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Abstract

Tissue factor is the primary initiator of coagulation cascade and plays an essential role in 

hemostasis and thrombosis. In addition, tissue factor and coagulation proteases contribute to the 

many cellular responses via activation of protease activated receptors. Heart is the organ 

demonstrating high levels of constitutive tissue factor expression. This review focuses on the role 

of tissue factor, coagulation proteases and protease activated receptors in heart hemostasis and the 

pathological heart remodeling associated with myocardial infarction, viral myocarditis and 

hypertension.

Introduction

Tissue factor

Tissue factor (TF) is a 47-kDa transmembrane cell-surface glycoprotein that belongs to the 

cytokine receptor superfamily and binds coagulation factor VII/VIIa (FVII/VIIa). The 

TF:FVIIa binary complex exerts both procoagulant and signaling activities and plays an 

important role in many biological processes, including hemostasis, thrombosis and 

inflammation (1). TF is constitutively expressed by perivascular and parenchymal cells. 

Upon vascular injury, these cellular sources of TF are exposed to the blood and play an 

essential role in the initiation of hemostasis process. However, during many pathologic 

conditions increased TF expression on vascular cells (leukocytes and endothelial cells), 

circulating microparticles or ruptured atherosclerotic plaques triggers thrombosis and 

disseminated intravascular coagulation (1, 2). In addition, perivascular cell TF exposed to 

the circulating FVII/FVIIa, as a result of increased vascular permeability, can also 

participate in these processes (1, 2). The contribution of TF to the cellular responses is 

mediated via generation of downstream coagulation proteases and subsequent activation of 

protease activated receptors (PARs).

Protease activated receptors

Protease activated receptors (PARs) are a family of seven transmembrane domain, G 

protein–coupled receptors activated by proteolytic cleavage (3). After their activation, a new 
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amino terminus peptide is exposed that functions as a tethered ligand (3). The PAR family 

consists of four members: PAR-1, PAR-2, PAR-3 and PAR-4. Thrombin is the main 

physiological activator of PAR-1, PAR-3 and PAR-4 (3). In addition, several studies have 

shown that PAR-1 can be activated by TF:FVIIa:FXa ternary complex, FXa, activated 

protein C and matrix metalloproteinase-1 (MMP-1) and MMP-13 (4–9). In vitro studies 

have shown that PAR-2 is activated by several proteases, including trypsin, mast cells 

tryptase and the coagulation proteases FVIIa and FXa, as well as the TF:FVIIa:FXa ternary 

complex (3, 10, 11). PARs can also be activated by synthetic agonist peptides corresponding 

to the tethered ligand sequence (3).

Pathologic heart remodeling

In response to both acute and chronic insults, including coronary artery disease, myocardial 

infarction, hypertension, viral infections, valve abnormalities and inherited mutations, the 

heart undergoes an extensive remodeling (12–14). At the early stage, remodeling is an 

adaptive reaction of the heart to maintain cardiac function but over time leads to 

maladaptive changes resulting in decreased heart function and increased risk for heart 

failure. Cardiomyocyte hypertrophy, proliferation of cardiac fibroblasts and cardiac 

inflammation are the three major processes contributing to pathologic heart remodeling (12, 

14). PARs are widely expressed by cells within the cardiovascular system including 

endothelial cells, smooth muscle cells, cardiac fibroblasts and cardiomyocytes (15). In 

addition, TF expression can be found on extravascular cells such as fibroblasts, smooth 

muscle cells (SMCs) and cardiomyocytes(16). Coagulation protease-mediated activation of 

PARs on these cells contributes to the pathophysiology of heart remodeling.

In this review we will discuss the role of TF and PARs in heart hemostasis as well as their 

contribution to pathological heart remodeling. Specifically, we will focus on the remodeling 

of the heart in response to the myocardial infarction, viral infections, activation of 

adrenergic receptors and pulmonary hypertension. We would like to apologize for not 

always using the original references due to space and word limitations.

