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Abstract

BACKGROUND—We observed a syndrome of intermittent fevers, early-onset lacunar strokes

and other neurovascular manifestations, livedoid rash, hepatosplenomegaly, and systemic

vasculopathy in three unrelated patients. We suspected a genetic cause because the disorder

presented in early childhood.

METHODS—We performed whole-exome sequencing in the initial three patients and their

unaffected parents and candidate-gene sequencing in three patients with a similar phenotype, as

well as two young siblings with polyarteritis nodosa and one patient with small-vessel vasculitis.

Enzyme assays, immunoblotting, immunohistochemical testing, flow cytometry, and cytokine

profiling were performed on samples from the patients. To study protein function, we used

morpholino-mediated knockdowns in zebrafish and short hairpin RNA knockdowns in U937 cells

cultured with human dermal endothelial cells.

RESULTS—All nine patients carried recessively inherited mutations in CECR1 (cat eye

syndrome chromosome region, candidate 1), encoding adenosine deaminase 2 (ADA2), that were

predicted to be deleterious; these mutations were rare or absent in healthy controls. Six patients

were compound heterozygous for eight CECR1 mutations, whereas the three patients with

polyarteritis nodosa or small-vessel vasculitis were homozygous for the p.Gly47Arg mutation.

Patients had a marked reduction in the levels of ADA2 and ADA2-specific enzyme activity in the

blood. Skin, liver, and brain biopsies revealed vasculopathic changes characterized by

compromised endothelial integrity, endothelial cellular activation, and inflammation. Knockdown

of a zebrafish ADA2 homologue caused intracranial hemorrhages and neutropenia — phenotypes

that were prevented by coinjection with nonmutated (but not with mutated) human CECR1.

Monocytes from patients induced damage in cocultured endothelial-cell layers.

CONCLUSIONS—Loss-of-function mutations in CECR1 were associated with a spectrum of

vascular and inflammatory phenotypes, ranging from early-onset recurrent stroke to systemic

vasculopathy or vasculitis. (Funded by the National Institutes of Health Intramural Research

Programs and others.)
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Patients with autoinflammatory disease sometimes present with clinical findings that

encompass multiple organ systems.1 Three unrelated children presented to the National

Institutes of Health (NIH) Clinical Center with intermittent fevers, recurrent lacunar strokes,

elevated levels of acute-phase reactants, livedoid rash, hepatosplenomegaly, and

hypogammaglobulinemia. Collectively, these findings do not easily fit with any of the

known inherited autoinflammatory diseases.

Hereditary or acquired vascular disorders can have protean manifestations yet be caused by

mutations in a single gene. Diseases such as the Aicardi–Goutières syndrome,2,3 polypoidal

choroidal vasculopathy,4 sickle cell anemia,5 livedoid vasculopathy,6 and the small-vessel

vasculitides7,8 are examples of systemic diseases that may present with substantial vascular

pathologic findings. In some cases, these disorders are not diagnosed until a central nervous

system event occurs. Such potentially catastrophic neurologic events often prompt the

search for other coincidental findings that may enable a definitive diagnosis. We used

whole-exome sequencing to screen for a common genetic cause of disease in these patients.

Our investigations led to the discovery of a pathway linking inflammation with vascular

development.

METHODS

PATIENTS

We evaluated the initial three patients and their unaffected parents, as well as three patients

with a similar phenotype, two young siblings with polyarteritis nodosa, and one patient with

small-vessel vasculitis. Five of the patients were evaluated at the NIH Clinical Center, and

the other four at the Great North Children’s Hospital in the United Kingdom and the

Hacettepe University Children’s Hospital in Turkey. All the patients were enrolled in a

study that had been approved by the respective institutional review board. All the patients or

their parents provided written informed consent. All the authors vouch for the accuracy and

completeness of the data and analyses reported and for the fidelity of the study to the

protocol. Lacunar strokes were defined according to standard criteria.9

GENETIC AND FUNCTIONAL ANALYSIS

We performed whole-exome sequencing in the initial three patients and their unaffected

parents and candidate-gene sequencing in the other six patients. Enzyme assays,

immunoblotting, immunohistochemical testing, flow cytometry, and cytokine profiling were

performed on samples from the patients. To study protein function, we used morpholino-

mediated knockdowns in zebrafish and short hairpin RNA (shRNA) knockdowns in U937

cells cultured with human dermal endothelial cells. The Supplementary Appendix (available

with the full text of this article at NEJM.org) describes the methods used for all these

procedures.
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RESULTS

CLINICAL PHENOTYPE

Initially, three patients with recurrent fevers and early-onset stroke were evaluated; the first

patient presented to the NIH at 3 years of age, and the other two at 6 years of age. After they

had undergone whole-exome sequencing, two additional patients with a similar phenotype

were recruited. All five patients were unrelated, with no history of consanguinity, and

represented sporadic cases of European ancestry (i.e., were not in a founder population); all

the patients underwent extensive clinical assessment (Tables S1 through S4 in the

Supplementary Appendix).

