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Arabidopsis thaliana plants with null mutations in the genes encoding the a and b subunits of the single heterotrimeric G

protein are less and more sensitive, respectively, to O3 damage than wild-type Columbia-0 plants. The first peak of the

bimodal oxidative burst elicited by O3 in wild-type plants is almost entirely missing in both mutants. The late peak is normal

in plants lacking the Gb protein but missing in plants lacking the Ga protein. Endogenous reactive oxygen species (ROS) are

first detectable in chloroplasts of leaf epidermal guard cells. ROS production in adjacent cells is triggered by extracellular

ROS signals produced by guard cell membrane-associated NADPH oxidases encoded by the AtrbohD and AtrbohF genes.

The late, tissue damage–associated component of the oxidative burst requires only the Ga protein and arises from multiple

cellular sources. The early component of the oxidative burst, arising primarily from chloroplasts, requires signaling through

the heterotrimer (or the Gbg complex) and is separable from Ga-mediated activation of membrane-bound NADPH oxidases

necessary for both intercellular signaling and cell death.

INTRODUCTION

The oxidative burst, a transient increase in reactive oxygen

species (ROS), predominantly superoxide (_O2
�) and hydrogen

peroxide (H2O2), is among the first biochemical responses of

plants to pathogen attack and abiotic stress (Mehdy, 1994; Lamb

and Dixon, 1997; Alvarez et al., 1998; Baker and Orlandi, 1999).

Although the deleterious effects of ROS have long been known,

recognition of their role in cell signaling and regulation of gene

expression is relatively recent and still poorly understood (Sauer

et al., 2001; Droge, 2002; Ermak and Davies, 2002). The

phytohormones auxin and abscisic acid (ABA) elicit the pro-

duction of ROS (Pei et al., 2000; Joo et al., 2001; Zhang et al.,

2001; Schopfer et al., 2002), as does a large variety of abiotic

stresses, including extremes of temperature, high light levels,

water deficit, herbicides, cycloheximide, amines, and air pollu-

tants, such as ozone (O3), SO2, and NO2 (Allan and Fluhr, 1997;

Tenhaken and Rubel, 1998; Scheel, 2002). ROS are essential for

auxin and ABA signaling as well as for activating stress and

defense responses (Levine et al., 1994; Alvarez et al., 1998; Pei

et al., 2000; Joo et al., 2001; Zhang et al., 2001; Scheel, 2002). O3

represents an oxidative stress to living organisms and is a major

atmospheric pollutant that damages crops, forests, and urban

vegetation (Runeckles and Chevonne, 1992). The plant’s re-

sponse to O3 resembles the biotic defense response and

includes a biphasic oxidative burst and induction of the hyper-

sensitive response and systemic acquired resistance (Conklin

and Last, 1995; Sharma et al., 1996; Sharma and Davis, 1997;

Sandermann et al., 1998; Rao et al., 2000; Sandermann, 2000).

The emerging picture of the plant oxidative burst is complex

(Allan and Fluhr, 1997; Overmyer et al., 2000; Scheel, 2002).

There are multiple enzymatic sources of ROS in plants, both

extracellular and intracellular, including cell wall peroxidases and

amine oxidases, plasma membrane–bound NADPH oxidases,

and intracellular oxidases and peroxidases in mitochondria,

chloroplasts, peroxisomes, and nuclei (Allan and Fluhr, 1997;

Bolwell and Wojtaszek, 1997; Bowler and Fluhr, 2000; Corpas

et al., 2001; Laurenzi et al., 2001; Bolwell et al., 2002; del Rio

et al., 2002; Scheel, 2002). Processes believed to be activated

by the oxidative burst include homeostatic antioxidant defenses,

physiological adaptations to stress, resistance to pathogens,

and cell death (Levine et al., 1994; Jabs et al., 1996; Romeis et al.,

1999; Grant and Loake, 2000; Mullineaux et al., 2000; Noctor

et al., 2000; Overmyer et al., 2003). How various cellular ROS

sources are activated and whether they play different roles in

the stress response is not well understood (Mahalingam and

Fedoroff, 2003).

Evidence is accumulating that heterotrimeric G protein signal-

ing is involved in stress-associated physiological processes.

Unlike animals, plants have a small number of heterotrimeric G

proteins. The Arabidopsis thaliana genome encodes a single

canonical a and b subunit and just two g subunits (Jones and

Assmann, 2004; Offermanns, 2003). Recent studies in rice (Oryza
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sativa) provide evidence that the heterotrimer is present in the

plasma membrane, that the b and g subunits form a tight

complex, and that a significant fraction of the constituent pro-

teins is present as free Ga monomers and as Gbg complexes

(Kato et al., 2004). The results of phenotypic analyses of

Arabidopsis plants with T-DNA knockout insertion mutations in

the GPA1 and AGB1 genes encoding the Ga and the Gb

subunits, respectively, show that the G protein affects, but is

not essential for, auxin regulation of cell division (Ullah et al.,

2001, 2003). Heterotrimeric G protein signaling to membrane-

bound NADPH oxidase has been implicated in the development

of disease resistance and the apoptotic hypersensitive response

in rice (Suharsono et al., 2002). The a subunit of the single Ara-

bidopsis heterotrimeric G protein is also involved in regulating

stomatal closure in response to ABA (Wang et al., 2001).

We show here that mutations in the genes encoding the a and

b subunits of the heterotrimericGprotein havemarkedly different

effects on the O3 tolerance of Arabidopsis plants and that the

genes are differentially expressed in plants during and after

exposure to O3. We present evidence that the proteins serve

different signaling functions in the course of the oxidative stress

response to O3. We show that there is both a temporal and

spatial progression of endogenous ROS signaling in leaves

responding to O3 exposure, commencing with elevation of

ROS levels in guard cell chloroplasts and membranes and later

spreading to neighboring cells by means of extracellular ROS

signals generated by membrane-bound AtrbohD and AtrbohF

NADPH oxidases. Both the Ga and the Gb proteins are neces-

sary for the rapid initial component of the biphasic oxidative

burst, but only the Ga protein is required for the late, cell death–

associated component.

RESULTS

G Protein Mutations Affect the Sensitivity of Arabidopsis

to O3 Damage

Arabidopsis plants with null mutations in the genes encoding the

a (gpa1-4) and b (agb1-2) subunits of the G protein (Lease et al.,

2001; Jones et al., 2003) exhibit different sensitivities to tissue

damage from O3. We exposed wild-type and mutant plants to

either 500 or 700 ppb O3 for 3 h, then examined the plants for

visible lesions after 24 h. Wild-type plants showed few visible

lesions after exposure to 500 ppb O3 but showed extensive

tissue damage after exposure to 700 ppb (Figures 1A and 1B).

Homozygous gpa1-4 plants showed less damage than wild-type

plants, whereas homozygous agb1-2 plants showed more dam-

age at both ozone levels (Jones et al., 2003; Booker et al., 2004).

We also tested the O3 sensitivity of the gpa1-1 and gpa1-2 null

alleles of the Ga gene, both in the Wassilewskija (Ws) ecotype

(Jones et al., 2003), and the gpa1-1 allele of the Gb gene in the

Columbia-0 (Col-0) ecotype (Lease et al., 2001; Jones et al.,

2003). Plants homozygous for either Ga allele were less sensi-

tive to O3 damage than wild-type Ws plants, whereas agb1-1

homozygotes, like agb1-2 homozygotes, were more sensitive

than Col-0 wild-type plants (see Supplemental Figure 1 online).

Similar results were also obtained when tissue damage was

monitored in leaves by vital dye staining with Trypan Blue or by

ion leakage, an indicator of plasma membrane damage, dur-

ing and after exposure to 350 ppb O3 for 6 h (Figures 1C and

1D), a dose which causes no visible damage to the relatively

O3-resistant Col-0 ecotype. Thus, mutant plants lacking the Ga

protein aremore resistant, whereasmutant plants lacking the Gb

protein are less resistant to O3 damage than wild-type plants.

Because the O3 sensitivities ofWs and Col-0 plants aremarkedly

different (Tamaoki et al., 2003), subsequent experiments were

performed using the gpa1-4 and agb1-2 alleles, both ofwhich are

in the Col-0 background.

TheGPA1 and AGB1 genes show different expression profiles

after O3 exposure. The abundance of both transcripts increased

rapidly, peaking at ;1 h after the onset of O3 exposure (Figure

1E). TheGPA1 gene showed a second later peak in its transcript

profile not observed for the AGB1 gene. GPA1 protein levels,

detected with anti-GPA1 antibodies, increased both early in the

treatment and again between 9 and 12 h after the onset of O3

exposure (Figure 1F). The late rise inGPA1 transcript and protein

abundance, together with the marked resistance of gpa1-4

mutant plants to O3-induced tissue damage and cell death,

suggest that Ga’s role in cell death response is separable from

its role in the heterotrimeric G protein.

