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In the rat, some phthalates alter sexual differentiation at

relatively low dosage levels by altering fetal Leydig cell de-

velopment and hormone synthesis, thereby inducing abnormalities

of the testis, gubernacular ligaments, epididymis, and other

androgen-dependent tissues. In order to define the dose-response

relationship between di(2-ethylhexyl) phthalate (DEHP) and the

Phthalate Syndrome of reproductive alterations in F1 male rats,

Sprague-Dawley (SD) rat dams were dosed by gavage from

gestational day 8 to day 17 of lactation with 0, 11, 33, 100, or

300 mg/kg/day DEHP (71–93 males per dose from 12 to 14 litters

per dose). Some of the male offspring continued to be exposed to

DEHP via gavage from 18 days of age to necropsy at 63–65 days of

age (PUB cohort; 16–20/dose). Remaining males were not exposed

after postnatal day 17 (in utero-lactational [IUL] cohort) and were

necropsied after reaching full maturity. Anogenital distance, sperm

counts and reproductive organ weights were reduced in F1 males in

the 300 mg/kg/day group and they displayed retained nipples. In

the IUL cohort, seminal vesicle weight also was reduced at 100 mg/

kg/day. In contrast, serum testosterone and estradiol levels were

unaffected in either the PUB or IUL cohorts at necropsy. A

significant percentage of F1 males displayed one or more Phthalate

Syndrome lesions at 11 mg/kg/day DEHP and above. We were able

to detect effects in the lower dose groups only because we examined

all the males in each litter rather than only one male per litter.

Power calculations demonstrate how using multiple males versus

one male/litter enhances the detection of the effects of DEHP. The

results at 11 mg/kg/day confirm those reported from a National

Toxicology Program multigenerational study which reported no

observed adverse effect levels-lowest observed adverse effect levels

of 5 and 10 mg/kg/day DEHP, respectively, via the diet.

Key Words: di(2-ethylhexyl) phthalate; sexual differentiation;

phthalate syndrome; dose response.

Phthalate esters (PEs) are high production volume chemicals

used in a variety of consumer products including polyvinyl

chloride plastics, toys, personal care products, cosmetics and

pharmaceuticals. Among the PEs, di(2-ethylhexyl) phthalate

(DEHP) is the most abundant, with about four million tons of

di-octyl phthalates being produced in 1997. Several PEs,

including DEHP, are reproductive toxicants in animals with

effects being seen in rats (Parks et al., 2000), mice (Oishi,

1993; Song et al., 2006; Tyl et al., 1988), hamsters (Gray et al.,
1982), guinea pigs (Gray et al., 1982), rabbits (Higuchi et al.,
2003), ferrets (Lake et al., 1976), and pubertal-age nonhuman

primates (Tomonari et al., 2006). Within the last few years, it

has become apparent that PEs alter sexual differentiation of the

male rat at dosage levels below those that affect adult male rats

(Mylchreest et al., 1998; Sjoberg et al., 1986). When examined

during sexual differentiation, these PEs (DEHP, di(n)butyl

phthalate [DBP], di-isobutyl, benzyl butyl phthalate [BBP],

and di-isononyl phthalate) reduce testis testosterone production

and insulin-like three peptide hormone mRNA (Borch et al.,
2004; Wilson et al., 2004), which results in the ‘‘Phthalate

Syndrome’’ (Fisher et al., 2003; Foster et al., 2001; Gray et al.,
2000), a suite of malformations of the testis, gubernacular

ligaments, testis descent, the epididymides and other androgen-

dependent tissues. Because the rodent Phthalate Syndrome

bears similarity to the human Testicular Dysgenesis Syndrome,

a concept that poor semen quality, testis cancer, undescended

testis, and hypospadias are symptoms of a single disorder in

men (Skakkebaek, 2002; Wohlfahrt-Veje et al., 2009),

concerns have arisen about the potential effects of PEs on

human reproductive development (Fisher et al., 2003; Lottrup

et al., 2006). Although there are several studies describing the

effects of DEHP and other PEs on fetal testis endocrine

function, few comprehensive and robust transgenerational

studies of DEHP have been published.

The current study was designed to address this data gap by

exposing dams during pregnancy and lactation to relatively low

levels of DEHP by gavage, followed by a thorough examina-

tion of a sufficient number of adult offspring to be able to

detect low incidence of males with the Phthalate Syndrome. To

this end, female Sprague-Dawley (SD) rats were dosed by
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gavage from gestational day (GD) 8 to day 17 of lactation with

0, 11, 33, 100, or 300 mg/kg/day DEHP. The SD rat strain was

selected because they are more sensitive to some PE-induced

reproductive lesions than are Wistar (Wilson et al., 2007) or

Long Evans Hooded rats (Howdeshell et al. 2007; Noriega

et al., submitted).

The study was conducted in two blocks. DEHP exposure

was continued in approximately half the male offspring in each

litter in the first block, being dosed by gavage from 18 to 63–65

days of age with DEHP (n ¼ 16–20 males per dose) and

necropsied at 63–65 days of age (pubertal [PUB] cohort). The

rest of the developmentally exposed males were not dosed after

day 17 and were necropsied at full maturity, referred to herein

as the in utero-lactational (IUL) cohort. The study examined

71–93 males per dose group (n ¼ 12–14 litters per treatment)

including those from the two (IUL and PUB) cohorts.

In every male, anogenital distance (AGD) was measured at

birth, retained areolae/nipples were counted at 13 days of age,

the age at puberty was determined, and reproductive tissues

were examined for malformations and weighed at necropsy.

The tissues examined at necropsy included the testes,

epididymides, seminal vesicles plus coagulating glands, glans

penis, Cowper’s glands, ventral prostate, levator ani plus

bulbocavernosus muscles, retained nipples, and gubernacular

cord lengths. In addition, in the IUL cohort both testes (seven

sections per testis) and epididymides were examined for

histopathological lesions in every F1 male.

In a parallel study, pregnant rats in metabolism cages were

dosed with DEHP, as above, maternal urine collected and the

dams were necropsied at the end of sexual differentiation on

GD 18 and amniotic fluid collected for monoethyl hexyl

phthalate (MEHP) analyses (Calafat et al., 2006), so that we

could correlate the fetal exposures to MEHP with the incidence

of reproductive tract malformations seen herein.

MATERIALS AND METHODS

Animals. Timed-pregnant SD (CR:CD(SD)IGSBR) rats (approximately 90

days of age) were purchased from Charles River Laboratories (Raleigh, NC).

Dams were delivered to EPA facilities on gestational day (GD) 2; the day

sperm plug positive was considered GD1. Animals were housed in 20 3 25 3

47 cm clear polycarbonate cages with laboratory-grade heat-treated pine

shavings (heat-treated to remove resins; Northeastern Products, Warrensburg,

NY). Animals were maintained on a 14:10 light/dark photoperiod (lights off at

1100 h) at 20–24�C and 40–50% relative humidity. Dams were fed ad libitum

with Purina Rat Chow 5008, and weanling and adult rats were fed Purina Rat

Chow 5001. Animals had 24 h access to filtered (5 lm) Durham, NC,

municipal drinking water. Water was tested monthly for Pseudomonas and

every 4 months for a suite of chemicals including pesticides and heavy metals.