Heart Hemostasis

TF is constitutively expressed by cardiomyocytes and fibroblasts in the heart. We and others 

have shown that heart hemostasis is severely compromised in mice expressing very low 

levels of TF (17, 18). These low TF mice uniformly demonstrate hemosiderin deposition and 

fibrosis in their hearts by 3 months of age. A hemostatic defect was first observed in sub-

epicardial and perivascular regions of the heart and over time spread throughout the whole 

heart (17). Mice expressing low levels of murine FVII exhibited a similar pattern of 

hemosiderin deposition and fibrosis in their hearts (17, 19). Furthermore, mice with a 

selective deletion of TF in cardiomyocytes exhibited only mild hemostatic defect under 

normal conditions but a dramatic impairment of hemostasis after treatment with 

isoproterenol (20). Importantly, heart hemostasis was restored in low TF mice by 

overexpression of TF in cardiomyocytes (20). These data strongly suggest that 

cardiomyocyte TF is essential to maintain heart hemostasis.
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It has been proposed that in addition to the important role in heart hemostasis, TF may also 

have non-hemostatic functions in the heart. For example, the fetal heart expresses much 

higher TF levels compared to the adult heart (21). This led to the hypothesis that myocardial 

TF may serve as a morphogenic factor in the developing heart (22). Within cardiomyocytes, 

TF is found in the intercalated discs and z bands, and co-localized with structural proteins 

such as desmin and vinculin (23–25). Additionally, the cytoplasmic domain of TF has been 

demonstrated to interact with the cytoskeleton via filamin A (26, 27) and binding of FVII/

FVIIa to TF mediates direct changes of the cytoskeleton (28). In addition, it was shown that 

TF mediates β1 integrin signaling via both its extracellular and intracellular domains 

independently of its procoagulant activity (29). These data lead to the hypothesis that TF 

may contribute to the structural integrity of myocardium. We tested this hypothesis, in part, 

by examining hearts of mice lacking only the cytoplasmic domain of murine TF. We found 

no evidence of hemostatic or structural defects in the heart of these mice at 6 months of age 

under normal conditions (17). However, we cannot exclude that under pathologic conditions 

the cytoplasmic domain of TF may play a role in maintaining structural integrity.

Myocardial infarction

Myocardial infarction caused by the thrombotic occlusion of coronary vessels is a leading 

cause of death in the western world (30). Restoration of circulation not only provides 

oxygen and nutrients to ischemic tissue but also further injures the myocardial tissue by 

initiating an inflammatory response. The molecular and cellular mechanisms of ischemia/

reperfusion (I/R) injury is very complex and has been described elsewhere (31). Myocardial 

infarction leads to the loss of viable myocardium; as a compensatory response the initial 

infarct is replaced with collagen rich fibrotic tissue and neighboring cardiomyocytes 

undergo hypertrophic growth. However, over time the extensive remodeling weakens heart 

function and leads to heart failure (30).

I/R injury increases TF expression in the heart (32, 33). The inhibition of TF with either 

active site–inhibited FVIIa, anti-TF antibody or annexin V-Kunitz inhibitor fusion protein 

(ANV-6L15) reduces infarct size in animal models of heart I/R injury (33–36). We and other 

showed that inhibition of FXa (37) or thrombin (33, 38) as well as fibrinogen deficiency 

(39) attenuates myocardial infarction in animal models. In addition, fibrin degradation 

fragment E1 exacerbates myocardial infarction by facilitating leukocyte infiltration into 

myocardium (39, 40). Therefore fibrin generation is one mechanism by which the TF-

thrombin pathway contributes to myocardial infarction.

