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Abstract

BACKGROUND—A third isozyme of human 5α-steroid reductase, 5α-reductase-3, was 

identified in prostate tissue at the mRNA level. However, the levels of 5α-reductase-3 protein 

expression and its cellular localization in human tissues remain unknown.

METHODS—A specific monoclonal antibody was developed, validated, and used to characterize 

for the first time the expression of 5α-reductase-3 protein in 18 benign and 26 malignant human 

tissue types using immunostaining analyses.

RESULTS AND CONCLUSIONS—In benign tissues, 5α-reductase-3 immunostaining was 

high in conventional androgen-regulated human tissues, such as skeletal muscle and prostate. 

However, high levels of expression also were observed in non-conventional androgen-regulated 

tissues, which suggest either multiples target tissues for androgens or different functions of 5α-

reductase-3 among human tissues. In malignant tissues, 5α-reductase-3 immunostaining was 

ubiquitous but particularly over-expressed in some cancers compared to their benign counterparts, 

which suggests a potential role for 5α-reductase-3 as a biomarker of malignancy. In benign 

prostate, 5α-reductase-3 immunostaining was localized to basal epithelial cells, with no 

immunostaining observed in secretory/luminal epithelial cells. In high-grade prostatic 

intraepithelial neoplasia (HGPIN), 5α-reductase-3 immunostaining was localized in both basal 

epithelial cells and neoplastic epithelial cells characteristic of HGPIN. In androgen-stimulated and 
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castration-recurrent prostate cancer (CaP), 5α-reductase-3 immunostaining was present in most 

epithelial cells and at similar levels, and at levels higher than observed in benign prostate. 

Analyses of expression and functionality of 5α-reductase-3 in human tissues may prove useful for 

development of treatment for benign prostatic enlargement and prevention and treatment of CaP.
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INTRODUCTION

Androgen target cells use testosterone (T) as a prohormone, where T is converted by 

intracrine pathways into dihydrotestosterone (DHT), the most potent androgen receptor 

(AR) ligand. The enzyme steroid 5α-reductase (EC1.3.99.5) [1] localizes DHT biosynthesis 

to androgen responsive tissues. 5α-reductase isozymes 1 and 2 are well characterized [2] 

and DHT levels in target tissues are reduced using 5α-reductase inhibitors. However, male 

pattern baldness, that affects an estimated 70% of men by age 80 [3] responds poorly to 5α-

reductase-2 inhibition (finasteride, Propecia™) [4]. Lower urinary tract symptoms from 

benign prostate enlargement affect 50% of men age 50 or older [5], and 20% of men treated 

with the 5α-reductase-2 inhibitor, finasteride (Proscar™), or the bispecific inhibitor of 5α-

reductase-1 and 2, dutasteride (Avodart™), require operative treatment within 4 years [6]. 

CaP is the most common non-skin cancer in American men; approximately 217 730 

Americans will be diagnosed with CaP and approximately 32 050 men will die from CaP in 

2010 [7]. Finasteride treatment of men at increased risk of CaP decreased the diagnosis of 

CaP by 25%, however, the CaP that developed often was more poorly differentiated than 

observed in controls [8]. Dutasteride decreased the incidence of diagnosis of CaP and did 

not affect differentiation [9], but may cause delay of diagnosis that is concerning especially 

for aggressive CaP [10].

Men who fail curative therapy for clinically localized CaP or are diagnosed with advanced 

disease usually receive androgen deprivation therapy (ADT) that causes regression of 

androgen-stimulated CaP through programmed cell death [11]. However, ADT is palliative 

since CaP almost always recurs and causes death. A molecular role for AR in the transition 

from androgen-stimulated CaP to castration-recurrent CaP is supported by continuous 

expression of AR [12-14] and androgen-regulated genes [15]. Many alternative mechanisms 

allow AR-mediated transactivation of gene expression despite castrate levels of circulating 

testicular androgens (reviewed by Refs. 16-23). However, we and others have demonstrated 

that castration-recurrent CaP maintains tissue levels of DHT sufficient for activation of even 

wild-type AR [24-26]. Limited clinical experience has not demonstrated efficacy for 

finasteride added to ADT for advanced CaP [27] or for dutasteride or LY320236, another bi-

specific 5α-reductase inhibitor [28], for secondary treatment of castration-recurrent CaP. 

Consequently, castration-recurrent CaP must be capable of biosynthesis of intraprostatic T 

from circulating adrenal androgens [29] or cholesterol [30] and metabolism of T to DHT at 

levels sufficient for AR activation by incompletely characterized mechanisms.
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Laboratory observations and clinical experience led to speculation about the existence of an 

additional 5α-reductase isozyme. A candidate sequence consistent with a 5α-reductase 

isozyme that mapped to chromosome 4q12 was identified by mining the Human Genome 

Project database [31]. Uemura et al. [32] confirmed the existence of a novel 5α-steroid 

reductase (SRD5A3, type-3) in human tissues but only at the mRNA level. Our study is the 

first to analyze the expression of 5α-reductase-3 protein in human benign and malignant 

tissues. In this analysis, special emphasis was given to the expression of 5α-reductase-3 

during prostate carcinogenesis and progression.

