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Abstract

QT prolongation is associated with increased risk of cardiac arrhythmias. Identifying the genetic 

variants that mediate antipsychotic induced prolongation may help to minimize this risk, which 

might prevent the removal of efficacious drugs from the market. We performed candidate gene 

analysis and five drug specific genome-wide association studies (GWAS) with 492K SNPs to 

search for genetic variation mediating antipsychotic induced QT prolongation in 738 
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schizophrenia patients from the Clinical Antipsychotic Trial of Intervention Effectiveness 

(CATIE) study.

Our candidate gene study suggests the involvement of NOS1AP and NUBPL (p-values 

=1.45×10−05 and 2.66×10−13, respectively). Furthermore, our top GWAS hit achieving genome-

wide significance, defined as a q-value <0.10, (p-value =1.54×10−7, q-value =0.07), located in 

SLC22A23, mediated the effects of quetiapine on prolongation. SLC22A23 belongs to a family of 

organic ion transporters that shuttle a variety of compounds including drugs, environmental toxins, 

and endogenous metabolites across the cell membrane. This gene is expressed in the heart and is 

integral in mouse heart development. The genes mediating antipsychotic induced QT prolongation 

partially overlap with the genes affecting normal QT interval variation. However, some genes may 

also be unique for drug induced prolongation. This study demonstrates the potential of GWAS to 

discover genes and pathways that mediate antipsychotic induced QT prolongation.
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Introduction

The QT interval is an electrocardiogram feature (ECG) that begins with the onset of the 

ventricular depolarization (Q wave) and ends with completion of repolarization (T wave). 

The interval shortens with increasing heart rate and is therefore commonly corrected for 

heart rate (QTc). QT prolongation, in particular in combination with other risk factors 

including female gender, heart disease, hypokalemia, or old age, is associated with an 

increased risk of potentially lethal cardiac arrhythmias and is therefore of major concern1, 2. 

QT interval prolongation can be congenital or mediated by numerous medications and drugs 

of abuse as well as by e.g., infections and electrolyte disturbance.

Antipsychotic drugs are the cornerstones of acute and long-term treatment for schizophrenia. 

The risk of suddendeath for patients receiving antipsychotic drugs has been estimated to 

2.39 times the risk of untreated controls 3. Part of this increased risk may be due to the 

disease itself. Untreated schizophrenia patients have a higherresting heart rate than healthy 

individuals indicating higher levels of arousal. Furthermore, schizophrenia is strongly 

associated with smoking, putting schizophrenia patients at increased risk of cardiovascular 

mortality. Another part of the increased risk is attributable to antipsychotic drugs 4–6.

Current guidelines, intended to predict whether an antipsychotic agent carries an increased 

risk of serious cardiac arrhythmias, place much emphasis on QT interval prolongation as a 

(pre-clinical) indicator 7. Although sudden death is rare and antipsychotic induced QT 

prolongation is not always linked to arrhythmia 8, QT prolongation is among the most 

common reasons antipsychotic agents are restricted or removed from the market. Sertindole 

was voluntarily suspended, droperidol was withdrawn, and restricted labeling was 

introduced for thioridazine and pimozide. Ziprasidone seems toprolong the QT interval more 

than haloperidol, olanzapine, quetiapine, and risperidone but less than sertindole and 

thioridazine. The identification of the mechanisms underlying antipsychotic induced QTc 
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prolongation is a critical step to develop diagnostic tools that could help minimize risk in 

general and avoid that efficacious drugs are removed from the market because of a few 

highly susceptible patients.

Understanding the genetic components involved in the development of antipsychotic 

induced QT prolongation might facilitate a priori identification of patients with increased 

susceptibility. Genetic research of the QT interval has largely relied on family-based designs 

studying rare congenital Mendelian QT syndromes. These studies have identified a number 

of genes in which rare mutations affect the QT interval and increase the risk of sudden 

cardiac death. Some of these genetic mutations have been found in patients with medication-

induced QT prolongation 9. Although these rare variants may only explain a minority of 

drug induced QT prolongation, it suggests that genetic variants could be risk factors for drug 

induced QT prolongation.