The contribution of thrombin-mediated activation of PAR-1 to myocardial infarction is less 

clear. We found that PAR-1 deficiency has no effect on the infarct size after cardiac I/R 

injury (38). In contrast, Strande and colleagues reported that the PAR-1 antagonist SCH 

79797 reduces infarct size during myocardial I/R injury in rats (41). The possible off-target 

effect of SCH 79797 or PAR-4 mediated compensation for PAR-1 deficiency may explain 

these different findings (42, 43). Interestingly, we found that PAR-1 deficient mice had 

reduced dilatation of the left ventricle and better preservation of heart function two weeks 

after I/R injury. In vitro studies demonstrated that activation of PAR-1 with either thrombin 

or agonist peptide leads to a series of molecular and morphological changes that lead to 
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hypertrophic growth of cardiomyocytes (44, 45). Consistent with these observations, we 

showed that cardiomyocyte-specific overexpression of PAR-1 induced eccentric heart 

hypertrophy and decreased heart function (38). Importantly, cardiomyocyte-specific deletion 

of TF reduced eccentric hypertrophy in PAR-1 transgenic mice, indicating that activation of 

PAR-1 on cardiomyocytes was mediated by local TF-dependent thrombin generation (38). 

Interestingly, Loubele and colleagues demonstrated that protective effects of exogenous 

administration of activated protein C on cardiac I/R injury required PAR-1 (46) suggesting 

PAR-1 mediated responses may be ligand specific.

The protective effect of TF:FVIIa complex inhibition on I/R-induced myocardial infarction 

could be also mediated via attenuation of PAR-2 signaling. We showed that PAR-2 

deficiency reduces infarct size, oxidative stress, and expression of inflammatory cytokines 

caused by I/R injury (47). Furthermore, 4 weeks after I/R injury hypertrophy and dilatation 

of left ventricle were significantly attenuated whereas heart function was better preserved in 

PAR-2 deficient mice (47). However, this protection could simply be the result of smaller 

initial infarct size observed in PAR-2 deficient mice. Therefore in the follow up studies we 

investigated the “infarct independent” contribution of PAR-2 to heart remodeling. 

Consistent with previous observations, we demonstrated that activation of PAR-2 induced 

hypertrophic growth and of cultured rat neonatal cardiomyocytes (48). In addition, PAR-2 

activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine 

MCP-1. Furthermore, cardiomyocyte-specific overexpression of PAR-2 in mice induced 

heart hypertrophy, cardiac fibrosis, inflammation and heart failure (48). Finally, in a mouse 

model of myocardial infarction induced by permanent ligation of the left anterior descending 

coronary artery, PAR-2 deficiency reduced heart remodeling and improved heart function 

independently of its contribution to the size of the initial infarct (48). Further studies are 

required to determine if these effects are mediated solely by TF:FVIIa–dependent activation 

of PAR-2 or other PAR-2 ligands, for example mast cell tryptase (49, 50).

In contrast to our studies, several recent papers reported that activation of PAR-2 with a 

PAR-2 agonist peptide has a beneficial effect in ex vivo as well in vivo models of heart I/R 

injury (51–53). The protective mechanism involved endothelial cell-dependent vasodilation 

of coronary vessels (53). The similar differences between genetic deficiency and 

pharmacologic inhibition of the receptor have been also reported for PAR-4 (54–56). The 

possible explanations for these contradictory results may include so called “biased agonist” 

signaling (57, 58), cell type specific responses or accessibility of the inhibitors to the target 

cells. Importantly, a recent study indicated that commonly used PAR-2 agonist peptide 

SLIGRL-NH2 facilitates PAR-2 independent effects (59). We have discussed that in detail in 

our recent papers (48, 56).

Viral Myocarditis

Myocarditis is defined as inflammation within the myocardium in response to different 

insults, such as viral infections, autoimmune reactions, toxins and adverse drug reactions. 

Coxsackievirus B3 (CVB3) was one of the first viruses described and investigated to cause 

viral myocarditis (60). Viral myocarditis can be divided in three phases. The early phase 

with virus replication in the heart and innate immune responses, the acute phase with 
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declining virus load but extensive myocardial inflammation and the late stage with virus 

clearance, declining myocardial inflammation and ongoing cardiac remodeling leading to 

dilated cardiomyopathy and heart failure. Viral infections induce TF expression and activate 

coagulation (61, 62). Interestingly, heart failure induced by viral myocarditis is associated 

with increased risk of thrombosis, demonstrated by increased incidence of ventricular fibrin 

deposition and presence of thrombi (63). Data by us and others suggest that the early/acute 

inflammatory response after infection, but not late/chronic inflammation, leads to increased 

TF expression and subsequent thrombosis in the heart (23, 63–65).