MATERIALS AND METHODS

Cell Culture

PWR-1E, a benign human prostate epithelial cell line, was purchased from American Type 

Culture Collection (ATCC, Manassas, VA) and maintained in Kerationocyte Serum Free 

media (Invitrogen, Carlsbad, CA) supplemented with 5 ng/ml recombinant EGF and 0.05 

mg/ml bovine pituitary extract (Gibco, Carlsbad, CA). LNCaP and C4-2 cells were 

maintained in RPMI-1640 supplemented with 2 mM glutamine and 10% fetal bovine serum 

(FBS, Mediatech, Inc, Herndon, VA). LAPC-4 was maintained in RPMI-1640 supplemented 

with 10 nM R1881 (Perkin-Elmer, Boston, MA). CWR-R1 was maintained in Richter’s 

Improved MEM (Mediatech) supplemented with 20 mM HEPES, 5 mg/ml insulin, 5 mg/ml 

transferin, 5 ng/ml sodium selenite (ITS, Roche, Indianapolis, IN), 0.1 mg/ml epidermal 

growth factor (Invitrogen), 1 mg/ml licoleic acid, 10 mM nicotinamide (Sigma–Aldrich, St. 

Louis, MO), and 2% FBS. CHO-K1, a subclone from the parental CHO cell line, was 

purchased from ATCC and maintained in Nutrient Mixture F12K Kaighn’s modification 

media (Invitrogen) supplemented with 2 mM L-glutamine and 10% FBS.

Anti-5α-reductase-3 Polyclonaland Monoclonal Antibodies

A commercially available polyclonal antibody produced by Sigma (SRD5A3, Sigma–

Aldrich) and a total of four rabbit polyclonal antibodies produced commercially (Open 

Biosystems, Huntsville, AL) against amino acids 1–16, 3–18, 46–62, and 48–65 of the N-

terminus of the 5α-reductase-3 protein were evaluated using Western blot and 

immunohistochemistry and the polyclonal antibody targeting the first epitope, 

M1APWAEAEHSALNPLR16 performed best. Two hybridomas were produced in our 

laboratory against the same epitopes within the N-terminus and the RPCI-5αR3 monoclonal 

antibody performed best. RPCI-5αR3 antibody resulted from fusion of murine myeloma 

(P3X63 Ag8U.1, ATCC CRL 1597) with spleen cells of mouse hosts immunized with 

synthetic peptide (M1APWAEAEHSALNPLR16) using a standard procedure [33]. Each 

peptide was coupled to keyhole limpet hemocyanin using the 1-Ethyl-3-[3-

dimethylaminopropyl] carbodiimide hydrochloride method (Pierce). Hybridomas were 

cloned twice using the limiting dilution method [34]. Stable hybridomas that produced 

monoclonal antibodies were expanded and cryopreserved. Hybridoma cells were injected (1 

× 107) into the peritoneal cavity of female SCID mouse hosts to produce ascites fluid. All 

animal studies were performed in compliance with US Department of Health and Human 

Services Guide for the Care and Use of Laboratory Animals and approved by Roswell Park 

Cancer Institute Animal Care and Use Committee. Ascites fluid was harvested 3–4 weeks 
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after hybridoma cells were injected when it contained 1.2–4 mg/ml of monoclonal antibody. 

Monoclonal antibodies were purified from ascites on Affi-gel protein A agarose (Bio-Rad) 

following manufacturers instructions. RPCI-5αR3 antibody was of the IgG-1 subclass, as 

determined using an ImmunoPure Monoclonal Antibody Isotyping Kit (Pierce). The 

immunoreactivity of the RPCI-5αR3 antibody with prostate cells was confirmed; crude 

extracts (50 μg) prepared from LNCaP, C4-2, LAPC-4, and CWR-R1 cells were reacted 

with synthetic peptide (20 ng) at 4°C for 2 hr. The proteins were separated using SDS-Page 

and electrophoretically transferred onto a polyvinylidene fluoride membrane. Membranes 

were developed using the RPCI-5αR3 monoclonal or polyclonal antibodies, horseradish 

peroxidase (HRP), and electrochemoluminescence. The specificity of each antibody also 

was tested using an enzyme-linked immunosorbent assay (ELISA) and Western blot. The 

detection antigen was peptide conjugated with bovine serum albumin (BSA, EMD 

Chemicals, Gibbstown, NJ).

Reverse Transcription and Quantitative Real-Time PCR

Total RNA from CWR-R1 cells was isolated using RNeasy Mini kits (Qiagen). Total RNA 

(400 ng) was reverse-transcribed into cDNA using random primers (Invitrogen). Primers 

and probes for 5α-reductase-3 were purchased from Applied Biosystems. PCR reactions 

were performed using the 7300 Real-Time PCR system (Applied Biosystems) with a total 

reaction mixture volume of 25 μL containing 8.0 ng cDNA, 1× TaqMan Universal PCR 

Master Mix (Applied Biosystems) and 1× primers and probe mix. The PCR conditions for 

all reactions were: 95°C for 10 min, 40 amplification cycles at 95°C for 15 sec and 60°C for 

1 min. The relative mRNA levels of 5α-reductase-3 in LNCaP, C4-2, LAPC-4, and CWR-

R1 were expressed relative to PWR-1E.

