whereby both population-wide and individual

responses can be evaluated.

The in vitro toxicity–screening paradigm detailed here has

focused on a population-based cell culture model, an approach

that affords several key benefits compared with collections of

unrelated cell lines from different species and tissues (Xia

FIG. 4. Boxplots of curve P values for each of the 240 chemicals (arranged by mean activity) across the 81 cell lines are shown for cytotoxicity (panel a) and

caspase-3/7 (panel b) assays. For cytotoxicity (panel c) and caspase-3/7 (panel d) assays, �log (p values, Kruskal-Wallis test) were plotted against mean curve

P (micromolar). The blue line gives a FDR-adjusted significance threshold (FDR ¼ 0.05). Chemicals colored in red had a significant correlation between activity

and basal metabolic rate (ATP level in vehicle-treated cells) across the panel of cell lines (Spearman rank correlation; FDR < 0.05).
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et al., 2008). Our results show that many chemicals exhibit

interindividual variation in induction of toxicity, and this

information is crucial for chemical-testing prioritization. This

screening paradigm also provides quantitative data on population-

wide variability in toxicity, which may be used to establish data-

driven uncertainty estimates when extrapolating from in vitro
data to potential in vivo toxicity (Judson et al., 2011). Even

though the data collected herein are on a limited population

(81 individuals), it is immediately interpretable for ranking and

prioritizing chemicals. For example, a population-based view

of dose- or concentration-response is an important concept that

directly addresses the issue of subpopulations (National

Research Council, 2008); however, actual experimental data-

driven implementation has been limited. We reason that the

population-based concentration response in vitro qHTS data

allows for the development of models to estimate in vitro point

of departure and safety/uncertainty factors (Crump et al., 2010)

because variation between genetically defined/ diverse cell

lines may be treated as reflective of that among individuals.

The recognition of underlying genetic causes may further

enhance extrapolation and understanding of the shape of the

dose-response relationships. In addition, the data may be used

to explore potential differences/similarities in modes of action

between chemicals on the population-wide level.

By combining toxicity data with publicly available genetic

information, such as that provided by the HapMap (International

HapMap Consortium, 2005), 1000 Genomes (Durbin et al.,
2010), and public RNA–sequencing projects (Montgomery

et al., 2011), it is possible to probe the contribution of genomics

to toxicity phenotypes. Such an approach represents a substantial

savings of cost and time, capitalizing on the extensive prior

characterization of these samples. Accordingly, we have begun

to explore variation in toxicity susceptibility as a function of

genotype as well as the relationship between toxic response and

basal expression profiles.

Genotype-phenotype relationships are likely to reflect causal

action of underlying physiological variation and are thus of

great interest to epidemiologists for understanding the ultimate

sources of population variation. However, the effect sizes are

typically small, as has been the source of considerable discussion

in the genomics community (Manolio et al., 2009). Variation

in basal messenger RNA (mRNA) expression, in contrast,

FIG. 5. Toxicity-genotype relationships were assessed using GWAS analysis for the 240 chemicals on both cytotoxicity (panels a and c) and caspase-3/7 (panels

b and d) assays. Panels a and b give p values (-log10 scale) for the most significant SNP associated with toxicity for each chemical. The inset in the diagram gives

�log10 (p values) for SNP-toxicity associations across the entire genome, for progesterone (cytotoxicity assay, inset in panel a) and Guggulsterones Z (caspase-3/7

assay, inset in panel b). Panels c and d provide a zoomed-in look at the locus with the most significant p value for each of the two compounds, respectively. Correlation

between SNPs is identified with colors. SNP and gene tracks are also shown. Inset: box and whisker plots for each compound’s curve P.

IN VITRO SCREENING IN A POPULATION MODEL 585



may reflect cascades of responses controlled by the underlying

genotype and typically involves a smaller multiple testing

penalty. Thus, we likely have more power to detect association

of expression with toxicity response phenotypes, even though

the underlying causality relationships may remain elusive. The

highly significant associations identified through the analysis of

population-level correlations between basal gene expression

variability and chemical-induced toxicity have revealed several

reasonable mode of action hypotheses. For example, the in vitro
toxicity of 1,3-indandione-containing rodenticides has been

shown to occur through the inhibition of the pyrimidine

synthetic pathway (Hall et al., 1994), and thioredoxin reductase

(e.g., TXNRD3IT1) is required for deoxynucleotide triphosphate

pool maintenance during S phase (Koc et al., 2006). Expression

of somatostatin receptor 4 correlates with progesterone receptor

levels in human breast tumors (Kumar et al., 2005). Thioredoxin

reductase affects expression of progesterone receptor–controlled

genes in MCF-7 cells (Rao et al., 2009).

