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SUMMARY

Background—Clear cell renal cell carcinoma (ccRCC) displays a variety of clinical behaviors. 

However, the molecular genetic events driving these behaviors are unknown. We discovered that 

BAP1 is mutated in approximately 15% of ccRCC and that BAP1 and PBRM1 mutations are 

largely mutually exclusive. The aim of this study was to investigate the clinicopathological 

significance of these molecular subtypes and to determine whether patients with BAP1-mutant and 

PBRM1-mutant tumors had different overall survival.

Methods—In this retrospective analysis, we assessed 145 patients with primary clear-cell renal-

cell carcinoma and defined PBRM1 and BAP1 mutation status from the University of Texas 

Southwestern Medical Center (UTSW), TX, USA, between 1998 and 2011. We classified patients 

into those with BAP1-mutant tumors and those with tumors exclusively mutated for PBRM1 

(PBRM1-mutant). We used a second independent cohort (n=327) from The Cancer Genome Atlas 

(TCGA) for validation. In both cohorts, more than 80% of patients had localized or locoregional 

disease at presentation. Overall both cohorts were similar, although the TCGA had more patients 
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with metastatic and higher-grade disease, and more TCGA patients presented before molecularly 

targeted therapies became available.

Findings—The median overall survival in the UTSW cohort was significantly shorter for 

patients with BAP1-mutant tumors (4.6 years; 95% CI 2.1-7.2), than for patients with PBRM1-

mutant tumors (10.6 years; 9.8-11.5), corresponding to a HR of 2.7 (95% CI 0.99-7.6, p=0.044). 

Median overall survival in the TCGA cohort was 1.9 years (95% CI 0.6-3.3) for patients with 

BAP1-mutant tumors and 5.4 years (4.0-6.8) for those with PBRM1-mutant tumors. A HR similar 

to the UTSW cohort was noted in the TCGA cohort (2.8; 95% CI 1.4-5.9; p=0.004). Patients with 

mutations in both BAP1 and PBRM1, although a minority (three in UTSW cohort and four in 

TCGA cohort), had the worst overall survival (median 2.1 years, 95% CI 0.3-3.8, for the UTSW 

cohort, and 0.2 years, 0.0-1.2, for the TCGA cohort).

Interpretation—Our findings identify mutation-defined subtypes of ccRCC with distinct clinical 

outcomes, a high-risk BAP1-mutant group and a favorable PBRM1-mutant group. These data 

establish the basis for a molecular genetic classification of ccRCC that could influence treatment 

decisions in the future. The existence of different molecular subtypes with disparate outcomes 

should be considered in the design and evaluation of clinical studies.

Funding—Cancer Prevention and Research Institution of Texas and NCI.

Introduction

Over 60,000 new cases and 13,000 deaths from tumors of the kidney and renal pelvis were 

expected in the US in 2012.(1) Approximately 70% of renal cell carcinomas (RCC) present 

with localized disease and ~30% of patients who undergo surgery with curative intent may 

experience a recurrence.(2) Several variables have emerged that influence outcome 

including TNM stage, tumor size, Fuhrman grading and necrosis.(3-6) In the metastatic 

setting, patients can be stratified based on clinical and laboratory parameters.(7) More 

recently, Heng et al. stratified patients with metastatic RCC based on time from diagnosis to 

treatment, Karnofsky performance status, hemoglobin, corrected calcium, neutrophils and 

platelets into favorable (median OS, not reached), intermediate (median OS, 27 months), 

and poor (median OS, 8.8 months) risk groups.(8) However, what determinants in the tumor 

account for the different behaviors is poorly understood.

Different behaviors may be driven by different mutations. Clear cell renal cell carcinoma 

(ccRCC), which accounts for 70-80% of all RCC,(2) is characterized by inactivation of the 

von Hippel-Lindau gene (VHL).(9) In addition, truncating mutations in PBRM1 (polybromo 

1), a gene encoding a SWI/SNF chromatin-remodeling complex component, are found in 

41% of ccRCC.(10) While mutated at a substantially lower frequency, other genes 

implicated in ccRCC are SETD2, KDM6A (UTX), and KDM5C (JARID1C).(10-12) 

However, whether these mutations affect outcomes is unknown.

