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Batch effects are the systematic non-biological differences between batches
(groups) of samples in microarray experiments due to various causes such as
differences in sample preparation and hybridization protocols. Previous work
focused mainly on the development of methods for effective batch effects
removal. However, their impact on cross-batch prediction performance,
which is one of the most important goals in microarray-based applications,
has not been addressed. This paper uses a broad selection of data sets from
the Microarray Quality Control Phase II (MAQC-II) effort, generated on three
microarray platforms with different causes of batch effects to assess the
efficacy of their removal. Two data sets from cross-tissue and cross-platform
experiments are also included. Of the 120 cases studied using Support vector
machines (SVM) and K nearest neighbors (KNN) as classifiers and Matthews
correlation coefficient (MCC) as performance metric, we find that Ratio-G,
Ratio-A, EJLR, mean-centering and standardization methods perform better
or equivalent to no batch effect removal in 89, 85, 83, 79 and 75% of the
cases, respectively, suggesting that the application of these methods is
generally advisable and ratio-based methods are preferred.
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Introduction

Microarray experiments are typically costly and time-consuming. Many studies
require the use of multiple microarrays, with experiments performed at different
times, on different chip lots or even with different microarray platforms due to
practical complications. This often introduces systematic differences between the
measurements of different batches of experiments, commonly referred to as
‘batch effects’. Batch effects may be introduced by different causes. Some of the
most common factors that can contribute to the generation of batch effects
appear below:

� Chip type/lot/platform (array quality may vary from lot to lot)
� Sites/laboratories (different laboratories may have different standard operating

procedures)
� Sample/preservation protocols (procedures of drawing biological samples may

vary from center to center and over time within center, relevant to
retrospective studies)

� Storage/shipment conditions
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� RNA isolation (different laboratories may use different

extraction procedures or kits, and different lots of

reagents may perform differently)
� cRNA/cDNA synthesis
� Amplification/labeling/hybridization protocol (different

reagents or lots may be used)
� Wash conditions (temperature, ionic strength, fluidics

modules/stations; cleaning schedules)
� Ambient conditions during sample preparation/handling,

such as room temperature and ozone levels
� Scanner (types, settings, calibration drift over prolonged

studies; scheduled maintenance)

We generalize the term ‘batch effects’ in this study to
include the batch effects mentioned above, as well as other
types of systematic bias between two or more groups of
samples such as gene expression measurements acquired
from different microarray platforms, different types of
tissues or different channels in two-color arrays, etc.

Although some of these batch effects could be minimized
or even avoided with careful experimental design and
appropriate precautions, in many occasions certain batch
effects are unavoidable. For example, many studies require
large sample sizes and have to be carried out over many
months or years. In other instances, when clinical speci-
mens are involved, experiments are often driven by the
availability of the samples which cannot be specifically
controlled or accounted for in the original study design, and
may originate from a variety of different clinics. Combining
data from different batches without carefully removing
batch effects can give rise to misleading results, since the
bias introduced by the non-biological nature of the batch
effects can be strong enough to mask, or confound true
biological differences. In the case of masking, it is necessary
to identify and remove the batch effects before proceeding
to the downstream analysis. However, only proper experi-
mental design (including using common controls) can
potentially prevent issues with confounders. If the outcome
is completely confounded with batch, batch effect removal
methods may remove the true biologically based signal.

Microarray signal intensity normalization has been widely
used to adjust for experimental artifacts between all the
samples. The effect of this normalization is to increase the
precision of multi-array measurements through the calibra-
tion and/or homogenization of the signal intensity distribu-
tions. Commonly used normalization methods include
MAS5,1 RMA2 and dchip3 for Affymetrix GeneChips, median
scaling for GE-CodeLink microarrays, and LOWESS-based
methods4 for cDNA two-color microarrays. However, these
normalization methods are not specifically designed for
removing batch effects that are the systematic differences
between two or more groups of samples. Consequently,
batch effects may frequently remain after normalization.
Our findings show that significant batch effects still exist
even after normalization for the majority of the data sets
considered in the MAQC-II project.5