Similarly, the quantitative assessment of interindividual

genetic variability in responses to environmental agents in vitro
demonstrates the potential of this approach to explore the

genetic basis for susceptibility through genome-wide associa-

tion analysis. The genes SMC5 and MAMDC2 implicated in

this study as associated with progesterone-induced toxicity

are highly plausible and belong to pathways critical for

development. The same locus was reported as associated with

developmental abnormalities cleft palate and Kabuki syndrome

(Kuniba et al., 2009; Marazita et al., 2004), and exposure to

progesterone during gestation is known to cause cleft palate in

rabbits (Andrew and Staples, 1977). Likewise, the association

between guggulsterones Z and polymorphisms in HIVEP1 is

highly credible, given the known effects of guggulsterones Z

on apoptosis through NF-jB–related signaling (Shishodia and

Aggarwal, 2004). HIVEP1 belongs to a family of large zinc

finger–containing transcription factors that bind specifically to

the NF-jB motif and related sequences (Yu et al., 2009). The

alternative splice variant of HIVEP1, the gatekeeper of

apoptosis activating proteins (GAAP)-1 protein, can regulate

p53 and IRF-1-dependent cell proliferation and apoptosis

(Lallemand et al., 2002).

Important limitations to in vitro toxicity profiling using

lymphoblasts, as compared with primary cells that may be

obtained from other tissues of interest, include inability to

assess target organ adverse effects or a potential role of other

environmental factors such as lifestyle, diet, or coexposures. In

addition, the challenge of assessing the potential toxicity of

chemical’s metabolites or the potential lack of the receptor-

mediated signaling that may be critical for the downstream

adverse molecular events, in lymphoblast cell lines also should

be taken into consideration when interpreting the data. Still,

whereas lymphocytes do not have the metabolic capacity of the

liver or even that of freshly isolated hepatocytes, they do

express a number of nuclear receptors, as well as most genes of

the phase I and II metabolism, and transporters (Siest et al.,
2008). A comparison of the population-wide (250þ individuals

of various races, ages, and gender) variability in mRNA levels

for several dozen liver-specific thyroid hormone–related genes

between human liver (Schadt et al., 2008) and lymphoblast cell

lines (Stranger et al., 2007) shows that most of the nuclear

receptors and metabolism genes are expressed in lymphoblasts,

albeit at 10 to 100 times lower quantity. Importantly, the

between subject variability in expression of these genes in either

human liver or lymphoblasts is also of appreciable magnitude

(4- to 10-fold). To overcome these limitations, both higher

concentrations and known metabolites can be tested in vitro
because of high throughput. Correcting for the cell growth rate

and baseline metabolic rate also reduces effect correlation that

may make responses across chemicals appear more similar

(Choy et al., 2008).

Based on these results, we reason that a full and sensitive

analysis of genomic predictors of toxicity response will be

feasible through the joint use of toxicity phenotypes, genotype,

FIG. 6. Panel a, a population concentration response was modeled using

in vitro qHTS data using cycloheximide data (cytotoxicity assay) as an example.

Logistic dose-response modeling was performed for each individual to the values

shown in gray, providing individual 10% effect concentration values (EC10). The

EC10 obtained by performing the modeling on average assay values for each

concentration (see frequency distribution) are shown in the inset. Panel b,

a heatmap of clustered FDRs (q values, see color bar) for association of the data

from caspase-3/7 assay with publicly available RNA-Seq expression data on

a subset of cell lines. A sample subcluster is shown.
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and expression information, though considerably larger sample

sizes—likely on the order of several hundred or thousands of

individual cell lines—will be necessary. Such a population-

based in vitro survey would greatly advance our understanding

of the genetic underpinnings of susceptibility-related regulatory

networks and is ongoing in our laboratories.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.

oxfordjournals.org/.