GProtein Mutations Affect the O3-InducedOxidative Burst

The oxidative burst has been implicated both in cell death and in

the enhancement of plant resistance to pathogen attack and

abiotic stresses (Levine et al., 1994; Jabs et al., 1997; Alvarez

et al., 1998; Orozco-Cardenas et al., 2001; Suharsono et al.,

2002). We found that a 6-h exposure of wild-type plants to 350

ppb O3, a level that caused tissue damage as judged by ion

leakage, but produced few visible lesions, evoked a marked

biphasic oxidative burst (Figure 2A). We measured H2O2 as

catalase-inhibitable fluorescence generated upon incubation of

cell extractswith the fluorogenic substrate 29,79-dichlorodihydro-

fluorescein diacetate (H2DCFDA) as described in Methods. Leaf

H2O2 production increased rapidly after the onset of O3 expo-

sure, reaching a first peak after 1 to 1.5 h. It then declined to a

minimum at 6 to 9 h and rose to a second peak between 12 and

24 h. Neither peak was detectable in gpa1-4 plants (Figure 2C).

The first peak wasminimal in agb1-2 plants, but the second peak

was of the same or greater magnitude than in wild-type plants

(Figure 2B). Hence, heterotrimeric G protein signaling is neces-

sary toelicit theearlypeak,andeitherbothsubunitsarenecessary

or the action of one is contingent on the presence of the other.

However, unlike the early component of the oxidative burst, the

late component is of comparable magnitude in agb1-2 and wild-

type plants, indicating that it requires only the Ga protein.

Biochemical changes that occur within the first few hours after

O3 exposure increase the ability of plants to withstand sub-

sequent oxidative stress. When exposed briefly to 350 ppb O3

(2 h), then tested for their ability to withstand a damaging dose

of 700 ppb O3 2 h later, wild-type plants showed virtually no tis-

sue damage, in contrast with what was observed without such

a pretreatment (Figure 2D). Plants lacking the Ga protein

exhibited little tissue damage with or without pretreatment.

Plants lacking the Gb protein were more sensitive to damage
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Figure 1. Plant Responses to O3 and G Protein Gene Expression Levels.

(A) to (D) Ozone sensitivity of wild-type and G protein mutant plants.

(A) and (B) Photographs of plants with and without leaf damage ([A], arrowheads) and the percentage of 4-week-old plants with visible lesions 24 h after

a 3-h exposure to O3 at the indicated concentrations (B).

(C) Cell death 1 and 24 h after the onset of a 6-h exposure to 350 ppb ozone. Leaves were stained with Trypan Blue D (see Methods).

(D) Ion leakage (seeMethods) was assayed 24 h after a 6-h exposure of 4-week-old plants to 350 ppbO3. Ion leakage is reported as the ratio of the value

measured in O3-exposed plants to the value obtained in control plants maintained in ambient air (n ¼ 4); raw values are given in Supplemental Table 1

online.

(E) and (F) Four-week-old wild-type plants were exposed to 350 ppb ozone for 6 h.

(E) Ga and Gb transcript levels were measured by RT-PCR.

(F) Ga protein was detected by protein gel blotting with Ga antibodies; the blots were scanned and the values normalized by the amount present at the

initial time point.

G Protein Signals in O3 Stress Response 959



from O3 than either wild-type or gpa1-4 plants even with pre-

treatment but still responded to pretreatment. Thus, G protein

signaling contributes to activating the protective response, but it

is not solely responsible for it.

ROS Arise fromMultiple Cellular Sources

We used ROS scavengers and inhibitors to investigate the

sources of the O3-induced oxidative burst. Ascorbate, a primary

antioxidant in plants, suppressed both the early and late ROS

peaks (Figure 3A) and prevented O3-induced cell death (Figure

3B). This has been attributed to ascorbate’s ability to scavenge

ROS produced by the dissolution of ozone in the apoplastic fluid

(Luwe et al., 1993). Pretreatment with the flavin oxidase inhibitor

diphenylene iodonium (DPI) before O3 exposure completely

eliminated the second ROS peak but depressed the first peak

only slightly (Figure 3C). DPI also suppressed O3-induced cell

death, as judged by ion leakage (Figure 3D). Hence, flavin

oxidases are largely or entirely responsible for the second cell

death–associated ROS peak. DPI effects only a slight reduction

in the initial peak (Figure 3C), suggesting that a different, DPI-

insensitive ROS-generating system is responsible for most of the

first component of the oxidative burst.

Figure 2. O3-Induced Oxidative Burst in Wild-Type and Mutant Plants.

(A) to (C)Wild-type (A), agb1-2 (B), and gpa1-4 (C) plants were exposed

to 350 ppb O3 for 6 h (closed circles) or air (open circles), then maintained

in O3-free air; leaves were collected and frozen at the indicated times.

ROS were measured by H2DCFDA fluorescence; values were normalized

by the total protein concentration in leaf extracts, and relative fluores-

cence units (RFU) were calculated as a ratio of the value obtained at the

indicated time to the control value at time 0 (n ¼ 5).

(D)Mutant and wild-type plants (4 weeks old) were exposed to O3 for 2 h,

transferred to O3-free air for 2 h, and then exposed to 700 ppb ozone for

3 h, following which leaves were collected and assayed for ion leakage as

described in Methods, reported as the ratio of O3-exposed/control value

(raw values are given in Supplemental Table 1 online).

Figure 3. The Effect of Ascorbate, DPI, and DCMU on ROS Production

and Cell Death after O3 Exposure.

Four-week-old wild-type Col-0 plants were pretreated with 50 mM

ascorbate in MES buffer (pH 6.8) ([A] and [B]), 20 mM DPI in 0.2%

DMSO ([C] and [D]), or 10 mMDCMU in 0.05% EtOH for 4 h ([E] and [F]),

then exposed to 350 ppb ozone for 6 h. RFU, relative fluorescence units.

(A), (C), and (E) Plants were harvested and frozen at the indicated times,

and ROS were quantified by DCF fluorescence.

(B), (D), and (F) Plants were pretreated and exposed to O3 as in (A), (C),

and (E), respectively; ion leakagewasmeasured after 24 h as described in

Methods, reported as the ratio of O3-exposed/control value (error bars

represent6SE,n¼3; rawvalues aregiven inSupplemental Table 1online).
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Because ABA and light stress are known to elicit chloroplast

ROS production (Karpinski et al., 1999; Zhang et al., 2001), we

tested the effect of DCMU, an electron transport inhibitor, on the

O3-induced oxidative burst. DCMU pretreatment inhibited both

the early and the late O3-induced ROS peaks and cell death,

implicating chloroplastic ROS sources (Figures 3E and 3F). To

further investigate the cellular sources of the early ROS peak, we

exposed wild-type plants to 350 ppb O3 for various times, pre-

pared and loaded epidermal peels with the H2DCFDA, and ex-

amined them by confocal microscopy. ROS fluorescence was

first observed in the chloroplasts of stomatal guard cells andwas

detectable within 5 min (Figure 4; see Supplemental Figure 2

online). By 30min, ROS-induced fluorescence was evident at the

periphery of the epidermal pavement cells in immediate contact

with guard cells that had fluorescing chloroplasts, suggesting

that theguard cellswere signaling toneighboring cells. By60min,

there were large patches of fluorescing epidermal cells around

the stomata, and these showed peripheral and chloroplast fluo-

rescence as well as a more diffuse, cytoplasmic fluorescence.

Disrupting electron transport with DCMU inhibited guard cell

chloroplast fluorescence (Figure 5A, 4); inhibiting flavin oxidases

with DPI did not (Figure 5A, 5). Both DPI and DCMU treatment

Figure 4. Fluorescence Microscopic Imaging of ROS in Epidermal Cells.

Four-week-old wild-type plants were exposed to 350 ppb O3 for the indicated times. Epidermal peels were loaded with H2DCFDA for 5 min, washed,

and examined by confocal microscopy. For each time point, the panels show the cell structure of the tissue (A), H2DCFDA fluorescence (B),

fluorescence (C), and H2DCFDA and chloroplast fluorescence images superimposed (D). Blue arrowheads indicate guard cells; white arrowheads

indicate ROS-producing chloroplasts in guard cells (15 and 30 min) and epidermal cells (30 and 60 min). Experiments were repeated at least five times

with similar results.
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completely suppressed ROS-induced fluorescence in epidermal

cells adjacent to guard cells, consistent with the postulated role

of ROS in intercellular signaling (Levine et al., 1994; Allan and

Fluhr, 1997). Further evidence that intercellular signaling requires

ROS is provided by the ability of extracellular catalase and

superoxide dismutase (SOD) to suppress the development of

ROS fluorescence in pavement cells adjacent to stomatal guard

cells (Figure 5A, 6). Insertion mutations in the AtrbohD and

AtrbohF genes, which have been shown to be responsible for

ROS production in response to pathogens (Torres et al., 2002),

decreased the appearance of ROS fluorescence in cells adjacent

to guard cells (Figure 5A, 7 to 9). The occasional small patches of

ROS-fluorescent cells observed in the atrbohF single mutant are

completely absent in the atrbohD atrbohF double mutant (Figure

5A, 9). We conclude that activation of both chloroplastic en-

zymes and membrane-bound NADPH oxidases in guard cells

initiates the early component of the O3-induced oxidative burst

and that both signals are required to elicit ROS production in

adjacent cells.