Recently, we reported that the gene BAP1 (BRCA1 associated protein-1) was mutated in 

approximately 15% of ccRCC.(13) Interestingly, BAP1 and PBRM1 mutations in tumors are 

largely mutually exclusive.(13) In addition, whereas tumors with BAP1 mutations are 

typically of high grade, tumors exclusively mutated for PBRM1 tend to be of lower grade.
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(13) These results led us to hypothesize that BAP1-mutated tumors may be associated with 

worse outcomes than those of patients with PBRM1-mutated tumors.

Methods

Study Population

We did a retrospective analysis with an initial study cohort that included 176 patients who 

underwent resection of a ccRCC at the University of Texas Southwestern Medical Center 

(UTSW) between 1998 and 2011 and whose tumors were genotyped for BAP1 and PBRM1.

(13) In order for patients to be included in the mutation analyses, ≥70% ccRCC cellularity 

on sections flanking the specimen to be evaluated for genetic analyses was required.(13) For 

this study, patients were excluded if samples were derived from metastases (4 cases) or 

follow-up information was lacking (27 cases). The remaining 145 patients comprise the 

UTSW cohort. These studies were conducted under a protocol approved by the UTSW 

Institutional Review Board and in accordance to the Health Insurance Portability and 

Accountability Act guidelines.

Data Collection

Clinical and pathological data were collected retrospectively from medical records as well as 

an electronic database and were entered into a standardized database. The social security 

death index (SSDI) was surveyed for dates of death (http://www.genealogybank.com/gbnk/

ssdi).

Archived hematoxylin/eosin stained slides were centrally reviewed by a pathologist (PK) 

blinded to the mutation status and pathology reports (123 cases). For the remaining 22 cases, 

data was from pathology reports. Tumor histology and grade were determined according to 

2004 World Health Organization criteria (14) and the Fuhrman grading system.(15) 

Presence of any tumor spindle cells reminiscent of sarcoma was sufficient to consider the 

tumor as exhibiting sarcomatoid dedifferentiation. Rhabdoid histology was assigned if there 

were foci of high-grade malignant cells with abundant eosinophilic cytoplasm, globular 

eosinophilic paranuclear inclusion bodies, large eccentric vesicular nuclei, and prominent 

nucleoli occupying at-least one field (10x objective). Tumor necrosis was defined as 

microscopic coagulative necrosis. Cases were staged using radiographic reports and 

postoperative pathological data and re-assigned according to the American Joint Committee 

on Cancer 2010 TNM classification.(16) In general, patients were followed postoperatively 

with physical examination, laboratory studies, chest imaging and abdominal/pelvic 

computerized tomography (CT) semiannually for the first two years and annually thereafter 

for five years.

Findings from the UTSW cohort were compared to a publically available, open-access, 

dataset of ccRCC from The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/

tcga/) (July 16th, 2012 update). In the TCGA, tumor necrosis was ascertained based on 

sections flanking a small specimen to be used for molecular studies. Greater than 50% of 

tumor nuclei in histological slides was required to qualify. In four instances, the staging did 
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not correspond to the TNM information provided and this information was excluded from 

analyses.

Immunohistochemistry

The canonical mammalian target of rapamycin complex 1 (mTORC1) markers, phospho-S6 

ribosomal protein (S235/236), and phospho-4E-BP1 (T37/46), were evaluated by 

immunohistochemistry (IHC) to asses for mTORC1 activation.(13) Results were scored by a 

pathologist (PK) blinded to clinicopathological variables and mutation status.

Gene expression analyses

RNA-Seq information was obtained from the TCGA Data Portal and was available for 308 

ccRCC annotated with mutations. RNA-Seq data was aligned using MapSplice and 

quantified and normalized using the reads per kilobase of exon model per million mapped 

reads [RPKM] method by the TCGA. Gene expression signatures were derived by 

comparing tumors with mutations in BAP1 (n=20) (or PBRM1 [n=66]) to the rest using 

unpaired t tests adjusted for the group variances and a Benjamini & Hochberg false 

discovery rate (FDR) correction.(17) Nineteen genes out of 20,532 failed to provide valid p 

values and were eliminated from the analyses. The significance of the gene expression 

signatures was assessed by comparing the number of genes identified to the number found in 

groups made up of random tumors of the same size (n=20 or 66). Pathways were analyzed 

using Ingenuity Pathway Analysis software.