The parents and siblings of the patients from all five families were healthy. All the patients

had presented with recurrent fevers and livedo racemosa (Fig. 1A) in early childhood. Skin

biopsies revealed a predominance of neutrophils and macrophages in the interstitium, with

perivascular T lymphocytes, without frank vasculitis (Fig. S1A in the Supplementary

Appendix). In one patient, necrotizing vasculitis was present in the deep dermis (Fig. 1B and

1C, and Fig. S1B, S1C, and S1D in the Supplementary Appendix). During febrile episodes,

the levels of acute-phase reactants were markedly elevated in all the patients.

Each patient had had strokes before 5 years of age (Tables S1 and S3 in the Supplementary

Appendix). The strokes occurred mainly during episodes of inflammation, although fever

was not always observed. Magnetic resonance imaging (MRI) of the brain showed evidence

of acute or chronic small subcortical infarcts10 involving the deep-brain nuclei and the brain

stem, which are consistent with small-vessel occlusions (lacunar strokes)9,10 (Fig. 1D, 1E,

and 1F, and Fig. S2A, S2B, and S2C in the Supplementary Appendix). As observed on MRI,

the subcortical white matter was spared. Two patients who underwent examination of the

cerebrospinal fluid during acute events had mild lymphocytic pleocytosis.

Several stroke events were hemorrhagic or underwent hemorrhagic transformation, leading

to disabling sequelae in some patients (Fig. 1G, and Fig. S2D, S2E, and S2F in the

Supplementary Appendix). The interpretation of intracranial bleeding as a phenotypic

feature was complicated by the concomitant use of antiplatelet agents, warfarin, or both,

although small, deep hemorrhages are increasingly recognized as being within the spectrum

of lacunar disease.10,11 In all five patients, magnetic resonance angiography showed no

evidence of cerebral vasculitis; the absence of cerebral vasculitis was corroborated by

conventional angiography in three patients. Computed tomography revealed no

calcifications of the basal ganglia. In two patients who underwent biopsy of the brain, there

was prominent extravasation of erythrocytes into the Virchow–Robin spaces and white

matter around small vessels, without clinically significant inflammation (Fig. 1H). Three

patients had ophthalmologic involvement (Table S1 in the Supplementary Appendix).

Four patients presented with hepatosplenomegaly (Fig. S3A, S3B, and S3C in the

Supplementary Appendix). One patient had portal hypertension, with hepatofugal flow

between the left portal and umbilical veins (Fig. S3D in the Supplementary Appendix).

Liver biopsy revealed endothelialization of the hepatic sinusoids (Fig. S3E and S3F in the

Supplementary Appendix).
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Four patients presented with hypogammaglobulinemia, and two had recurrent bacterial and

viral infections before immunosuppressive treatment was initiated. Four patients had varying

degrees of lymphopenia. IgM levels were consistently low in all five patients (Table S4 in

the Supplementary Appendix).

Hypertension, cardiogenic embolism, and diabetes were ruled out, and extensive

hematologic studies did not show hypercoagulability. At the onset of strokes, all the patients

were negative for antiphospholipid antibodies (Table S4 in the Supplementary Appendix).

Over time, lupus anticoagulant developed in four patients. High doses of glucocorticoids

only partially controlled fever, rash, and acute-phase reactants. Despite aggressive treatment

with glucocorticoids, cyclophosphamide, and cytokine inhibitors, Patient 4 had her most

serious event at 23 years of age.