Recently a common genetic variant in the nitric oxide synthase 1 adaptor protein gene 

(NOS1AP) that affects cardiac repolarization was identified 10. This finding was replicated 

in several independent samples 11–13. Further common variants were suggested by two 

recent meta-analyses of genome-wide association studies (GWAS) of the QT interval. One 

meta-analysis used genome-wide data from five population-based cohorts with a total of 

15,842 individuals of European ancestry 14. In addition to confirming the NOS1AP 

association, they identify nine loci at p-value <5×10−8. Four loci map near the above 

mentioned Mendelian long-QT syndrome genes, two loci include genes with established 

electrophysiological function, whereas three genes have not previously been implicated in 

cardiac electrophysiology. The second meta-analysis included three GWAS from 13,685 

individuals of European ancestry 15. These authors replicated the NOS1AP findings, genes 

involved in Mendelian long-QT syndromes and identified five new loci.

Although genetic variants affecting congenital long QT could mediate drug-induced QT 

prolongation, drug specific genetic factors may be involved as well. A recent GWAS of QT 

prolongation after 14 days of treatment with iloperidone 16 suggested the possible role of six 

genes. Whereas the two meta-analyses of the QTc interval showed considerable overlap, 

none of the genes identified for drug-induced QT prolongation were among the genome-

wide significant results in the two meta-analyses.

Our study aims to detect genetic variants that mediate the effects of five commonly 

prescribed antipsychotic drugs on QT prolongation. The sample consists of 738 

schizophrenia patients from the Clinical Antipsychotic Trial of Intervention Effectiveness 

(CATIE) study 17, 18. We perform drug specific GWAS to detect novel genetic variants as 

well as conduct specific analysis of potential candidate genes.

Materials and Methods

Study sample

The CATIE study sample has been carefully described elsewhere 17, 18. In short, CATIE is a 

multiphase randomized controlled trial. The patients were diagnosed with schizophrenia 

using the Structured Clinical Interview for DSM-IV 19 and followed for up to 18 months. 
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The main study drugs were olanzapine, perphenazine, quetiapine, risperidone and 

ziprasidone. The participants were recruited from 57 clinical settings around the United 

States. All participants or their legal guardians gave written informed consent, including 

consent for genetic studies. The institutional review board at each site approved the study.

Phenotype measures

Electrocardiograms (ECG) were conducted at the screening phase prior to entering the 

study, at the end of each treatment phase, one month after a new treatment phase started, and 

at month 18. Patients who at screening had QTc prolongation (for men QTc >450 and for 

women QTc >470) were excluded from CATIE. Furthermore, subjects with a history of QTc 

prolongation, a recent myocardial infarction, a history of sustained cardiac arrhythmia, 

uncompensated congestive heart failure, completed left bundle branch block, first-degree 

heart block or currently were prescribed any concurrent treatment were excluded from the 

CATIE study. Patients were discontinued from participation if QTc prolongation was 

observed on a follow-up ECG. However, this occurred only three times. All ECGs were 

transmitted electronically to Cardiac Alert (Quintiles ECG) and automated QTc measures 

confirmed by cardiologists. Prior to analyses, the QT interval was corrected for the heart rate 

(QTc) according to Bazett’s method 20.

Genotyping and genotype quality control

DNA sampling, genotyping and genotype quality control have been described by Sullivan et 

al. 21. In total, 665,439 SNPs were genotyped using the Affymetrix 500K ‘A’ chipset (Santa 

Clara, CA, USA) and a custom 164K SNP-chip created by Perlegen (Mountain View, CA, 

USA). After quality control, 492,000 SNP genotypes from 738 individuals remained for 

statistical analysis.