Thrombin mediated PAR-1 activation was linked to increased susceptibility of endothelial 

cells to herpes viruses infection in vitro (66). However, we have recently shown that PAR-1 

deficiency reduces levels of interferon (IFN)-β and CXCL10 during the early phase of 

infection in mice, resulting in higher viral loads and increased inflammation at day 8 after 

CVB3 infection (67). As a consequence, pathological heart remodeling was increased in the 

heart of PAR-1 deficient mice infected with CVB3, as demonstrated by increased fibrosis, 

hypertrophy and significant reduction in heart function compared to wild type mice. 

Inhibition of either TF or thrombin in wild type mice also significantly increased CVB3 

levels in the heart and cardiac injury, linking TF-dependent thrombin generation to PAR-1 

activation (67). Our study revealed an unexpected protective role for the TF/thrombin/

PAR-1 pathway during CVB3 infection-induced myocarditis in mice.

With regard to PAR-2 in myocarditis, Weithauser and collaborators observed that PAR-2 

reduced toll-like receptor 3 (TLR3) mediated immune responses in vitro and in vivo during 

CVB3 infection (68). PAR-2 deficient mice exhibited significantly reduced CVB3 

myocarditis associated with increased activation of the IFN-β pathway. The authors further 

showed that activation of PAR-2 in isolated cardiac fibroblasts reduced TLR3 mediated 

signaling, resulting in reduced IFN-β expression and STAT1 activation (68). The authors 

explained this observation due to direct interaction of PAR-2 with TLR3.

Collectively, these observations suggest that targeting TF/thrombin/PAR-1 pathway may 

impair the innate immune response to CVB3 infection whereas inhibition of PAR-2 may be 

a new strategy to reduce viral myocarditis induced heart remodeling. However, the PAR-2 

activating protease in CVB3 myocarditis has yet to be determined. A possible candidate 

would be mast cell tryptase (61).

Renin-angiotensin system, hypertension and cardiac remodeling

The renin-angiotensin system (RAS) plays a key role in the development and 

pathophysiology of hypertension. The major consequences of hypertension are end-organ 

damage and cardiovascular complications including atrial fibrillation, left ventricular 

hypertrophy and congestive heart failure (69–71). Angiotensin II (Ang II) is the main 

effector of the RAS, and most of its effects are mediated by angiotensin type 1 (AT1) 

receptors (69, 70). Long-term exposure to Ang II leads to development of cardiovascular 

remodeling, fibrosis and heart hypertrophy. The mechanism of Ang II-induced heart 

remodeling may involve the direct action of Ang II on target tissues or may be mediated by 

an Ang II-induced increase in blood pressure (69, 70). One consequence of AT1 receptor 
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activation by Ang II is upregulation of TF expression. Several in vitro studies demonstrated 

that Ang II induces TF expression in smooth muscle cells, endothelial cells and monocytes 

(72–74). TF expression was also upregulated in hypertensive rats throughout the 

endothelium and media of blood vessels and blocking the AT1 receptor with valsartan 

inhibited the upregulation of TF expression (75). Importantly, elevated levels of plasma TF 

are observed in patient with hypertension and AT1 receptor blockage significantly reduced 

TF activity (76). These data indicate that upregulation of TF expression during hypertension 

is mediated via the AT1 receptor and leads to systemic activation of coagulation cascade. 

Consistent with these observations our preliminary data demonstrate increased levels of 

thrombin-antithrombin (TAT) complexes in the circulation of Ang II treated mice (Antoniak 

and Pawlinski, unpublished data). In addition, in mice subjected to chronic Ang II infusion, 

PAR-1 deficiency reduced the expression of pro-fibrotic genes and attenuated collagen 

deposition in the hearts and aortas. These effects were independent from changes in blood 

pressure. The reduced pro-fibrotic phenotype in PAR-1 deficient mice resulted in a better 

preservation of heart function compared to wild type controls (Antoniak and Pawlinski, 

unpublished data). In addition, PAR-1 expression in the murine lungs is associated with 

angiotensin-converting enzyme activity (77).

