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Abstract

The putative structure of the Tissue Factor/Factor Vlla/Factor Xa (TF/FVI1la/FXa) ternary complex
is reconsidered. Two independently derived docking models proposed in 2003 (one for our
laboratory: CHeA and one from the Scripps laboratory: Ss) are dynamically equilibrated for over 10
ns in an electrically neutral solution using all-atom molecular dynamics. Although the dynamical
models (CHeB and Se) differ in atomic detail, there are similarities in that TF is found to interact
with the y-carboxyglutamic acid (Gla) and Epidermal Growth Factor-like 1 (EGF-1) domains of FXa,
and FVlla is found to interact with the Gla, EGF-2 and serine protease (SP) domains of FXa in both
models. FVIla does not interact with the FXa EGF-1 domain in Se and the EGF domains of FVIla
do not interact with FXa in the CHeB. Both models are consistent with experimentally suggested
contacts between the SP domain of FVIla with the EGF-2 and SP domains of FXa.
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Introduction

In both the conventional blood coagulation cascade [1] and in the more recent cell-based
cascade [2,3], the ternary complex of FVIlIa/TF/FXa is thought to play an important role in
providing free FXa for the formation of prothrombinase (Factor Va, FXa, negatively charged
phospholipids and calcium ions). While the structure of FVIla/sTF has been determined in
several laboratories and under several different conditions [4-6], the structure of the ternary
complex remains unsolved. A static docking model [7] and a solution-equilibrated model [8]
were generated in 2003; both models were derived independently and while globally similar,
showed differences in the details of the structures. Significant gains in computational power
have been realized since 2003, as well as additional experiments that probe the possible
structure of the complex are now available [9]. Thus we wished to revisit these two models
and provide a more extensive, current “best-guess” solution-equilibrated model.
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We will use the following labels to describe the various models: Ss =Scripps static, Se=Scripps
solution-equilibrated (14.2 ns), CHeA=original Chapel Hill solution-equilibrated (3.6 ns) and
CHeB=current Chapel Hill solution-equilibrated for 10.5 ns. The Se model derives from the
Scripps static model (PDB code: 1NL8) [7] with several modifications: Glu39 was modified
to a Gla39 residue, residues 159-162 in TF were added, and calcium ions were placed on Gla
(y-carboxyglutamic acids) residues Gla32 and Gla39 to be consistent with our prior simulation
(CHeA) [8]. The CHeB model derives from the starting docking model (the chirality of several
residues was corrected) that led to CHeA [9], but which has undergone a simulation time
sufficient for equilibration.

The details of the setup for the solvent equilibration of the ternary complex models (CHeB and
Se) are given in the Supplementary Information of Ref. 10. The essentials are that the docked
complexes are surrounded with layers of water using periodic boundary condition so that
images in surrounding boxes do not interact, the systems are carefully equilibrated at the
starting conformation and the particle mesh Ewald (PME) method [11] is used to compute the
electrostatic interactions. The AMBER9 [12] program was employed along with the ff99SB
force field, the TIP3P water model [13] and the dynamics code PMEMD9. The importance of
using the PME method for macromolecular simulations has been discussed [14]. Both CHeB
and Se were simulated for sufficient times (>10 ns) that the overall RMSD of the simulation
to the starting structures was relatively constant with time.

Results and Discussion

A fair question is “How good is molecular dynamics (MD) for predicting the structures of
macromolecular complexes in solution?” An optimistic view of the usefulness of MD to drug
design has been given recently [15]. Likewise, the improvement of docked protease-inhibitor
binding energies (experimental to predicted) for a large number of HIV-1-inhibtor complexes
was improved considerably by use of molecular dynamics as opposed to protein-rigid docking
without dynamics [16]. Significant overlap between essential spaces of proteins defined by
NMR ensembles and molecular dynamics has also been shown [17]. In our hands, we were
able to refine an NMR structure of the factor IX Gla domain obtained with significant
denaturing agent present and locate the w-loop (residues 1-13) and positions of the calcium
ions to obtain a refined whole Gla domain that compared closely to similar domains of
prothrombin and factor Vlla [18].