Statistical analyses

We have previously described 22 and applied 23, 24 a systematic method to estimate 

treatment effects in CATIE. This approach uses mixed modeling 25, 26 to condense all 

measurements collected during the CATIE trial in an optimal, empirical fashion. Our 

method first tests the best way to model antipsychotic effects, then screens many possible 

covariates to select those that improve the precision of the treatment effect estimates, and 

finally generates the individual treatment effect estimates using best linear unbiased 

predictors (BLUPs) 27. As this approach takes advantages of all available information 

detected at multiple time points in CATIE, it is more powerful than traditional approaches 

(e.g., subtracting pre- from post-treatment observations) that use only two time points (see 

Supplementary Information for modeling details).

Approximately 57% of the CATIE subjects self-identify themselves as white/European 

American (EA) and 29% as black/African American (AA). The remaining 14% of the 

patients consider themselves to have other ancestral origins or to belong to multiple 

ancestral categories. If ancestry associated differences in both genotype and phenotype 

distributions exist, there will be a risk of false-positive association findings. To avoid such 

false positives, it is essential to take the different ancestral backgrounds into account. For 

this purpose, we used the multi-dimensional scaling (MDS) approach implemented in 
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PLINK 28 that is essentially equivalent to the principal component method implemented in 

EigenSoft 29. Input data for the MDS approach are the genome-wide average proportion of 

alleles shared identical by state (IBS) between any two individuals. From this (genetic) 

similarity matrix ancestral MDS dimension are extracted. The first dimension captures the 

maximal variance in the genetic similarity; the second dimension must be orthogonal to the 

first and captures the maximum amount of residual genetic similarity, and so on. The first 

five orthogonal dimensions appeared to capture the vast majority of genetic substructure in 

the CATIE sample and were used in further analysis. All association testing was conducted 

in PLINK 28 using a linear regression model with the five population stratification MDS 

dimensions as covariates to avoid false positives due to the possible effects of ancestral 

background. Other precision-enhancing covariates were accounted for in the modeling of the 

BLUPs and thus were not included as separate covariates in PLINK.

To address the issue of multiple testing and controlling the risk of false discovery rate (FDR) 

we calculated Storey’s q-values 30, 31. We used a threshold of q-value <0.1 for declaring 

genome-wide significance 32. This threshold ensures, on average, that only 10% of the SNPs 

declared significant will be false discoveries.

To avoid an all-or-nothing conclusion about whether a SNP is significant and improve the 

interpretation of our GWAS results, we also estimated for each SNP the local FDR (lFDR). 

This estimated lFDR equals the posterior probability that the SNP has no effect 33. It is 

important to note that this estimate is sensitive to the larger effects only so that SNPs with 

lFDR=1 could still have a true but (very) small effect. The main advantage of the lFDR is 

that it provides a marker-specific estimate of that the GWAS finding is false. This is not the 

case for the q-value that essentially averages these probabilities across the whole group of 

markers declared significant. As a result, a marker with very high probability of being a 

false discovery may simply have a small q-value because it was tested simultaneously with a 

marker that has a low probability of being a false positive 34.

Candidate gene analyses

To study gene specific enrichment and overall signal enrichment of the entire set of 

candidate genes, we used a chi-square test to examine whether the total number of observed 

markers with p-values <0.05 deviated significantly from the number expected under the null 

hypothesis assuming no enrichment. In order to minimize the risk that a detected enrichment 

is an effect of non-independence between the tests (i.e. linkage disequilibrium) we 

conducted permutations for the genes with enriched signals. That is, while keeping the 

genotype and MDS information consistent we conducted association testing as described for 

the GWAS, with the exception that we randomly assigned the phenotypes (BLUPs) 10,000 

times to an individual, and recorded the number of times enrichment was detected with the 

permutated phenotypes. Furthermore, a threshold of q-value <0.1 was again used to declare 

significance for individual candidate gene markers.
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Results

Descriptive statistics and antipsychotic induced QTc effects

The average QTc interval in our sample was 405.0 msec (SD=24.9). Table 1 presents 

descriptive statistics for an array of demographic and clinical variables, as well as the effect 

of these variables on QTc estimated by mixed model regression analyses. Males constituted 

74% of the sample, the mean age of the participants was 40.4 years. On average patients 

received antipsychotic medication for the first time 13.8 years prior to entering into CATIE. 