McGuire and coworkers found that PAR-2 deficiency had no effect on diastolic pressures 

and only moderately reduced systolic pressures in hypertension induced by a high salt diet 

(78). In a more recent study the group showed that chronic PAR-2 stimulation in mice 

causes endothelial and vascular smooth muscle cell dysfunction (79). Interestingly, this 

effect was partly due to PAR-2 desensitization. PAR-2 activation affects small arteries 

independently of NO whereas the PAR-2 dependent vasodilation in larger arteries and the 

aorta is entirely NO-dependent (79). PAR-2 mediated vasodilation of arteries was protective 

against the negative effects of Ang II-induced dysfunction. The authors hypothesized that 

Ang II-induced cyclooxygenases increased the sensitivity of the arteries to the PAR-2 

agonist (80). However, the effects of PAR-2 activation were very subtle, suggesting that 

PAR-2 is not a major regulator of blood pressure and vascular tone in vivo.

Activation of β-adrenergic receptors with isoproterenol also causes hypertension, activation 

of coagulation and induces pathologic heart remodeling (81). Sato et al. observed that 

PAR-2 activation has no effect on isoproterenol stimulation of human airway epithelial cells 

(82). Further, mast cell tryptase contributed to the cardiac fibrosis but did not influence 

blood pressure or ventricular dilatation in hypertensive rats (83). Isoproterenol treatment of 

rat cardiomyocytes and cardiac fibroblasts increased PAR-1 activation that was dependent 

on MMP-13 activity. MMP-13 inhibition significantly attenuated isoproterenol-induced 

PAR-1 activation and reduced PAR-1 dependent heart dysfunction (9). In addition, cardiac 

cells express MMP-1 and its activity is increased after chronic isoproterenol infusion in the 

rat heart in vivo (84). This suggests that not only MMP-13 but also MMP-1 may lead to 

PAR-1 dependent cardiac pathology in chronic β-adrenergic receptor stimulation.

Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a complex cardiovascular disease with multiple 

etiologies. Elevated levels of circulating TF-positive microparticles (85) and increased TF 
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expression have been observed in the lungs of patients with PAH (86, 87) as well as in rat 

and mouse models of the disease (88–90). Despite the prevalence of in situ thrombi in the 

lungs, biomarkers of coagulation are only modestly elevated in the plasma of PAH patients 

(91).

Pathologic right ventricle (RV) remodeling occurs downstream of increased pulmonary 

vascular resistance caused by thrombosis, vasoconstriction, and remodeling of the 

pulmonary vessel wall (92). In PAH, pulmonary vascular remodeling is caused by 

endothelial cell proliferation and dysfunction, SMC proliferation and migration, and 

fibroblast proliferation and differentiation into SMC (93). The presence of thrombi in the 

lungs might also contribute to the vasoconstriction and increased pulmonary vascular 

resistance (86). The increased pulmonary artery pressure and workload on the heart causes 

patients to develop progressive RV hypertrophy and eventual RV failure. A direct role for 

TF in PAH has yet to be established, however several animal models have implicated the 

TF-dependent pathways in pulmonary vascular remodeling, vasoconstriction, and RV 

hypertrophy. The emerging hypothesis is that FXa and thrombin may exert these effects by 

activating PAR-2 and PAR-1 on pulmonary vascular cells.

Overexpression of tissue factor pathway inhibitor on pulmonary SMCs attenuated 

pulmonary vascular remodeling, RV hypertrophy and heart function in the mouse model of 

PAH induced by chronic hypoxia (94). FXa inhibition with rivaroxaban significantly 

reduced RV hypertrophy and function in the rat monocrotaline model of PAH (95). 