The goal of this work was to solution-refine two independently derived docking models for
the FVIla/TF/FXa complex and thereby arrive at an up-to-date estimates of the solution
structure. The same force field, water model, integration method and treatment of electrostatic
forces were employed for both models. Fig. 1 shows the Se model for orientation purposes.
Table 1 provides a comparison of the contacts derived, TF/FVIla with FXa, from the
simulations (10.5 ns for CHeB and 14.2 ns for Se) and also gives a comparison to the
experimental contacts [20-32]. Eight of the contacts are similar in both models, of these five
have partial agreement with experiment. Both models bury about the same area in binding FXa,
4150 (CHeB) and 3921(Se) A2. The TF/FVIla units have an RMSD (backbone) of 2.92 A
between the models. For comparison, Se is 2.72 A and CHeB is 2.78 A RMSD to the X-ray
crystal structure of TF/FVI1la in Ref. 4. On the other hand, the TF/FVIla/FXa (des-Gla) units
have an RMSD of 5.53 A. Both models are consistent with experimentally suggested contacts
between the SP domain of FVIla with the EGF-2 and SP domains of FXa. FVIla does not,
however, interact with the FXa EGF-1 domain in the Se model and the EGF domains of FVlla
do not interact with FXa in the CHeB model. Overall, the differences in the models appear to
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trace back to the relative orientation of the EGF-1 in the original docking models. These models,
which can be obtained on request, should be useful for comparison for new experiments.
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Fig. 1.

Residues involved in experimental contacts are mapped onto the Se model. TF: (Lys165,
Lys166) [20-25], (Tyrl57, Lys159, Serl63, Gly164) [23,25], Tyrl85 [24,25], (Asn199,
Asp204) [24], Arg200 [9,24,26,27], Lys201 [9,27], (Leul04, Thr197) [27]; FVIla: Arg 36
[28], SP((Val2l, Glul54, Met156)[29,30], Leul44 [30] Alal52 [30,31], Argl147 [32]); FXa
[7]: Glu51, Asn57, Asp92, Asp95, SP(Lys134, Aspl185A, Lys186).
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Comparison of predicted and experimental contacts from the Se and CHeB models. Interactions were computed
with default setting in the Protein Interactions calculator server [19]. Chymotrypsin numbering system as in INL8
(pdb of Ss) is used for SP domains of FVVIla and FXa. Bold residues correspond to experimental contacts [20—
32]. Abbreviations: HI, hydrophobic; HB, hydrogen bond; MS, main chain-side chain; SS, side chain-side chain;
LC, light chain of FVIlaand FXa for residues over EGF-2 domain in light chain. Italic residues designate residues

Table 1

adjacent to residues involved in experimental contact.

CHeB

Se

TF/fXa

Glu24"F@OE1,0E2 = Gly66™2ECF-1@0 (MS-
HB)

Lys41TF :: Glu77™2EGF-1 (|onic interaction)

GIu99TF@N :: Glu77™%2EGF-1@QOE1 (MS-HB)
Glu105TF = Lys79™aEGF-1 (1onic interaction)
GIU105TF@N = Lys79™aEGF-1@OE2 (MS-HB)
Lys165TF@NZ :: Asp35™aCla@OD2 (SS-HB)

Lys165TF = Asp35™aGla (Jonic interaction)

Val198TF :: Pro54™aEGF-1 (H)

Lys201TF@NZ = Glus1™@ECF-1@OE2 (SS-HB)
Lys201TF = Glu51™XaEGF-1 (|onic interaction)
Asp204TF :: Lys43fXaGla (Jonjc interaction)

Asp204TF@0D1,0D2 = Lys43™2Ch@NZ (SS-
HB)

Thr70TF@O0G1 :: GIn58X2ECF-1@OE1 (SS-HB)
Glu99™F@OE1:: GIn58XaECF-1@NE2(SS-HB)

Lys1667F :: Gla32f™XaGla (jonic interaction)