Multiple approaches for batch effect removal have been
published in the literature. Alter et al.6 applied single value

decomposition and principal component analysis (PCA) to
remove batch effects. The principal component representing
the batch effect is subtracted from the data and the
remaining principal components are used to reconstruct
the expression matrix. Benito et al.7 proposed a method
based on distance-weighted discrimination (DWD). It is
intrinsically a modified version of a support vector machine
(SVM) approach, which allows all the data points to
influence the decision boundary, instead of only those
support vectors. The method finds a separating hyper-plane
between two batches and projects the batches onto the
DWD plane, finds the batch mean, and then subtracts
the DWD plane multiplied by this mean. Bylesjö et al.8 used
the Orthogonal Projections to Latent Structures method to
filter out the latent component that represents the batch
effect. Johnson et al.9 proposed to use an empirical Bayes
approach to adjust for batch effects, which pools information
across genes and ‘shrinks’ the batch effect parameter toward
the overall mean of the batch estimates across genes. This
approach is suitable for small sample sizes and can remove
batch effects among multiple batches. The algorithm has
been implemented into software package COMBAT (http://
statistics.byu.edu/johnson/ComBat/). In addition, commonly
used batch effect removal methods include mean-centering
such as implemented in pamr R package (http://cran.
r-project.org/web/packages/pamr), standardization as imple-
mented in dchip software (http://biosun1.harvard.edu/com-
plab/dchip/), and ratio-based methods.

All of the above approaches focus on the development of
methods to effectively remove batch effects. The success of
batch effects removal is typically evaluated using qualitative
visualization techniques such as score plot of PCA or
hierarchical clustering dendrogram. Frequently, there is a
need to construct a predictive model using a batch of
samples (existing data) and apply it to the prediction of class
labels for another batch of samples (future data), which is
one of the most important goals in using microarray data in
the context of diagnostic, prognostic and predictive gene
expression signature and biomarker development. Previous
publications have not addressed the effectiveness of batch
effect removal on the cross-batch prediction performance.
In this paper, we aimed at the systematic evaluation of batch
effect removal on cross-batch prediction. Specifically, we
analyzed six diverse oligonucleotide microarray-generated
data sets generated on three microarray platforms, repre-
senting six types of cross-batch or cross-group scenarios,
namely, cross-time, cross-generation, cross-channel, cross-
platform, cross-tissue and cross-tissue-and-cross-platform.
All these data sets have been selected and included in the
second phase of the FDA-led MicroArray Quality Control
(MAQC) Consortium.5

Materials and methods

Data sets
Six data sets with different sources of batch (group) effects
were used in this paper (Table 1). All the data sets are
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available through GEO from the MAQC web site: http://
www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/
or ArrayTrack http://www.fda.gov/nctr/science/centers/
toxicoinformatics/ArrayTrack/. These six data sets are
described below.

A Breast Cancer data set was provided by the MD
Anderson Cancer Center at the University of Texas (Houston,
TX, USA). Hess et al.10 performed gene expression analysis
on a subset of this data set. Gene expression data
from 230 stage I–III breast cancers were generated from fine
needle aspirates of newly diagnosed breast cancers before
any therapy. Among the 230 samples, training/test
split was performed according to hybridization dates,
the first 130 samples assayed were used as training set
and the remaining 100 samples were used as test set.
There are two endpoints associated with this data
set: pathological complete response (pCR) and estrogen
receptor status.

A toxicogenomic data set (Iconix) was provided by Iconix
Biosciences (Mountain View, CA, USA). The study is aimed
at evaluating hepatic tumor induction by non-genotoxic
chemicals after short-time exposure.11 The training set
consists of 216 samples treated for 5 days with one of 76
structurally and mechanistically diverse non-genotoxic
hepatocarcinogens and non-hepatocarcinogens. The test
set consists of 201 samples treated for 5 days with one of
68 structurally and mechanistically diverse non-genotoxic
hepatocarcinogens. Gene expression data were profiled
using the GE Codelink microarray platform. The separation
of the training set and the test set was based on the time
when the microarray data were collected. There are three
batches in the training set and two batches in the test
set. Table 2 shows the sample size distribution in each of
the five batches. Owing to the continuous nature of the

hybridization date in this data set, the assignments of the
five batches are somewhat subjective. The vehicle control
samples are only used as references for the ratio-based batch
effects removal methods. They are not used during the
construction of the predictive models. We assign B1, B2 and
B3 as the three batches in the training set, and B4 and B5 as
the two batches in the test set.