Western Blot

Total cell extracts (50 μg of total protein) from PWR-1E, LNCaP, C4-2, LAPC-4, CWR-R1, 

and CHO-K1, were separated electrophoretically using SDS-poly-acrylamide gel 

electrophoresis (10% w/v; Bio-Rad Laboratories, Hercules, CA) under reducing conditions 

and the separated proteins transferred to nitrocellulose membranes using standard 

procedures [35,36]. Western analyses utilized as primary antibody the RPCI-5αR3 (1 μg/ml) 

or the SRD5A3 (1 and 5 μg/ml) antibody. HRP-conjugated anti-mouse or anti-rabbit IgG 

(Dako) was used as secondary antibody, respectively. Antibody localization was visualized 

using enhanced chemi-luminescence (Pierce Biotechnology). CHO-K1 cell line was used as 

negative control for expression of 5α-reductase-3 [37]. Equal loading of total cell extracts 

was verified visually by immunohistochemical staining of membranes with anti-β-actin 

(Santa Cruz Biotechnology).

5α-Reductase-3 Immunostaining

CWR-R1 cells were fixed in situ for 30 min at room temperature using 4% w/v 

paraformaldehyde. Endogenous peroxidase activity was inhibited with 3.0% v/v H2O2 in 

methanol. Antibody specificity was evaluated by pre-incubating the monoclonal anti-body 

with the inhibitor peptide for 2 hr before immunostaining. Tissue microarrays from benign 

and malignant human tissues were obtained from the Roswell Park Cancer Institute 

Department of Pathology. In addition, prostate tissue sections were cut from formalin-fixed, 
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paraffin-embedded clinical specimens of androgen-stimulated benign prostate (BP) (n = 8), 

high-grade prostatic intraepithelial neoplasia (HGPIN), (n = 8) and androgen-stimulated CaP 

(n = 8) obtained from the Department of Pathology archives or from a tissue microarray 

constructed from formalin-fixed, paraffin-embedded clinical specimens of androgen-

stimulated BP (n = 18), androgen-stimulated CaP (n = 21) and castration-recurrent (n = 19), 

CaP which has been studied previously [14,22,38-45]. All tissues and the images obtained 

from these tissues for analysis were reviewed by one pathologist (Borislav Alexiev). In 

tissue sections, antigens were retrieved using microwave irradiation and citrate buffer pH 

6.0 for 15 min. Endogenous peroxidase activity was inhibited using 3% v/v H2O2 in 

methanol. Sections and CWR-R1 cells were incubated overnight with the RPCI-5αR3 

antibody diluted 1:100 (optimum by checkerboard analysis of 1:50–1:1000 dilutions) in 100 

mM Tris-HCl buffer (pH 7.8) that contained 8.4 mM sodium phosphate, 3.5 mM potassium 

phosphate, 120 mM NaCl, and 1% w/v BSA. After washing 3 times for 10 min in Tris-HCl 

buffer (pH 7.8), sections were incubated with HRP-conjugated anti-mouse IgG (1/100, 

Dako, Carpinteria, CA) secondary antibody for 2 hr at room temperature. Peroxidase activity 

was developed using 100 mM Tris-HCl buffer containing 3,3-diaminobenzidine 

tetrahydrochloride (1 μg/ml, Sigma-Aldrich) and H2O2 (1 μl/ml, VWR International, West 

Chester, PA). Colocalization analyses of 5α-reductase-3/p63 and 5α-reductase-3/alpha-

methylacyl-coenzyme-A racemase (AMACR) were performed using the EnVision™G/2 

Double Stain System according to the manufacturer’s instructions (Dako) [46]. 5α-

Reductase-3 was detected using an HRP-conjugated secondary antibody and 3,3-

diaminobenzidine tetrahydrochloride as substrate (brown precipitate) and p63 and AMACR 

protein expression were visualized using an alkaline phosphatase-conjugated secondary 

antibody and Permanent Red substrate (red precipitate). Sections were counterstained using 

hematoxylin. Immunohistochemistry in absence of primary antibody provided negative 

controls.

Digital Image Collection and Analysis

For cell lines and tissue sections (including tissue microarrays), images were collected using 

an Hamamatsu Color Chilled 3CCD camera (Hamamatsu, Bridgewater, NJ) mounted on an 

Axioskop microscope (Carl Zeiss, Thornwood, NY). For the prostate tissue microarray, five 

images were collected from each 2.0 mm core at total magnification 400×. The images were 

arranged in random order in a digital album using Adobe Photoshop (Adobe Systems, San 

Jose, CA) to facilitate visual scoring. Images were visually scored by three experienced 

observers (M. A. Titus, O. H. Ford and J. L. Mohler) who were blinded to tissue type. The 

observers scored the nuclear and cytoplasmic immunostaining on a scale ranging from 0 (no 

immunostaining) to 3 (strong immunostaining) in each of 100 nuclei or cells, respectively, to 

yield a visual score for each observor ranging from 0 to 300 for each feature in each 

specimen as described by Miyamoto et al. [47]. The intensity of cytoplasmic 

immunostaining also was assessed by quantitative image analysis using Image Pro Plus 

software (MediaCybernetics, Bethesda, MD). A circular region of fixed area was used to 

extract the intensity information for cytoplasmic immunostaining of all epithelial cells in 

each image scored visually. Mean optical density (MOD) was derived from mean intensity 

(Ii) by setting the background intensity to white (Io = 255) and using the equation [48]:
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Mean visual scores and MOD were analyzed using Minitab (State College, PA). ANOVA 

(Tukey’s honestly significant differences test) was used to compare visual scores of nuclear 

and cytoplasmic immunostaining and automated cytoplasmic immunostaining MOD [44]. 

