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This study compared the dependence of comodulation masking release (CMR) and monaural

envelope correlation perception (MECP) on the degree of envelope correlation for the same

narrowband noise stimuli. Envelope correlation across noise bands was systematically varied by

mixing independent bands with a base set of comodulated bands. The magnitude of CMR fell

monotonically with reductions in envelope correlation, and CMR varied over a range of envelope

correlations that were not discriminable from each other in the MECP paradigm. For complexes of

100-Hz-wide noise bands, discrimination thresholds in the MECP task were similar whether the

standard was a comodulated set of noise bands or a completely independent set of noise bands. This

was not the case for 25-Hz-wide noise bands. Although the data demonstrate that CMR and MECP

exhibit different dependencies on the degree of envelope correlation, some commonality across the

two phenomena was observed. Specifically, for 25-Hz-wide bands of noise, there was a robust rela-

tionship between individual listeners’ sensitivity to decorrelation from an otherwise comodulated

set of noise bands and the magnitude of CMR measured for those same comodulated noise bands.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4812256]
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I. INTRODUCTION

Pure-tone signal detection in a complex masker consist-

ing of multiple narrow bands of noise is usually more acute

when the multiple noise bands share the same modulation

pattern than when their patterns are random with respect to

each other (Hall et al., 1984). The lower signal level at

threshold in the comodulated case relative to the random

case is termed comodulation masking release (CMR), and

indicates that the auditory system is sensitive to envelope

correlation across frequency. Another phenomenon that indi-

cates sensitivity of the auditory system to envelope correla-

tion across frequency is monaural envelope correlation

perception (MECP). This refers to the ability to discriminate

between stimuli made up of multiple bands of noise on the

basis of envelope correlation across bands. Because both

phenomena rely on envelope correlation, there has been an

on-going interest in the relationship between the two func-

tions (Richards, 1987; van de Par and Kohlrausch, 1998).

The main focus of this study is the comparative depend-

ence of CMR and MECP on the degree of envelope correla-

tion. Most studies of CMR that have used maskers

consisting of multiple noise bands have restricted the bands

to the dichotomy of having either completely coherent

(comodulated) or completely incoherent (random) enve-

lopes. Although a few studies have examined CMR for enve-

lopes that are partially correlated, little attention has been

paid to the question of how much envelope correlation is

necessary to produce CMR. Similarly, most studies of

MECP have examined exclusively the discrimination of

noise-band envelopes that are either completely coherent or

completely incoherent. The question of how much envelope

correlation is sufficient to enable accurate discrimination has

received scant attention since the original work of Richards

(1987). It is the purpose of this study to assess both CMR

and MECP as a function of the degree of envelope correla-

tion for the same stimulus set. The motivation was that, by

incorporating this stimulus commonality, further insights

could be gained on the functional relationship between the

two phenomena. The study itself proceeded in two phases,

where each phase dealt with a separate set of stimuli differ-

ing primarily in terms of harmonicity and bandwidth. Within

each phase both CMR and MECP paradigms were imple-

mented. The structure of this logical progression will be

maintained here by reporting two phases, with two experi-

ments per phase.

II. PHASE 1, EXPERIMENT 1. CMR AS A FUNCTION
OF ACROSS-FREQUENCY ENVELOPE
CORRELATION: HARMONIC STIMULI

The results of several studies indicate that a positive

CMR can be obtained if the noise band centered on the pure-

tone signal is only partially correlated with the flanking noise

bands (McFadden, 1986; Moore and Schooneveldt, 1990;

Eddins and Wright, 1994; Buss and Richards, 1996; Grose

et al., 2001; Buss et al., 2009). These studies involved such

manipulations as “mixed” modulations across subsets of the

bands, or time-shifted envelopes across bands. For example,

Moore and Schooneveldt (1990) showed that for a pair of

25-Hz-wide noise bands, a positive CMR was still observed

in conditions where time-shifting the envelopes diminished

the envelope correlation to r¼ 0.77. However, these studies

did not specifically address the question of how much

a)Author to whom correspondence should be addressed. Electronic mail:

jhg@med.unc.edu

J. Acoust. Soc. Am. 134 (2), August 2013 VC 2013 Acoustical Society of America 12050001-4966/2013/134(2)/1205/10/$30.00

mailto:jhg@med.unc.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4812256&domain=pdf&date_stamp=2013-08-01


correlation is necessary to elicit a CMR. This question

received a preliminary examination in an unpublished report

by Mendoza et al. (1996) in which the envelope correlation

across the individual bands in a multi-band masker was sys-

tematically varied by corrupting each comodulated band with

an independent band of noise at a fixed comodulated-to-inde-

pendent ratio. The magnitude of CMR was found to vary

monotonically with correlation coefficient, at least in normal-

hearing listeners. The purpose of the present experiment was

to apply a similar approach to measure CMR magnitude; a

complementary experiment was performed to measure MECP

for the same stimuli (Phase 1, Experiment 2).

A. Method

Twelve young adults (11 female) participated, ranging

in age from 18 to 27 yr (mean¼ 22 yr). All had audiometric

thresholds <20 dB hearing level (HL) across the octave fre-

quencies 250 to 8000 Hz (ANSI, 2010), and none reported

any history of ear disease.