An additional toxicogenomic data set (Hamner) was
provided by The Hamner Institutes for Health Sciences
(Research Triangle Park, NC, USA). Thomas et al.12 carried
out analyses using a subset of this data set hybridized in the
years 2005 and 2006, aimed at distinguishing samples
treated with chemicals that are, and are not lung-carcino-
gens. In the MAQC-II study,5 the training set consists of 70
samples hybridized in two consecutive years (2005 and
2006), and the test set contains 88 samples hybridized in the
following 2 years (2007 and 2008). Table 3 shows the sample
size distribution within each batch (year). Following the
convention of MAQC-II, Control and non-lung tumor

Table 1 Summary of data sets

Source of Batch
(Group) Effect

Data set Platform Endpoint No. pos
(training)

No. neg
(training)

No. pos
(test)

No. neg
(test)

Note

Cross-time MD
Anderson

Affymetrix Treatment response 33 97 15 85

Cross-time MD
Anderson

Affymetrix Estrogen receptor status 80 50 61 39

Cross-time Iconix GE CodeLink Liver Tumor 73 143 57 144 (B1+B2+B3)-
(B4+B5)

Cross-time Hamner Affymetrix Lung carcinogen 26 44 28 60 (05+06)-
(07+08)

Cross-generation UAMS Affymetrix Overall survival Milestone
Outcome

32 187 27 197 3 generations

Cross-channel Cologne Agilent Overall survival Milestone
Outcome

22 216 22 216

Cross-platform NIEHS Affymetrix,
Agilent

Necrosis 76 99 78 65 3 gene
mappings

Cross-tissue NIEHS Agilent Necrosis 76 99 78 65
Cross-tissue,
Cross-platform

NIEHS Agilent
Affymetrix

Necrosis 76 99 78 65 3 gene
mappings

Table 2 Batch information of the Iconix data set

Non liver
tumor

Liver
tumor

Control Hybridization
date

Training
B1 17 24 24 11/6/01–12/10/01
B2 87 17 56 12/11/01–02/25/02
B3 39 32 30 3/20/02–7/18/02

Test
B4 91 18 82 07/22/02–12/4/02
B5 53 39 95 4/3/03–9/28/04
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samples are combined together as the negative class, and
lung tumor samples are used as the positive class. Unlike the
Iconix data set, the control samples in the Hamner data set
were not only used as references for applying ratio-based
batch effects removal methods, but also used as part of the
training set and test set. In this way the sample sizes are
adequate for analysis, even though there is minor informa-
tion leakage in this manner, because this is done before the
predictive model construction.

A Necrosis data set was provided by the National Institute
of Environmental Health Sciences (NIEHS) of the National
Institutes of Health (Research Triangle Park, NC, USA).13 The
study objective in MAQC-II was to use microarray gene
expression data acquired from the liver of rats exposed to
hepatotoxicants to build classifiers for prediction of liver
necrosis. This data set was generated using different
microarray platforms and tissues, which allowed us to
perform comparisons for three types of batch (group) effects
removal:

� Cross-platform: To study whether liver samples profiled
on the Agilent platform can be used to predict liver
necrosis of liver samples profiled on the Affymetrix
platform and vice versa.14

� Cross-tissue: To study whether blood samples profiled on
the Agilent platform can be used to predict liver necrosis
of liver samples profiled on the Agilent platform and vice
versa.15

� Cross-tissue-and-cross-platform: To study whether blood
samples profiled on the Agilent platform can be used to
predict liver necrosis of liver samples profiled on the
Affymetrix platform and vice versa.15

A multiple myeloma data set was contributed by the
Myeloma Institute for Research and Therapy at the Uni-
versity of Arkansas for Medical Sciences (UAMS, Little Rock,
AR, USA).16 Three generations of Affymetrix GeneChips for
Homo sapiens were used: U95Av2, U133A and U133plus2.
The data set included a training set of 219 samples with data
from microarrays of all three generations. These samples
represent a subset of the 340 samples used in the MAQC-II
multiple myeloma training set. The test set used for our
analysis was identical to that of the MAQC-II study, which
included data from U133plus2 microarrays alone. Three
types of gene level mappings between different generations
were provided by UAMS. In the MAQC-II project, there were

four endpoints associated with the multiple myeloma data
set: Overall survival (OS), Event-free survival, CPS1 (used as
positive control, gender of the patients), and CPR1 (used as
negative control). We selected the endpoint OS for our
analysis. This selection was based on the facts that OS is
clinically very useful among all endpoints.