Both inhibitor studies and genetic evidence from mutants

show that extracellular ROS produced by guard cell NADPH

oxidases encoded by theAtrbohD andAtrbohF genes propagate

the ROS signal to neighboring cells to elicit the complete early

component of the oxidative burst. Figure 5B further shows that

the atrbohF single mutant and the atrbohD atrbohF double

mutant are less susceptible to O3-induced tissue damage, as

measured by ion leakage, than are wild-type plants or plants of

the same ecotype that are homozygous for the atrbohD muta-

tion. The observation that the double mutant consistently shows

less damage by either criterion and that both single mutants

show reduced ROS signaling between epidermal cells indicates

that both proteins are involved. This is in agreement with the

observation that DPI decreases O3-induced tissue damage and

indicates that the AtrbohD- and AtrbohF-generated ROS con-

tribute to cell death (Figure 3D). However, it is also possible that

atrbohD and atrbohF mutations interfere with cell death by

interfering with intercellular propagation of the ROS signal.

The Early Component of the Oxidative Burst Requires

Both Ga and Gb, but the Late Component Requires

Only the Ga Subunit

We used fluorescence microscopy of H2DCFDA-loaded epi-

dermal peels to compare the evolution of the oxidative burst in

Figure 5. Fluorescence Microscopy Imaging of ROS in Epidermal Tissue.

(A) Four-week-old wild-type plants were exposed to O3-free air (1) or 350 ppb O3 for 0.5 h (2) or 1 h (3) or pretreated with 10 mM DCMU in 0.05% EtOH

for 2 h (4) or 20 mM DPI in 0.2% DMSO (5) then exposed to 350 ppb O3 for 0.5 h. Epidermal peels were loaded with H2DCFDA for 5 min, washed, and

examined by fluorescence microscopy. The yellow circle in (2) highlights a patch of fluorescing cells adjacent to a guard cell with highly fluorescent

chloroplasts. (6) Epidermal peels were pretreated with SOD (400 units/mL) and catalase (300 units/mL), exposed to ozone for 0.5 h, then loaded with

H2DCFDA for 5 min, washed, and examined. (7) to (9) Plants homozygous for the indicated mutations were exposed to O3 for 1 h, and then epidermal

peels were prepared as for wild-type plants.

(B) The percentage of 4-week-old wild-type and atrboh mutant plants with visible lesions 24 h after a 3-h exposure to 700 ppb O3.

(C) Ion leakage (see Methods) was assayed 24 h after a 6-h exposure of 4-week-old plants to 350 ppb O3 (raw values are given in Supplemental Table 1

online). Experiments were repeated at least five times with similar results.
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wild-type, gpa1-4, and agb1-2 plants during and after exposure

to 350 ppb O3 for 6 h. In wild-type plants, the early component of

the oxidative burst peaked at 1 h, then subsided by 3 h (Figure 6,

wt). The late ROS burst began to develop at;9 h and arose from

the epidermal cells but did not emanate from stomatal guard

cells. Large patches of intensely fluorescent epidermal cells were

observed at 20 h after the onset of O3 exposure, coincident with

cell death and the development of large lesions in plants exposed

to high O3 levels (Figure 1). O3 exposure of gpa1-4 plants caused

some intensification of guard cell chloroplast fluorescence; ROS

fluorescence was not observed in guard cell membranes or in

neighboring epidermal cells. Consistent with results obtained in

whole leaf extracts (Figure 2), ROS fluorescence was also not

detected in gpa1-4 plants at later times. Thus, the initial chloro-

plastic component of the oxidative burst was markedly attenu-

ated in plants lacking the Ga protein, and the late component

was completely absent. Moreover, gpa1-4 plants show no

membrane-associated fluorescence either early or late in the

oxidative stress response.

Guard cell chloroplasts of the agb1-2 mutant showed no

increase in ROS production after 30 min of O3 exposure. After

1 h, there were small patches of fluorescent epidermal cells, and

chloroplast ROS fluorescence was detected in both guard cells

and adjacent epidermal cells. At 3 and 9 h, agb1-2 plants showed

large patches of weakly fluorescing epidermal cells. Chloroplast

fluorescence in epidermal cells, which have fewer but larger

chloroplasts than guard cells in Arabidopsis (Pyke and Leech,

1994), was more intense in the agb1-2 mutant than in wild-type

plants. At 20 h after the onset of O3 exposure, the cellular dis-

tribution of ROS fluorescence in agb1-2 plants resembled that in

wild-type plants and often was more intense. We conclude that

both the Ga and Gb subunits of the heterotrimeric G protein are

required to trigger fully the initial component of the oxidative

burst but that only the Ga protein is required for the late oxidative

burst associated with cell death. We further conclude that the

resistance of the gpa1-4 mutant to O3-induced cell damage is

attributable to the defect inGa-mediated activation of cell death–

associated late component of the oxidative burst.

Leaves of gpa1-4 plants exhibit a slight increase in the

chloroplastic ROS signal 0.5 h after the onset of O3 exposure.

This suggests that the Gb protein (or the Gbg complex) can itself

activate chloroplastic ROS production. The weakness of the

ROS signal may be due to the low activity (or stability) of the Gb

protein (or the Gbg complex) in the absence of the Ga protein or

it may have other causes. Because the late component of the

oxidative burst develops normally in agb1-2 plants, we conclude

that the Ga/NADPH-oxidase signaling pathway is intact in

agb1-2 mutant plants and that its activation does not depend

on either the presence of the Gb protein or the formation of the

heterotrimeric G protein.

DISCUSSION

Our results show that G protein signaling is required to activate

the intracellular sources of ROS that contribute to the first

component of the biphasic, stress-elicited oxidative burst in

Arabidopsis. We make this inference from the observation that

the first component of the biphasic oxidative burst is highly

attenuated or absent in leaves of mutant plants lacking either the

Ga protein or the Gb protein. Hence, maximal rapid activation

of intracellular ROS production requires signaling through the

heterotrimeric G protein. This, in turn, shows that the ROS

produced by dissolution of O3 in the apoplastic fluid do not

themselves penetrate cells to activate ROS-generating systems.

Rather, the extracellular ROS activate the heterotrimeric G

protein either directly or indirectly. The actual oxidation target

may be the G protein itself, a receptor, or either a protein or

a small molecule that generates a further signal.

Our results further show that the a and b subunits of the

Arabidopsis heterotrimeric G protein act both synergistically and

separately in activating different intracellular ROS-generating

systems. Guard cell chloroplasts are the first detectable ROS

source in wild-type plants. A modest early O3 increase in ROS

Figure 6. Fluorescence Imaging of ROS in Col-0, gpa1-4, and agb1-2

Epidermal Tissue.

Four-week-old plants were exposed to 350 ppb O3, then transferred to

O3-free air. Epidermal peels were prepared at the indicated times as

described in the legend to Figure 5 and examined by fluorescence

microscopy. Experiments were repeated at least five times with similar

results.
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production by guard cell chloroplasts is observed in gpa1-4

mutant plants but not in agb1-2 mutant plants. This observation

suggests that the Gb protein, presumably as part of the Gbg

complex (Kato et al., 2004), activates the chloroplastic source

of ROS, albeit weakly. However, full activity of Gb protein (or

possibly its stability or that of the Gbg complex) depends on the

presence of the Ga protein.

By contrast, ROS production is not observed in chloroplasts

early in the O3 response of agb1-2 mutant plants. Instead, there

is a modest increase in peripheral, presumably membrane-

associated ROS production early in the response. However,

the agb1-2 mutant develops the late, DPI-inhibitable ROS peak.

Thus, Ga signals to targets in membranes, but not in chloro-

plasts, and Ga signaling is independent of the ability to form the

heterotrimer. Taken together, these observations imply that the

Ga and Gbg signals act both separately and synergistically.

The initial production of endogenous ROS is rapid: guard cell

chloroplast fluorescence, as well as some membrane fluores-

cence, is already quite marked by 15 min after the onset of O3

exposure (Figure 4). We have observed H2DCFDA fluorescence

within 5 min after the onset of O3 exposure and within a minute

after the addition of H2O2 to epidermal peels preloaded with

H2DCFDA (see Supplemental Figure 2 online), strongly suggest-

ing that the initial phase of the oxidative burst is triggered directly

by G protein–mediated signaling. It has been reported that guard

cell ROS production can be detected within seconds after the

application of H2O2 to tobacco (Nicotiana tabacum) epidermal

peels (Allan and Fluhr, 1997).