CECR1 MUTATIONS

Whole-exome sequencing was performed in Patients 1 and 2 and their unaffected parents

(Fig. 1I). After filtering for novel and rare variants (allele frequency, <1%), we identified

approximately 1700 candidate variants in each trio. We hypothesized that the disorder could

be caused by either de novo or recessive mutations. A single common candidate gene was

identified only under the recessive model (Fig. S4A in the Supplementary Appendix). Both

patients were compound heterozygous for missense mutations in CECR1, encoding ADA2

(Fig. S4B in the Supplementary Appendix), and shared the p.Tyr453Cys mutation. All four

parents were carriers; the unaffected sibling in Family 1 was a noncarrier, and both

unaffected siblings in Family 2 were carriers. We confirmed all variants by means of Sanger

sequencing (Fig. S4C in the Supplementary Appendix).

We also performed whole-exome sequencing in Patient 3. The only gene in common with a

gene in Patient 1 or Patient 2 that exhibited a deleterious mutation was CECR1. Patient 3

was heterozygous for the p.Arg169Gln variant, which had been inherited from his father. A

high-density single-nucleotide polymorphism array identified a 28-kb deletion in Patient 3

and his mother that included the 5′ untranslated region and exon 1 of CECR1. The deletion

breakpoint was confirmed by means of genomic sequencing (Fig. S4C in the Supplementary

Appendix). Complementary DNA sequencing showed that the maternal allele carrying the

deletion was not expressed. Candidate-gene sequencing in Patients 4 and 5 identified one

novel variant, p.His112Gln, and three mutations previously found in Patients 1, 2, and 3

(Fig. 1I). Three of the five missense CECR1 mutations were shared among these five

patients.

We subsequently performed candidate-gene sequencing on samples from four additional

patients from other centers (Fig. 1I, and Table S5 in the Supplementary Appendix). Patient

6, a 15-year-old boy from the United Kingdom, had recurrent fever, lacunar strokes, and

cutaneous manifestations that were different from those observed among the patients at the

NIH (Fig. S5A and S5B in the Supplementary Appendix); he died in 2013 from

complications of his disease. He was compound heterozygous for the p.Met1Thr null allele

and p.Ile93Thr. Patients 7 and 8 were siblings from Turkey with a history of strokes who

met the criteria for polyarteritis nodosa and were referred on the basis of the work by Navon

Elkan and colleagues, now reported in the Journal.12 These patients, as well as a Turkish
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patient with small-vessel vasculitis but no history of stroke (Fig. S5C and S5D in the

Supplementary Appendix), were homozygous for the p.Gly47Arg mutation (Fig. 1I, and Fig.

S4C in the Supplementary Appendix). Although the p.Gly47Arg variant has not been

reported in Europeans, we found that the carrier frequency of this variant in Turkish controls

was 0.002. The key clinical features of all nine patients seen at the NIH and outside centers

are summarized in Table 1.

Conserved haplotypes suggested common ancestries for the shared p.Gly47Ala,

p.Gly47Arg, p.Arg169Gln, and p.Tyr453Cys mutations (Fig. S6 in the Supplementary

Appendix). Three of these mutations were found at low frequencies in the 1000 Genomes

Project, the GO Exome Sequencing Project (ESP6500) of the National Heart, Lung, and

Blood Institute, and the ClinSeq Project (Table S6 in the Supplementary Appendix). All the

variants were computationally predicted to be likely to disrupt function (Table S6 in the

Supplementary Appendix), and they affect evolutionarily conserved residues (Fig. S7A in

the Supplementary Appendix). We examined individual-level data from the ESP6500 to

explore the CECR1 mutations reported there. In the Siblings with Ischemic Stroke Study

(SWISS)13 subcohort that included 94 patients with late-onset stroke (Genotypes and

Phenotypes database, National Center for Biotechnology Information accession number,

phs000327.v1.p1.c1), 2 brothers with ischemic lacunar strokes were heterozygous carriers

for the p.Tyr453Cys mutation in ADA2 that was seen in 3 of our pediatric patients (Fig. S8

in the Supplementary Appendix).