A neuroblastoma data set was contributed by the
Children’s Hospital of the University of Cologne,
Germany.17 A total of 246 neuroblastoma samples were
profiled on dye-flipped, dual-color Agilent platform. We
used one channel (Cy3) as a training set and the other
channel (Cy5) as a test set. In the MAQC-II project, there are
four endpoints associated with the neuroblastoma data set:
Overall survival, Event-free survival, NEPS (used as positive
control, gender of the patients), and NEPR (used as negative
control). We selected the endpoint OS for our analysis.
Similar to the multiple myeloma data set, this selection was
based on the fact that OS is clinically very useful among all
endpoints. Note that for the OS endpoint, eight patients
were unavailable for assessing the overall survival due to loss
to follow-up in the overall-survival milestone cutoff date
(900 days). So there are only 238 patients with OS outcome.

Batch effect removal algorithms
Mean-centering. After the transformation, the mean of each
feature across all the samples within each batch is set to
zero. This approach is also referred to as zero-mean, or
one-way analysis of variance adjustment. It is implemented
in the pamr R package (http://cran.r-project.org/web/
packages/pamr).

Standardization. Beyond mean-centering, this approach
normalizes the s.d. of all features across samples within
each batch to unity. After the transformation, each feature
will have zero-mean and unit s.d. across all samples within
each batch. This approach is also implemented in dchip
(http://biosun1.harvard.edu/complab/dchip/).

Ratio-based. All samples are scaled by a reference array,
which can be the average of multiple reference arrays, such
as the measurement of universal human reference
RNA samples for clinical data and vehicle control samples
for toxicogenomics data. In cases when these reference
arrays are not available, we use the average of negative
class samples in each batch. It should be mentioned that
some level of information leakage is introduced when we
use the negative class samples in the test batch as the
reference, because in practical application it is not possible to
know the class label of the test batch before performing the
prediction. We choose to do so because this kind of
information leakage is not associated with the classifier
training and therefore not expected to lead to significant
performance bias.

Ratio-based data is obtained by scaling the sample
expression value (intensity) by an array of reference
expression value (intensity). In cases where there are several
reference control samples within each batch, the reference is
calculated using the mean of the control samples. Both

Table 3 Batch information of the Hamner data set

Control NLT LT Hybridization
year

Training
2005 6 6 6 2005
2006 16 16 20 2006

Test
2007 12 16 8 2007
2008 24 8 20 2008
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arithmetic mean and geometric mean of the sample
intensity values have been used in computing the reference.
We use acronyms Ratio-G and Ratio-A to represent the ratio-
based approaches using reference based on geometric and
arithmetic means, respectively. If one or more reference
samples are possible outliers, the median could be used as a
reference that is a more robust measure.

EJLR (Extended Johnson-Li-Rabinovic) method. This method is
based on Johnson et al.,9 which adjusts the expression values
of both training batch and test batch. It is also called
COMBAT or Empirical Bayes method. To have a predictive
model applicable for the prediction of future samples, the
model has to be developed based on the training set without
being affected by the future set. The original algorithm has

been modified so that the training batch can be used as a
reference batch for adjusting batch effect in future batches.
The reference (training) batch does not change during the
removal process. Thus, a model constructed based on this
unchanged training set can be used for the prediction of
samples in a test set.

It should be stressed that the applicability and efficacy of
all batch effect removal approaches described above, except
the ratio-based method, rely on the assumption that each
individual batch has reasonable numbers of both positive
samples and negative samples. If this assumption is not
satisfied, biological information might be jeopardized.
Recently a promising hybrid method combining the use of
reference samples and the empirical Bayes approach was
published by Walker et al.18
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Figure 2 Forward and backward cross-batch prediction performance (y axis) in terms of MCC with different combinations of feature selection and

classification algorithm (x axis). (a–b) MD Anderson breast cancer dataset (endpoint: pCR, batch effect cause: different hybridization dates); (c–d)
MD Anderson breast cancer data set (endpoint: estrogen receptor status, batch effect cause: different hybridization dates).