FUNDING

This research was supported, in part, by the Intramural

Research Programs of the National Toxicology Program,

National Institute of Environmental Health Sciences inter-

agency agreement Y2-ES-7020-01 and by grants from the

National Institutes of Health (NIH) (R01 ES015241) and U.S.

Environmental Protection Agency (U.S. EPA) (RD83382501).

ACKNOWLEDGMENTS

We thank Srilatha Sakamuru for technical support. The

research described in this article has not been subjected to each

funding agency’s peer review and policy review and therefore

does not necessarily reflect their views and no official endorse-

ment should be inferred. The authors declare no competing

financial interests.

REFERENCES

Andrew, F. D., and Staples, R. E. (1977). Prenatal toxicity of medroxypro-

gesterone acetate in rabbits, rats, and mice. Teratology 15, 25–32.

Aulchenko, Y. S., Ripke, S., Isaacs, A., and van Duijn, C. M. (2007). GenABEL:

An R library for genome-wide association analysis. Bioinformatics 23,

1294–1296.

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in

multiple testing under dependency. Ann. Stat. 29, 1165–1188.

Choy, E., Yelensky, R., Bonakdar, S., Plenge, R. M., Saxena, R., De Jager, P. L.,

Shaw, S. Y., Wolfish, C. S., Slavik, J. M., Cotsapas, C., et al. (2008). Genetic

analysis of human traits in vitro: Drug response and gene expression in

lymphoblastoid cell lines. PLoS Genet. 4, e1000287.

Collins, F. S., Gray, G. M., and Bucher, J. R. (2008). Toxicology.

Transforming environmental health protection. Science 319, 906–907.

Crump, K. S., Chen, C., and Louis, T. A. (2010). The future use of in vitro data

in risk assessment to set human exposure standards: Challenging problems

and familiar solutions. Environ. Health Perspect. 118, 1350–1354.

Durbin, R. M., Abecasis, G. R., Altshuler, D. L., Auton, A., Brooks, L. D.,

Durbin, R. M., Gibbs, R. A., Hurles, M. E., and McVean, G. A. (2010).

A map of human genome variation from population-scale sequencing.

Nature 467, 1061–1073.

Hall, I. H., Wong, O. T., Chi, L. K., and Chen, S. Y. (1994). Cytotoxicity and

mode of action of substituted indan-1, 3-diones in murine and human tissue

cultured cells. Anticancer Res. 14, 2053–2058.

Harrill, A. H., Watkins, P. B., Su, S., Ross, P. K., Harbourt, D. E.,

Stylianou, I. M., Boorman, G. A., Russo, M. W., Sackler, R. S., Harris, S. C.,

et al. (2009). Mouse population-guided resequencing reveals that variants in

CD44 contribute to acetaminophen-induced liver injury in humans. Genome

Res. 19, 1507–1515.

Hartung, T., and Rovida, C. (2009). Chemical regulators have overreached.

Nature 460, 1080–1081.

Huang, R., Southall, N., Cho, M. H., Xia, M., Inglese, J., and Austin, C. P.

(2008). Characterization of diversity in toxicity mechanism using in vitro

cytotoxicity assays in quantitative high throughput screening. Chem. Res.

Toxicol. 21, 659–667.

Inglese, J., Auld, D. S., Jadhav, A., Johnson, R. L., Simeonov, A., Yasgar, A.,

Zheng, W., and Austin, C. P. (2006). Quantitative high-throughput screening:

A titration-based approach that efficiently identifies biological activities in

large chemical libraries. Proc. Natl. Acad. Sci. U.S.A. 103, 11473–11478.

International HapMap Consortium. (2005). A haplotype map of the human

genome. Nature 437, 1299–1320.

Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in

microarray expression data using empirical Bayes methods. Biostatistics 8,

118–127.

Judson, R. S., Kavlock, R. J., Setzer, R. W., Cohen Hubal, E. A., Martin, M. T.,

Knudsen, T. B., Houck, K. A., Thomas, R. S., Wetmore, B. A., and Dix, D. J.

(2011). Estimating toxicity-related biological pathway altering doses for high-

throughput chemical risk assessment. Chem. Res. Toxicol. 24, 451–462.

Kavlock, R. J., Austin, C. P., and Tice, R. R. (2009). Toxicity testing in the 21st

century: Implications for human health risk assessment. Risk Anal. 29, 485–487.