Late Cell Death Component of the Oxidative Burst

The late component of the oxidative burst does not occur in the

gpa1-4mutant, but the timing and magnitude of the late compo-

nent of the oxidative burst are unaffected by the absence of the

Gb protein. Thus, of the three G protein subunits, the Ga subunit

is both necessary and sufficient for the late oxidative burst. The

late component of the oxidative burst clearly differs from the early

component in its cellular origins. The Ga-stimulated membrane-

associated ROS production makes only a small contribution to

the early, largely chloroplast-generated component of the oxi-

dative burst in whole leaf tissue but is responsible for most or all

of the late burst. Hence, the cell death signaling system is intact

in plants that express the Ga, but not the Gb, protein.

However, becausemany hours elapse between the initial rapid

component of the oxidative burst and the late component, the G

protein may act both directly, as discussed below, and indirectly

through its effect on gene expression. The differences in the

expression profiles of the Ga and Gb genes also suggest that the

genes themselves respond to different regulatory signals: the Ga

gene is expressed both early and later in the stress response,

whereas the Gb gene is expressed only during the early part of

the response. The O3 resistance of the gpa1-4 mutant is con-

sistent with the postulated role of the Ga protein in activating

membrane-bound NADPH oxidases to produce damaging levels

of ROS (Suharsono et al., 2002). The association of cell death

with ROS production by membrane-bound NADPH oxidases is

further supported by the observation that mutants lacking either

the AtrbohD, the AtrbohF, or both NADPH oxidase proteins lack

the late oxidative burst (J.H. Joo and N.V. Fedoroff, unpublished

data) and that atrbohF mutants and atrbohD atrbohF double

mutants are more resistant to O3 than wild-type plants of the

same ecotype (Figure 5B). These results extend previous ob-

servations, made at lower concentrations of O3, that the gpa1-4

mutant does not exhibit the epinastic response of wild-type

leaves (Booker et al., 2004).

Molecular connections between the Ga protein and the

NADPH oxidase are not yet completely defined, but it has been

reported that Ga acts through the small GTPase Rac and Rop,

a small RHO-like protein (Baxter-Burrell et al., 2002; Suharsono

et al., 2002). There is evidence that Rac is activated by phospha-

tidic acid (PA) (Suharsonoet al., 2002; Park et al., 2004), and it has

also been reported that Ga interacts with and inhibits phospho-

lipase Da (Zhao and Wang, 2004). The PA generated by phos-

pholipase Da upon activation and dissociation of Ga inhibits the

activity of the ABI1- and ABI2-encoded phosphatases, which

negatively regulate ABA signaling through the stress-activated

MAPK cascade (Zhang et al., 2004). The observations that PA

both increases and decreases ROS-associated cell death may

find its explanation in the balance between the signaling and cell

death roles of ROS (Zhang et al., 2003; Park et al., 2004).

Intercellular Signaling in the Early Component of the

Oxidative Burst

ROS produced by membrane-associated NADPH oxidases are

necessary for the propagation of the early component of the

oxidative burst from its source in guard cells to neighboring cells.

Elevated ROS levels are detectable in the membranes and

chloroplasts of epidermal pavement cells in immediate contact

with each guard cell within 30 min. By 1 h after the onset of O3

exposure, there are large patches of pavement cells, all showing

ROS production from chloroplasts, membranes, and other cyto-

plasmic sources.

Several kinds of evidence support the interpretation that ROS

are either the intercellular signals or part of the intercellular

signaling system, as diagrammed in Figure 7. Addition of SOD

and catalase to reduce extracellular superoxide and hydrogen

peroxide suppressesROSproduction in epidermal cells adjacent

to guard cells. DPI, a flavin oxidase inhibitor, abrogates the in-

crease in ROS in cells adjacent to guard cells but does not affect

ROS production by guard cell chloroplasts. Finally, mutations in

both the AtrbohD and AtrbohF genes, both of which have been

implicated in the oxidative burst triggered by pathogens andABA

(Torres et al., 2002; Kwak et al., 2003), each markedly reduces

fluorescence in cells adjacent to guard cells, whereas a double

mutant plant exhibits only chloroplast fluorescence (Figure 5).

Thus, ROS production by membrane-bound NADPH oxidases is

required for activating cytoplasmic ROS production in neighbor-

ing cells but not in guard cells. The gpa1-4mutant lacking the Ga

protein exhibits nomembranefluorescence at any timeduring the

oxidative stress response, implying that the Ga is absolutely

required for activation of the DPI-inhibitable membrane-bound

ROS-generating system and underscores its importance in

communicating to adjacent epidermal cells. We conclude that

membrane-bound NADPH oxidases participate in ROS signaling

964 The Plant Cell



early in the oxidative stress response, in addition to their in-

dependent role in cell death–associated ROS production (Dat

et al., 2003). The observation that the guard cell chloroplast

oxidative burst is activated even when the membrane-bound

enzymes are inhibited or absent implies that communication of

the oxidative stress signal to chloroplasts does not depend on

activation of the membrane-associated oxidases.

Several observations suggest that the chloroplastic ROS

signal contributes to activating the membrane-associated

NADPH oxidases in intercellular signaling during the early

component of the oxidative burst. DCMU suppresses chloro-

plastic ROS production but does not interfere with ROS pro-

duction in the cytoplasm and membranes of guard cells.

Nonetheless, DCMU largely suppresses the spread of the ROS

signal between cells, even when cells are supplemented with

NADPH, the electron donor for the membrane-bound oxidases

(see Supplemental Figure 3 online). Thus, the early ROS burst

from chloroplasts appears to be necessary for propagation of the

ROS signal throughout the epidermal layer during the initial

component of the oxidative burst.

These results establish that ROS signaling from the chloroplast

is central to the O3-induced oxidative stress response, as it has

been shown tobe for light andwoundstress signaling (Fryer et al.,

2002, 2003; Chang et al., 2004). Analysis of gene expression

profiles during the O3-induced oxidative stress response has

revealed the coordinate upregulation and downregulation of

genes coding for proteins that are targeted to and function in

chloroplasts (Mahalingam et al., 2005). Strikingly, there is a set

of rapidly upregulated nuclear genes whose promoters show

a significant overrepresentation of the light-regulated T boxmotif

(ACTTG) first identified through analysis of the nuclear gene en-

coding a subunit of the chloroplast glyceraldehyde-3-phosphate

dehydrogenase gene (Chan et al., 2001; Mahalingam et al.,

2005). Because light stress induces ROS production, redox

signals are likely common intermediaries in chloroplast signaling

to nuclei in both light and oxidative stress (Fryer et al., 2002). The

sharp delimitation of the subcellular ROS-generating compart-

ments suggests that ROS signals are rapidly quenched in the

reducing environment of the cell. This, in turn, suggests that

redox signals are either transmitted between cellular compart-

ments by redox-sensitive proteins, such as protein disulfide

isomerases, or translated into other types of signals by redox-

sensitive proteins, such as redox-regulated kinases.

Biochemical changes that occur early in the oxidative stress

response increase the ability of plants to withstand subsequent

stress. Exposure of plants to a brief, nondamaging dose of O3

decreases subsequent cell damage from a higher O3 dose. The

agb1-2 plants were more sensitive to tissue damage from O3

thanwild-type plants; preliminary observations suggest that they

exhibit a weaker transcriptional response for several genes that

encode enzymes involved in redox homeostasis, such as ascor-

bate peroxidase and glutathione S-transferase (J.H. Joo and

N.V. Fedoroff, unpublished data). It has been reported that

mutations that decrease catalase activity increase the sus-

ceptibility of tobacco to oxidative burst–triggered cell death in

response to high light stress (Dat et al., 2003). Thus, it is likely

that early heterotrimeric G protein–mediated signaling contrib-

utes to activating the changes in gene expression that have been

designated the defense response or cross-tolerance (Bowler and

Fluhr, 2000).

Figure 7. Diagram of ROS Signaling in Leaf Epidermal Tissue Exposed to O3.

(A)Oxidative stress activates G protein signaling to guard cell chloroplasts and membranes. Ascorbate, a ROS scavenger, suppresses accumulation of

the initial oxidative species from O3, whereas DCMU inhibits electron transport in the chloroplasts.