Differences were considered statistically significant if P < 0.05.

RESULTS

Validation of the RPCI-5αR3 Monoclonal Antibody

Expression of 5α-reductase-3 at the mRNA level was analyzed in the BP epithelial cell line 

PWR-1E and the androgen-sensitive CaP cell lines, LNCaP, and LAPC-4, and the 

castration-recurrent CaP cell lines, C4-2 and CWR-R1 (Fig. 1A). 5α-reductase-3 mRNA 

expression in androgen-stimulated CaP and castration-recurrent CaP cell lines were 

expressed relative to PWR-1E cell line, which expressed very low levels of 5α-reductase-3 

mRNA as determined using standard PCR. High levels of 5α-reductase-3 mRNA expression 

compared to PWR-1E were observed in the LNCaP, LAPC-4, and CWR-R1 cell lines. 

However, the castration-recurrent C4-2 cell line showed 5α-reductase-3 mRNA levels 

comparable to the PWR-1E cell line. These results were confirmed at the protein level using 

western blot analysis and the RPCI-5αR3 antibody (Fig. 1B). A single band for 5α-

reductase-3 of in the range of 25–37 kDa was observed in total protein extracts of LAPC-4 

and CWR-R1 cells (Fig. 1B), which corresponds to the expected size for 5α-reductase-3. 

However, no immuno-reactive band was observed in LNCaP cells, even though LNCaP 

expressed similar 5α-reductase-3 mRNA levels as LAPC-4 and CWR-R1. No 

immunoreactive band in the range of 25–37 kDa was observed in PWR-1E, C4-2, and CHO-

K1 cell lines (Fig. 1B). CWR-R1 cells were chosen to compare sensitivity of the 

RPCI-5αR3 and SDR5A3 (Sigma) antibodies. No immuno-reactive band in the range of 25–

37 kDa was detected using the SDR5A3 antibody, even when concentrations were 5-fold 

higher than suggested by the manufacturer (Fig. 1C). A weak band was appreciated using 

SDR5A3 antibody with longer times of exposure of the films (over 5 min). Both antibodies 

(RPCI-5αR3 and SDR5A3) recognized a single band over 50 kDa, which does not 

correspond to the expected size for 5α-reductase-3 (data not shown). Sub-cellular 

localization of 5α-reductase-3 protein and specificity of RPCI-5αR3 antibody were 

confirmed using immunostaining analyses. RPCI-5αR3 antibody showed a cytoplasmic 

immunostaining pattern (Fig. 1D); no nuclear immunostaining was observed. Incubation of 

RPCI-5αR3 antibody with the inhibitor peptide at increasing concentration (1 and 10 μg/ml) 

for 2 hr before immunostaining produced a peptide concentration-dependent inhibition of 

5α-reductase-3 immunostaining in CWR-R1 cells (Fig. 1D). Complete inhibition of 5α-

reductase-3 immunostaining was achieved at peptide concentration of 10 μg/ml.

5α-Reductase-3 Expression in Benign Human Tissues

Semi-quantitative analysis of 5α-reductase-3 expression was performed in a panel of human 

benign tissues, which included androgen-responsive (liver [n = 20], skeletal muscle [n = 2], 
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skin [n = 1] testes [n = 20], thyroid [n = 20]), and androgen-insensitive tissues (brain [n = 

20], breast [n = 20], colon [n = 20], endometrium [n = 20], kidney [n = 20], lung [n = 20], 

myometrium [n = 20], ovary [n = 20], pancreas [n = 15], spleen [n = 20], [n = 20], stomach 

[n = 20], and tonsil [n = 15]) (Figs. 2 and 3, Table I). High levels of 5α-reductase-3 protein 

expression were observed in a subset of human samples, which included skin (stratum 

basale and stratum spinosum), kidney (mostly proximal and some distal convoluted 

tubules), liver, skeletal muscle, myometrium, and pancreas (secretory epithelial cells). 

Moderate levels of expression of 5α-reductase-3 protein were observed in testis (Leydig 

cells), brain (neurons), breast (myoepithelial cells), colon (epithelial cells from colonic 

glands), and stomach (epithelial cells from the base of the gastric glands). Low levels of 5α-

reductase-3 immunostaining were observed in lung (bronchial epithelium), and thyroid 

(cuboidal epithelium from thyroid follicles). 5α-reductase-3 was immunohistochemically 

undetectable in ovary, spleen, endometrium, and tonsil. In most cases, 5α-reductase-3 

immunostaining was distributed homogeneously within the cytoplasm. However, 

perinuclear localization was observed when 5α-reductase-3 immunostaining was intense. 