Koc, A., Mathews, C. K., Wheeler, L. J., Gross, M. K., and Merrill, G. F.

(2006). Thioredoxin is required for deoxyribonucleotide pool maintenance

during S phase. J. Biol. Chem. 281, 15058–15063.

Kruskal, W. H., and Wallis, W. A. (1952). Use of ranks in one-criterion

variance analysis. J. Am. Stat. Assoc. 47, 583–621.

Kumar, U., Grigorakis, S. I., Watt, H. L., Sasi, R., Snell, L., Watson, P., and

Chaudhari, S. (2005). Somatostatin receptors in primary human breast

cancer: Quantitative analysis of mRNA for subtypes 1–5 and correlation with

receptor protein expression and tumor pathology. Breast Cancer Res. Treat.

92, 175–186.

Kuniba, H., Yoshiura, K., Kondoh, T., Ohashi, H., Kurosawa, K., Tonoki, H.,

Nagai, T., Okamoto, N., Kato, M., Fukushima, Y., et al. (2009). Molecular

karyotyping in 17 patients and mutation screening in 41 patients with Kabuki

syndrome. J. Hum. Genet. 54, 304–309.

Lallemand, C., Plamieri, M., Blanchard, B., Meritet, J. F., and Tovey, M. G.

(2002). GAAP-1: A transcriptional activator of p53 and IRF-1 possesses pro-

apoptotic activity. EMBO Rep. 3, 153–158.

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A.,

Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R.,

Chakravarti, A., et al. (2009). Finding the missing heritability of complex

diseases. Nature 461, 747–753.

Marazita, M. L., Murray, J. C., Lidral, A. C., Arcos-Burgos, M., Cooper, M. E.,

Goldstein, T., Maher, B. S., Daack-Hirsch, S., Schultz, R., Mansilla, M. A.,

et al. (2004). Meta-analysis of 13 genome scans reveals multiple cleft lip/palate

genes with novel loci on 9q21 and 2q32-35. Am. J. Hum. Genet. 75, 161–173.

Martin, M. T., Dix, D. J., Judson, R. S., Kavlock, R. J., Reif, D. M.,

Richard, A. M., Rotroff, D. M., Romanov, S., Medvedev, A.,

Poltoratskaya, N., et al. (2010). Impact of environmental chemicals on key

transcription regulators and correlation to toxicity end points within EPA’s

ToxCast program. Chem. Res. Toxicol. 23, 578–590.

Montgomery, S. B., Lappalainen, T., Gutierrez-Arcelus, M., and

Dermitzakis, E. T. (2011). Rare and common regulatory variation in

population-scale sequenced human genomes. PLoS Genet. 7, e1002144.

Montgomery, S. B., Sammeth, M., Gutierrez-Arcelus, M., Lach, R. P.,

Ingle, C., Nisbett, J., Guigo, R., and Dermitzakis, E. T. (2010).

IN VITRO SCREENING IN A POPULATION MODEL 587

http://www.toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfs023/-/DC1
http://toxsci.oxfordjournals.org/
http://toxsci.oxfordjournals.org/


Transcriptome genetics using second generation sequencing in a Caucasian

population. Nature 464, 773–777.

National Research Council (2007). Toxicity Testing in the 21st Century: A

Vision and a Strategy. National Academies Press, Washington, DC.

National Research Council (2008). Science and Decisions: Advancing Risk

Assessment. The National Academies Press, Washington, DC.

O’Shea, S. H., Schwarz, J., Kosyk, O., Ross, P. K., Ha, M. J., Wright, F. A.,

and Rusyn, I. (2011). In vitro screening for population variability in chemical

toxicity. Toxicol. Sci. 119, 398–407.

Parham, F., Austin, C., Southall, N., Huang, R., Tice, R., and Portier, C.

(2009). Dose-response modeling of high-throughput screening data.

J. Biomol. Screen. 14, 1216–1227.

Plunkett, L. M., Kaplan, A. M., and Becker, R. A. (2010). An enhanced tiered

toxicity testing framework with triggers for assessing hazards and risks of

commodity chemicals. Regul. Toxicol. Pharmacol. 58, 382–394.