Statistical analysis

Unless otherwise indicated, tumors were classified into BAP1-mutant tumors and tumors 

exclusively mutated for PBRM1 based on previously reported somatic (non-silent) 

mutations.(13) Associations between a mutation group and patient or tumor characteristics 

were determined using a Fisher's exact test (for categorical variables) or Student's t test (for 

continuous variables). The significance of the gene expression signatures was evaluated 

using a one-sample t test. Patients without residual disease after surgery were evaluated for 

metastases (either in regional lymph nodes or distant sites). Follow-up was considered from 

the time of nephrectomy to the date of death or last contact. Overall survival (OS) was 

computed from the date of surgery to the date of death from any cause. Patients alive at the 

end of the study period were censored at the date of last follow-up or the last date the patient 

was known to be alive, whichever was longer. OS was assessed using Kaplan-Meier 

estimates and comparisons were performed using the log-rank test. Hazard ratios (HR) were 

obtained from Cox regression analyses. Time-to-event results are reported with a HR, 95% 

confidence interval (CI) for the HR, and the log-rank p-value. Unless indicated, p-values are 

two-sided without adjusting for multiple comparisons. To assess whether mutation was 

independently associated with outcome, variables that were associated with OS at the 0.20 

level were included in multivariate Cox regression models after a backwards conditional 

method, in which the variable with the highest p-value was removed one at a time until all 

variables left in the model were significant at the 0.05 level. pN, which had missing data for 

half of the patients was excluded from the model in both cohorts. Grade 2 was used as the 

reference since there were only two grade 1 patients in each cohort. All variables were 
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treated as categorical except for age. Statistical analyses were conducted using SAS 9.2 for 

the multivariate Cox regression analyses and SPSS Statistics 17.0 for the rest.

Role of the funding source—The funding sources had no role in the study design, data 

collection, analysis, interpretation, or writing of this manuscript. Funds sponsored by CPRIT 

RP101075 were used to support salaries of laboratory personnel. 1P30CA142543 supported 

the tissue collection effort. PK, SPL, and JB had full access to all the data and the 

corresponding author had the final responsibility for the decision to submit for publication.

Results

The median age was 62 years (IQR=54, 70) and there was a male predominance (Table 1). 

The mean tumor size was 5.7 cm (IQR=4.1, 8.7). Fifty-two (76 of 145) percent of the tumors 

were of high grade (Fuhrman grade 3 and 4). Eleven percent (7 of 63) of patients who 

underwent regional lymph node dissection had nodal metastases and 9% (13 of 145) had 

distant metastases at the time of surgery.

We investigated a second, completely independent, cohort of ccRCC cases from TCGA. At 

the time of our analyses, mutation data was available for 327 patients, which represent the 

cohort analyzed. Demographics and other characteristics are summarized in table 1. The 

mean age was 61 years (IQR=52,71), with a male predominance. Fifty-eight percent (187 of 

325) of the tumors were of high grade. Eight percent (12 of 159) of patients who underwent 

regional lymph node resection had nodal metastases and 16% (52 of 327) had distant 

metastases at the time of surgery. Overall, the TCGA and UTSW cohorts were similar, 

although more patients presented with higher grade and metastases in the TCGA cohort.

Among the patients in the UTSW cohort, there were 21 with BAP1-mutated tumors, 

including 3 with mutations in both BAP1 and PBRM1. The number of patients with tumors 

exclusively mutated for PBRM1 was 78. VHL mutations were present in 71% (15 of 21) of 

BAP1-mutant and 87% (68 of 78) of PBRM1-mutant tumors, respectively. A comparison of 

patients with BAP1- versus PBRM1-mutated tumors showed that patients with BAP1-

mutated tumors were more likely to present with aggressive features including higher grade, 

sarcomatoid and rhabdoid histology, coagulative tumor necrosis, and mTORC1 activation 

(p<0.05 for all) (table 2).