The current study was conducted under a protocol approved by the National

Health and Environmental Effects Research Laboratories Institutional Animal

Care and Use Committee.

Doses and experimental design. In each of the two blocks, there were six

to seven pregnant females per dose group per block (detailed samples sizes in

Table 1). Pregnant dams were assigned to treatment groups on GD 8 in

a manner that provided similar mean (± SE) body weight per group prior to

dosing. Laboratory-grade corn oil (8001-30-7, lot # 89H0149) and DEHP (CAS

# 117-81-7, lot # 106H3487. listed purity 99.1%) were purchased from Sigma

(St Louis, MO). Dosing solutions stored in glass bottles in dark with stirring bar

removed (to avoid contact with plastic). Dams were dosed daily with 0 (vehicle

control), 11, 33, 100, or 300 mg/kg/day DEHP from GD 8 until day 17 of

lactation (sperm positive ¼ GD 1). Pregnant and lactating dams and half of

their weanling males in the first block were dosed daily by oral gavage with

DEHP or the vehicle (corn oil) on a mg/kg/day basis at a rate of 2.5 ml vehicle

per kg body weight. The number of dams per group is listed in Table 1.

In the first block, two to three randomly selected male offspring per litter

were dosed directly from postnatal day (PND) 18 until necropsy at 63–65 days

of age (pubertal [PUB] cohort, see Table 2 for sample sizes). The remaining

TABLE 1

DEHP Administration from GD 8 to 17 of Lactation Had No Effect on Maternal Weight or Weight Gain during Dosing or Litter Size

at 2 days of Age, but Reduced AGD and Body Weight in 2-Day-Old Male Rat Pups and Induced Female-Like Areolas/Nipples in 13-

Day-Old Male Rats

Dose of DEHP mg/kg/d 0 11 33 100 300

Number of dams 13 13 14 14 13

GD 8 weight (g) 269 ± 2.5 271 ± 3.4 266 ± 3.2 268 ± 3.3 269 ± 4.8

GD 22 weight (g) 399 ± 8.5 403 ± 7.2 395 ± 6.0 401 ± 7.4 398 ± 6.0

Pregnancy weight gain (g) (GD 8–22) 130 ± 7.5 132 ± 7.4 129 ± 4.6 132 ± 5.5 129 ± 5.6

Birth weight (g) 306 ± 4.1 307 ± 3.8 307 ± 5.7 302 ± 5.8 299 ± 5.5

Weight at day 17 of lactation 324 ± 2.4 333 ± 4.8 332 ± 5.1 331 ± 5.8 333 ± 5.6

AGD (mm) in females 1.34 ± 0.04 1.26 ± 0.02 1.29 ± 0.03 1.36 ± 0.02 1.31 ± 0.03

AGD (mm) in males 3.25 ± 0.11 3.21 ± 0.05 3.17 ± 0.09 3.17 ± 0.05 2.74 ± 0.08**

Day 2 weight (g) females 6.95 ± 0.17 7.04 ± 0.12 7.10 ± 0.13 7.27 ± 0.11 6.74 ± 0.08, down 3%

Day 2 weight (g) males 7.51 ± 0.17 7.44 ± 0.11 7.42 ± 0.15 7.64 ± 0.12 6.98 ± 0.10**, down 7%

Day 2 litter size 14.1 ± 0.69 14.5 ± 0.54 12.9 ± 0.81 13.5 ± 0.44 14.1 ± 0.29

Percent of males with areolae 11% ± 5.5 21% ± 8.9 10% ± 4.7 16% ± 6.7 55% ± 10.1**

Number of areolae per male out of 12 0.7 ± 0.4 0.8 ± 0.3 0.3 ± 0.1 0.7 ± 0.3 2.9 ± 0.6**

Note. Pup values are litter means ± SE. Pup data were analyzed using a PROC MIXED model that accounted for the clustering of pups within litters. Values are

means ± SE, *p < 0.05, **p < 0.01.
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male litter mates in block 1 were not dosed after maternal dosing ended on PND

17. Rats were weaned at 28 days of age and housed two to three per cage with

similarly treated littermates for the duration of the study. In block 2, none of the

male offspring were dosed by gavage after PND17 with DEHP. The samples

sizes for the IUL cohort is shown in Table 3. For the IUL males, the exposure is

only via the dam (transplacental and from the milk). In all blocks, the rats were

weighed daily during the dosing period to administer the dose per kilogram

body weight and to observe the health of the dams.

TABLE 2

Necropsy Data from Male F1 SD Rats in the PUB Cohort Necropsied at 64 Days of Age

Dose of DEHP mg/kg/d 0 11 33 100 300

Number males (litters) 20 (7) 16 (6) 19 (7) 17 (7) 20 (7)

Body weight (g) 371 ± 17 385 ± 7.5 373 ± 10.1 388 ± 12.7 356 ± 9.0

Glans penis (mg) 102 ± 3.2 103 ± 2.8 96.5 ± 3.3 103 ± 4.9 90.4 ± 3.8

Ventral prostate (mg) 361 ± 19 362 ± 21 374 ± 16 365 ± 15 303 ± 14**

Seminal Vesicle (mg) 1015 ± 47 1104 ± 27 1078 ± 46 1063 ± 47 836 ± 54**

Levator ani-bulbocavernosus (mg) 913 ± 47 972 ± 27 900 ± 30 926 ± 23 756 ± 26**

Cowper’s glands (mg) 94.5 ± 3.7 91.2 ± 4.9 86.2 ± 4.5 88.3 ± 5.1 76.1 ± 3.8**

Epididymides (mg) 667 ± 17 674 ± 25 685 ± 15 659 ± 21 530 ± 22**

Whole epididymal sperm count 3 106 92.3 ± 4.5 84.4 ± 3.4 91.6 ± 2.8 84.2 ± 4.1 53.3 ± 6.5**

Paired testes (mg) 3019 ± 72 2971 ± 139 3068 ± 77 3186 ± 78 2797 ± 93

Adrenals (mg) 50.6 ± 2.7 48.3 ± 2.4 47.2 ± 3.0 47.0 ± 2.1 42.7 ± 1.3 a

Liver (g) 16.6 ± 0.72 18.3 ± 0.63 18.0 ± 0.81 20.3 ± 0.78** 19.8 ± 0.86**

Kidneys (mg) 2936 ± 123 3066 ± 96 2956 ± 72 2945 ± 113 2755 ± 93*

Age at puberty (PPS) 45.7 ± 0.64 47.3 ± 1.6 47.6 ± 0.77 47.1 ± 0.98 49.1 ± 0.7 a

Weight at puberty 233 ± 7.3 251 ± 12.0 251 ± 11.4 252 ± 9.7 251 ± 6.3

Weight at 18 days 34.7 ± 1.3 33.5 ± 0.8 36.0 ± 0.9 37.3 ± 1.0 34.6 ± 0.9

Body weight gain 338 ± 9.2 349 ± 6.0 334 ± 6.1 351 ± 8.1 324 ± 5.5

Testosterone (ng/ml) 2.13 ± 0.28 2.81 ± 0.48 1.99 ± 0.25 2.16 ± 0.28 1.75 ± 0.19

Estradiol (pg/ml) 72.4 ± 23.1 48.0 ± 9.4 48.9 ± 13.6 37.0 ± 4.9 56.0 ± 20.0

Note. DEHP was administered from gestational day 8 to day 17 of lactation to the dam and then directly to the male offspring up to necropsy. Values are litter-

based means ± SE. Data were analyzed using a PROC MIXED model that accounted for the clustering of pups within litters. *p < 0.05, **p < 0.01, a¼p < 0.05

Dunnett’s test of PROC MIXED analysis.