FUNCTIONAL STUDIES OF MUTANT ADA2

ADA2 has partial structural homology with human ADA1. Both proteins convert adenosine

to inosine and 2′-deoxyadenosine to 2′-deoxyinosine, but the affinity of ADA2 for adenosine

is lower than that of ADA1 by a factor of approximately 100. Whereas ADA1 is monomeric

and largely intracellular, ADA2 is dimeric and secreted. Inherited ADA1 deficiency causes

profound lymphopenia and severe combined immunodeficiency disease (SCID), which is

associated with the toxic intracellular accumulation of deoxyadenosine nucleotides.14

Computer modeling of the missense mutations presented here, which was based on the

crystal structure of human ADA2,15 suggests that these mutations are probably loss-of-

function mutations (Fig. S7B and S7C in the Supplementary Appendix), affecting the

catalytic and dimerization domains and protein stability. Using two independent assays, we

measured ADA2 activity in plasma and serum samples from the patients at the NIH, their

relatives, and healthy adult and pediatric controls. The patients had significantly diminished

ADA2 activity in plasma (Fig. 2A). Western blot analysis showed that the ADA2 protein

was reduced in cell lysates and absent from the supernatants of macrophages from patients

from whom cultures were obtained (Fig. S9 in the Supplementary Appendix).

In assays measuring ADA activity in monocytes and plasma from the patients, a significant

reduction was observed only in ADA2-specific activity, whereas ADA1-specific activity

was preserved (Fig. S10A and S10B and Table S7 in the Supplementary Appendix). The

results of thinlayer chromatographic assays for ADA1 activity in erythrocyte hemolysates

were normal, and the accumulation of deoxyadenosine nucleotides, which is the biochemical
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hallmark of ADA1 deficiency, was absent in erythrocytes from patients with ADA2

deficiency (Fig. S10C and S10D in the Supplementary Appendix).

IMMUNOLOGIC ASSESSMENT OF ADA2 DEFICIENCY

Extensive studies of serum cytokines or of cytokines produced by cultured peripheral-blood

mononuclear cells did not show any convincing differences between findings in the patients

and those in healthy controls (Fig. S11 in the Supplementary Appendix). Given the profound

T-cell defects in ADA1 deficiency,16 we examined thymic output and T-cell function.

Recent thymic emigrants (CD3+, CD31+, and CD45RA+) and naive T cells (CD3+, CD62L

+, and CD45RA+) were normal (data not shown). Patients with ADA2 deficiency had

normal short-term T-cell activation and normal proliferative responses to anti-CD3

antibodies (Fig. S12 in the Supplementary Appendix). They had slightly increased

proliferation in both CD4+ and CD8+ subsets in response to phytohemagglutinin stimulation

but normal production of effector cytokines.

When peripheral-blood mononuclear cells were cultured for 48 hours without stimulation,

higher rates of spontaneous B-cell death were seen in the samples from the patients than in

the samples from healthy controls (Fig. S13 in the Supplementary Appendix). As compared

with samples from age-matched controls, samples from patients had fewer memory B cells

in the peripheral blood, lower expression of CD27 and IgG on B cells after induction with a

variety of stimuli, and a modest reduction in the terminal differentiation of B cells and

immunoglobulin-secreting cells after T-cell-dependent stimulation (Fig. S14 in the

Supplementary Appendix). A bone marrow aspirate and biopsy performed in one patient

revealed normal B-cell maturation but reduced numbers of CD138+ plasma cells (data not

shown).

AN ANIMAL MODEL OF ADA2 DEFICIENCY

Although there is no murine orthologue of CECR1, there are two paralogs in zebrafish:

cecr1a (chromosome 25) and cecr1b (chromosome 4). A cecr1a hypomorphic line

generated by means of random insertional mutagenesis with a retroviral vector (Fig. S15A,

S15B, and S15C in the Supplementary Appendix) had no overt phenotype. We developed a

transient knockdown strategy for cecr1b using translation-blocking and splice-blocking

morpholinos (Fig. S16A in the Supplementary Appendix). A reverse-transcriptase–

polymerase-chain-reaction assay of embryos injected with morpholino antisense strategies to

prevent the proper splicing of exon 3 (E3I3-MO) confirmed the ability of the antisense

construct to induce skipping of exon 3 in the cecr1b transcript (Fig. S16B in the

Supplementary Appendix), resulting in a frameshift, premature termination, and a reduced

transcript level of 8% of nonmutant expression (Fig. S15C in the Supplementary Appendix).

We observed intracranial bleeding (Fig. 2B) with both cecr1b morpholinos in a dose-

dependent manner (Fig. S16C in the Supplementary Appendix), which suggested the

presence of defects in vessel development or integrity.17 Blood-vessel morphologic features

appeared to be normal, despite evidence of hemorrhage and ischemia in embryos injected

with cecr1b-specific morpholino oligonucleotides targeting the translation initiation site

(ATG-MO) (Fig. S16D in the Supplementary Appendix). Intracranial hemorrhage was
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blocked by coinjection with nonmutant human CECR1 messenger RNA (mRNA) but not

with mutant transcripts (Fig. S16E in the Supplementary Appendix).