In the TCGA cohort, there were 20 BAP1-mutant tumors (including 4 tumors with mutations 

in both BAP1 and PBRM1) and 74 tumors with mutations exclusively in PBRM1. Consistent 

with the results in the UTSW cohort, BAP1-mutated tumors showed a trend towards higher 

grade (p=0.095) and BAP1 mutation was associated with necrosis (p=0.038). In addition, 

BAP1-mutated tumors were more likely to have advanced pT and clinical stage (p<0.05 for 

both) (table 2). While the latter associations were not observed in the UTSW cohort, in 

every instance, BAP1-mutant tumors were associated with indicators of poor outcome.

In the UTSW cohort, patients with BAP1-mutant tumors had a median OS of 4.6 years 

(95%CI, 2.1-7.2 years), which was substantially shorter than that of patients with PBRM1-

mutated tumors, whose median OS was 10.6 years (95%CI, 9.8-11.5 years). The differences 

in OS corresponded to a HR of 2.7 (95%CI, 0.99-7.6, p=0.044) (figure 1). As in the UTSW 
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cohort, in the TGCA cohort, patients with BAP1-mutated tumors had a significantly higher 

probability of death (HR, 2.8; 95%CI, 1.4-5.9; p=0.004) (figure 1). While the median OS 

values differed between the TCGA and UTSW cohorts, possibly reflecting differences in the 

patient population and the availability of targeted therapies at the time of presentation 

(supplementary figure 1), the HR in both cohorts were almost identical (2.7 vs. 2.8). These 

data show that BAP1-mutated tumors are associated with significantly worse OS than 

PBRM1-mutated tumors.

To assess how representative the cohorts of patients with BAP1- and PBRM1-mutated 

tumors were, we performed univariate Cox regression analyses. As expected, in both the 

UTSW and TCGA cohorts, pN, M, stage, grade and necrosis were all associated with OS 

(supplementary table 1). Race, on the other hand, was not associated with OS in either 

cohort (supplementary table 1).

Multivariate Cox regression analyses were performed with all variables that reached 0.20 

significance in univariate analyses in each cohort respectively (supplementary table 1) 

except for pN, which had missing data in half of the patients. A backwards elimination 

process to identify the best fit model found that M and grade were independently associated 

with OS in the UTSW cohort (supplementary table 2). Other known predictors of outcome 

were not recovered, possibly owing to the small sample size. Interestingly, in addition to M 

and grade, mutations in BAP1 and PBRM1 were independently associated with OS in the 

TCGA cohort (HR, 2.3; 95% CI, 1.03-5.1; p=0.041) (table 3).

Our previous studies with a small number of samples suggested that BAP1- and PBRM1-

mutated tumors have different gene expression signatures.(13) To evaluate this notion 

further, we analyzed gene expression signatures from RNASeq data of the TCGA (available 

for 308 of the 327 samples with mutation information). We asked whether BAP1-mutant 

tumors could be distinguished from the rest. A comparison of gene expression between 

BAP1-mutated tumors (n=20) and the rest identified 3,250 genes that were deregulated in 

the BAP1-mutant group after a false-discovery rate (FDR) correction (q<0.05) (table 4). To 

ascertain the significance of these deregulated genes, we asked how many genes would 

distinguish a group of the same size chosen randomly. When 20 tumors were chosen at 

random, only 115 genes distinguished this group from the rest. This was repeated twice, and 

the numbers that distinguished these arbitrary groups were 63 and 120 respectively (table 4). 

The differences in the number of genes identified between the BAP1-mutant group (3,250 

genes) and the groups of random tumors was highly statistically significant (p=<0.0001). 

These data show that BAP1-mutated tumors are associated with a characteristic gene 

expression signature.

A comparison of PBRM1-mutant tumors (n=66) to the rest revealed 2,235 genes that 

distinguished these tumors at an FDR q<0.05 (table 4). When compared to three groups of 

66 tumors selected at random, the difference in the number of distinguishing genes (2,235 

vs. 0, 0, and 3) was highly significant (p=<0.0001) (table 4). Thus, PBRM1 mutated tumors 

are also associated with a characteristic gene expression signature.
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The number of genes in common between the BAP1 and PBRM1 signatures was 369 (figure 

2). However, the overlap expected at random was 381. Thus, the signatures were non-

overlapping and this reflected aberrations in different pathways (figure 2). Supplementary 

figure 2 lists genes in the BAP1 and PBRM1 signatures that most clearly distinguished these 

groups. BAP1-mutant tumors were characterized by changes in the expression of genes 

implicated in growth factor signaling, whereas PBRM1-mutant tumors exhibited expression 

changes in genes implicated in cytoskeleton and tissue architecture.