TABLE 3

DEHP Administration from GD 8 to 17 of Lactation to the Dam Reduces Androgen-Dependent Organ Weights in F1 Male SD Rat

Offspring from the IUL Cohort Necropsied as Adults

Dose of DEHP mg/kg/d 0 11 33 100 300

Number males (litters) 63(13) 55(12) 67(14) 76(14) 54(13)

Body weight (g) 607 ± 14 664 ± 17 a 637 ± 18 634 ± 16 616 ± 15

Glans penis (mg) 102 ± 1.9 102 ± 2.2 100 ± 1.5 100 ± 1.9 93.0 ± 1.6**

Ventral prostate (mg) 794 ± 35 781 ± 40 819 ± 21 734 ± 20 691 ± 33*

Seminal vesicle (mg) 2107 ± 66 2031 ± 68 2045 ± 47 1999 ± 62* 1720 ± 46**

Levator ani-bulbocavernosus (mg) 1309 ± 32 1368 ± 40 1352 ± 19 1319 ± 34 1162 ± 33**

Cowper’s glands (mg) 205 ± 11 194 ± 13 205 ± 11 198 ± 13 169 ± 5.4**

Epididymis (mg) 659 ± 11 637 ± 16 655 ± 8.1 630 ± 18 550 ± 48**

Testis (mg) 1797 ± 25 1767 ± 57 1841 ± 27 1800 ± 46 1660 ± 75a

Adrenals (mg) 45.0 ± 2.0 44.4 ± 3.4 46.8 ± 1.3 46.5 ± 1.9 44.9 ± 2.1

Liver (g) 19.0 ± 0.64 21.1 ± 0.63 20.1 ± 0.70 20.6 ± 0.8 19.2 ± 0.62

Kidney (mg) 1979 ± 57 2035 ± 39 1965 ± 58 1975 ± 48 1780 ± 42**

Number of nipples/male 0 ± 0 0.08 ± 0.08 0 ± 0 0.15 ± 0.12 1.22 ± 0.41**

Serum testosterone (ng/ml) 1.51 ± 0.21 1.29 ± 0.16 1.32 ± 0.16 1.36 ± 0.10 1.22 ± 0.16

Amniotic fluidb MEHP (ng/ml) (no. litters/

no. pups)

7.2 ± 2.2 (2/24) 68.4 ± 17 (2/26) 168 ± 24 (2/28) 748 ± 236 (2/26) 2324 ± 430 (2/32)

Note. MEHP, monoethyl hexyl phthalate. Values are litter-based means and standard errors. Data were analyzed using a PROC MIXED model that accounted

for the clustering of pups within litters. *p < 0.05, **p < 0.01 with body weight as a covariate; a ¼ p < 0.05 only without body weight as a covariate.
ap < 0.05 by Fisher Exact test of the number individuals with abnormal testis weights.
bData from Calafat et al. (2006).
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Neonatal and infant male rat offspring. AGD and body weight were

measured in all male and female pups on PND 2 (birth day ¼ PND 1)

Measurements were made in a manner where the observer was blind to the

maternal treatment. Pups were examined using a Leica MZ6 dissecting scope

(Wetzlar, Germany). Skin between the phallus and tail-base was extended

maximally and AGD measurements were made to the nearest 0.1 mm using

a 10-mm ocular reticule. Scope magnification at 153 (1.5 3 10) was calibrated

using a 1-mm stage micrometer with 0.01-mm divisions.

On PND 13, areola/nipple numbers and location were noted for each (male

and female) pup in a blinded fashion. Male offspring were weaned on PND 24

and housed in unisexual groups of two to three litter mates per cage.

Preputial separation. In the PUB and IUL cohorts, male offspring were

examined daily for the onset of preputial separation (PPS), an androgen-dependent

landmark of puberty in the male rat, from PND 35 until complete separation. The

age at PPS and the body weight at PPS were recorded for each male.

Necropsy of the PUB and IUL cohorts. All F1 males were retained and

examined thoroughly (AGD, nipples, PPS, organ weights, histopathology of

testes and epididymides, and malformations was determined in every male) in

this study. At necropsy of the PUB cohort at 63–65 days of age, there were 20

males from seven litters, 16 males from 6 litters, 19 males from seven litters, 17

males from seven litters and 20 males from seven litters in the 0, 11, 33, 100,

and 300 mg/kg/day DEHP dose groups, respectively for a total of 92 males. A

total of 315 F1 males from the IUL cohort were necropsied at about 7 months

of age (see Table 3 for sample sizes). Animals were anesthetized with CO2

prior to decapitation after which blood was collected for radioimmunoassay

(RIA) analyses for serum testosterone and estradiol levels. Testosterone levels

were measured by RIA using Coat-a-Count kits according to manufacturer’s

protocols (Diagnostic Products Corporation, Los Angeles, CA; Coat-a-Count

Kit Total Testosterone Manual, #PITKTT-4, 2005-03-18). The intra-assay

coefficient of variation (CV) was 3.1%, based upon the variability of the

standard curve and the interassay CV was 13.7%. Cross reactivity with DHT

was 3.2%. The limits of detection of the RIAs were 0.2 ng/ml testosterone.

Estradiol was determined by RIA using kits according to manufacturer’s

protocol (Diagnostic Systems Laboratories (Webster, TX), #DSL-39100). The

kit has a minimum detection limit of 0.6 pg/ml and the intra-assay precision is

reported to be a CV ¼ < 4%.

We examined each male for internal and external reproductive malforma-

tions, including agenesis or hypoplasia of the gubernacular ligaments, cauda,

corpus and caput epididymides, vas deferens, seminal vesicles, coagulating

glands, ventral prostate, Cowper’s glands, cranial suspensory ligaments, testes,

descent of the testes and retained female reproductive tract tissues, the presence

of retained nipples (after carefully shaving the ventral surface), hypospadias,

cleft phallus, and vaginal pouch. Organ weights included individual testes and

epididymides for all males, and ventral prostate, seminal vesicle with

coagulating glands and fluids, paired adrenals, both kidneys, liver, paired

Cowper’s glands, glans penis (if not malformed) and levator ani and

bulbocavernosus muscle complex for most males.

