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Abstract

Platelets play an important role in many physiological and pathological situations. However, the

molecular mechanisms by which platelets contribute to health and disease are often ill-defined.

One of the limiting factors to these studies is a fast but reliable method to generate animals with

platelet-specific signaling defects. We here review recent approaches to establish an adoptive

platelet transfer model in mice.

Introduction

Studies in animal models of disease identified a central role for platelets in various

physiological and pathological situations, including hemostasis and thrombosis,

angiogenesis, vascular integrity, development, immunity, ischemia-reperfusion injury,

arthritis, atherosclerotic lesion development, tumor metastasis, and sepsis [1,2]. While

studies on the contribution of platelets to developmental processes depend on the availability

of genetically modified mice, experimentally induced severe thrombocytopenia is the most

frequently used model system to identify whether platelets are critical in a particular patho-

physiological process. For example, studies in animals depleted of virtually all circulating

platelets provided strong evidence for a critical contribution of these cells to angiogenesis

[3,4], vascular integrity [5,6], or tumor metastasis [7,8]. Clarification of the molecular

mechanisms by which platelets contribute to health and disease, however, is much more

complicated as genetic deletion or chemical inhibition of platelet signaling molecules or

vasoactive/ immune-modulatory mediators generally also affects cells of the innate and

adaptive immune response as well as the vessel wall. Deletion of genes specifically in the

megakaryocyte/platelet-lineage with the loxP/PF4-Cre system has been instrumental to
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overcome this limitation [9]. The use of the Cre-Lox system, however, is limited due to the

costs and the time associated with the generation, breeding, and maintenance of these mice.

Thus, an alternative, more efficient method to generate mice with platelet-specific signaling

defects is required to uncover the molecular mechanisms by which platelets contribute to the

above discussed patho-physiological situations.

Genetic, chemical, and antibody-based approaches to induce

thrombocytopenia

For many years, scientists have tried to generate mice with very low platelet counts that

could be used for adoptive transfer studies with genetically modified or inhibitor-treated

platelets (Table 1). Genetic approaches have led to the generation of mice with very low

platelet counts. For example, peripheral platelet counts in mice lacking the thrombopoietin

receptor c-Mpl are reduced by ~90% compared to controls due to a defect in

megakaryocytopoieses [10]. However, the remaining platelets are fully functional and

genetic deletion of c-Mpl also affects other hematopoietic progenitor cells. Genetic

deficiency in the transcription factor p47 NF-E2 [11,12] strongly impairs thrombopoiesis in

mice. The resulting severe thrombocytopenia (mice are virtually free of circulating platelets)

leads to perinatal lethality due to excessive hemorrhage. In addition, p47 NF-E2 knockout

mice show several red blood cell defects, including anisocytosis and hypochromia. Thus,

genetic models of thrombocytopenia are of limited use for adoptive transfer studies.

Thrombocytopenia in mice can also be induced by chemotherapeutic agents such as 1,4-

butanediol dimethanesulfonate (Busulfan) [13] or Abt-737, a small molecule inhibitor that

targets pro-survival Bcl-2 proteins [14,15]. The cytotoxic effects of both compounds,

however, are not limited to the megakaryocyte/platelet lineage. Busulfan-treated mice also

show marked leukopenia and thus should not be used for studying inflammation in mice.

Abt-737 is less cytotoxic to leukocytes, likely due to the fact that these cells express another

pro-survival relative, myeloid cell leukemia-1 (Mcl-1), which is insensitive to Abt-737 [16].

While busulfan affects megakaryocyte maturation and platelet generation, Abt-737 causes

apoptosis and clearance of circulating platelets and therefore does not allow for the adoptive

transfer of donor platelets. Cytotoxic antibodies directed towards platelet-specific antigens

do not affect peripheral erythrocyte or leukocyte counts [13,17] and may therefore be

considered the only method to completely eliminate circulating platelets without affecting

other blood cell populations. However, there are two major problems associated with this

method. First, rapid antibody-induced clearance of virtually all circulating platelets can lead

to anaphylaxis-like reactions and severe vascular damage in mice [18–20]. These

complications are well-documented for antibodies to αIIββ3, the main integrin receptor

expressed on platelets. In contrast, antibody targeting of the GPIbα subunit of the von

Willebrand receptor complex leads to virtually complete thrombocytopenia without vascular

damage in mice. Detailed mechanistic studies demonstrated that anti-GPIbα antibodies

induce thrombocytopenia by a unique mechanism that is independent of Fc receptor-

mediated clearance of platelets by the reticuloendothelial system. The second major

drawback of this method is the fact that thrombocytopenia depends on circulating cytotoxic

antibodies. Consequently, transfusion of donor platelets into these thrombocytopenic mice is

not possible as long as the antibodies remain in circulation. Thus, successful adoptive
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transfer of platelets requires a method where (1) thrombocytopenia is induced by an anti-

GPIbα antibody-like mechanism and (2) circulating antibodies are not cytotoxic towards the

transfused platelets.