Finally, while the number of double mutant tumors was very small (3 and 4 in the UTSW 

and TCGA cohorts respectively), pathological studies of the UTSW cohort had suggested 

that these tumors were associated with rhabdoid features and may be particularly aggressive.

(13) In keeping with these results, Kaplan-Meier estimates of the UTSW cohort showed that 

double mutant tumors were associated with the worst outcomes (HR 5.3; 95% CI, 1.2-22.9; 

p=0.012) (supplementary figure 3A). This was also the case for the TCGA cohort (HR, 10; 

95%CI, 3.2-33.6, p=<0.0001) (figure 3). We also included in our analyses tumors for which 

mutations in BAP1 or PBRM1 were not identified (figure 3 and supplementary figure 3B). 

However, this group is likely to be heterogeneous and made up by more than one molecular 

genetic subtype.

Discussion

Our findings show that ccRCC can be subclassified into at least two biologically and 

clinically distinct entities: BAP1-mutant and PBRM1-mutant tumors. These tumors are 

associated with distinct gene expression signatures, and therefore different biology, and 

BAP1-mutant tumors exhibited pathological features suggestive of aggressive disease. 

BAP1-mutant tumors are associated with significantly worse overall survival than PBRM1-

mutant tumors (median OS in UTSW of 4.6 vs. 10.6 years; p=0.044). This difference 

corresponded to a HR of 2.7 (95%CI, 0.99-7.6) and an almost identical HR was observed in 

the TCGA cohort (HR, 2.8; 95%CI, 1.4-5.9; p=0.004). Thus, this study establishes the 

foundation for the first molecular genetic classification of sporadic ccRCC.

Why BAP1-mutant tumors are associated with worse survival is not understood. However, 

in both cohorts, when compared to PBRM1-mutated tumors, BAP1 mutation in tumors was 

associated with coagulative necrosis, an independent predictor of outcome.(18) In addition, 

BAP1-mutated tumors exhibited higher Fuhrman grade (p=<0.0001 and p=0.095 in UTSW 

and TCGA, respectively). The main determinant of Fuhrman grading in everyday practice is 

nucleolar prominence,(19) which by itself is associated with survival.(20) The nucleolus is 

the site within the cell where ribosomes are synthesized. Ribosomes are necessary for 

mRNA translation and both ribosome biogenesis as well as mRNA translation are regulated 

by mTORC1.(21) Furthermore, mTORC1 activity has been linked to nucleolar size.(22, 23) 

In RCC, a correlation was found between Fuhrman grading and S6 phosphorylation,(24) a 

marker of mTORC1 activation. Interestingly, BAP1 mutation is linked to mTORC1 

activation (although this association is likely to be indirect)(13) and this may contribute to 

explain the connection between BAP1 mutation high Fuhrman grade and outcome. 

Interestingly, in uveal melanoma, where BAP1 is also found to be somatically mutated, 
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BAP1 mutations were present in the majority of metastasizing but in only a minority of non-

metastasizing tumors.(25)

ccRCC is characterized by VHL mutations, but VHL inactivation alone is insufficient for 

tumor initiation.(26, 27) Both BAP1 and PBRM1 are two-hit tumor suppressor genes and 

they are located on chromosome 3p (where VHL is found), in a region that is deleted in the 

vast majority of sporadic ccRCC.(14, 28) We speculate that, in many instances, ccRCC 

development is initiated by a focal mutation in VHL, followed by a 3p deletion. 3p loss 

would leave cells without VHL gene function and with just one copy of BAP1 and PBRM1. 

Mutation of the remaining BAP1 or PBRM1 allele may initiate tumorigenesis resulting in 

tumors, depending upon which gene is mutated, of different aggressiveness. Thus, tumor 

aggressiveness may be established early on during the process of tumorigenesis.