Both testes and epididymides (IUL cohorts) were preserved in Bouin’s

fixative and placed in 70% ethanol after 24 h. In the PUB cohort, one

epididymis from each male was examined for histological lesions while the

other whole epididymis was processed for enumeration of sperm numbers as

per Gray et al. (1997). Malformed epididymides were not included in the sperm

count analyses. All histopathological examinations of the testes and

epididymides were conducted by board-certified veterinary pathologists at

Veritas (block 1) and Experimental Pathology Laboratories, Inc (Research

Triangle Park, NC) (block 2). Tissues were sectioned at 4–6 lm and stained

using hematoxylin and eosin. In addition, we also evaluated the tissues from the

pubertal cohort of block 1. Because a number of effects were seen in the testes

of treated males in the lower dosage groups and because we were concerned

that subtle histopathological alterations in the testis might go undetected from

evaluation of a single cross section, we resubmitted the testis tissue blocks from

all the males in the IUL cohort to Experimental Pathology Laboratories for

further processing. Because each tissue block contained two transverse sections

of each testis, this represents a total of over 1250 blocks (two per testis, four per

rat). Three hemotoxylin and eosin stained slides were prepared for microscopic

examination of each block resulting in almost 3800 sections of rat testes, which

were evaluated for lesions.

Statistical analyses. Data were analyzed using PROC MIXED from SAS

version 9.1 (Statistical Analyzing Systems, Inc., Cary, NC). The use of mixed

effects ANOVA allows the introduction of random litter effects and corrects for

the statistical nonindependence of pup measurements from the same litter.

Analysis of organ weight data included body weight at necropsy as a covariate.

Statistically significant effects F values were further examined using the

LSMEANS (two-tailed t-test) procedure to compare groups. In cases where the

F value was not significant, treated-group means were compared with control

means using a Dunnett’s test.

Treatment means and standard errors presented in the tables were calculated

using PROC MEANS using litter based rather than individual means.

Individual data rather than litter mean data also are presented because using

litter-based values can obscure severe effects if they only occur in a small

percentage of the treated animals (i.e., individual testis weights).

In the PUB cohort, data were analyzed using PROC MIXED, as above. Age

a puberty and weight at puberty (PPS) were analyzed using body weight at 44

days of age, approximately the mean age at puberty, as a covariate whereas

organ weight data were analyzed using body weight at necropsy as a covariate.

Malformations of the reproductive tract of males from the PUB and IUL

cohorts indicative of alterations of androgen and insl3-dependent tissues and

histopathological lesions of the testes or epididymides were examined to

determine if treated males displayed lesions consistent with the Phthalate

Syndrome. The percentage of affected males per dose group was analyzed by Chi

square and then each DEHP-treated group was compared with the control group

by Chi-square analyses). This analysis was repeated with and without the higher

dose group (0, 11, 33 and 100 but not 300 mg/kg/day) to determine if the

frequencies differed among the low dose groups and control. Effects included for

this analysis were (1) morphology and histology of the testes (fluid filled and

flaccid, atrophic, undescended or displaying seminiferous tubular atrophy), (2)

epididymidal agenesis or hypoplasia (similar to, but less severe than aplasia) of the

caput, corpus and/or the cauda (confirmed histologically, not including tissues

only reduced in size) and epididymal granuloma, (3) malformed seminal vesicles

or coagulating glands (agenesis of both horns or a single horn or coagulating

glands detached completely from the seminal vesicles, not including tissues only

reduced in size), (5) permanent nipples at adult necropsy (not including areolae

without nipples), (6) gubernacular agenesis or elongation (greater than 15 mm),

(6) agenesis of the ventral prostate (not including tissues only reduced in size), (7)

cleft phallus with hypospadias, (8) vaginal pouch, and (9) retained cranial

suspensory ligaments attaching the undescended testis to the kidney. We did not

include small but normally formed tissues in this analysis because it is possible

such changes arose from hormonal alterations in adult life rather than being of

developmental origin.

Power calculations. The data also were analyzed using PROC MIXED to

obtain estimates of components of variation (for litters versus pups within litters)

that make up the overall variability of the means, in order to assess the implications

for statistical power of using data from multiple pups per litter. Following this

analysis, we calculated power to detect the treatment effects as described by

Raudenbush and Xiao-Feng (2001). The objective of this was to determine the

proportion of the overall error variance due to litter-to-litter variability versus the

proportion accounted for by the pups-within-litters. This retrospective analysis can

be useful for designing optimal sampling strategies for future transgenerational and

multigenerational studies. In short, this analysis allows one to determine how much

the statistical power of a study is enhanced by examining several pups from the same

litter rather than using only one pup/per sex/litter.

Because the pups in the DEHP-treated litters do not respond identically, the

more variable the pups are within litter the more power is enhanced, and hence

the standard error of the mean is reduced, by examining multiple pups from the

same litter. For simplicity, we employed Cox’s Ratio as a general rule to

determine how many pups per litter could be sampled to enhance the power of

the study. This is clearly described as ‘‘Cox’s rule of thumb’’ (Bergerud, 1995)

(http://www.for.gov.bc.ca/hre/biopamph/pamp50.pdf).
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Intraclass correlation coefficients (ICCs) also were calculated to describe the

degree of similarity of pups within litters for the multiple endpoints measured in

the current study (ICC ¼ (Variance due to pups within litters)/(Variance of

pups within litters þ Variance of litters). Power calculations also were

calculated for categorical effects based upon the numbers of malformed versus

unaffected males per dose group using SigmaStat 3.1 software (San Jose, CA).

These results were also discussed in a review by Hotchkiss et al, (2008).

RESULTS

Maternal Effects

Daily treatment with DEHP from GD 8 until day 17 of

lactation did not adversely affect the dams during pregnancy or

lactation. Maternal viability and body weights were similar

among all the treatment groups (Table 1).

Neonatal and Lactational Effects

Daily treatment with DEHP at dosage levels up to 300 mg/

kg/day did not affect litter size or pup viability (Table 1), and

body weight of the male rat pups was reduced by 7% at 2 days

of age (p < 0.01). AGD at 2 days of age was significantly

shortened by 15% in male but not female pups in the 300 mg/

kg/day DEHP dose group. Because females have AGD values

about 50–60% shorter than control males, 300 mg/kg/day

DEHP inhibited the masculinizing action of androgens on this

male trait by about 25% of maximum.

When examined as infants at 13 days of age, males in this

dose group also displayed female-like areolae/nipples (Table 1)

an androgen-dependent trait that develops during prenatal life,

which in contrast to AGD is not at all influenced by even the

most profound effects on the size of the animal.

Postweaning Effects in the PUB Cohort

(Maternal in utero and lactational treatment followed by

direct DEHP treatment of the males by gavage from PND 18 to

necropsy at 63–65 days of age.)

DEHP treatment did not affect growth or viability of the

male offspring in any dose group from weaning until 65 days

of age (Table 2). However the age at puberty, as indicated by

the completion of PPS, was delayed in a dose-related manner,

being significant only at 300 mg/kg/day DEHP by Dunnett’s

test (Fig. 1). Because these males were growing normally, the

males in this group attained puberty at a heavier body weight

(Table 2) but this effect was not statistically significant using

litter-based values. All androgen-dependent organ weights

except the glans penis were significantly reduced in the 300

mg/kg/day DEHP treatment group (Table 2). The reproductive

tract malformations and testis and epididymal histological

lesions in the PUB cohort are presented together with the IUL

cohort. Liver weights were significantly increased at 100 and

300 mg/kg/day DEHP and paired adrenal weights were

reduced at 300 mg/kg/day (Table 2). Serum testosterone and

estradiol levels were not significantly affected at by DEHP

treatment at any dose level.