Zebrafish that were severe hypomorphs for cecr1a showed no significant increase in

intracranial bleeding; in addition, when embryos that were hypomorphs for cecr1a were

injected with cecr1b morpholinos, there was no significant increase in intracranial bleeding

in these embryos as compared with their morpholino-injected nonmutant siblings (data not

shown), suggesting that cecr1b primarily provides the ADA2 function necessary to prevent

the hemorrhaging phenotypes. The two paralogs showed different expression patterns,

suggesting that they have functionally diverged (Fig. S15D and S15E in the Supplementary

Appendix).

When ATG-MO was used to disrupt cecr1b expression in mpx:EGFP transgenic zebrafish

(with the gene for enhanced green fluorescent protein under the control of a myeloid-

specific peroxidase promoter), in which neutrophils are labeled green, there was marked

neutropenia (Fig. S16F in the Supplementary Appendix). This phenotype was blocked by

the coinjection of nonmutant human CECR1 mRNA but not by the coinjection of H112Q or

R169Q mRNA, both of which are associated with stroke in our patients.

EFFECTS OF ADA2 DEFICIENCY ON ENDOTHELIAL AND LEUKOCYTE DEVELOPMENT

Given the zebrafish data, we examined endothelial integrity and activation in patients.

Staining with anti-CD31 antibodies showed substantial endothelial damage in biopsy

specimens from the brain (Fig. S17A, S17D, S17J, and S17M in the Supplementary

Appendix) and from lesional skin (Fig. S17B, S17C, S17E, S17F, S17K, S17L, S17N, and

S17O in the Supplementary Appendix). Endothelial-cell activation as shown by E-selectin

staining was observed both in brain-biopsy specimens (Fig. 3A, and Fig. S17G in the

Supplementary Appendix) and in skin-biopsy specimens (Fig. 3B and 3C, and Fig. S17H

and S17I in the Supplementary Appendix). There was also increased staining for

interleukin-1β (Fig. 3D, 3E, and 3F), inducible nitric oxide synthase (Fig. S18A, S18B, and

S18C in the Supplementary Appendix), and tumor necrosis factor α (Fig. S18D, S18E, and

S18F in the Supplementary Appendix), indicating inflammation.

CECR1 is not expressed, nor is the ADA2 protein detectable, in cultured human endothelial

cells (Fig. S19 in the Supplementary Appendix). This implicates additional cell types in the

vasculopathy. Previous studies have shown a role for human ADA2 in the differentiation of

monocytes to macrophages.18 Using shRNA constructs to silence the expression of ADA2

in myeloid U937 cells, we observed marked impairment of macrophage differentiation

induced by phorbol myristate acetate (Fig. S20A, S20B, and S20C in the Supplementary

Appendix). Under standard conditions,19 monocytes from the patients differentiated into M1

macrophages but poorly differentiated into M2 macrophages (Fig. 3G through J, and Fig.

S21 in the Supplementary Appendix), which may have proinflammatory effects.20,21

Furthermore, shRNA knockdown of ADA2 in U937 cells led to considerable disruption of

cocultured monolayers of human primary dermal microvascular endothelial cells (Fig. S22A

in the Supplementary Appendix), as did monocytes from two patients with ADA2 deficiency

(Fig. 3K and 3L, and Fig. S22B in the Supplementary Appendix).
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DISCUSSION

We describe a disorder characterized by recurrent fevers, a spectrum of vascular pathologic

features, and mild immunodeficiency. The data implicate loss-of-function mutations in

CECR1, encoding the ADA2 protein (Table S8 in the Supplementary Appendix). Studies in

patients’ cells and in zebrafish support the hypothesis that ADA2 is a growth factor for

endothelial and leukocyte development and differentiation. As compared with patients with

ADA1 deficiency, those with ADA2 deficiency have only a mild immunodeficiency that is

most evident in B cells.

Our data corroborate a role for ADA2 as the prototype for a family of adenosine deaminase–

related growth factors, a role that had previously been suggested by studies in xenopus and

drosophila.22–24 The experiments described here indicate that cecr1b is essential for both

vascular integrity and neutrophil development in the zebrafish embryo and that both

phenotypes are prevented by nonmutant, but not by mutant, human CECR1 mRNA.