We hypothesize that BAP1 and PBRM1, when mutated, represent truncal events and that the 

pathways deregulated by their loss are ideal targets for drug development. Likely accounting 

for macro- and microscopic differences within tumors, significant genetic heterogeneity has 

been reported in primary ccRCC.(29) According to their prevalence, mutations can be 

classified into ubiquitous, shared and private. Ubiquitous mutations are shared across all 

tumor cells and include initiating events. We postulate that mutations in BAP1 and PBRM1 

(and VHL) represent ubiquitous, truncal, drivers of tumor development. Thus, the discovery 

of BAP1 and PBRM1 mutations in ccRCC may pave the way for the next generation of 

targeted therapies. Given the particularly poor outcomes of BAP1-mutant tumors, 

identifying vulnerabilities resulting from BAP1 loss is particularly important. Once 

candidate drugs are found, their evaluation may be facilitated by the availability of 

tumorgraft models reproducing the molecular genetics and treatment responsiveness of RCC 

in humans.(30)

How mutations in BAP1 and PBRM1 drive renal carcinogenesis is not understood. We 

convincingly show that BAP1- and PBRM1-mutant tumors exhibit highly specific gene 

expression signatures that distinguish these tumors from the rest. The BAP1 and PBRM1 

gene expression signatures are quite distinct and this is in keeping with differences in 

pathological features and patient outcomes. Interestingly, most genes that make up the BAP1 

signature were downregulated in BAP1-mutated tumors. These data raise the possibility that 

BAP1, which is a nuclear deubiquitinase, may act by deubiquitinating transcription factors, 

which in the absence of BAP1 are ubiquitinated and targeted for proteosomal-mediated 

degradation. Support for such a model is provided by a recent report.(31) Similarly, most 

genes that made up the PBRM1 signature were downregulated in PBRM1-mutant tumors. 

PBRM1 is the chromatin targeting subunit of a nucleosome remodeling complex and we 

speculate that when PBRM1 is mutated, increased levels of closed chromatin impair 

transcription reducing thereby gene expression.

Other genes have been implicated in ccRCC development including SETD2, KDM5C and 

genes of the MLL family.(10-12, 32) How mutations in these genes relate to mutations in 

BAP1 and PBRM1 remains to be explored. Similarly, it is presently unknown whether these 

mutations define other molecular subtypes with different biology and outcomes.
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There are several limitations to this study. First, our study evaluated mostly Caucasian 

patients and the distribution of mutations in different patient populations remains to be 

determined. Second, the sample size and follow-up are modest. However, for a study 

assessing the molecular genetics of renal cancer, two completely independent cohorts of 145 

and 327 patients respectively is not insubstantial, and in the TCGA, median follow-up was 

35 months. In addition, mutation analyses are less susceptible to subjective calls than the 

more conventional IHC studies. More importantly, these features did not preclude the 

identification of meaningful and statistically significant differences in OS associated with 

BAP1- and PBRM1-mutated tumors and the HR were almost identical in both cohorts (2.7 

and 2.8). The nearly identical HR and statistically significant p values in two representative 

and independent patient cohorts strongly supports the conclusion that BAP1- and PBRM1-

mutated tumors are associated with distinct survival outcomes. Third, the median OS for 

patients with either BAP1 or PBRM1 mutant tumors was shorter in the TCGA cohort. 

However, regardless of mutation status, the OS for all patients was shorter for the TCGA 

than the UTSW cohort (10.3 vs 5.4 years). Factors that may explain this difference include 

differences in the patient population with higher rates of patients with metastatic disease 

[16% (52 of 327) vs 9% (13 of 145)] and high grade [58% (187 of 327) vs 52% (76 of 145)] 

in the TCGA. Another factor is the availability of targeted therapies. In fact, 37% (43 of 

115) of patients in the TCGA cohort died prior to 2006 (when molecularly targeted therapies 

became available) and only 11% (4 of 35) in the UTSW cohort (see supplementary figure 1).

It remains to be determined whether BAP1 and PBRM1 are independent predictors of 

outcome. Multivariate analysis of the TCGA cohort showed that mutations in BAP1 and 

PBRM1 predicted outcome independently of other variables. While this analysis found other 

known predictors of outcome (grade and M status) several established predictors failed to 

surface. This is likely due to the small sample size. Consistent with this, prognostic factors 

in existing nomograms were identified in significantly larger patient cohorts.(3-6) This may 

also explain why mutation status was not found as an independent predictor in the UTSW 

cohort. Our efforts continue in the development of robust immunohistochemistry assays that 

accurately report on BAP1 and PBRM1 and which could facilitate their definitive evaluation 

as independent predictors of patient survival in larger patient cohorts.