A novel, antibody-based method for the adoptive transfer of platelets

Both requirements can be met when thrombocytopenia is induced by antibodies against

human IL4Rα in transgenic mice expressing a chimeric hIL4Rα/GPIbα protein instead of

GPIbα on the platelet surface [17]. In these mice, the extracellular domain of GPIbα is

replaced by the extracellular domain of hIL4R [21]. Infusion of anti-hIL4R antibodies into

these animals leads to rapid, severe thrombocytopenia without signs of an anaphylaxis-like

response, suggesting that these antibodies induce platelet clearance by a mechanism similar

to that described for anti-GPIbα antibodies. Importantly, transfusion of WT platelets lead to

a dose-dependent increase of the peripheral platelet count in thrombocytopenic hIL4Rα/

GPIbα mice, and the transfused platelets showed normal hemostatic function when tested in

various models of thrombosis and inflammation [17]. To validate the power of this

approach, platelets with defects in immunoreceptor tyrosine-based activation motif (ITAM)

or G protein-coupled receptor (GPCR) signaling were tested for their ability to maintain

vascular integrity in inflammation. To eliminate signaling via the main GPCR receptors,

mouse platelets were isolated from Par4-/- mice treated with clopidogrel (an irreversible

inhibitor of P2Y12), followed by incubation with aspirin to irreversibly prevent

cyclooxygenase-mediated thromboxane A2 generation and platelet activation by

thromboxane receptors. Before transfusion into thrombocytopenic hIL4Rα/GPIbα-tg mice,

these cells were washed to remove free inhibitor. It is important to remember that aspirin is

an anti-inflammatory drug and expression of both Par4 and P2Y12 is not specific to

platelets. Thus, the adoptive transfer model provided a unique and powerful tool to generate

mice with platelet-specific defects in signaling by multiple GPCR receptors. A similar

approach was used to eliminate function in both ITAM receptors expressed on the platelet

surface. Platelets isolated from mice deficient in C-type lectin-2 were treated with inhibitors

to GPVI, washed and infused into a different set of thrombocytopenic hIL4Rα/GPIbα-tg

mice [22]. Using this approach, we were able to show that platelet ITAM but not GPCR

signaling is critical for vascular integrity at sites of inflammation [17].

Conclusions

There are several key advantages of this novel adoptive platelet transfer method over

previously used approaches to inhibit specific platelet functions. First and foremost, it

allows for the very rapid generation of mice with platelet-specific signaling defects, as

induction of virtually complete thrombocytopenia and platelet transfusion into hIL4Rα/

GPIbα-tg mice can be achieved within a few hours. In comparison, the generation of

platelet-specific knockout mice requires many months. Second, the adoptive transfer system

facilitates the combined use of genetic and pharmacologic approaches to loss of function

studies. It is important to point out, however, that pharmacologic inhibition only works for

compounds that irreversibly inhibit a specific signaling molecule, as reversible inhibitors

would be washed out. Third, adoptive transfer allows us to set the peripheral platelet count

in mice before challenge, thereby permitting a greater sensitivity for platelet defects. This is
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particularly important when few circulating platelets are sufficient to prevent a phenotype,

such as shown for vascular integrity at sites of inflammation [5]. Without lowering the

peripheral platelet count, it seems unlikely that a partial reduction in a critical platelet

function would lead to a detectable phenotype. Lastly, it is well-documented that genetic

deletion of genes can lead to the upregulation of compensatory mechanisms in mice [23]. In

addition, as outlined above, even platelet-specific deletion of genes can lead to marked

vascular changes as these cells control angiogenesis and vascular integrity during

development [24,25]. The rapid replacement of endogenous platelets with donor platelets,

achieved by adoptive transfer, eliminates both of these limitations. In summary, this novel

method of adoptive platelet transfer provides a powerful means for deciphering the unique

ways by which platelets contribute to health and disease.
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