Pruim, R. J., Welch, R. P., Sanna, S., Teslovich, T. M., Chines, P. S.,

Gliedt, T. P., Boehnke, M., Abecasis, G. R., and Willer, C. J. (2010).

LocusZoom: Regional visualization of genome-wide association scan results.

Bioinformatics 26, 2336–2337.

Rao, A. K., Ziegler, Y. S., McLeod, I. X., Yates, J. R., and Nardulli, A. M.

(2009). Thioredoxin and thioredoxin reductase influence estrogen receptor

alpha-mediated gene expression in human breast cancer cells. J. Mol.

Endocrinol. 43, 251–261.

Reif, D. M., Martin, M. T., Tan, S. W., Houck, K. A., Judson, R. S.,

Richard, A. M., Knudsen, T. B., Dix, D. J., and Kavlock, R. J. (2010).

Endocrine profiling and prioritization of environmental chemicals using

ToxCast data. Environ. Health Perspect. 118, 1714–1720.

Rusyn, I., Gatti, D. M., Wiltshire, T., Kleeberger, S. R., and Threadgill, D. W.

(2010). Toxicogenetics: Population-based testing of drug and chemical

safety in mouse models. Pharmacogenomics 11, 1127–1136.

Schadt, E. E., Molony, C., Chudin, E., Hao, K., Yang, X., Lum, P. Y.,

Kasarskis, A., Zhang, B., Wang, S., Suver, C., et al. (2008). Mapping the

genetic architecture of gene expression in human liver. PLoS Biol. 6, e107.

Schaid, D. J., Rowland, C. M., Tines, D. E., Jacobson, R. M., and Poland, G. A.

(2002). Score tests for association between traits and haplotypes when

linkage phase is ambiguous. Am. J. Hum. Genet. 70, 425–434.

Sedykh, A., Zhu, H., Tang, H., Zhang, L., Richard, A., Rusyn, I., and

Tropsha, A. (2011). Use of in vitro HTS-derived concentration-response data

as biological descriptors improves the accuracy of QSAR models of in vivo

toxicity. Environ. Health Perspect. 119, 364–370.

Shi, J., Springer, S., and Escobar, P. (2010). Coupling cytotoxicity biomarkers

with DNA damage assessment in TK6 human lymphoblast cells. Mutat. Res.

696, 167–178.

Shishodia, S., and Aggarwal, B. B. (2004). Guggulsterone inhibits NF-kappaB

and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic

gene products, and enhances apoptosis. J. Biol. Chem. 279, 47148–47158.

Siest, G., Jeannesson, E., Marteau, J. B., Samara, A., Marie, B., Pfister, M., and

Visvikis-Siest, S. (2008). Transcription factor and drug-metabolizing enzyme

gene expression in lymphocytes from healthy human subjects. Drug Metab.

Dispos. 36, 182–189.

Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C.,

Ingle, C. E., Dunning, M., Flicek, P., Koller, D., et al. (2007). Population

genomics of human gene expression. Nat. Genet. 39, 1217–1224.

Xia, M., Huang, R., Sun, Y., Semenza, G. L., Aldred, S. F., Witt, K. L.,

Inglese, J., Tice, R. R., and Austin, C. P. (2009). Identification of chemical

compounds that induce HIF-1alpha activity. Toxicol. Sci. 112, 153–163.

Xia, M., Huang, R., Witt, K. L., Southall, N., Fostel, J., Cho, M. H., Jadhav, A.,

Smith, C. S., Inglese, J., Portier, C. J., et al. (2008). Compound cytotoxicity

profiling using quantitative high-throughput screening. Environ. Health

Perspect. 116, 284–291.

Yu, B., Mitchell, G. A., and Richter, A. (2009). Cirhin up-regulates a canonical

NF-kappaB element through strong interaction with Cirip/HIVEP1. Exp.

Cell Res. 315, 3086–3098.

Zhou, Y. H., Xia, K., and Wright, F. A. (2011). A powerful and flexible

approach to the analysis of RNA sequence count data. Bioinformatics 27,

2672–2678.

Zhu, H., Rusyn, I., Richard, A., and Tropsha, A. (2008). Use of cell viability

assay data improves the prediction accuracy of conventional quantitative

structure-activity relationship models of animal carcinogenicity. Environ.

Health Perspect. 116, 506–513.

588 LOCK ET AL.