Importantly, however, this is not simply a biomarker study. Biomarkers refer to indicators of 

disease state that provide prognostic or predictive information. Biomarkers do not 

necessarily inform on the biology of the tumor and their value is typically predicated upon 

how much information they add onto existing nomograms. Furthermore, biomarkers may 

represent epiphenomenological variables with poorly understood links to tumor biology. In 

contrast, we linked two genetic drivers of ccRCC to disparate outcomes. The classification 

we propose is based on mutations in driver genes which are associated with distinct gene 

expression patterns and a different biology. The study is also not simply a classification 

based on gene expression, which has been reported previously.(33) Rather, the novelty of 

the study is in establishing the foundation for the first molecular genetic classification of 

sporadic renal cancer based on distinct biological subtypes that are associated with different 

outcomes. Furthermore, these different subtypes may have different responses to treatment 

and only with their recognition can drug effectiveness be properly assessed. For example, a 
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drug could be very active against BAP1-deficient tumors, but since these tumors account for 

just 15% of all ccRCC, the effect would be masked in an unselected population.

Finally, while the number of patients with BAP1 and PBRM1 double mutant tumors was 

very small in both cohorts and these tumors are infrequent (1-2% [3 of 145 and 4 of 327] of 

all sporadic ccRCC), they tend to be associated with both pathological and outcome 

measures suggestive of greatest aggressiveness.

In conclusion, our results provide the basis for a biologically meaningful and clinically 

relevant molecular genetic classification of ccRCC that may influence strategies for 

improved targeted therapies and personalized care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

No systematic review was performed. This work stems from discoveries made in our 

laboratory.(13) Through a combination of genome and exome sequencing followed by 

Sanger sequencing of candidate genes in a large number of ccRCC, we discovered that 

the BAP1 gene was mutated in approximately 15% of ccRCC. We found that BAP1 and 

PBRM1 mutations in tumors were largely mutually exclusive and that BAP1 loss, but not 

PBRM1 loss, was associated with high tumor grade. These data suggested that the BAP1 

and PBRM1 genes defined different subtypes of ccRCC that could be associated with 

different outcomes. In this manuscript, we show that BAP1- and PBRM1-mutated tumors 

are associated with distinct gene expression patterns and consequently different biology. 

Most importantly we show that BAP1- and PBRM1-mutated tumors are associated with 

disparate patient overall survival.
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Interpretation

While the number of patients with BAP1- and PBRM1-mutant tumors in each cohort is 

relatively small, the HR are almost identical in both the UTSW and TCGA cohorts and 

the log-rank p values are significant at the 0.044 and 0.004 level. These data indicate that 

BAP1- and PBRM1-mutated tumors are associated with distinct overall survival. BAP1- 

and PBRM1-mutant tumors exhibited different gene expression signatures reflecting 

different biology and pathogenesis. This study sets the foundation for the first molecular 

genetic classification of sporadic ccRCC and paves the way for therapies tailored to the 

different molecular subtypes.
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Figure 1. 
Kaplan-Meier curves of overall survival for UTSW (A) and TCGA (B).
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Figure 2. 
Pathway analysis for the BAP1 and PBRM1 signatures. Venn diagrams with number of 

genes that characterize BAP1- and PBRM1-mutant tumors, as well as overlap, and selected 

deregulated pathways in each group.
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Figure 3. 
Kaplan-Meier curves of overall survival for the indicated groups from TCGA.