As expected, average QTc was substantially shorter (12.48 msec) in males than in females. 

The QTc tended to be longer in older subjects but self-identified race did not significantly 

affect QTc. QTc was significantly prolonged in patients who were treated with antipsychotic 

agents for a longer time. Table 1 shows that blood pressure and body mass index are 

positively associated with QTc. No significant associations were found with blood lipids.

The left side of Table 2 shows that the number of subjects/assessments included in the study 

ranged between 121–249/200–397. The average number of assessments per subject was 3.4. 

The right side of Table 2 shows the effects of the five major CATIE trial antipsychotic drugs 

on standardized QTc as estimated by linear mixed regression models and controlling for the 

antipsychotic drugs that the subjects used directly prior to the current study phase. The 

average antipsychotic effect on QTc prolongation (Table 2, column b) was somewhat larger 

than those reported in Table 1 for the demographic and clinical variables where the sign of 

effects for olanzapine and risperidone was negative. However, this pattern can easily be 

explained by the smaller sample sizes. Indeed, only the effect of quetiapine was significant 

(b=0.193, pb=0.026).

The aim of this study is to identify genetic variants explaining individual differences in 

antipsychotic effects on the QTc interval. For this purpose, the significance of the average 

effect (Table 2, column b) is irrelevant. Instead, significant individual variations of the drug 

effects are essential. The proportion of the total variance accounted for by individual 

differences in drug effects calculated at the point where antipsychotic-induced QTc change 

plateaus (i.e. reaches its maximum effect) are shown (Table 2, column u). Our results show, 

for all antipsychotic drugs individual differences were large and statistically significant. At 

the point where drug effects plateau, on average 10% of the total variance was accounted for 

by individual difference in drug responses. Ziprasidone showed the largest (u=0.220) and 

olanzapine the smallest (u=0.030) degree of variation accounting for 22% and 3% of the 

total variance respectively.

Candidate gene analyses

Disease-associated genes have been found to impact drug efficacy, even when the proteins 

of interest are not known to be directly involved in the pharmacologic actions of the drug 35. 

Therefore, we investigate if ten candidate genes and two multi-gene loci previously 

identified in recent meta-analyses 14, 15 for the QTc interval also mediate antipsychotic 

induced QTc prolongation. Furthermore, we investigated six suggestive genes from a 

recently reported GWAS of iloperidone induced QT prolongation 16. Investigations in 

CATIE of the mean QTc interval across all observations after the drug specific in-trial 
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(temporal/dynamic) changes are regressed out (Liu et al., in preparation) replicated the 

effects of NOS1AP and other candidate genes for non-drug related variation in QT interval 

such as RNF207 and multiple-gene locus 2 (MLOC2) including CNOT1, GINS3, NDRG4 

and SETD6. These replications add confidence to the validity of our methods and analyses in 

CATIE. NOS1AP, the most frequently replicated candidate gene for QTc interval variation, 

showed enrichment (p-value <1.45×10−5) of potentially interesting signals for drug induced 

QT prolongation in our study (Table 3, top). In addition, NUBPL (nucleotide binding 

protein-like), one of six candidate genes for drug induced QT prolongation (Table 3, bottom) 

showed enrichment (p-value = 2.66×10−13) for SNPs with p-values <0.05. The total set of 

candidate genes for drug induced QT prolongation was slightly enriched (p-values = 0.002). 

No overall enrichment was seen for the total set of candidates for QTc interval (Table 3). No 

specific SNP reached significance at our threshold of q-value <0.1.