(B) The diagram shows signal propagation in the early oxidative burst. Activation of membrane-bound NADPH oxidases (AtrbohD and AtrbohF),

inhibitable by DPI, produces extracellular superoxide (_O2
�), which rapidly dismutates to hydrogen peroxide (H2O2). Reduction of extracellular ROS by

SOD and catalase prevents propagation of the ROS signal to epidermal cells adjacent to guard cells. ROS signaling to neighboring cells is represented

as occurring by the same mechanisms.
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However, there are also G protein–independent signals in

the oxidative stress response, as evidenced by the fact that

the agb1-2 mutant developed some cross tolerance in these

experiments. Preliminary transcript analysis indicates that some

O3-responsive genes are relatively unaffected by the G protein

mutations, whereas others are markedly affected (J.J. Joo and

N.V. Fedoroff, unpublished data) and stress MAPKs are acti-

vated after O3 exposure in both G protein mutants, albeit

somewhat less markedly than in wild-type plants (S. Wang and

N.V. Fedoroff, unpublished data). The hypersensitivity of the

agb1-2 mutant to O3 damage may be explained, therefore, by

a suboptimal activation of defense response genes, combined

with an unaltered or somewhat intensified Ga-mediated cell

death response. However, it is also possible that the Gb protein

(or the Gbg complex) serves as a negative regulator of cell death,

actively inhibiting expression of cell death genes or activation of

cell death proteins.

Stress Signaling to Chloroplasts

Although there is ample evidence supporting the central impor-

tance of the photosynthetic apparatus in stress responses to

excess light and biotic and abiotic stresses, how signals reach

the chloroplasts is not understood (Mullineaux et al., 2000;

Mullineaux and Karpinski, 2002). This observation of a markedly

attenuated early oxidative burst in plants with G protein muta-

tions implies that theROSgenerated upon dissolution ofO3 in the

plant’s apoplastic fluid do not enter the cell and act directly on

chloroplasts, nor do they directly activate membrane-bound

NADPH oxidases. One possibility is that the G protein itself is

redox regulated. It has been reported, for example, that two

mammalian Ga proteins, Gai and Gao, are directly regulated by

ROS (Nishida et al., 2000). H2O2 treatment of the Ga subunit

activates it, as judged by the H2O2 dose-dependent increase in

its affinity for GTP, and activates Gbg signaling through PI(3)

kinase to downstream kinases (Nishida et al., 2000). Alternatively

or in addition, ROS may initiate signaling by directly modifying

other membrane-bound proteins that normally respond to

hormone signals, such as ABA. It has been reported that

H2O2, whose production is activated by ABA, activates plasma

membrane–bound Ca2þ channels (Pei et al., 2000). Also, phos-

phatases generally contain active site sulfhydryl residues that are

very sensitive to oxidation (Rhee et al., 2000), and both the ABI1

and ABI2 phosphatases have been reported to be inactivated by

oxidation (Meinhard and Grill, 2001; Meinhard et al., 2002). The

ABI1 and ABI2 phosphatases are also potential intermediaries

in Ga protein signaling because Ga regulates phospholipase D

activity, which in turn regulates the activity of the ABI-encoded

phosphatases that negatively regulate signaling through the

stress-activated MAPK kinase cascade (Zhang et al., 2004).

The role of theGbprotein (or theGbg complex), which appears

to be required for activating ROS production by chloroplasts, is

a challenging area for further investigation. The Gbg complex is

known to havemany targets inmammalian systems (Offermanns,

2003), among which are calcium channels (Herlitze et al., 1996;

Hummer et al., 2003; Wolfe et al., 2003). Calcium signaling is

central to plant stress responses (Knight et al., 1996, 1997;

Klusener et al., 2002), and recent work on PPF1, a chloroplast-

localized Ca2þ ion channel, suggests that it functions to inhibit

programmed cell death in apical meristems (Li et al., 2004).

However, there are many calcium channels in plants cells, and

whether heterotrimeric G proteins participate in their regulation

remains to be elucidated (White, 2000).

Function of the Arabidopsis Heterotrimeric G Protein

Previous studies on null mutations in the Arabidopsis genes

coding for the Ga and Gb proteins have provided evidence that

the G protein is involved in a pathway that determines sensitivity

to auxin (Ullah et al., 2001, 2003) and in ABA-mediated inhibition

of stomatal opening (Wang et al., 2001). Additional evidence that

the heterotrimeric G protein is involved in ABA signaling comes

from reports that Ga interacts directly with AtPirin1, a cupin do-

main protein, to regulate seed germination (Lapik and Kaufman,

2003) and with phospholipase Da1, as noted above (Zhao and

Wang, 2004). ROS production is necessary for both ABA and

auxin signaling (Pei et al., 2000; Jooet al., 2001). Stomatal closure

andplasmamembrane calciumchannel activation are reduced in

atrbohD atrbohF double mutants but can be restored with H2O2,

suggesting that ROS serve as second messengers in ABA

signaling (Kwak et al., 2003). However, it has also been reported

that ABA activates ROS production by guard cell chloroplasts, in

addition to themembrane-bound NADPH oxidases (Zhang et al.,

2001; Kwak et al., 2003).

These experiments reveal that oxidizing conditions trigger

a pattern of rapid intracellular ROS production in guard cells

that is similar to that seen with ABA. They show that activation

of the membrane-bound NADPH oxidase system requires the

presence of the Ga subunit of the heterotrimeric G protein, an

observation consistent with the results of studies on the effects

of Ga mutations on disease resistance in rice (Suharsono et al.,

2002). They reveal that activation of chloroplast ROS production

in response to oxidizing conditions is mediated by the hetero-

trimeric G protein and is required for intercellular signaling from

guard cells to adjacent cells. They further show that intercellular

signaling is mediated by ROS produced by the AtrbohD- and

AtrbohF-encoded NADPH oxidases. Finally, these studies show

that the late cell death–associated component of the oxidative

burst requires only theGa subunit of the heterotrimeric Gprotein.

These results suggest that the role of both G protein and ROS

signaling in the oxidative stress response and in ABA-mediated

responses is significantly more complex than presently envi-

sioned. Oxidation at the cell surface either directly or indirectly

activates the heterotrimeric G protein, subcomponents of which

differentially activate ROS production in different cellular com-

partments. ROS produced at the cell surface by membrane-

bound NADPH oxidases act on guard cell plasma membrane

calcium channels (Kwak et al., 2003) and stimulate ROS pro-

duction in adjacent cells. Thus, cell surface ROS both feed back

to influence the physiological state of the guard cell and serve as

an intercellular signal. Our results suggest that chloroplast ROS

production also influences ROS production at the cell surface

and intercellular ROS signal production. Chloroplast signaling to

the nucleus is well known but poorly understood (Pfannschmidt

et al., 2001; Pfannschmidt, 2003). In view of the fact that cells are

highly reducing environments, it appears likely that redox signals
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arising fromchloroplasts are translated into other types of signals

either through redox-sensitive kinases (Aro and Ohad, 2003) or

by activation of other signaling mechanisms.

METHODS

Plant Materials, Growth Conditions, and O3 Treatment

Arabidopsis thaliana Col-0 plants were used in this study; the gpa1-4 and

agb1-2 are previously characterized transcript-null mutants in the Col-0

background (Jones et al., 2003; Ullah et al., 2003). dSpm transposon in-

sertions in AtrbohD and AtrbohF genes in Col-0 plants were identified by

Torres et al. (2002), who also constructed the atrbohD atrbohF double

mutants.

Plants were grown in MetroMix 200 (Scotts-Sierra Horticultural Prod-

ucts Company, Marysville, OH) in 5-cm pots (50 per flat) at 65% humidity

under fluorescent light at 30 W/m2/s with a 14-h-light/10-h-dark photo-

period for 4 to 4.5 weeks. For O3 exposure, 4-week-old plants were

transferred to anO3 fumigation chamber and exposed to 3506 50 ppbO3

for 6 h or to 500 6 50 ppb or 700 6 50 ppb ozone for 3 h. The O3 levels

were selected based on their ability to either alter physiological functions,

including transcript levels with minimal tissue damage, or to differentiate

among the G protein mutant and wild-type plants based on tissue

damage. Ozone was generated using an ozone generator (model 2000;

JelightCompany, Irvine, CA) andmonitoredwith an ozonemonitor (model

450; Advanced Pollution Instrumentation, San Diego, CA). Control plants

were transferred to an adjacent chamber under identical growth con-

ditions except for the O3 treatment. Entire rosettes were harvested at

different times after ozone treatment, frozen, and kept at �808C for

subsequent analysis.

Quantification of Tissue Damage

To assess the formation of visible lesions, wild-type, agb1-2, and gpa1-4

plants were exposed to 500 or 700 ppb O3 for 3 h, then transferred to

O3-free air. At 24 h after the onset of O3 exposure, plants were examined

for visible lesions; plants with lesions were photographed with a digital

camera (Progres 3012; Kontron America, SanDiego, CA), and the number

of plants showing visible lesions was recorded. To measure tissue

damage by ion leakage, 18 leaves from two plants were collected at the

times indicated in each figure, rinsed with distilled water, then shaken in

25 mL of distilled water on a rotary shaker at 100 rpm for 4 h at room

temperature. The conductivity of the wash solution (mS/cm) was de-

termined using a Corning 316 conductivity meter (Corning, Big Flats, NY).