Kapur et al. Page 17

Lancet Oncol. Author manuscript; available in PMC 2015 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kapur et al. Page 18

Table 1

Patient and tumor characteristics

UTSW (n=145) TCGA (n=327)

Age

Median 62 (54-70) 61 (52-71)

Race

White 103/132 (78%) 288/322 (89%)

Hispanic 16/132 (12%) 15/322 (5%)

African American 9/132 (7%) 11/322 (3%)

Indian 3/132 (2%) 0/322 (0%)

Asian 0/132 (0%) 8/322 (2%)

Native American 1/132 (<1%) 0/322 (0%)

Sex

Female 65/145 (45%) 118/327 (36%)

Male 80/145 (55%) 209/327 (64%)

Fuhrman grade

1 2/145 (1%) 5/325 (2%)

2 67/145 (46%) 133/325 (41%)

3 54/145 (37%) 136/325 (42%)

4 22/145 (15%) 51/325 (16%)

pT

T1 67/145 (46%) 149/327 (46%)

T2 22/145 (15%) 41/327 (12%)

T3 50/145 (34%) 131/327 (40%)

T4 6/145 (4%) 6/327 (2%)

pN

0 56/63 (89%) 147/159 (92%)

1 7/63 (11%) 12/159 (8%)

M

0 132/145 (91%) 275/327 (84%)

1 13/145 (9%) 52/327 (16%)

Stage (clinical)

I 65/145 (45%) 145/323 (45%)

II 18/145 (12%) 31/323 (10%)

III 45/145 (31%) 93/323 (29%)

IV 17/145 (12%) 54/323 (17%)

Data are number (%) unless otherwise stated. Percentages exclude missing samples. UTSW=University of Texas Southwestern Medical Center. 
TCGA=The Cancer Genome Atlas.

Lancet Oncol. Author manuscript; available in PMC 2015 December 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kapur et al. Page 19

Table 2

Phenotypic and pathologic variables of patients with BAP1-mutant tumors and tumors exclusively mutated for 

PBRM1 in the UTSW and TCGA

UTSW TCGA

PBRM1 (n=78) BAP1 (n=21) p value PBRM1 (n=74) BAP1 (n=20) p value

pT 0·28 0·011

    1 33/78 (42%) 7/21 (33%) 40/74 (54%) 4/20 (20%)

    2 10/78 (13%) 6/21 (29%) 11/74 (15%) 3/20 (15%)

    3 33/78 (42%) 7/21 (33%) 23/74 (31%) 13/20 (65%)

    4 2/78 (3%) 1/21 (5%) 0/74 (0%) 0/20 (0%)

pN 0·33 0·59

    0 33/36 (92%) 11/14 (79%) 29/31 (94%) 13/15 (87%)

    1 3/36 (8%) 3/14 (21%) 2/31 (6%) 2/15 (13%)

M 1·00 0·081

    0 70/78 (90%) 19/21 (90%) 65/74 (88%) 14/20 (70%)

    1 8/78 (10%) 2/21 (10%) 9/74 (12%) 6/20 (30%)

Stage (clinical) 0·76 0·003

    I 32/78 (41%) 7/21 (33%) 40/73 (55%) 3/20 (15%)

    II 10/78 (13%) 4/21 (19%) 9/73 (12%) 2/20 (10%)

    III 28/78 (36%) 7/21 (33%) 16/73 (22%) 9/20 (45%)

    IV 8/78 (10%) 3/21 (14%) 8/73 (11%) 6/20 (30%)

Fuhrman grade <0.0001 0·095

    1 2/78 (3%) 0/21 (0%) 2/74 (3%) 0/19 (0%)

    2 41/78 (53%) 3/21 (14%) 32/74 (43%) 4/19 (21%)

    3 31/78 (40%) 9/21 (43%) 32/74 (43%) 9/19 (47%)

    4 4/78 (5%) 9/21 (43%) 8/74 (11%) 6/19 (32%)

Necrosis 0·029 0·038

    No 47/64 (73%) 9/20 (45%) 65/74 (88%) 13/20 (65%)

    Yes 17/64 (27%) 11/20 (55%) 9/74 (12%) 7/20 (35%)

Sarcomatoid 0·0010 --

    No 76/78 (97%) 15/21 (71%) -- --

    Yes 2/78 (3%) 6/21 (29%) -- --

Rhabdoid 0.00034 --

    No 74/78 (95%) 13/21 (62%) -- --

    Yes 4/78 (5%) 8/21 (38%) -- --

Phospho-S6 1·2 (0·2) 3·8 (0·6) 0.0010 -- -- --

Phospho-4E-BP1 1·3 (0·2) 2·2 (0·4) 0·029 -- -- --

Data are number (%) or mean (SE), for immunohistochemistry. UTSW=University of Texas Southwestern Medical Center. TCGA=The Cancer 
Genome Atlas.
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