Postweaning Effects in the IUL Cohort

(Maternal in utero and lactational treatment only with no

direct exposure to the offspring)

The age at PPS was not significantly delayed in the IUL

cohort (data not shown). DEHP treatment during gestation and

lactation reduced seminal vesicle weight at 100 and 300 mg/kg/

day. Glans penis, ventral prostate, LABC, Cowper’s glands,

epididymal, testis, and kidney weights were reduced at 300 mg/

kg/day, a dose that did not affect body weight at necropsy

(Table 3). In addition, F1 males in the high dose group

displayed a low number of retained female-like nipples.

Individual right and left testis and epididymal weights were

reduced in some males at 11–300 mg/kg/day DEHP dose range

(Fig. 2). It is evident from the graphs of these data that

a significant percentage of the testes, and epididymides from

DEHP-exposed males were below the range of the control

values, some being dramatically affected. On rare occasion, we

also find testes that are much larger than normal due to

excessive fluid accumulation in males with epididymal

malformations. Examination of the graph of the adult testis

FIG. 1. Individual (top) and litter mean (bottom) values for the age at PPS

in males in the PUB cohort. DEHP was administered from GD 8 to 17 of

lactation to the dam and then directly to the male offspring up to necropsy at 64

days of age. Age at PPS was significantly delayed in the 300 mg/kg/day DEHP

group (Dunnett’s test).
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weight data clearly indicates that several testes (n ¼ 15/108

males in the 300 mg/kg/day group and 4/152 males in the 100

mg/kg/day group) were more than five standard deviations

below the control mean. In addition, in the 11 mg/kg/day group

28/108 testes were lighter than the smallest control testis. This

classification of ‘‘abnormal’’ is supported by the histopatho-

logical examinations of the testes. Clearly, a litter-based

analysis of the testis weight data, which are only marginally

statistically significant with an overall p-value for the F-value

of 0.08, does not accurately represent the severity of the effect

of DEHP on the testes of some of the offspring. This lack of

statistical significance for testes weights results from at least

two factors: (1) DEHP-treated testis weight data inflate the

variance in the ANOVA model, being much more variable than

control testes, and (2) a single severely affected testis in a litter

can be obscured in the litter mean.

Treatment with DEHP produced nonsignificant, inverted

U-shaped dose responses on necropsy body and liver weights

with the males from the 11 mg/kg/day dose group being

heavier than control males (Table 3). These effects, however,

were not significant by PROC MIXED ANOVA or Dunnett’s

test, but the contrast between the control and low dose group

was significant by t-test. As these were not a priori hypotheses,

these results require independent replication before they can be

considered to be more than random variations around the

control mean. However, the fact that the males in the 11 mg/kg/

day dose group were larger, albeit of questionable statistical

significance, has a significant effect on the data analysis if

organ weight to body weight adjustments are made using

relative organ weights and, in some cases, with analysis of

covariance. Although relative organ weights are often used to

analyze reproductive organ weight in toxicological studies, we

believe that this method is generally not valid because it

assumes that a linear relationship exists between all organ

weights and body weight and the intercept of the relationship

goes through zero, assumptions that are rarely met. In addition,

analysis of covariance assumes that the covariate does not

covary with the organ weight. For, example, if one examines

the relative organ weight data, W-shaped dose-response curves

are displayed by some of the reproductive organ weights, with

some organs being significantly reduced at 11 and 300 mg/kg/

day but not 33 or 100. The effects at 11 mg/kg/day likely

results from the larger weights of the males in this dose group,

whereas the effects at 300 mg/kg/day are also significant when

the unadjusted data are analyzed. Analysis of the unadjusted

organ weight data indicates that all of the androgen-dependent

FIG. 2. Individual testis (left) and epididymal (right) weights for males in the IUL (top panels) and PUB (bottom panels) cohorts. DEHP was administered

from GD 8 to 17 of lactation to the dam in the IUL cohort, whereas males in the PUB cohort were dosed by gavage from 18 to 64 days of age. The IUL cohort was

necropsied at full maturity and the PUB cohort was necropsied at about 64 days of age. Litter mean epididymal weights, but not testis weights, were significantly

reduced in the 300 mg/kg/day DEHP group in both IUL and PUB cohorts. Individual testis weights were significantly reduced in the IUL cohort in the 300 mg/kg/

day DEHP group by Fisher Exact test.
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tissue weights are smaller in males from the 300 mg/kg/day

DEHP dose group.

Phthalate Syndrome Analysis

For this analysis, reproductive tract malformations and

histological testicular and epididymal lesions were combined to

discriminate affected from unaffected males. The ‘‘Phthalate

Syndrome’’ analysis is based upon effects reported for DEHP

and other reproductive toxicant phthalates, and includes both

androgen- and insl3-dependent tissues as these are all affected

by PE-induced reduction in fetal Leydig cell hormone

production as described earlier (Gray and Foster, 2003).

Testicular lesions also are included in syndrome as the testis

is the primary target of in utero PE treatment. Males in the

lower DEHP dose groups (11–100 mg/kg/day) displayed the

following lesions and were considered as ‘‘affected’’; retained

nipples, fluid-filled flaccid testes (Fig. 3), hypoplastic

(incompletely developed, similar to aplasia, but less severe)

or malformed epididymides (Fig. 3), epididymal granuloma

with small testis, testicular seminiferous tubular degeneration

(both moderate and mild severity were noted; Fig. 3),

malformed seminal vesicles or coagulating glands, and true

hermaphroditism, in one male with uterine tissue and an

ovotestis (Fig. 4). Permanent nipples are not seen in control

males. Only two males, one in the 100 mg/kg/day dose group

and the other in the 300 mg/kg/day dose group had abnormal

gubernacular ligaments, a tissue that differentiates under the

influence of the peptide hormone insulin-like 3 (insl3) and

androgens.

Using this definition of the ‘‘Phthalate Syndrome’’, there was

a statistically significant increase in the percentage of affected

male rats in the 11, 33, 100, and 300 mg/kg/day DEHP groups

(Fig. 5, Table 4), as analyzed by Chi-square analyses. In addition,

a comparison of the controls to the 11, 33, and 100 mg/kg/day

groups without the high dose group in the data set demonstrated

that DEHP induced a significant increase in reproductive tract

abnormalities in the lower range, not just at 300 mg/kg/day.