Genome-wide association analyses (GWAS)

Figure 1 shows the distribution of the p-values from all GWAS using Quantile-Quantile 

(QQ) plots. Under the null hypothesis, assuming no effects of the markers, the p-values are 

expected to fall on a straight line in these plots. As we do not expect a large number of SNPs 

with true effects, systematic deviations from a straight line indicate test statistic inflation 

that could, for instance, be caused by residual effects of ancestral background. Figure 1 

shows no evidence of test statistic inflation, which is confirmed by the reported lambdas 36 

that are all close to one. Particularly for quetiapine and risperidone there are markers with p-

values, in the upper right corner of the QQ plots that deviate from the straight line and are 

smaller than expected under the null hypotheses. This pattern suggests a possible association 

between these specific markers and the outcome variable.

Table 4 shows our most promising findings. According to our pre-specified criteria (q-value 

<0.1) one finding reached genome-wide significance (p-value = 1.54×10−7, q-value = 0.07), 

the association between rs4959235 and quetiapine/QTc. This SNP is located within an intron 

of the gene SLC22A23 (solute carrier family 22, member 23) that is located on chromosome 

6p25.2. Although p-values of markers in the immediate neighborhood of rs4959235 tended 

to be somewhat better than those of SNPs further away, the main association signal involved 

rs4959235 (for a regional plot see Supplementary Figure 1). The explanation is the very 

modest LD between this marker and other investigated markers in the flanking 100 Kb 

regions (LD <0.2). The posterior probability (lFDR = 0.47) for this marker indicated that 

this particular finding has 53% chance of being a true signal with an (large) effect. 

Furthermore, subsample-specific tests suggested that this finding was strongly supported by 

the European American (EA) subsample (p-value = 1.69×10−6) and to some degree 

supported by the African American (AA) subsample (p-value = 1.77×10−2). Multi-degree of 

freedom haplotype testing in the subsamples did not significantly improve the signals.

The second most significant drug specific marker, rs10458561, (p-value = 3.89×10−7, q-

value = 0.19, lFDR = 0.60) was located in an intergeneic region on chromosome 1p31.1. For 

this marker the posterior probability indicated a 40% chance of truly mediating risperidone’s 

effect on QTc. Subsample-specific tests indicated support from both the AA (p-value = 

8.98×10−4) and the EA (p-value = 3.98×10−4) subsamples.
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Two additional markers, rs16895513 and rs6468544, (p-value = 1.26×10−6, q-value = 0.20, 

lFDR = 0.79; and p-value = 8.42×10−7, q-value = 0.20, lFDR = 0.73 for the two markers, 

respectively) located 2792 base pair apart in an intergenic region on chromosome 8q22.1 

were associated with risperidone/QTc. LD between these two markers was close to complete 

(r2 = 0.99) suggesting that they represented a single signal. The posterior probabilities for 

these markers indicated a 21–27% likelihood of a true signal. The subsample-specific tests 

showed that both AA (p-value = 3.25×10−4) and EA (p-value = 9.04×10−4) contributed to 

this association signal.

Discussion

Antipsychotic drugs are among the drugs causing QT prolongation. A thorough 

understanding of the underlying mechanisms is critical to minimize the risk of these serious 

side effects and to avoid that potentially efficacious drugs causing QT prolongation are not 

available to schizophrenia patients. Our study indicated that as much as 17–55% of the total 

variance in the QTc interval was accounted for by individual difference in antipsychotic 

responses and as much as 10–12% of this variation can be explained by each of the four top 

GWAS findings (table 4). Some, if not all, of the explained variation might overlap between 

the SNPs. In particular, this is the case for markers in high LD. We performed candidate 

gene analysis and GWAS to search for genetic variation mediating the antipsychotic induced 

individual variation in QTc prolongation in 738 schizophrenia patients from the CATIE 

study.