Interestingly, FXa inhibition had no effect on pulmonary artery muscularization (95). FXa 

can activate PAR-2, the expression of which is increased in the pulmonary arteries of 

patients with PAH and in rodent models (96). A recent study by Kwapiszewska and 

colleagues demonstrated that PAR-2 deficient mice were protected from chronic hypoxia-

mediated remodeling of the pulmonary artery and RV hypertrophy and dysfunction (96). In 

vitro studies demonstrated that proliferation of pulmonary artery SMCs was mediated by 

mast cell tryptase-dependent PAR-2 activation, suggesting that mast cell tryptase may be 

another ligand activating PAR-2 during PAH (96).

Vasoconstriction that results from dysregulation of the nitric oxide-cGMP pathway is 

implicated in the pathogenesis of PAH (97). In vitro experiments using human pulmonary 

artery endothelial cells revealed that thrombin treatment dose-dependently decreased 

expression of endothelial nitric oxide synthase, guanyl cyclase and phosphodiesterase 5. The 

effects of thrombin on the nitric oxide-cGMP pathway were PAR-1 dependent (98). 

Moreover, the direct thrombin inhibitor dabigatran prevented RV remodeling and 

hypertrophy in monocrotaline-treated rats (98). These data suggest that thrombin-dependent 

activation of PAR-1 might contribute to PAH by downregulating nitric oxide-cGMP 

pathway and causing vasoconstriction. Thrombin might also contribute to excessive 

vasoconstriction in PAH by directly activating vascular smooth muscle cell contraction via 

PAR-1. In endothelial cell-denuded porcine pulmonary arteries, thrombin increased 

intracellular calcium and caused phosphorylation of myosin light chain 20 (MLC20), which 

lead to a sustained contraction of the vessel that was attenuated by PAR-1 antagonism (99, 

100). The use of PAR-1 agonist peptide had similar effects as thrombin (99, 100). PAR-1 

and PAR-2 can also be activated by the TF:FVIIa:FXa ternary complex on endothelial cells 
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(4) but a direct link between ternary complex-dependent PAR activation and PAH has yet to 

be established.

Summary

TF plays an important role in the heart during both physiologic and pathologic conditions. 

Under normal conditions, TF is required to maintain heart hemostasis and protect this vital 

organ from bleeding. Furthermore, TF-thrombin-PAR-1 pathway also plays an important 

role in protecting the heart against pathologic remodeling induced by viral myocarditis. The 

effects are mediated by enhancing anti-viral innate immune response at the initial phase of 

infection, reducing the viral load in the heart and minimizing an inflammation-mediated 

damage of myocardial tissue. In contrast, PAR-2 signaling seems to enhance viral 

myocarditis and heart damage (Figure 1).

During myocardial infarction-induced heart remodeling, TF dependent activation of 

coagulation and activation of PARs contribute to both initial size of the infarct as well as 

cellular process associated with pathologic heart remodeling including hypertrophic growth 

of cardiomyocytes and fibrosis (Figure 1).

TF-dependent activation of coagulation may also contribute to the heart remodeling 

associated with hypertension. Activation of PAR-1 and PAR-2 promote fibrosis, loss of 

heart function, and vasodilation caused by Ang II and isoproterenol. Similarly, PAR-1 and 

PAR-2 contribute to PAH via endothelial and smooth muscle cell-mediated vasoconstriction 

of pulmonary arteries. More studies are required to investigate if coagulation proteases and 

PARs can directly contribute to the remodeling of RV during PAH via affecting 

cardiomyocytes and cardiac fibroblast responses (Figure 2).
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Figure 1. Role of TF and coagulation proteases in the heart hemostasis and heart remodeling 
after the myocardial infarction and myocarditis
Abbreviations: FIIa – thrombin, VP – vascular permeability, P1 – PAR-1, P2 – PAR2, EM – 

extracellular matrix
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Figure 2. Contribution of TF and coagulation protease to the heart remodeling induced by 
systemic and pulmonary hypertension
Abbreviations: Iso – Isoproterenol, FIIa – thrombin, VP – vascular permeability, P1 – 

PAR-1, P2 – PAR2, EM – extracellular matrix
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