5α-reductase-3 protein expression was observed both in conventional androgen-responsive 

benign tissues, such as skin and skeletal muscle, and non-conventional androgen-responsive 

tissues, such as kidney, colon and pancreas.

5α-Reductase-3 Expressionin Malignant Human Tissues

As was observed in benign tissues, 5α-reductase-3 immunostaining in malignant tissues 

showed inter-organ and inter-patient variability (Figs. 4 and 5, Table II). High levels of 5α-

reductase-3 immunostaining were observed in malignant tissues from kidney (chromophobe 

carcinoma), liver (hepatocellular carcinoma), stomach (adenocarcinoma), thyroid (papillary 

carcinoma), colon (adenocarcinoma), and uterus (endometrioid adenocarcinoma). Moderate 

to low levels of 5α-reductase-3 immunostaining were observed in adrenal 

(pheochromocytoma), bladder (high grade urothelial carcinoma), breast (lobular and 

metaplastic carcinomas), esophagus (adenocarcinoma), kidney (clear cell renal cell 

carcinoma and papillary carcinoma), lung (adenocarcinoma), ovary (mucinous 

adenocarcinoma), testis (seminoma, embryonal and yolk sac carcinomas), and thyroid 

(medullary carcinoma). 5α-reductase-3 was immunocytochemically undetectable in bladder 

(low grade urothelial carcinoma and small cell carcinoma), lung (mesothelioma), 

leiomyosarcoma, and ovary (serous adenocarcinoma). 5α-reductase-3 immunostaining was 

confined to the cytoplasm of malignant epithelial cells, which exhibited perinuclear 

localization when intense. Among the malignant human tissues analyzed, only breast 

(lobular and metaplastic carcinomas), testis (seminoma, embryonal, and yolk sac 

carcinomas), lung (adenocarcinoma), and thyroid (papillary carcinoma) clearly showed 

over-expression of 5α-reductase-3 protein compared to their benign counterpart (compare 

Tables I and II). However, in the majority of cases, similar levels of 5α-reductase-3 

immunostaining were observed between the benign and malignant tissue pairs (compare 

Tables I and II).

5α-Reductase Expression During Carcinogenesis and Progression of Prostate Cancer

5α-Reductase-3 immunostaining was analyzed in clinical specimens of different types of 

prostate tissues, since the prostate is a highly androgen-responsive organ (Fig. 6). In BP, 5α-
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reductase-3 immunostaining was observed primarily at the periphery of the benign glands, 

which suggests 5α-reductase-3 expression in the basal cell compartment. This observation 

was confirmed by co-localization of 5α-reductase-3 and p63, a basal cell marker. Low to 

undetectable levels of 5α-reductase-3 immunostaining were observed in luminal epithelial 

cells. In HGPIN, 5α-reductase-3 immunostaining localized to both basal cells and neoplastic 

luminal epithelial cells. However, 5α-reductase-3 was low in luminal epithelial cells of 

adjacent benign glands. In androgen-stimulated CaP and castration-recurrent CaP, 5α-

reductase-3 immunostaining was found in the cytoplasm of most malignant epithelial cells. 

5α-reductase-3 immunostaining was mostly perinuclear when intense. Cytoplasmic 5α-

reductase-3 immunostaining intensity was similar in androgen-stimulated CaP and 

castration-recurrent CaP, and was higher than androgen-stimulated BP, when compared 

using visual scores (ANOVA, P < 0.00001) or image analysis (ANOVA, P < 0.00001) 

(Table III). Nuclear immunostaining was minimal and varied marginally among androgen-

stimulated BP, androgen-stimulated CaP, and castration-recurrent CaP (ANOVA, P = 0.205) 

(Table III). 5α-reductase-3 immunostaining in malignant epithelial cells was confirmed by 

co-localization of 5α-reductase-3 and AMACR immunostaining.

DISCUSSION

Several pieces of evidence suggested the presence of a third isozyme of 5α-reductase: a 

candidate gene sequence [31], low response rate of men with castration-recurrent CaP to 

dutasteride in a clinical trial [49], and failure of bi-specific 5α-reductase inhibitors to 

eliminate tissue levels of DHT (dutasteride reduced tissue levels of DHT by 94% in 

androgen-stimulated BP [50] and LY320236 failed to decrease serum DHT levels in intact 

men [51]). Uemura et al. [32] confirmed the existence of a novel 5 alpha-steroid reductase 

(SRD5A3, type-3) in human tissues but only at the mRNA level. They reported that 5α-

reductase-3 was overexpressed in castration-recurrent CaP cells. Gaining insight into the 

localization and function of 5α-reductase-3 has proven difficult because commercially 

available antibodies against 5α-reductase-3 became available only recently and 

characterizing 5α-reductase-3 enzymatic activities is challenging, because the enzymes 

appear embedded within the endoplasmic reticulum, are hydrophobic, and form inclusion 

bodies when expressed in vitro. Our laboratory produced a highly specific monoclonal 

antibody (RPCI-5αR3) against the amino-terminal portion of the 5α-reductase-3 protein and 

analyzed expression of this protein in benign and malignant human tissues, with special 

emphasis on prostate carcinogenesis and CaP progression. During the course of these 

studies, a commercially available polyclonal antibody against 5α-reductase-3 was released 

from Sigma. The Sigma antibody at concentrations that ranged from 1 μg/ml (concentration 

suggested by the manufacturer) to 5 μg/ml revealed no immuno-reactivity using western 

blot. The RPCI-5αR3 antibody, however, detected 5α-reductase-3 protein using 

immunocytochemistry, immunohistochemistry, and western blot. Further analyses are 

required to validate the RPCI-5αR3 antibody for ELISA and immunoprecipitation.