Our top hit, achieving genome-wide significance, defined as a q-value ≤0.10, was with SNP 

rs4959235 at SLC22A23 that mediated the effects of quetiapine on QTc. The gene is a 

member of solute carrier family 22, a large family of organic ion transporters that shuttle a 

variety of compounds including drugs, environmental toxins and endogenous metabolites 

across the cell membrane 37. SLC22A23 is a relatively uncharacterized member of this 

family, being first described in 200738. While the substrate for this transporter is as yet 

undetermined, it is known to be expressed in the heart and mouse studies suggest it is 

integral in heart development 39. As an organic ion transporter, the mechanism of 

SLC22A23’s involvement in antipsychotic-induced QTc prolongation could be via clearance 

of the drug from the heart, or via shuttling of molecules involved in cardiac function. The 

determination of SLC22A23’s organic ion substrate would appear to be the first step in 

elucidating any possible mechanistic relationship.

Our candidate gene analysis suggests that NOS1AP, a frequently replicated candidate gene 

for variations in QTc interval that through nitric oxide synthase signaling accelerates cardiac 

repolarization 40, might also be involved in drug induced QT prolongation. Furthermore, our 

study provides support for the NUBPL gene as a potential candidate gene for QTc 

prolongation. This gene belongs to the Mrp/NBP35 ATP-binding proteins family and is 

involved in nucleotide and ATP binding but the exact function and the potential involvement 

of this gene in QT prolongation remains to be identified.

In conclusion, our study suggests that there are genes in common for regulation of the QTc 

interval and drug induced QT prolongation. Furthermore, our GWAS and candidate gene 
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analyses suggest that genes not known to affect the regulation of the QTc interval potentially 

mediate drug induced QT prolongation. These genes may be of specific interest in order to 

personalize treatment for individual patients. Our findings require replication and functional 

validation. To facilitate the process we provide all p-values (http://www.people.vcu.edu/

~kaaberg) as a resource for investigators with the requisite samples to carry out replication. 

Finally, the present study demonstrates the potential of GWAS in order to discover genes 

and pathways that potentially mediate antipsychotic induced QT prolongation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
QQ plots of five genome-wide association analyses. In each plot the ordered observed p-

values (on a -log10(P) scale) obtained from the single-marker tests are plotted against the 

expected p-values under the complete null hypothesis (i.e. none of the markers has an 

effect). The two curved lines indicate the 95% probability interval for the ordered p-values. 

In each plot we also report the estimated lambda that has an expected value of one in the 

absence of test statistic inflation.

Åberg et al. Page 12

Pharmacogenomics J. Author manuscript; available in PMC 2012 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Åberg et al. Page 13

Table 1

Descriptive statistics and mixed model estimates of effects on standardized QTc for demographic and clinical 

predictors.

Descriptive Statistics Effects on QTc

Mean SD b p

Male 0.74 0.44 −0.5010 <0.001

Age (years) 40.42 10.97 0.0162 <0.001

White 0.67 0.47 0.0903 0.145

Black 0.30 0.46 −0.1199 0.058

Time since 1st Antipsychotic (years) 13.79 10.71 0.0084 0.002

Systolic blood pressure (mmHg) 124.03 15.56 0.0056 <0.001

Diastolic blood pressure (mmHg) 78.89 10.84 0.0093 <0.001

Body mass index (kg/m2) 30.32 6.98 0.0176 <0.001

Triglycerides (mg/dL) 203.61 157.44 0.0002 0.127

Total Cholesterol (mg/dL) 199.35 47.04 0.0008 0.123

The descriptive statistics show the mean and standard deviation (SD) for the CATIE study sample (N=738). Note that participants could report 
belonging to more than one ancestry group. Mixed model parameter b is the (fixed) antipsychotic effect, p the p-value of b. The QTc is 
standardized, for each change of 1 unit in the predictor, QTc changes by b standard deviations.
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