The total ion content was obtained by determining the conductivity of the

same leaf-containing solution after autoclaving (raw average values for

three replicate measurements are given in Supplemental Table 1 online).

Ion leakage per milligram of wet weight was calculated by dividing the

conductivity of the solution before autoclaving by the conductivity of the

solution after autoclaving and dividing the value by sample weight.

Relative ion leakage is the ratio of the value obtained with leaves from

treated plants to the value obtained with leaves from untreated control

plants. Cell death was detected histochemically by Trypan Blue staining.

Detached leaves were covered with an alcoholic lactophenol Trypan Blue

mixture (30mL ethanol, 10 g phenol, 10mLH2O, 10mL glycerol, 10mL of

10.8 M lactic acid, and 10 mg of Trypan Blue), placed in a boiling water

bath for 3min, left at room temperature for 1 h, then transferred to a chloral

hydrate solution (2.5 g/mL), and boiled for 20 min for destaining.

ROS Assays

Frozen plant tissue was hand ground in liquid nitrogen; the powder was

weighed and immediately taken up in 10 mM Tris-HCl buffer, pH 7.3. The

extract was centrifuged twice at 15,000 rpm for 5 min. ROS production

was assayed by adding 100 mM H2DCFDA in DMSO to a final concen-

tration of 10 mM and measuring fluorescence using a VersaFluor fluo-

rometer (Bio-Rad, Hercules, CA). Because there are indications that the

H2DCFDA is not completely specific for ROS (Myhre et al., 2003), we

performed each measurement on equal aliquots, to one of which we

added catalase (300 units/mL). We then subtracted the catalase-

insensitive background fromeach experimental value. Preliminary experi-

ments (see Supplemental Figure 4 online) established that almost all of

the ROS in the plant extracts was catalase-sensitive, indicating that the

predominant ROS is H2O2. Total protein was quantified using a Bio-Rad

DC protein assay kit. The average fluorescence value obtained from three

successive measurements was divided by the protein content and

expressed as relative fluorescence units per milligram of protein. These

values were then expressed as a ratio of relative fluorescence units

obtained with O3-exposed and control plants.

Microscopy

Fluorescence microscopic observations were performed as described,

with slight modifications (Zhang et al., 2001). Four-week-old wild-type

plants were exposed to 350 ppb O3 for the indicated times. Epidermal

peels were removed from the abaxial surface of each leaf and placed in

a small Petri dish containing 10 mMMES-KCl, pH 7.2, for 5 min. The cells

of epidermal peels are viable and the guard cells are physiologically

responsive under these conditions, as shown by vital dye staining, and

the responsiveness of guard cells to light and ABA (see Supplemental

Figure 5 online). For chemical treatment, epidermal tissues stabilized with

10 mMMES-KCl for 2 h were transferred to fresh buffer with and without

DCMU (10 mM in 0.05%EtOH; Sigma-Aldrich, St. Louis, MO), DPI (20mM

in 0.2%DMSO; Sigma-Aldrich), NADPH (200mM inH2O), SOD (400 units/

mL; Sigma-Aldrich), and catalase (300 units/mL; Sigma-Aldrich) for

another 2 h, then exposed toO3 for the time indicated in each experiment.

The epidermal strips were then transferred to 100mMH2DCFDA in 10mM

Tris-HCl, pH 7.2, in the dark for 5 min. Excess H2DCFDA was removed

by washing with the same buffer. Fluorescence was observed with an

Olympus FV300 laser scanning confocal microscope (Olympus America,

Melville, NY), with the following settings: excitation, 488 nm; emission,

530 nm. Chloroplasts were excited with a green helium-neon laser with

emission collected after filtering through a 660 long-pass filter. Images

were taken and Olympus FV300 software was used for analysis (version

4.0). H2DCFDA fluorescence was also observed using a Zeiss Axioskop

7082 fluorescence microscope (Carl Zeiss, Thornwood, NY) with the

following settings: excitation, 500 nm; emission, 535 nm. Images were

captured with a SenSys CCD camera system, and IPLab software was

used for analysis (version 1.1.5; Scanalytics, Fairfax, VA).

RNA Preparation and Analysis

Leaf tissue for RNA isolation was harvested in liquid nitrogen and stored

at �808C. Total RNA was isolated with the Qiagen RNeasy plant mini kit

(Valencia, CA), quantified spectrophotometrically at 260 nm. Reverse

transcription and PCR were performed using 1 mg of total RNA and the

Qiagen One-Step RT-PCR kit according to the manufacturer’s instruc-

tions. PCR reactions were run for 25 or 28 cycles, which was determined

in preliminary experiments to be in the linear range for these cDNA

concentrations. Oligonucleotides for primers were purchased from

Integrated DNA Technologies (Coralville, IA), using sequence data from

the National Center for Biotechnology Information database. The follow-

ing gene-specific primers were used for PCR amplification: GPA1,

59-ATGGGCTTACTCTGCAGTA-39 and 59-CATAAAAGGCCAGCCTCC-

AGT-39; AGB1, 59-TCAAATCACTCTCCTGTGTCCTCC-39 and 59-TGTC-

TGTCTCCGAGCTCAAAGAACG-39.
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Protein Analysis

Membrane proteins were extracted using a buffer containing 50mM Tris-

HCl, pH 7.6, 1 mM EDTA, 1% Triton, 1% SDS, 5 mM DTT, and 1 mM

PMSF and quantified using Bio-Rad’s DC protein assay kit, which is

compatible with Triton and SDS. Equal amounts of total membrane

proteinwere loaded on a 12%polyacrylamide discontinuous gel (Bio-Rad

mini electrophoresis system). After electrophoresis, proteins were trans-

ferred to Hybond-P PVDF membrane (Amersham, Piscataway, NJ) using

a Mini Trans-Blot electrophoretic transfer cell (Bio-Rad). Immunoblotting

was performedwith rabbit polyclonal anti-Ga antibodies. After incubation

with horseradish peroxidase–conjugated anti-rabbit IgG antibodies,

proteins were detected using ECL Plus protein gel blotting detection

reagents (Amersham) according to the manufacturer’s instructions. The

rabbit polyclonal antiserum was made against the peptide antigen NH2-

CDETLRRRNLLEAGLL-CO2H linked to keyhole limpet hemocyanin via

a thioether bond.

ACKNOWLEDGMENTS

This work was supported by the National Research Initiative of the

USDA Cooperative State Research, Education, and Extension Service

Grant 2002-35100-12139 to N.V.F. and by National Institute of General

Medical Sciences (GM65989-01) and National Science Foundation

(MCB-0209711) grants to A.M.J. We acknowledge Phillip Day for initial

observations on G protein mutants, and we thank Robert Fluhr and Sally

Assmann for critical comments. We thank Jonathan Jones for providing

the seeds of atrbohD, atrbohF, and the double mutants.

Received November 23, 2004; accepted January 6, 2005.

REFERENCES

Allan, A.C., and Fluhr, R. (1997). Two distinct sources of elicited

reactive oxygen species in tobacco epidermal cells. Plant Cell 9,

1559–1572.

Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A.,

and Lamb, C. (1998). Reactive oxygen intermediates mediate a sys-

temic signal network in the establishment of plant immunity. Cell 92,

773–784.

Aro, E.M., and Ohad, I. (2003). Redox regulation of thylakoid protein

phosphorylation. Antioxid. Redox Signal. 5, 55–67.

Baker, C.J., and Orlandi, E.W. (1999). Sources and effect of reactive

oxygen species in plants. In Reactive Oxygen Species in Biological

Systems: An Interdisciplinary Approach, D.L. Gilbert and C.A. Colton,

eds (New York: Kluwer Academic Publishers), pp. 481–501.

Baxter-Burrell, A., Yang, Z., Springer, P.S., and Bailey-Serres, J.

(2002). RopGAP4-dependent Rop GTPase rheostat control of Arabi-

dopsis oxygen deprivation tolerance. Science 296, 2026–2028.

Bolwell, G.P., Bindschedler, L.V., Blee, K.A., Butt, V.S., Davies, D.R.,

Gardner, S.L., Gerrish, C., and Minibayeva, F. (2002). The apo-

plastic oxidative burst in response to biotic stress in plants: A three-

component system. J. Exp. Bot. 53, 1367–1376.

Bolwell, G.P., and Wojtaszek, P. (1997). Mechanisms for the gener-

ation of reactive oxygen species in plant defence: A broad perspec-

tive. Physiol. Mol. Plant Pathol. 51, 347–366.

Booker, F.L., Burkey, K.O., Overmyer, K., and Jones, A.M. (2004).

Differential responses of G-protein Arabidopsis thaliana mutants to

ozone. New Phytol. 162, 633–641.

Bowler, C., and Fluhr, R. (2000). The role of calcium and activated

oxygens as signals for controlling cross-tolerance. Trends Plant Sci.