Thr197"F@OG1: Cys617@ECF-1@N (MS-HB)

Asn199TF@O0D1: Ser53™@EGF-1@OG (SS-HB)
Arg2007F :: Gla39™2Cla (Jonic interaction)

Arg200TF :: AspagfXaEGF-1 (jonic interaction)

fVlla/fXa

Leu3gfV!laGla:: phe31fXacla (1)

Leu3gfV!laGla:: pheqqfacla (1)

Trp41VllaGla:: \et18™aCla (H])

lle42VllaGla:: Met18™aCla (H])

le42fVilaGla :: pheqgfala (Hj)

le42fVllaGla . TyrqqfxaGla (H))
GIn150M"2LC@O = Lys134™>2SP@NZ(MS-HB)
Arg152V1IRLC@O = Lys134™XaSP@NZ (MS-HB)

Ala34MVIlaGla:: pet1g™aCla (H])

Gla3sMlaGla :: | ys36fXaCla (1onic interaction)
Gla3sVlaGlagN :: Met18™%2Cl@SD (MS-HB)
Arg36fVilaGla:: Gla14fXaCla (Jonic interaction)

Arg3e™V!12Gla@NH1 NH2 =
Gla14™aGla@OE1,0E2 (SS-HB)
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CHeB

Se

Lys20V11aSP@NZ = Tyr162X2SP@0 (MS-HB)

Val21™V1aSP = pro1617aSP (H1)
Val21fVhasp z Tyr185f><a.SP (Hl)

Glu75™VI1asP = | ys223fXaSP (1onic interaction)

Glu154™V11aSP@OEL,0E2 = Tyr185%*SP@OH
(SS-HB)

Glu154fV11asP i | ys186MXaSP (Jonic interaction)

Glu154V112SP@OET = Lys186™2SP@OH (SS-
HB)

Lys170DfV11aSP ;. Gly74fXaEGF-1 (Jonic
interaction)

LySl7ODN”a‘SP@NZ i
Glu74™2ECF-1@OE1,0E2 (SS-HB)

Lys170DV11a.SP ;. Asp92fXaEGF-2 (|onjc
interaction)

Lys170D™VNasP z: Aspg5™XaEGF-2 (jonic
interaction)

Ser188AMIASP@OG = Lys204™aSP@N (MS-
HB)

Lys20V11aSP :: Glu159™aSP (Jonic interaction)

Lys20M1aSP@NZ = Glu159™%aSP@OEL (MS-
HB)

Val21fVhasp i Tyr185fXa.SP (Hl)

Glu26V"2SP@OE1 = Thr185B™2SP@0G1 (SS-
HB)

Asp72fVIIasP | ys1867XaSP (onic interaction)

Leu145MI1asP = 11g1370SP (H)
Leu145MIasP = Met1577SP (HI)
Leu1d5MIasP :; Tyr207PasP (Hj)
Aspl46™M1aSP:: Arg202™2SP (lonic interaction)

Arg147VIaSP@NH1,NH2 =
Glu138™2L.C@OE1,0E2 (SS-HB)

Arg147tVIIasP :: Gly138™aLC (Jonic interaction)

Leu153MIasP@N = GIn20™@SP@QE1 (MS-HB)

Glu154fV11asP ;| ys186XaSP (Jonic interaction)

Glu154VIaSP@OE2 = Lys186™aSP@NZ (SS-
HB)

Arg170CTVIasSP : Agpg2fXaEGF-2 (onjc
interaction)

Arg170CTVI1aSP 2z Asp95/XaEGF-2 (Jonic
interaction)

Arg170CVI2SP@NH1,NH2 =
Asp95XaEGF-2@0D1 (SS-HB)

Tyr184fVIIasP = | ys134fXaSP (Cation-Pi
interaction)

Asp186fV11a-SP 3 | ys1347XaSP (Jonic interaction)

Asp186M112SP@OD1 = Lys134™aSP@NZ (SS-
HB)

Ser188ANMIASP@Q :: Arg202fXaSP@NH2 (MS-
HB)
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