5α-Reductase-3 expression analyses in human tissues performed by Uemura et al. [32] were 

based on northern blot analysis. Their tissue expression analyses revealed very low levels of 

expression of 5α-reductase-3 mRNA in most benign adult organs, with benign pancreas 

showing the highest levels of expression of 5α-reductase-3 mRNA. These results, however, 
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contrast with the data reported by Yamana et al. [52] using QRT-PCR, which indicated a 

broader and higher expression of 5α-reductase-3 mRNA compared to 5α-reductase-1 and 2 

mRNAs in human tissues. Our immunostaining analyses support Yamana’s results and 

showed variable levels of expression of 5α-reductase-3 protein in several benign human 

tissues. The differences in expression of 5α-reductase-3 at the mRNA and protein levels 

between Uemura’s study and our immunostaining analysis could be explained, at least in 

part, by differences in the sensitivity of the techniques utilized (northern blot versus 

immunostaining). Alternatively, presence of mRNA does not always correlate with 

expression of protein, as was demonstrated clearly in this study for 5α-reductase-3 

expression in LNCaP cells, which highlights the importance of our immunostaining analysis.

5α-Reductase-3 protein was expressed in both conventional androgen-regulated human 

tissues, such as skeletal muscle, skin, and prostate, and in non-conventional androgen-

regulated tissues, such as pancreas, colon, and kidney. These data suggest either multiple 

target tissues for androgens or different functions of 5α-reductase-3 among benign human 

tissues. In support of the second hypothesis, Cantagrel et al. [53], reported that mutations in 

5α-reductase-3 gene caused congenital disorders of glycosylation, which induce mental 

retardation and ophthalmologic and cerebellar defects. In this study, 5α-reductase-3 protein 

was found necessary for the reduction of the α-isoprene unit of polyprenols to form 

dolichols, which are required for the N-glycosylation process. Unpublished data from our 

laboratory using protein assays of recombinant 5α-reductase-3 expressed in CHO cells and 

bacteria suggest conversion of T, androstenedione, and progesterone to DHT, 

androstanedione, and 5α-pregnan-3-20-dione, respectively. Broad substrate specificity of 

this enzyme is consistent with ubiquitous expression of 5α-reductase-3 protein in human 

tissues.

In tumor tissues, 5α-reductase-3 protein expression was observed in several different types 

of malignancies. Among those tissues that expressed moderate to high levels of 5α-

reductase-3, only cancers of breast, testis, lung, thyroid, and prostate showed overexpression 

of 5α-reductase-3 compared to their benign counterpart. Neither 5α-reductase-1 nor 5α-

reductase-2 has been advocated as a potential biomarker of malignancy. However, Uemura 

et al. [32] suggested over-expression of 5α-reductase-3 at the mRNA level in castration-

recurrent CaP compared to BP. Even though the number of clinical specimens analyzed in 

this study is limited, these results warrant further investigation of a putative role for 5α-

reductase-3 as a biomarker of malignancy in the prostate, breast, testis, lung, and thyroid 

tissues.

Analysis of archival specimens suggested that 5α-reductase-3 may provide a biomarker of 

malignancy in the prostate. 5α-reductase-3 was expressed in the basal cells of androgen-

stimulated BP but was not detected in the benign luminal epithelium. In contrast, in CaP that 

lacks basal cells, 5α-reductase-3 was found in the malignant epithelium. HGPIN is 

hypothesized to be the precursor lesion for CaP [54]. In all six specimens of HGPIN 

examined, 5α-reductase-3 was present in the basal cell layer of both benign glands and 

HGPIN, and although 5α-reductase-3 was not detected in luminal epithelial cells in benign 

glands adjacent to HGPIN lesions, 5α-reductase-3 was expressed in the neoplastic cells of 

HGPIN lesions. These findings suggest that a characteristic of the development of CaP may 
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be the transition of 5α-reductase-3 expression from the basal cell compartment to the cancer 

epithelial cell compartment; maintenance of 5α-reductase-3 expression may be a 

characteristic of progression.

We [44] and others [55] reported previously that 5α-reducing capacity shifted from 5α-

reductase-2 in androgen-stimulated BP to 5α-reductase-1 in androgen-stimulated CaP and 

castration-recurrent CaP. However, some if not most, of the 5α-reducing capability of 

castration-recurrent CaP may be due to 5α-reductase-3. However, the presence of high 

levels of 5α-reductase-3 protein, and new knowledge gained of the potential importance of 

5α-reduction in preclinical models of castration-recurrent CaP [29,30,56] suggest an 

important role for 5α-reductase-3 in the lethal phenotype of CaP. The potential clinical 

importance of 5α-reductase-3 in CaP requires further investigation but tri-specific 5α-

reductase-3 inhibitors may prove useful for treatment of benign prostatic enlargement and 

prevention and treatment of CaP, especially advanced CaP. These common diseases all 

depend on tissue levels of DHT for AR transactivation that may persist in spite of currently 

available treatments due to unblocked 5α-reductase-3 activity.