Figure 1 Score plot of the first two principal components for the eight scenarios. Batches (groups) are indicated by colors. (a) MD Anderson breast

cancer data set. (b) Hamner lung carcinogen data set (two batches in training set hybridized in 2005 and 2006, and two batches in test set

hybridized in 2007 and 2008). (c) Iconix liver tumor data set (three batches in training set and two in test set). (d) UAMS multiple myeloma data set
(the three batches represent three generations of Affymetrix chips on Homo Sapiens). (e) Cologne neuroblastoma data set (the two batches

represent the two channels of Agilent arrays). (f) NIEHS data set (cross-platform: the two groups represent Affymetrix and Agilent microarray

platforms. For brevity, PCA is performed for common genes with Refseq mapping only. The plots for common genes with Unigene and Sequence
mappings are similar). (g) NIEHS data set (cross-tissue: the two groups represent liver and blood samples profiled on Agilent array). (h) NIEHS data

set (cross-tissue-and-cross-platform: the two groups represent liver samples profiled on Affymetrix arrays and blood samples profiled on Agilent

arrays).
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Evaluation of batch effect removal effectiveness

Cross-batch (group) prediction performance is used as the
evaluation measure for batch effect removal, as this is the
most practical measure for diagnostic purposes. The class
label information of the test set is only used when
evaluating the prediction performance and the information
is kept strictly blind during the model construction process.
The Matthews Correlation Coefficient (MCC), the primary
performance metric in the MAQC-II study,5 is used in
this work. It is essentially the Pearson correlation co-
efficient between the true labels in the test set and the
predicted labels in binary form. Its definition can be found
through the link:http://en.wikipedia.org/wiki/Matthews_
Correlation_Coefficient.

Prediction accuracy is a measure highly dependent
on class prevalence and the results could be misleading.
This measure is not used in this paper because

many endpoints used in this study are highly imbalanced.
Area under the ROC curve (AUC)–ROC is a good
measure but is not used in this study as well because (a)
results with a few selected data sets indicate that
the conclusion of this work still holds using AUC–ROC
measure, (b) AUC–ROC may not be applicable for real
diagnostic purpose when a fixed operating point needs
to be chosen instead of a series of operating points on ROC
curve, and (c) MCC is a measure recommended by
the MAQC-II community. For a discussion between the
utilities of MCC and AUC, readers are referred to
the MAQC-II main article (Shi et al., submitted to Nature
Biotechnology, 2010).

This paper evaluates batch effect removal for enhancing
cross-batch (group) prediction performance. For other
research objectives such as selecting better features
or understanding more about biological mechanisms,
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other evaluation criteria may be used. Many factors in
the predictive model construction procedure may affect
the cross-batch prediction performance. To minimize
the computational burden, we evaluate the effectiveness
of batch effect removal while holding all other steps
fixed. A description of each of the steps is described
below.

Normalization. For simplicity, MAS5 normalization was
used for Affymetrix arrays, median scaling for GE-
Healthcare CodeLink arrays, and Lowess for Agilent
arrays.

Feature selection. Two-sample t-test and Wilcoxon Rank
Sum test were used as feature selection methods. They
represent parametric and nonparametric approaches. For
simplicity, no feature pre-filtering was applied.

Classification methods. We use support vector machines with
linear kernel (SVM, C¼1) and K Nearest Neighbors (KNN
with euclidian distance, K¼5) because of their simplicity
and wide use. Linear SVM and KNN are representatives of
linear classifiers and instance-based classifiers. It is expected
that the results obtained in this paper can be applied to the
broad range of linear and instance-based classification
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Figure 5 Forward and backward cross-batch prediction performance (y axis) in terms of MCC with different combinations of feature selection and

classification algorithm (x axis). UAMS data set (endpoint: OS, batch effect cause: different generations of chips).
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methods. We have four different combinations of feature
selection and classification:

T-S (abbreviation for t-test with SVM)
T-K (abbreviation for t-test with KNN)
W-S (abbreviation for Wilcoxon test with SVM)
W-K (abbreviation for Wilcoxon test with KNN)

Forward and backward prediction. Similar to the MAQC-II
main paper,5 the cross-batch predictions in both forward
(using the training set to build the model and then to
predict the sample class labels in the test set) and backward
(using the test set to build the model and then to predict the
sample labels in the training set) directions were performed,
to test the robustness of the batch effect removal
approaches.