5, 241–246.

Chan, C.S., Guo, L., and Shih, M.C. (2001). Promoter analysis of the

nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate

dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol. Biol. 46,

131–141.

Chang, C.C., Ball, L., Fryer, M.J., Baker, N.R., Karpinski, S., and

Mullineaux, P.M. (2004). Induction of ASCORBATE PEROXIDASE 2

expression in wounded Arabidopsis leaves does not involve known

wound-signalling pathways but is associated with changes in photo-

synthesis. Plant J. 38, 499–511.

Conklin, P.L., and Last, R.L. (1995). Differential accumulation of

antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant

Physiol. 109, 203–212.

Corpas, F.J., Barroso, J.B., and del Rio, L.A. (2001). Peroxisomes as

a source of reactive oxygen species and nitric oxide signal molecules

in plant cells. Trends Plant Sci. 6, 145–150.

Dat, J.F., Pellinen, R., VanDeCotte,B., Langebartels, C., Kangasjarvi,

J., Inze, D., and Van Breusegem, F. (2003). Changes in hydrogen

peroxide homeostasis trigger an active cell death process in tobacco.

Plant J. 33, 621–632.

del Rio, L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M., Gomez, M.,

and Barroso, J.B. (2002). Reactive oxygen species, antioxidant

systems and nitric oxide in peroxisomes. J. Exp. Bot. 53, 1255–1272.

Droge, W. (2002). Free radicals in the physiological control of cell

function. Physiol. Rev. 82, 47–95.

Ermak, G., and Davies, K.J. (2002). Calcium and oxidative stress: From

cell signaling to cell death. Mol. Immunol. 38, 713–721.

Fryer, M.J., Ball, L., Oxborough, K., Karpinski, S., Mullineaux, P.M.,

and Baker, N.R. (2003). Control of ascorbate peroxidase 2 expression

by hydrogen peroxide and leaf water status during excess light stress

reveals a functional organisation of Arabidopsis leaves. Plant J. 33,

691–705.

Fryer, M.J., Oxborough, K., Mullineaux, P.M., and Baker, N.R. (2002).

Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot.

53, 1249–1254.

Grant, J.J., and Loake, G.J. (2000). Role of reactive oxygen intermedi-

ates and cognate redox signaling in disease resistance. Plant Physiol.

124, 21–30.

Herlitze, S., Garcia, D.E., Mackie, K., Hille, B., Scheuer, T., and

Catterall, W.A. (1996). Modulation of Ca2þ channels by G-protein

beta gamma subunits. Nature 380, 258–262.

Hummer, A., Delzeith, O., Gomez, S.R., Moreno, R.L., Mark, M.D.,

and Herlitze, S. (2003). Competitive and synergistic interactions of G

protein beta(2) and Ca(2þ) channel beta(1b) subunits with Ca(v)2.1

channels, revealed by mammalian two-hybrid and fluorescence

resonance energy transfer measurements. J. Biol. Chem. 278,

49386–49400.

Jabs, T., Dietrich, R.A., and Dangl, J.L. (1996). Initiation of runaway

cell death in an Arabidopsis mutant by extracellular superoxide.

Science 273, 1853–1856.

Jabs, T., Tschope, M., Colling, C., Hahlbrock, K., and Scheel, D.

(1997). Elicitor-stimulated ion fluxes and O2
- from the oxidative burst

are essential components in triggering defense gene activation and

phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA 94, 4800–

4805.

Jones, A.M., and Assmann, S.M. (2004). Plants: The latest model

system for G-protein research. EMBO Rep. 5, 572–578.

Jones, A.M., Ecker, J.R., and Chen, J.G. (2003). A reevaluation of the

role of the heterotrimeric G protein in coupling light responses in

Arabidopsis. Plant Physiol. 131, 1623–1627.

Joo, J.H.,Bae,Y.S., andLee, J.S. (2001). Role of auxin-induced reactive

oxygen species in root gravitropism. Plant Physiol. 126, 1055–1060.

968 The Plant Cell



Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G.,

and Mullineaux, P. (1999). Systemic signaling and acclimation in

response to excess excitation energy in Arabidopsis. Science 284,

654–657.

Kato, C., Mizutani, T., Tamaki, H., Kumagai, H., Kamiya, T., Hirobe,

A., Fujisawa, Y., Kato, H., and Iwasaki, Y. (2004). Characterization

of heterotrimeric G protein complexes in rice plasma membrane. Plant

J. 38, 320–331.

Klusener, B., Young, J.J., Murata, Y., Allen, G.J., Mori, I.C.,

Hugouvieux, V., and Schroeder, J.I. (2002). Convergence of calcium

signaling pathways of pathogenic elicitors and abscisic acid in

Arabidopsis guard cells. Plant Physiol. 130, 2152–2163.

Knight, H., Trewavas, A.J., and Knight, M.R. (1996). Cold calcium

signaling in Arabidopsis involves two cellular pools and a change in

calcium signature after acclimation. Plant Cell 8, 489–503.

Knight, H., Trewavas, A.J., and Knight, M.R. (1997). Calcium signal-

ling in Arabidopsis thaliana responding to drought and salinity. Plant J.

12, 1067–1078.

Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl,

J.L., Bloom, R.E., Bodde, S., Jones, J.D., and Schroeder, J.I.

(2003). NADPH oxidase AtrbohD and AtrbohF genes function in

ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623–

2633.

Lamb, D., and Dixon, R.A. (1997). The oxidative burst in plant disease

resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275.

Lapik, Y.R., and Kaufman, L.S. (2003). The Arabidopsis cupin domain

protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and

regulates seed germination and early seedling development. Plant

Cell 15, 1578–1590.

Laurenzi, M., Tipping, A.J., Marcus, S.E., Knox, J.P., Federico, R.,

Angelini, R., and McPherson, M.J. (2001). Analysis of the distribution

of copper amine oxidase in cell walls of legume seedlings. Planta 214,

37–45.

Lease, K.A., Wen, J., Li, J., Doke, J.T., Liscum, E., and Walker, J.C.

(2001). A mutant Arabidopsis heterotrimeric G-protein beta subunit

affects leaf, flower, and fruit development. Plant Cell 13, 2631–2641.

Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994). H2O2 from

the oxidative burst orchestrates the plant hypersensitive disease

resistance response. Cell 79, 583–593.

Li, J., Wang, D.Y., Li, Q., Xu, Y.J., Cui, K.M., and Zhu, Y.X. (2004).

PPF1 inhibits programmed cell death in apical meristems of both G2

pea and transgenic Arabidopsis plants possibly by delaying cytosolic

Ca2þ elevation. Cell Calcium 35, 71–77.

Luwe, M., Takahama, U., and Heber, U. (1993). Role of ascorbate in

detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.)

leaves. Plant Physiol. 101, 969–976.

Mahalingam, R., and Fedoroff, N. (2003). Stress response, cell death

and signalling: The many faces of reactive oxygen species. Physiol.

Plant. 119, 56–68.

Mahalingam, R., Shah, N., Scrymgeour, A., and Fedoroff, N. (2005).

Temporal evolution of the Arabidopsis oxidative stress response.

Plant Mol. Biol., in press.

Mehdy, M.C. (1994). Active oxygen species in plant defense against

pathogens. Plant Physiol. 105, 467–472.

Meinhard, M., and Grill, E. (2001). Hydrogen peroxide is a regulator of

ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett. 508,

443–446.

Meinhard, M., Rodriguez, P.L., and Grill, E. (2002). The sensitivity of

ABI2 to hydrogen peroxide links the abscisic acid-response regulator

to redox signalling. Planta 214, 775–782.

Mullineaux, P., Ball, L., Escobar, C., Karpinska, B., Creissen, G., and

Karpinski, S. (2000). Are diverse signalling pathways integrated in the

regulation of Arabidopsis antioxidant defence gene expression in

response to excess excitation energy? Philos. Trans. R. Soc. Lond. B

Biol. Sci. 355, 1531–1540.

Mullineaux, P., and Karpinski, S. (2002). Signal transduction in re-

sponse to excess light: Getting out of the chloroplast. Curr. Opin.

Plant Biol. 5, 43–48.

Myhre, O., Andersen, J.M., Aarnes, H., and Fonnum, F. (2003).

Evaluation of the probes 29,79-dichlorofluorescin diacetate, luminol,

and lucigenin as indicators of reactive species formation. Biochem.

Pharmacol. 65, 1575–1582.

Nishida, M., Maruyama, Y., Tanaka, R., Kontani, K., Nagao, T., and

Kurose, H. (2000). G alpha(i) and G alpha(o) are target proteins of

reactive oxygen species. Nature 408, 492–495.

Noctor, G., Veljovic-Jovanovic, S., and Foyer, C.H. (2000). Peroxide

processing in photosynthesis: Antioxidant coupling and redox signal-

ling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1465–1475.