Analysis of Components of Variation: Litter versus pup
within litter

Components of variance (inter- and intralitter variances)

were estimated using PROC MIXED for all the reproductive

measures in the IUL and PUB cohorts. We used the

components of variance to calculate Cox’s Ratios and, ICC

(intralitter correlation coefficients) as per (Bergerud, 1995) and

power curves for means from the control and a DEHP-treated

FIG. 3. Testis and epididymis of a control male rat (top row, left column: ID 6LR, PUB cohort). A photomicrograph of a cross section of the control

epididymis (middle row, far left column: ID 6LR). Malformed testis and epididymis from a male exposed to 11 mg/kg/day DEHP (bottom row, left column; ID 10

LRRR, IUL cohort). Slightly underdeveloped, testis and epididymis from a male exposed to 11 mg/kg/day DEHP (top row, middle column; ID 3LR, PUB cohort).

A photomicrograph of a cross section of the epididymis of 3LR with hypospermatogenic tubules (middle row and middle column). A photomicrograph of a cross

section of the testis of 3LR showing severe tubular atrophy (bottom row, middle column). A photomicrograph of a cross section of the epididymis of a male

exposed to 100 mg/kg/day DEHP (ID 7LR, PUB cohort) with hypospermatogenic tubules (top row, right column). Malformed testes and epididymides from a male

exposed to 300 mg/kg/day DEHP (middle row, right column; ID 13RR, PUB cohort). A photomicrograph of a cross section of the testis of a male exposed to 300

mg/kg/day DEHP with severe hypospermatogenesis (bottom row, right column; ID 35LF, PUB cohort).
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group. The power curves compare the probability of detecting

significant treatment effects for one to five male pups per litter

from 10, 15, or 20 litters. Cox’s Ratio (Cox’s ratio ¼ 4 3

(variation due to pups within litters/variation due to litters))

ranged from 4.1 to > 50 for reproductive endpoints, indicating

that there is utility in examining the reproductive tracts of 4 or

more male pups per litter. In contrast, Cox’s Ratio was

consistently smaller for body weights during pubertal de-

velopment ranging from 2 to 2.6 Table 5 (previously reviewed

by Hotchkiss et al. (2008). Power curves for these endpoints

are presented in Figures 6 and 7 (also reviewed by Hotchkiss

et al., 2008).

It also is evident that histopathological examination on only

10 animals per dose group is underpowered and will fail to

detect as statistically significant alterations unless a high

percentage (> 50%) of the offspring are affected (Fig. 8;

Hotchkiss et al., 2008).

DISCUSSION

PEs such as DEHP that are widely used in a variety of

consumer products have been implicated in adverse develop-

mental reproductive effects in humans including a shortened

AGD index in boys (Swan et al., 2005) and girls (Huang et al.,
2009; Lottrup et al., 2006; Scott et al., 2008; Sharpe, 2005),

altered serum hormone levels (Main et al., 2006) and shortened

pregnancy (Latini et al., 2003). In the rat, PEs alter sexual

differentiation by altering fetal Leydig cell development and

hormone synthesis which in turn, results in a ‘‘Phthalate

Syndrome’’ which includes abnormalities of the testis, guber-

nacular ligaments, epididymis and other androgen-dependent

tissues. Administration of PEs during development also has been

shown to alter reproductive development in rabbits (Higuchi

et al., 2003) and primates (Hallmark et al., 2007) in an anti-

androgenic manner. Furthermore, neonatal administration of

DEHP by either IV or oral routes permanently affects testis sperm

production in the rat (Cammack et al., 2003; Dostal et al., 1988).

In spite of the potential effects of phthalates in humans and

decades of commercial use, robust studies including relatively low

dosage levels with developmental exposure, a thorough exami-

nation of all the sensitive endpoints, and an adequate number of

adult offspring have not been published for many PEs. In the

current study, SD rats were dosed by gavage with DEHP from GD

8 to day 17 of lactation with 0, 11, 33, 100, or 300 mg/kg/day.

Statistically significant, developmentally induced adverse effects

were seen at all dosage levels. It is noteworthy that the dose-

response seen in the current study is remarkably similar to that

reported from a National Toxicology Program multigenerational

study, which reported a dietary no observed adverse effect level

(NOAEL) and lowest observed adverse effect level (LOAEL) of

5 and 10 mg/kg/day DEHP, respectively in a multigenerational

study of DEHP (Foster et al., 2006).

Although there are several other published reports on the

transgenerational effects of in utero DEHP exposure (Andrade

et al., 2006a, b; Arcadi et al., 1998; Borch et al., 2004, 2005,

2006; Grande et al., 2006, 2007; Jarfelt et al., 2005; Shirota

et al., 2005), the current study along with an National

Toxicology Program (NTP) multigenerational study (CERHR,

2003) are the only studies that provide a comprehensive

assessment of the phthalate syndrome in a large enough

number of male offspring to detect adverse reproductive effects

at low dose levels. The NOAEL found here is consistent with

the NOAEL identified by the NTP CERHR Panel in its review

of the NTP study and, for this reason, we support the level of

concern that they expressed about the potential effects of

DEHP on humans (http://cerhr.niehs.nih.gov/chemicals/dehp/

DEHP-Monograph.pdf). The NTP panel found that ‘‘There is

sufficient evidence in male rats to conclude that DEHP causes

FIG. 5. Percentage of F1 males displaying any Phthalate Syndrome trait.

All dose groups are significantly different from control by Fisher Exact tests.

FIG. 4. Internal reproductive tract of a true hermaphrodite exposed to 100

mg/kg/day DEHP. The right undescended gonad is an ovotestis with attached

uterine tube and vas deferens. The left testis also is undescended but did not

contain ovarian tissue. Both gubernacular ligaments were absent (top panel: ID

3B, IUL cohort). A male displaying hypospadias and a vaginal pouch (middle

panel: ID 3B, IUL cohort). Malformed seminal vesicles from two males

exposed to 300 mg/kg/day DEHP (bottom panel: IDs 9LF, IUL cohort and

35LR, PUB cohort).
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reproductive toxicity when exposure is by oral gavage or in

feed at 10–113 mg/kg/day for exposures that included

gestational and/or peripubertal periods.’’ The critical effects

included small reproductive organ size (14–23 mg/kg/day and

focal testicular tubular atrophy (113 mg/kg/day), effects also

seen in the current study at similar dosage levels.

We also provide unique information on the statistical power

derived from examining multiple pups per litter; information

that can be used in the future to design more efficient

multigenerational protocols; ones that use fewer animals

overall, but have statistical power equal to or that exceeds

the current protocols that examine one F1 pup/sex/litter after

TABLE 4

Summary Table of Gross and Histological Reproductive Lesions Induced by Exposure to DEHP In Utero and during Lactation (IUL

Cohort) or In Utero, during Lactation and from 18 to 63–65 Days of Age (PUB Cohort)

Dose of DEHP mg/kg/d 0 11 33 100 300

PUB cohort 1 0/20 2/16 0/19 2/17 7/20

IUL cohort 1 0/23 3/25 6/31 5/25 17/23

Pooled 1 0/43 pups 5/41 6/50 7/42 24/43

IUL 2 0/40 3/30 4/36 5/51 14/31

Pooled 1 and 2, % affected 0/83 8/71, 11.3% 10/86, 11.6% 12/93, 12.9% 38/74, 51.3%

Chi-square test block 1 and 2 — 8.0, p < 0.005 8.6, p < 0.003 9.2, p < 0.002 55.1, p < 0.001

Note. Malformations included testis and epididymal agenesis, fluid-filled, flaccid testes, epididymal granulomas, epididymal epithelial thickening, absent or

malformed sex accessory and coagulating gland tissues, prostate pathology, retained nipples (but not areolas), atrophic seminiferous tubules, vacuolated Sertoli

cells, minimal hemorrhagic testis, elongated gubernacular ligament (> 10 mm).