Cross validation. We use 5-fold internal cross-validation
with 10 repetitions, with honest feature selection (nested
in the cross-validation loop), which is the recommended
cross-validation approach of the MAQC-II consortium. The
candidate number of features ranges from 2 to 100 with step
size 2. We do not explore number of features larger than 100.

Model selection. After fixing the feature selection method
and classification method, the only remaining parameter to
form the predictive model is the optimal number of features.
It is determined corresponding to the model, which yields
the maximum mean MCC of the 10 repetition models (each
assessed by 5-fold cross validation with different random
allocations of samples to folds).

Cross-batch prediction. With the training set (batch, group),
the predictive model is constructed based on the specified
feature selection algorithm, the specified classification
method and the optimal number of features. The model is

then applied to predict the labels of all the samples in the
test set (batch, group).

Results

The analyses cover six data sets with both clinical and
toxicogenomics data, and eight scenarios of batch (group)
effects (Table 1) where the NIEHS data set was used
three times to study the cross-platform, cross-tissue and
cross-tissue-and-cross-platform scenarios. The data sets
include many endpoints and were obtained and provided
by six different organizations. The descriptions in terms
of the definition of endpoints and the batches
(groups), selection of training set and test set, sample size
distributions and the descriptions of batch effect removal
methods used are presented in the Materials and methods
section.

Batch effect evaluation
We first applied the principal component analysis to the
eight scenarios to visualize the batch (group) effects
(Figure 1). Significant batch effects can be seen by the
perfect separation of different batches on the PCA score
plots for most data sets. For the Hamner, Iconix and NIEHS
(cross-tissue) data sets (B, C and G), batch effects exist with
overlaps between several batches. Other visualization tech-
niques can also be used to evaluate batch effects such as
hierarchical clustering dendrogram, correlation heat-map
and variance components pie chart from analysis of
variance. The latter is a quantitative technique that gives
the variances contributed by all factors when the class labels
of all the samples are available. This allows the comparison
of variances contributed by batch effects, biological effects
and other effects. However, for cross-batch prediction in real
applications, the class labels of the samples in the test
set (future batch) are to be predicted and are unavailable,
and thus analysis of variance cannot be applied for the
endpoint factor. This approach is useful for evaluating the
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sources of variation and process control of sample handling
and processing when all of these factors are recorded and
reported.

Cross-batch prediction results

The detailed results for each data set and each endpoint are
presented below. The cross-batch prediction performances
are shown in Figures 2–10 in terms of MCC. It is noteworthy
that, for several cases, the predicted values of MCC are zero
and thus the corresponding columns are not shown.

Application to the MD Anderson breast cancer data set (pCR and
estrogen receptor status). For the pCR endpoint, both
forward and backward predictions indicate improvement
or substantial improvement in MCC after batch effect
removal for most cases. Backward prediction with T-K
combination is the only case where there is a slight
decrease in prediction performance (Figures 2a and b). It
should be noted that for the T-K combination, the MCC for
no removal is very small (B0.05) in the forward prediction,
whereas the largest (B0.4) in the backward prediction. The
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reason for this asymmetric performance difference is
unclear.

Estrogen receptor status is an endpoint relatively easy to
predict. The results show that the cross-batch prediction
performances are improved significantly after batch effect
removal except the T-S combination for the backward
direction. The differences between the performances of
different methods are minor (Figures 2c and d).

Application to the iconix data set (liver tumor). There are three
batches in the training set and two batches in the test set
(Table 2). Figure 3 shows the prediction performance before
and after batch effect removal using the Iconix data set.
The top two plots display the performance of forward
prediction, from the training set to the test set, and
backward prediction, from the test set to the training
set. Owing to the increased variability of prediction
performance, it is hard to draw a definite conclusion. In
general, we see that Ratio-G and the EJLR approaches
perform better than or similar to no batch effect removal.

Application to the hamner data set (lung tumor). There are two
batches in the training set and two batches in the test set
(Table 3). The same batch effect removal methods were used
within the training set and the test set, as well as between
these two sets. The performance of the forward prediction is
generally worse than that of the backward prediction
as seen from the top two plots of Figure 4. Apart from the
W-K combination in the backward prediction, mean-
centering and EJLR performed better than no batch effect
removal.