Offermanns, S. (2003). G-proteins as transducers in transmembrane

signalling. Prog. Biophys. Mol. Biol. 83, 101–130.

Orozco-Cardenas, M., Narvaez-Vasquez, J., and Ryan, C. (2001).

Hydrogen peroxide acts as a second messenger for the induction of

defense genes in tomato plants in response to wounding, systemin,

and methyl jasmonate. Plant Cell 13, 179–191.

Overmyer, K., Brosche, M., and Kangasjarvi, J. (2003). Reactive

oxygen species and hormonal control of cell death. Trends Plant Sci.

8, 335–342.

Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels,

C., Sandermann, H., Jr., and Kangasjarvi, J. (2000). Ozone-

sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene

and jasmonate signaling pathways in regulating superoxide-

dependent cell death. Plant Cell 12, 1849–1862.

Park, J., Gu, Y., Lee, Y., and Yang, Z. (2004). Phosphatidic acid

induces leaf cell death in Arabidopsis by activating the Rho-related

small G protein GTPase-mediated pathway of reactive oxygen spe-

cies generation. Plant Physiol. 134, 129–136.

Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen,

G.J., Grill, E., and Schroeder, J.I. (2000). Calcium channels activated

by hydrogen peroxide mediate abscisic acid signalling in guard cells.

Nature 406, 731–734.

Pfannschmidt, T. (2003). Chloroplast redox signals: How photosynthe-

sis controls its own genes. Trends Plant Sci. 8, 33–41.

Pfannschmidt, T., Schutze, K., Brost, M., and Oelmuller, R. (2001). A

novel mechanism of nuclear photosynthesis gene regulation by redox

signals from the chloroplast during photosystem stoichiometry ad-

justment. J. Biol. Chem. 276, 36125–36130.

Pyke, K.A., and Leech, R.M. (1994). A genetic analysis of chloroplast

division and expansion in Arabidopsis thaliana. Plant Physiol. 104,

201–207.

Rao, M.V., Lee, H., Creelman, R.A., Mullet, J.E., and Davis, K.R.

(2000). Jasmonic acid signaling modulates ozone-induced hypersen-

sitive cell death. Plant Cell 12, 1633–1646.

Rhee, S.G., Bae, Y.S., Lee, S.R., and Kwon, J. (2000). Hydrogen

peroxide: A key messenger that modulates protein phosphorylation

through cysteine oxidation. Sci. STKE 2000, PE1.

Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H., and Jones,

J.D. (1999). Rapid Avr9- and Cf-9 -dependent activation of MAP

kinases in tobacco cell cultures and leaves: convergence of resis-

tance gene, elicitor, wound, and salicylate responses. Plant Cell 11,

273–287.

Runeckles, V.C., and Chevonne, B.I. (1992). Crop responses to

ozone. In Surface Level Ozone Exposures and Their Effects on

Vegetation, A.S. Lefohn, ed (Chelsea, MI: Lewis Publishers), pp.

189–270.

Sandermann, H., Jr. (2000). Active oxygen species as mediators of

plant immunity: Three case studies. Biol. Chem. 381, 649–653.

G Protein Signals in O3 Stress Response 969



Sandermann, H.J., Ernst, E., Heller, W., and Langebartels, C. (1998).

Ozone: An abiotic elicitor of plant defence reactions. Trends Plant Sci.

3, 47–49.

Sauer, H., Wartenberg, M., and Hescheler, J. (2001). Reactive oxygen

species as intracellular messengers during cell growth and differen-

tiation. Cell. Physiol. Biochem. 11, 173–186.

Scheel, D. (2002). Oxidative burst and the role of reactive oxygen

species in plant-pathogen interactions. In Oxidative Stress in Plants,

D. Inze and M. Van Montagu, eds (New York: Taylor and Francis), pp.

137–153.

Schopfer, P., Liszkay, A., Bechtold, M., Frahry, G., and Wagner, A.

(2002). Evidence that hydroxyl radicals mediate auxin-induced exten-

sion growth. Planta 214, 821–828.

Sharma, Y.K., and Davis, K.R. (1997). The effects of ozone on

antioxidant responses in plants. Free Radic. Biol. Med. 23, 480–488.

Sharma, Y.K., Leon, J., Raskin, I., and Davis, K.R. (1996). Ozone-

induced responses in Arabidopsis thaliana: The role of salicylic acid in

the accumulation of defense-related transcripts and induced resis-

tance. Proc. Natl. Acad. Sci. USA 93, 5099–5104.

Suharsono, U., Fujisawa, Y., Kawasaki, T., Iwasaki, Y., Satoh, H.,

and Shimamoto, K. (2002). The heterotrimeric G protein alpha

subunit acts upstream of the small GTPase Rac in disease resistance

of rice. Proc. Natl. Acad. Sci. USA 99, 13307–13312.

Tamaoki, M., Matsuyama, T., Kanna, M., Nakajima, N., Kubo, A.,

Aono, M., and Saji, H. (2003). Differential ozone sensitivity among

Arabidopsis accessions and its relevance to ethylene synthesis.

Planta 216, 552–560.

Tenhaken, R., and Rubel, C. (1998). Induction of alkalinization and an

oxidative burst by low doses of cycloheximide in soybean cells. Planta

206, 666–672.

Torres, M.A., Dangl, J.L., and Jones, J.D. (2002). Arabidopsis

gp91phox homologues AtrbohD and AtrbohF are required for accu-

mulation of reactive oxygen intermediates in the plant defense re-

sponse. Proc. Natl. Acad. Sci. USA 99, 517–522.

Ullah, H., Chen, J.G., Temple, B., Boyes, D.C., Alonso, J.M., Davis,

K.R., Ecker, J.R., and Jones, A.M. (2003). The beta-subunit of the

Arabidopsis G protein negatively regulates auxin-induced cell divi-

sion and affects multiple developmental processes. Plant Cell 15,

393–409.

Ullah, H., Chen, J.G., Young, J.C., Im, K.H., Sussman, M.R., and

Jones, A.M. (2001). Modulation of cell proliferation by heterotrimeric

G protein in Arabidopsis. Science 292, 2066–2069.

Wang, X.Q., Ullah, H., Jones, A.M., and Assmann, S.M. (2001). G

protein regulation of ion channels and abscisic acid signaling in

Arabidopsis guard cells. Science 292, 2070–2072.

White, P.J. (2000). Calcium channels in higher plants. Biochim. Biophys.

Acta 1465, 171–189.

Wolfe, J.T., Wang, H., Howard, J., Garrison, J.C., and Barrett, P.Q.

(2003). T-type calcium channel regulation by specific G-protein

betagamma subunits. Nature 424, 209–213.

Zhang, W., Qin, C., Zhao, J., and Wang, X. (2004). Phospholipase D

alpha1-derived phosphatidic acid interacts with ABI1 phosphatase 2C

and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 101,

9508–9513.

Zhang, W., Wang, C., Qin, C., Wood, T., Olafsdottir, G., Welti, R., and

Wang, X. (2003). The oleate-stimulated phospholipase D, PLDdelta,

and phosphatidic acid decrease H2O2-induced cell death in Arabi-

dopsis. Plant Cell 15, 2285–2295.

Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D.W., and Song,

C.P. (2001). Hydrogen peroxide is involved in abscisic acid-induced

stomatal closure in Vicia faba. Plant Physiol. 126, 1438–1448.

Zhao, J., and Wang, X. (2004). Arabidopsis phospholipase Dalpha1

interacts with the heterotrimeric G-protein alpha-subunit through

a motif analogous to the DRY motif in G-protein-coupled receptors.

J. Biol. Chem. 279, 1794–1800.

970 The Plant Cell



DOI 10.1105/tpc.104.029603
; originally published online February 10, 2005; 2005;17;957-970Plant Cell

Junghee H. Joo, Shiyu Wang, J.G. Chen, A.M. Jones and Nina V. Fedoroff
Arabidopsis Oxidative Stress Response to Ozone

 Subunits in theβ and αDifferent Signaling and Cell Death Roles of Heterotrimeric G Protein 

 
This information is current as of July 22, 2020

 

 Supplemental Data  /content/suppl/2005/02/11/tpc.104.029603.DC1.html

References
 /content/17/3/957.full.html#ref-list-1

This article cites 79 articles, 34 of which can be accessed free at:

Permissions  https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X

eTOCs
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for eTOCs at: 

CiteTrack Alerts
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for CiteTrack Alerts at:

Subscription Information
 http://www.aspb.org/publications/subscriptions.cfm

 is available at:Plant Physiology and The Plant CellSubscription Information for 

ADVANCING THE SCIENCE OF PLANT BIOLOGY 
© American Society of Plant Biologists

https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
http://www.plantcell.org/cgi/alerts/ctmain
http://www.plantcell.org/cgi/alerts/ctmain
http://www.aspb.org/publications/subscriptions.cfm