Overall Chi square ¼ 43.4, p < 0.001.

Chi square (without the high dose group) ¼ 11.1, p < 0.011.

Chi square (with only 0, 11 and 33 mg/kg/day dose groups) ¼ 10.3, p < 0.006.

TABLE 5

Calculation of Cox’s Ratios and Intralitter Correlation Coefficients from PROC MIXED Analyses

Litter Pups (residual) TRT F value Cox’s ratio ICC

Variable Variance Variance p value (TRT/litter) 3 4 Litter/(Litter þ Pups)

AGD day 2 (IUL þ PUB) 0.05503 0.06889 5.4, 0.0003 5.007 0.444

IUL cohort data

Epididymal weight 5021 5167 3.5, 0.009 4.116 0.493

Liver weight 4.95 6.22 1.6, 0.17 5.031 0.443

Body weight 2579 3481 1.6, 0.16 5.399 0.426

Kidney weight 23,537 32,670 3.6, 0.008 5.552 0.419

Cowper’s gland weight 1129 1694 1.8, 0.13 6.002 0.400

Testis weight 21,506 32,376 1.7, 0.14 6.022 0.399

LABC weight 10,417 15,736 5.92, 0.0002 6.042 0.398

Glans penis weight 31.2 56.5 3.4, 0.01 7.244 0.356

Seminal vesicle weight 25,980 71,543 6.72, 0.0001 11.015 0.266

Ventral prostate 5346 23,258 3.05, 0.02 17.402 0.187

Pubertal necropsy

Body weight day 18 14.225 7.131 0.80 2.005 0.666

Body weight day 44 348.2 201.02 0.50 2.309 0.634

Body weight necat necropsy 753.87 492.14 0.40 2.611 0.605

Glans penis weight 44.4 70.85 1.63, 0.18 6.383 0.385

Epididymal weight 839.64 1708.64 13.6, 0.0001 8.140 0.329

Testis weight 23,297 61,044 0.22 10.481 0.276

LABC weight 2666 7417.5 6.0, 0.0004 11.129 0.264

Seminal vesicle weight 4925 14,445 4.8, 0.0022 11.732 0.254

Adrenal weight 8.214 34 2.1, 0.093 16.719 0.193

Age at PPS 1.391 8.0744 1.97, 0.12 23.219 0.147

Body weight at PPS 107.00 720.00 1.48, 0.22 26.916 0.129

Cowper’s gland weight 14.9954 189.57 2.94, 0.03 50.568 0.073

Note. Hotchkiss et al., 2008.
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weaning. According to Cox’s Rule Of Thumb (Bergerud,

1995), there is little or no increase in power when the number

of subsamples (pups in this case) is greater than Cox’s Ratio

(Cox’s ratio ¼ 4 3 (variation due to pups within litters/

variation due to litters)). Power curves flatten out when the

number of pups/litter sampled is equal to the Ratio, indicating

that the most efficient design would not sample more pups per

litter beyond this Ratio. When the components of variance

were estimated using PROC MIXED for all the reproductive

measures taken at necropsy, it was evident that the component

of variation for pups was generally several-fold greater than the

component of variation for litters. The Cox’s Ratios and ICC

(intralitter correlation coefficients) obtained from these analysis

are shown in Table 5. Clearly, even in the most conservative

case, sampling all the male pups in each litter would enhance

the power of a transgenerational reproduction study like the

current study because the litters rarely have six or more male

pups per litter. If the objective was to use fewer litters per dose

group, reducing total animal use, sampling three pups from 15

litters or three to four pups from ten litters/dose would

generally provide about the same statistical power as one pup

from 20 litters (Supplemental Figures). For example, power

curves were calculated for testis and epididymal weights from

the control and high dose group for one to five pups per litter

and 10, 15, and 20 (standard sample size) litters per dose (Figs.

6 and 7). It is evident from the testis weight figure that three to

four pups sampled from 10 litters provides about the same

statistical power to detect the effects of DEHP (at 100 or 300

mg/kg/day) as does the standard method of sampling only one

male from 20 litters.

The Phthalate Syndrome of malformations was the most

sensitive index of the reproductive toxicity of DEHP being

displayed by 11.3%, 11.6%, 12.9%, and 51.3% of the males in

the 11, 33, 100, and 300 mg/kg/day dose groups, respectively

(all p < 0.05). In the 300 mg/kg/day group, shorter AGD (15%)

and retained areolae/nipples were seen in 55% of the male

pups. We were only able to detect these lesions as statistically

significant because (1) we examined every endpoint in 71–93

males from 12 to 14 litters per dose group; (2) we examined

paired testes and epididymides for histopathological lesions in

every male; and (3) we compared all the numbers of ‘‘affected’’

animals with any lesion from the Phthalate Syndrome with the

control group, rather than rely upon a single endpoint to detect

a LOAEL (Table 6). An example of how the statistical power

improves with examination of more males per dose is shown in

Figures 6–8 (also reviewed by Hotchkiss et al., 2008).

Similarly, Foster et al. (2006) noted that adding extra males

to the histopathological evaluation of DEHP-exposed F1 males

lowered the NOAEL by two orders of magnitude.

In a parallel study (Calafat et al., 2006), MEHP concen-

trations (including free and glucuronidated) were measured in

maternal urine before and during dosing and in amniotic fluid

on GD 18 from each fetus (n ¼ two litters per dose group with

24, 26, 28, 26, and 32 individual fetuses (male and female) in

the 0, 11, 33, 100, and 300 mg/kg/day dose groups, respec-

tively). The purpose of the MEHP study was to correlate fetal

and maternal exposure levels with the effects reported here. We

euthanized two DEHP-treated dams per group and collected

amniotic fluid from each pup for analysis of MEHP levels on

GD 18. Free MEHP amniotic fluid AF levels ranged from 68 to

2924 ng/ml in the 11 to 300 mg/kg/day groups (Table 3 shows

means ± SEs based upon litter means MEHP values from

Calafat et al., 2006). Our reanalysis of the data indicated that

free MEHP amniotic fluid levels varied considerably among

pups within litters with an overall CV of 39% and free MEHP

concentrations varied significantly from litter to litter for the

100 (p < 0.0001) and 300 (p < 0.001) mg/kg/day dose groups

FIG. 6. Power curves for AGD (all pups) and age at puberty (PUB cohort)

based upon 10, 15, or 20 litters per dose group (control and the group treated

with DEHP at 300 mg/kg/day) using one to five pups per litter. Increasing the

numbers of F1 pups examined from one to five pups per litter increases the

statistical power of a study to detect the effects of DEHP on the reproductive

tract of the male offspring. For example, examining two male from 15 litters

provides statistical power that equals or exceeds that attained using one pup

from 20 litters.
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FIG. 7. Power curves for testis weight (Control vs. 300 mg/kg/day), epididymal weight (Control vs. 300), seminal vesicle weight (Control vs. 100), ventral

prostate weight (Control vs. 300), glans penis weight (Control vs. 300), Levator ani bulbocavernosus (LABC) weight (Control vs. 300), Cowper’s glands weight