Application to the UAMS data set (University of Arkansas Medical
School, overall survival). OS is a challenging endpoint to
predict, as observed by the MAQC-II.5 For the majority of
the forward prediction cases, except the W-S combination in
the direction from U95Av2 to U133plus2, the T-K
combination from U133A to U133plus2, and the W-S
combination from U133plus2 to U133plus2, batch

effect removal produced better prediction performance
than no-removal (Figure 5). However, in the backward
predictions, none of these batch effect removal methods
appear to yield consistently better prediction results than
no-removal. This difficulty may be due to the clinical nature
of this endpoint, which is notoriously hard to predict.

Application to the cologne data set (University of Cologne, overall
survival). For the OS endpoint, there is a considerable
variation in the prediction performance of different batch
effect removal methods (Figure 6).

Application to the NIEHS (Necrosis, cross-platform) data
set. Without batch (group) effect removal, all the
predictive models fail the predictions completely, noting
that the MCC values are zero and no columns are shown for
these cases in Figure 7. The application of all batch effect
removal methods substantially enhances the prediction
performance with any of the three mapping relationships.

Application to the NIEHS (necrosis, cross-tissue) data set. For the
forward prediction, from blood to liver, the application of
different batch effect removal methods generally does not
appear to affect the prediction performance. The backward
prediction, from liver to blood, has poor prediction
performance with or without the application of batch
effect removal algorithms (Figure 8). This may in part be
due to the fact that although blood gene signatures can
be used to effectively predict liver necrosis, liver gene
signatures do not have predictive power for necrosis
measured in blood. This finding is consistent with the
observations reported by Huang et al.14

Application to the NIEHS (necrosis, cross-tissue-cross-platform)
data set. Without batch (group) effect removal, there is no
predictive power either from blood (Agilent) to liver
(Affymetrix), or vice versa, noting that all the MCC values
are either zero or negative (Figure 9). In using data from
blood (Agilent) to predict liver injury (Affymetrix), the
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applications of most batch effect removal methods enhance
the prediction performance except the W-S combination for
Refseq and Unigene mapping. When using data from liver
(Affymetrix) to predict appropriate blood-based genes
(Agilent), the application of batch effect removal methods
yields both increased and decreased prediction perfor-
mance. However, the two ratio-based methods consistently
outperform the other methods. Similar to the cross-tissue
results, we see that the blood samples have strong
predictability of the liver necrosis with proper batch effect
removal. However, the predictability is much weaker for
backward prediction, from liver to blood. In general, the

sequence mapping slightly outperforms the other two
mappings.

Meta analysis

To evaluate the general impact of batch effect removal in
cross-batch (group) prediction performance, we calculate
the increase of prediction performance value MCC
after batch effect removal DMCC¼MCCAfter�MCCBefore.
If DMCC is greater than or lower than a threshold value,
we say the batch effect removal has a positive or negative
impact on the performance, respectively. If the difference in
MCC after and before batch impact removal is less than the
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classification algorithm (x axis) (NIEHS data set, endpoint: Necrosis, batch effect cause: Different microarray platforms and different tissues).
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threshold, we say the impact is negligible. For simplicity, the
threshold is chosen as 0.05.

Figure 10 shows the percentages of cases with increased,
decreased and unchanged predictive performances (with
sum 100%) over the 120 cases explored. We find that, for
each batch effect removal method, the number of cases
with increased predictive performance is greater than that
with decreased predictive performance, indicating that,
in general, batch effect removal has a positive impact on
prediction performance. The Ratio-G, Ratio-A, EJLR, mean-
centering and standardization methods perform better or
equivalent to no batch effect removal in 89, 85, 83, 79 and
75% of the cases, respectively, suggesting that the ratio-
based methods are more consistent in positively impacting
the prediction performance. We performed the class label
bootstrap estimation of the performance differences for a
few endpoints and verified that the improvement due to the
usage of batch correction methods (data not shown here)
was consistent with the simple counting results shown
above. Considering the heavy computational cost involved
due to the combinatorial nature of the work, we were not
able to perform the bootstrap calculation for all endpoints.