CONCLUSIONS

The results of this study allow one to conclude that: (i) expression of 5α-reductase-3 in 

“classical” as well as “non-classical” androgen-regulated tissues is consistent with 5α-

reductase-3 enzyme having functions other than converting T to DHT in human tissues, such 

as participation in the N-glycosylation process; (ii) over-expression of 5α-reductase-3 in 

breast, testis, lung, thyroid, and particularly prostate cancer, compared to their benign 

counterparts, suggests a potential role for 5α-reductase-3 as a biomarker of malignancy; and 

(iii) over-expression of 5α-reductase-3 in AS-CaP and CR-CaP suggests a potential role for 

this enzyme in synthesizing DHT in both an androgen-stimulated and an androgen-deprived 

human prostate microenvironment.
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Fig. 1. 
Validation of the RPCI-5αR3 antibody. A: 5α-reductase-3 mRNA expression level in 

LNCaP, C4-2, LAPC-4, and CWR-R1 cells. 5α-reductase-3 mRNA expression levels in the 

CaP cell lines were normalized to the level of expression of 5α-reductase-3 in the PWR-1E 

benign prostate epithelial cell line (discontinuous red line). B: PWR-1E, LNCaP, C4-2, 

LAPC-4, CWR-R1, and CHO-K1 protein lysates (50 μg) were immunoblotted and 5α-

reductase-3 protein expression was detected using the RPCI-5αR3 antibody. C: CWR-R1 

lysates (50 μg) were immunoblotted and 5α-reductase-3 protein expression was analyzed 

using RPCI-5αR3 antibody at a concentration of 1 μg/ml or SRD5A3 (Sigma) antibody at 

concentrations 1 μg/ml and 5 μg/ml. D: Immunostaining analyses were performed in CWR-

R1 using the RPCI-5αR3 antibody. Preincubation of the RPCI-5αR3 antibody with the 

inhibitor peptide (1 and 10 μg/ml) confirmed specificity. Absence of primary antibody 

provided negative control (Control).
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Fig. 2. 
5α-reductase-3 immunostaining in benign human tissues. High level expressing tissues 

(representative sections that demonstrate semi-quantitative data in Table I). In kidney A,B: 

5α-reductase-3 expression was localized to the cytoplasm of the epithelial cells from some 

of the proximal and distal convoluted tubules (B, arrow). In myometrium C,D: 5α-

reductase-3 immunostaining was located preferentially to the cytoplasm of the smooth 

muscle cells (D: arrow, fibers in transverse). In pancreas E,F: 5α-reductase-3 

immunostaining was observed in some of the secretory cells from the acini (F, arrow). Bars: 

30 μm.
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Fig. 3. 
5α-reductase-3 immunostaining in benign human tissues. Moderate to low level expressing 

tissues (representative sections that demonstrate semi-quantitative data in Table I). In testes 

A,B: 5α-reductase-3 expression was localized to the cytoplasm of Leydig cells (B, arrow). 

In brain C: 5α-reductase-3 immunostaining was localized to the cytoplasm of neurons (D, 

arrow). Low levels of 5α-reductase-3 immunostaining were observed in the glandular 

epithelium of endometrium (E, arrow). 5α-reductase-3 was immunohistochemically 

undetectable in tonsil (F). Bars: 30 μm.
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Fig. 4. 
5α-reductase-3 immunostaining in malignant human tissues. High level expressing tissues 

(representative sections that demonstrate semi-quantitative data in Table II). 5α-reductase-3 

expression was localized mainly to the cytoplasm of the malignant epithelial cells from 

adenocarcinoma of the stomach (A), hepatocellular carcinoma of the liver (B), papillary 

carcinoma of the thyroid (C), endometroid adenocarcinoma of the uterus (D), and 

adenocarcinoma of the colon (E). Bar: 30 μm.
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Fig. 5. 
5α-reductase-3 immunostaining in malignant human tissues. Moderate to low level 

expressing tissues (representative sections that demonstrate semi-quantitative data in Table 

II). Moderate to low levels of 5α-reductase-3 expression were observed in the cytoplasm of 

neoplastic epithelial cells from adenocarcinoma of the esophagus (A), clear cell renal cell 

carcinoma of the kidney (B), papillary carcinoma of the kidney (C), embryonal testicular 

carcinoma (D), adenocarcinoma of the lung (E), and medullary carcinoma of the thyroid (F). 