Moreover, although ADA2 is not expressed in endothelial cells, there is a defect in

endothelial integrity in the small vessels of patients with ADA2 mutations as well as

impairment of M2 macrophage differentiation. ADA2 is known to be produced by myeloid

cells and to promote macrophage differentiation.18 Together, the data from zebrafish and

patients suggest that ADA2 deficiency may compromise endothelial integrity while

polarizing macrophage and monocyte subsets toward proinflammatory cells, establishing a

vicious circle of vasculopathy and inflammation.20,21,25

Given the spectrum of disease observed in these nine patients, ADA2 may play a role in

other disorders. The observation of two brothers who were heterozygous for the

p.Tyr453Cys mutation and who had late-onset lacunar strokes warrants larger-scale

sequencing studies to explore the significance of CECR1 variants in complex forms of

lacunar stroke and vasculitis. It is also possible that ADA2 deficiency accounts for some

patients with Sneddon’s syndrome, a poorly understood disorder that is most common in

middle-age women and that is characterized by livedoid rash and stroke, with

antiphospholipid antibodies present in some of the patients.26

Therapeutic strategies for the treatment of patients with ADA2 deficiency require

investigation. Since the phenotype appears not to be caused by the accumulation of

adenosine and deoxyadenosine, treatment with pegylated ADA1, an effective therapy for

ADA-related SCID, is unlikely to be successful. However, since ADA2 is found in plasma,

these patients may benefit from fresh-frozen plasma or recombinant ADA2, assuming that

cell–cell interactions are not necessary for effective ADA2 activity. Alternatively, given that

monocytes and macrophages, the main producers of ADA2, are derived from bone marrow,

it is possible that bone marrow transplantation or genetic manipulation of bone marrow cells

has a role in the treatment of these patients.

In conclusion, we defined a genetic disorder, for which we propose the name “deficiency of

ADA2” (DADA2), that connects systemic inflammation, vascular pathology, and mild

immunodeficiency. DADA2 establishes a role for adenosine deaminase– related growth
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factors in human disease and provides potential diagnostic and therapeutic strategies for a

newly recognized group of patients.
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Figure 1. Clinical Findings and Pedigrees of Patients with Deficiency of Adenosine Deaminase 2
(ADA2)
Panel A shows livedo racemosa in Patient 1. Panels B and C show the results of a skin-

punch biopsy of the left leg of Patient 4, which revealed vasculitis involving a medium-size

blood vessel in the reticular dermis. Panel B shows a dense inflammatory infiltrate with

fibrinoid necrosis, and Panel C, the complete occlusion of the vascular lumen (hematoxylin

and eosin stain). Panels D through G show the results of brain imaging. Panels D and E

show diffusion-weighted axial magnetic resonance images indicating acute small-vessel

ischemia in the brain, with Panel D showing ischemia over the left thalamus and posterior
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limb of the left internal capsule in Patient 5 and Panel E showing ischemia in the left

paramedian ventral midbrain in Patient 3; corresponding apparent diffusion coefficient maps

are not shown. Panel F shows chronic ischemic changes on axial T1-weighted images in

Patient 4 in the form of a small, oval cavitation (lacune) over the right thalamus that resulted

from a prior small-vessel occlusion. Panel G shows hemorrhagic events in Patient 2, as

detected on T2*-weighted (gradient echo) images. The localized areas of hypointensity over

the right caudate head and posterior thalamus correspond to areas of focal accumulation of

hemosiderin due to intraparenchymal bleeding. The arrows in Panels D through G point to

the area of abnormality. Panel H shows multiple foci of petechial hemorrhages around

small-size vessels in the white matter of the brain in Patient 5 (hematoxylin and eosin stain).

Panel I shows the pedigrees of the nine affected patients. Patients 1 through 6 were

compound heterozygous for eight mutations in CECR1 (cat eye syndrome chromosome

region, candidate 1), and Patients 7, 8, and 9 were homozygous for one CECR1 mutation.