(Control vs. 300) and the numbers of permanent nipples in adult IUL cohort male SD rat offspring. Calculations were based upon 10, 15, or 20 litters per dose

group using one to five pups per litter. Increasing the numbers of F1 pups examined from one to five pups per litter increases the statistical power of a study to

detect the effects of DEHP on the reproductive tract of the male offspring. For example, examining two male from 15 litters provides statistical power that

generally exceeds that attained using one pup from 20 litters.
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but not for the lower dose groups. Taken together, our results

and those of Calafat et al. (2006) indicate that fetal levels

of MEHP as low as 68 ng/ml may be sufficient to induce

malformations in about 10% of the animals. For comparison,

MEHP levels as high as 2.8 ng/ml were seen in human

amniotic fluid in a study of 54 women (Silva et al., 2004).

Thus, the level of MEHP associated with a low incidence of

male reproductive tract malformations in F1 male rats is about

25-fold above the highest concentration seen amniotic fluid of

pregnant women. These women also had detectable levels of

monobutyl phthalate (mBP), the active metabolite of di-n-butyl

phthalate, and the maximum levels were only sixfold below the

levels that are associated with subtle reproductive effects in

male rat offspring (Mylchreest et al., 2000) (1400 ng mBP/ml

in rat amniotic fluid versus a maximum value of 264 ng/ml in

human amniotic fluid). Because DEHP and DBP both disrupt

sexual differentiation via a common mode of action one might

expect that they would act in a cumulative manner in humans

as they do in rats (Gray et al., 2006; Hotchkiss et al., 2004;

Howdeshell et al., 2007).

In the pubertal cohort, DEHP delayed puberty (1.6 and 3.5

days at 100 and 300 mg/kg/day, respectively); whereas, serum

testosterone and estradiol were unaffected. In the IUL cohort,

when DEHP was not administered after weaning, puberty was

not significantly delayed. In general, the other effects of DEHP

were similar in the PUB and IUL cohorts with one exception,

the exception being the weight of the adrenal glands. Direct

exposure to DEHP at 300 mg/kg/d induced a 15% decrease in

adrenal weight whereas adrenal weight was unaffected in males

in the IUL cohort that there not directly exposed to DEHP.

To date, we have conducted three experiments that we have

conducted in the male rat with pubertal DEHP exposures. In all

three studies, we have found that oral administration of DEHP

at doses ranging from 300 to 900 mg/kg/day results in delays in

PPS, an index of puberty in the male rat. Similar pubertal

delays have been reported for DBP and BBP (Gray et al., 1999;

Nagao et al., 2000). In contrast to the model proposed by

Akingbemi et al. (2004) that low doses of DEHP would

accelerate puberty in boys and girls due to increased levels of

serum gonadal steroids, administration of lower doses of

DEHP (10 and 100 mg/kg/day) did not accelerate puberty in

the male rat or elevate serum testosterone or estradiol levels. In

fact, we found that 100 mg/kg/day DEHP and above were

FIG. 8. Top panel: Power calculations (SigmaStat 3.1) of the statistical

power to detect malformations of histopathological lesions in 10 and 25% of

the F1 male rat offspring. Using only 10 males per dose group, as is often done

in standard multigenerational guideline studies, the statistical power to detect

lesions in 25% of the males is less than 50%, for example. Bottom panel:

Calculation of the minimum % of male rat offspring that can be detected as

statistically significantly over control using 10–60 offspring per dose group

(using Fisher exact tests on SigmaStat 3.1). Note that 60% or more of the

offspring need to be malformed before statistical significance (p < 0.05) is

attained using 10 males per dose group, the minimum required in many test

guidelines.

TABLE 6

Incidences of Specific Reproductive Tract Lesions in F1 Male

Rat Offspring in the IUL and PUB Cohorts after DEHP

Exposure during Development

Dose of DEHP (mg/kg/day) 0.0 11.0 33.0 100.0 300.0

Permanent nipples% 0.0 1.4 0.0 2.2 27.0a

Malformed seminal vesicle % 0.0 0.0 0.0 1.1 5.4

Gross testis abnormality % 0.0 5.6 0.0 1.1 17.6a

Testis histopathology % 0.0 4.2 11.6a 4.3 24.3a

Gross epididymal abnormality % 0.0 1.4 0.0 1.1 20.3a

Epididymal histopathology % 0.0 1.4 0.0 2.2 14.9a

Severe malformation of glans penis % 0.0 0.0 0.0 1.1 1.4

Ovotestis/uterus present % 0.0 0.0 0.0 1.1 0.0

Coagulating gland malformed % 0.0 2.8 0.0 6.5a 6.8a

Hypospadias % 0.0 0.0 0.0 1.1 1.4

Vaginal pouch % 0.0 0.0 0.0 1.1 1.4

Cranial suspensory ligament—testis % 0.0 0.0 0.0 0.0 0.0

Abnormal gubernaculum % 0.0 0.0 0.0 1.1 1.4

Vas defens agenesis% 0.0 0.0 0.0 1.1 0.0

Total affected with % with phthalate

syndrome

0.0 11.3a 11.6a 12.9a 51.3a

Note. None of these effects would reach the level of statistical significance

using the sample sizes recommended in standard multigenerational tests which

only requires 20/dose group for organ weights and gross observations and 10/

sex/group for histopathological assessments.
aIndicates that the % is significantly higher than control by Chi-square

analysis.
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associated with reduced, rather than increased, ex vivo testis

testosterone production in the peripubertal male rat (Noriega

et al., in prep.). Similar to our studies with rats, higher DBP and

DEHP metabolite levels in the urine have been shown to be

associated with lower serum levels of free testosterone in

workers (Pan et al., 2006) and in the marmoset, peripubertal

DEHP exposure results in a delayed onset in detectable serum

testosterone levels (unpublished data available in the public

docket from (Tomonari et al., 2006) study presented to NTP

CERHR evaluation of DEHP).

In summary, results of the current study are consistent with

the NOAEL identified in the NTP study or 4.8 mg/kg/day

(Foster et al., 2006) and used in the European Union risk

assessment for DEHP (EuropeanCommission, 2008). All of the

adverse effects in the current study increased in severity with

increasing dose; that is, none of the effects displayed a

significant nonmonotonic dose response. Furthermore, de-

tection of the Phthalate Syndrome in a low percentage of F1

males in the current study and the NTP study were possible

only because both studies thoroughly examined more than one

male per litter. As the power calculations demonstrate, in

multigenerational studies there would be little loss, if any, in

statistical power to detect treatment effects if the total numbers

of litters per dose group was reduced from 20 to 10 or 15 litters

per treatment but more males per litter were examined.
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