Negative 5α-reductase-3 immunostaining was observed in small cell carcinoma of the 

bladder (G), mesothelioma (H), and leiomyosarcoma (I). Bar: 30 μm.
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Fig. 6. 
5α-reductase-3 immunostaining in androgen-stimulated benign prostate (AS-BP), androgen-

stimulated high grade intraepithelial neoplasia (AS-HGPIN), androgen-stimulated CaP (AS-

CaP), and castration-recurrent CaP (CR-CaP) tissue sections (representative sections that 

demonstrate quantitative data in Table III). 5α-reductase-3 immunostaining in AS-BP was 

observed primarily at the periphery of benign glands, which suggests 5α-reductase-3 

expression in the basal cell compartment (B, C [arrows]) that was confirmed by co-

localization of 5α-reductase-3 (brown cytoplasmic stain) and p63 (rednuclear stain) 

immunostaining (D). No to low levels of 5α-reductase-3 immunostaining were observed in 

benign luminal epithelial cells (B [arrowhead]). In HGPIN, 5α-reductase-3 immunostaining 

was located in both basal cells and hyperproliferative malignant luminal epithelial cells (F,G 
[arrow]) but no to low levels of 5α-reductase-3 immunostaining were observed in luminal 

epithelial cells of adjacent benign glands (F,G [arrowhead]). In AS-CaP and CR-CaP, 5α-

reductase-3 immunostaining was located in most malignant epithelial cells (I,J,N). 5α-

reductase-3 immunostaining was mostly perinuclear when intense (J,N [arrows]. 5α-

reductase-3 immunostaining in malignant epithelial cells was confirmed by co-localization 

of 5α-reductase-3 (brown cytoplasmic stain) and AMACR (red cytoplasmic stain) 

immunostaining (K). Incubation in the absence of primary antibody provided negative 
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controls (A,E,H,L). Black bars: 30 μM. Images reduced from 200× magnification (columns 

1 and 2) or 400× magnification (columns 3 and 4).
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TABLE I
5α-Reductase-3 Immunostaining in Benign Human Tissues

Tissue
Number of positive cases/

total cases
Staining
intensity Preferential localization

Brain 6/20 −/+ Neurons

Breast 4/20 −/+ Myoepithelial cells

Colon 7/20 −/++ Epithelial cells from colonic glands

Endometrium 10/20 −/+ Glandular epithelium

Kidney 20/20 +++ Epithelial cells (PCT, DCT)

Liver 20/20 +++ Hepatocytes

Lung 2/20 −/+ Bronchial epithelium

Myometrium 11/20 ++ Smooth muscle cells

Ovary 0/20 −

Pancreas 15/15 ++/+++ Secretory cells (GA)

Prostate 23/25 ++ Basal cells

Skeletal muscle 2/2 +/++ Skeletal muscle cells

Skin 1/1 +/++ Stratum basale, stratum spinosum

Spleen 0/20 −

Stomach 12/20 +/++ Epithelial cells from the base of the gastric glands

Testes 8/20 −/+ Leydig cells

Thyroid 13/20 −/+ Cuboidal epithelium from thyroid follicles

Tonsil 0/15 −

Criteria for immunohistochemical analysis: −, negative staining; +, weak staining; ++, moderate staining; +++, intense staining; PCT, proximal 
convoluted tubule; DCT, distal convoluted tubule; GA, glandular acini.
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TABLE II
5α-Reductase-3 Immunostaining in Malignant Human Tissues

Tissue

Number of
positive cases/

total cases
Staining
intensity

Adrenal Pheochromocytoma 1/2 −/+

Bladder

 Low grade TCC 0/2 −

 High grade TCC 2/2 +

 Small Cell CA 2/2 −

Breast

 Lobular CA 2/2 +

 Metaplastic CA 2/2 +

Colon Adeno CA 2/2 ++

Esophagus Adeno CA 2/2 +/++

Kidney

 Chromophobe CA 4/4 +++

 Papillary CA 1/2 ++

 Renal Clear Cell CA 2/2 ++

Liver HCC 2/2 ++/+++

Lung

 Adeno CA 2/2 ++

 Mesothelioma 2/2 −

Leiomyosarcoma 2/2 −

Ovary

 Mucinous CA 4/4 +/++

 Serous CA 0/2 −

Stomach Adeno CA 2/2 ++/+++

Testis

 Seminoma 2/2 ++

 Embryonal CA 2/2 +

 Yolk Sac CA 1/2 ++

Thyroid

 Papillary CA 4/4 +++

 Medullary CA 2/2 +

Uterus Endometroid CA 2/2 ++

Criteria for immunohistochemical analysis: −, negative staining; +, weak staining; ++, moderate staining; +++, intense staining; TCC, transitional 
cell carcinoma; CA, carcinoma; HCC, hepatocellular carcinoma.
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TABLE III
5α-Reductase-3 Immunostaining of AS-BP, AS-CaP, and CR-CaP

Mean ± SE

AS-BP AS-CaP CR-CaP

Visual score

 Nuclear 14.7 ± 4.4 25.6 ± 3.5 29.2 ± 8.4

 Cytoplasmic 115.6 ± 10.5 200.5 ± 9.1
a

163 ± 11.7
a

MOD

 Cytoplasmic 0.32 ± 0.02 0.50 ± 0.03
a

0.49 ± 0.03
a

AS-BP, androgen-stimulated BP; AS-CaP, androgen-stimulated CaP; CR-CaP, castration-recurrent CaP; SE, standard error.

a
Statistically different than androgen-stimulated BP.
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