Squares denote male family members, circles female family members, solid symbols

affected family members, and open symbols unaffected family members. Shared CECR1

mutations are color-coded. NM denotes nonmutated.
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Figure 2. Evidence of Loss-of-Function Mutations in ADA2
Panel A shows ADA2 activity in plasma samples from five patients with stroke (red circles),

relatives who are clinically asymptomatic carriers of one mutation (purple triangles and

orange triangles), healthy adult controls (blue squares), and healthy pediatric controls

(yellow diamonds) (see the Supplementary Appendix). Two siblings (yellow triangles) who

are not carriers of ADA2 mutations clustered appropriately with pediatric controls. Plasma

specimens were titrated against recombinant ADA2 standards to quantitate the amount of

nonmutant protein that would give equivalent activity. The horizontal lines represent mean
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values, and the I bars the standard error. Panel B shows confocal microscopy in zebrafish.

Transgenic expression of enhanced green fluorescent protein under the fli1 promoter labels

blood vessels green; expression of red fluorescent protein from discosoma species under the

gata1 promoter labels erythrocytes red. Intracranial bleeding (arrow) is observed in embryos

injected with cecr1b-specific morpholino oligonucleotides, targeting the translation

initiation site (ATG-MO). Similar results were observed for embryos injected with the

splice-blocking morpholinos targeting the proper splicing of exon 3.
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Figure 3. Effect of ADA2 Deficiency in Patients
Cells stained with endothelial-cell activation marker E-selectin (green) are shown in a brain-

biopsy sample from Patient 5 (Panel A) and in skin-biopsy samples from Patient 5 (Panel B)

and a control donor (Panel C). E-selectin in endothelial cells (expressing von Willebrand

factor [vWF; red]) indicates endothelial-cell activation (Panels A and B). E-selectin is absent

in endothelial cells from a healthy control (Panel C). Nuclei are stained blue with 4′,6-

diamidino-2-phenylindole (DAPI). Scale bars indicate 20 µm. Interleukin-1β

immunostaining (red) is shown in a brain-biopsy sample from Patient 5 (Panel D) and in

skin-biopsy samples from Patient 4 (Panel E) and a control donor (Panel F). Positive cells

can be seen in the brain sample from Patient 5 (Panel D), and robust interleukin-1β staining

is seen in a skin-biopsy sample from Patient 4 (Panel E). An M1 and M2 differentiation

assay (Panels G through J) was performed in monocytes that had been isolated by means of

negative selection from blood samples from Patient 1 and an age-matched control. Equal

cell numbers were seeded; M2 macrophage differentiation was induced with 50 ng per
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milliliter of macrophage colony-stimulating factor (M-CSF), and M1 macrophage

differentiation with 20 ng per milliliter of granulocyte–macrophage colony-stimulating

factor (GM-CSF) for 10 days. Control monocytes attached and differentiated, showing

macrophage-like morphologic features under both M-CSF and GM-CSF stimulation (Panels

G and H). Very few attached and differentiated M2-like cells were observed in M-CSF–

stimulated monocytes from Patient 1 (Panel I). However, M1-like cells were observed in

GM-CSF–induced differentiation of monocytes from Patient 1 (Panel J) — similar to those

seen in control cells. Human dermal microvascular endothelial cells were grown to

confluence and cocultured with monocytes isolated from a control donor and from Patient 1

for 3 days. Nonadherent cells were removed, and the endothelial-cell layers were stained for

the endothelial junction protein VE-cadherin (red), F-actin (green), and DAPI (blue).

Endothelial cells cultured with healthy control monocytes (Panel K) show normal cell

layers, whereas endothelial cells cocultured with monocytes isolated from Patient 1 show

damaged, interrupted endothelial cell layers (Panel L).
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Table 1

Clinical and Laboratory Manifestations in Patients with Deficiency of Adenosine Deaminase 2.

Clinical Manifestation Patients

no./total no.

Fever 9/9

Ischemic stroke 8/9

Hemorrhagic stroke 3/9

Ophthalmologic involvement* 5/9

Livedo racemosa 8/9

Hepatosplenomegaly 6/7

Documented vasculitis† 4/9

Polyarteritis nodosa 2/9

Antinuclear antibody 3/9

Antineutrophil cytoplasmic antibody 0/9

Low serum IgM 5/5

*
The ophthalmologic manifestations included central retinal artery occlusion in one patient, optic nerve atrophy in one, diplopia with irregular

enhancement of the medial rectus muscle (as observed on magnetic resonance imaging) in one, third cranial nerve palsy in one, and strabismus in
two. Patients could have more than one ophthalmologic disorder.

†
The diagnosis of vasculitis included polyarteritis nodosa.
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