Discussion

Batch effects are ubiquitous in microarray experiments.
Cross-batch prediction is one of the most important
requirements in microarray gene expression analysis, espe-
cially in the context of discovering and validating diagnos-
tic, prognostic and predictive gene expression signatures
and subsequent biomarker development. This paper system-
atically evaluated the impact of batch effect removal on
cross-batch (group) prediction performance. Five commonly
used batch effect removal methods, Ratio-A, Ratio-G, EJLR,
mean-centering and standardization, were evaluated using
six data sets with eight sources of batch (group) effects and
multiple choices of predictive model construction proce-
dures. The total number of cases evaluated is 120. This paper
provides and points to a publicly available resource (http://

www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/)
for future studies on the development and evaluation of
batch effects removal algorithms.

The results indicate that the application of all these
five methods is generally advisable, and the ratio-based
methods are preferred. This preference is also supported
by the reasoning that the ratio-based methods are less
affected by imbalance of negative/positive sample distri-
butions in different batches. For example, when the
future batch has a reverse negative/positive ratio design
compared to the training batch, the batch effects and
biological effects are confounded and the application of
mean-centering and standardization methods may run the
risk of distorting biological differences after removing batch
effects.

The application of ratio-based methods is straightforward
when calibration samples are available for reference. Of the
data sets studied, only the Iconix data set provides these
samples. We thus recommend, as a good practice and to
facilitate further examination, the inclusion of a few (3–5)
calibration samples in each batch, for both clinical and
toxicogenomics microarray data sets. The availability of
these calibration samples may play an important role in the
better assessment of existing batch effects, the effectiveness
of batch effect removal methods, and the applicability of
constructed predictive models to future data sets. It is
desirable to have a large sample size or good quality data in
each batch, so that the characteristics of each batch can be
summarized more accurately and batch effects can
be removed more effectively. If the sample sizes of the
training and the test set are too small, it is difficult to draw a
conclusive inference due to the large uncertainty. In the
context of implementing an array-based diagnostic test
in a clinical setting, it should be appreciated that batches
may, in practice, be composed of a single clinical sample.
In this regard, the use of reference samples for the
purpose of calibrating batch effects may be of paramount
importance.

Significant batch effects exist between ratio-based data
and intensity-based data in the cases of cross-platform,
cross-platform-and-cross-tissue data sets. Batch effect
removal by any of the evaluated methods significantly
improves the cross-group prediction performance. The
batch effects are strong in the MD Anderson data set. The
prediction performances are enhanced after applying
batch effect removal methods for both endpoints. When
the endpoints are hard to predict such as the cases of
Hamner, Iconix and the OS endpoint with the UAMS data
set, the application of batch effect removal methods do
not necessarily result in a positive impact. The degree of
difficulty in the prediction of an endpoint may be evaluated
by the predictive performance through internal cross-
validation.

It is important to note that the conclusions reached in this
study are related to the application of batch effect removal
in the context of cross-batch prediction performance with
models, which are developed with parametric and non-
parametric rank-based feature selection. These methods are
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intrinsically driven by hypothesis tests that are susceptible
to bias introduced by batch effects. Models built with other
methods of feature selection including wrapper methods
(such as recursive feature elimination) were not evaluated.
Wrapper methods select features based on their contribution
to model performance during the training process, not
through hypothesis-driven tests in an independent step.
It is not known explicitly if this process is more or less
susceptible to bias than the methods considered in this
study and also if the specific conclusions drawn here
apply to such model development techniques. Similarly,
the other batch effect removal methods as mentioned in
the Introduction section also need to be evaluated in
future work. Prediction performance metric, AUC has been
commonly used in literature and shall be considered for
future work. AUC has the advantage of evaluating the
performance across the full range of sensitivity and
specificity compared with MCC, which is evaluated on one
fixed operating point. The current work focuses on cross-
batch predictions, which is based on the pre-specified
training set and test set. To take full consideration of sample
variability, further investigation using randomized split of
the training set and test set such as reviewed in Scherer19

may be performed.
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EJLR Extended Johnson-Li-Rabinovic Method
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MAQC MicroArray Quality Control Consortium
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PCA principal component analysis
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Ratio-A ratio-based approach (arithmetic mean as reference)
Ratio-G ratio-based approach (Geometric mean as reference)
SVM support vector machines
T-S T test with SVM
T-K T test with KNN
W-S Wilcoxon rank sum test with SVM
W-K Wilcoxon rank sum test with KNN
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