The signal was a 2000-Hz pure tone, 300 ms in duration

including 20-ms raised-cosine onset/offset ramps. The

masker consisted of five narrow bands of noise, each 20 Hz

in bandwidth, centered at 1200, 1600, 2000, 2400, and

2800 Hz. The use of 20-Hz bandwidths and harmonic spac-

ing was based on the preliminary work of Mendoza et al.
(1996). The maskers were generated at a sampling rate of

12207 Hz using a digital signal processing platform (RPvds,

Tucker-Davis Technologies, Alachua, FL). A quadrature

multiplication technique was employed wherein two base

sets of maskers were generated: One base set comprised five

comodulated noise bands; the other base set comprised five

independent bands. For the base set of comodulated bands,

two independent Gaussian noises were low-pass filtered at

10 Hz using a sequence of five cascaded, first-order

Butterworth filters, and then each low-pass band was sepa-

rately multiplied by a respective complex of five tones

spaced at 400-Hz intervals between 1200 and 2800 Hz. The

tones in one complex (for multiplication with one low-pass

noise) were in quadrature phase relative to the tones in the

other complex (for multiplication with the second low-pass

noise). Within each tonal complex, the starting phases of the

tones were staggered by 2p/5 radians. Following the parallel

multiplications, the products were summed, yielding a com-

plex of five comodulated 20-Hz-wide bands of Gaussian

noise centered at the five chosen frequencies. For further

comment on this quadrature method to generate Gaussian

noise, see van der Heijden and Kohlrausch (1995). For the

independent set of noise bands, a similar procedure was used

except that each tone in each of the two complexes of

quadrature-phase tones was multiplied by a separate, and in-

dependent, 10-Hz low-pass filtered Gaussian noise. The

resulting set of five narrow bands of noise therefore had

envelopes that were random with respect to each other.

These two base sets of masker bands constituted the end-

points of the range between fully comodulated and fully in-

dependent maskers.

Six additional sets of masker bands were then con-

structed that had degrees of envelope correlation that fell

between the endpoints of fully comodulated and fully inde-

pendent maskers. These additional masker sets were gener-

ated by mixing the base comodulated and independent

masker sets at prescribed intensity ratios; specifically, como-

dulated-to-independent ratios of 0, 5, 10, 15, 20, and 25 dB.

These ratios translate to Pearson correlation coefficients

across any pair of noise-band envelopes of r¼ 0.23, 0.55,

0.81, 0.93, 0.98, and 0.99, respectively.1 All maskers were

presented at a level of 65 dB sound pressure level (SPL) per

noise band.

Signal thresholds were measured using a 3-alternative,

forced-choice (3AFC) procedure that incorporated an adapt-

ive 3-down, 1-up stepping rule to converge on the 79.4%

correct level. In each observation interval of a 3AFC trial,

the selected masker was gated on for 368 ms including 34-

ms raised-cosine ramps. In one of these observation intervals

at random, the 300-ms signal was presented during the 300-

ms “full-on” segment of the masker. The initial step-size of

the adaptive procedure was 8 dB; this was halved after the

first two reversals in level direction, and again after the sub-

sequent two reversals. The step size remained at 2 dB for the

remainder of the track, which was terminated after a total of

ten reversals. The mean signal level at the final six reversals

was taken as the estimate of threshold for that track. Tracks

were rejected and replaced if the standard deviation (SD) of

the signal level at the final six reversals was� 4 dB. Across

all subjects and conditions, this occurred in 20 instances. For

each condition, at least three valid estimates were collected,

with a fourth added if the range of the first three exceeded

3 dB. The final threshold estimate for each condition was the

mean of all valid estimates collected.

B. Results and discussion

Performance across observers was relatively similar and

is well represented by the group means. These data are

shown as filled circles (-1 SD error bars) in Fig. 1, which

plots signal threshold level (left ordinate) as a function of the

comodulated-to-independent masker intensity ratio. For ref-

erence, the Pearson correlation coefficients between the

envelopes of any pair of bands for these respective intensity

ratios are shown along the top axis.2 The data show that sig-

nal level at threshold decreased monotonically with an

increasing comodulated-to-independent ratio. This was sup-

ported by a repeated measures analysis of variance

(ANOVA) that indicated a significant effect of masker con-

dition on signal threshold [F(3.11,34.25)¼ 63.18; p< 0.01].

Note that for the repeated measures ANOVA, Mauchly’s test

of sphericity was significant, and therefore Greenhouse-

Geisser adjustments to degrees of freedom have been

incorporated.

In terms of masking release, the difference between the

level of the signal at threshold in the independent masker and

the level at threshold in the comodulated masker represents a

common measure of CMR. This derivation of CMR is some-

times referred to as CMR(U-C) (Uncorrelated–Correlated) in

contrast to CMR(R-C) (Reference–Correlated) where signal

threshold in the comodulated condition is referenced to

threshold in the condition where just a single band of masking
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noise centered on the signal is present (Schooneveldt and

Moore, 1987). Some studies advocate for the CMR(U-C) deri-

vation, particularly in conditions of dynamic and/or binaural

masking (e.g., Epp and Verhey, 2009; Verhey et al., 2013).

Using the CMR(U-C) derivation, the average CMR magni-

tude here was 9.1 dB. For each subject, the masking release

associated with each of the other comodulated-to-independent

ratio conditions was also derived; i.e., the difference between

the threshold in the independent masker and the threshold in

every other condition was also computed. These mean mask-

ing release data are also shown in Fig. 1 as open circles (þ1

SD error bars), referenced to the right ordinate. Also refer-

enced to the right ordinate, and shown as gray squares, are

mean data from the unpublished report of Mendoza et al.
(1996). Whereas the masking release magnitudes are similar

across the two data sets for the smaller comodulated-to-inde-

pendent ratios, they diverge somewhat at higher ratios. This

might be due to methodological differences between the two

studies, such as the use of masker bands with a closer

harmonic spacing (250 Hz) and a lower signal frequency

(1000 Hz) in the study of Mendoza et al.
The main point of interest in this experiment was the de-

pendence of masking release magnitude on degree of enve-

lope correlation. To highlight this, pre-planned contrasts

were undertaken to determine the comodulated-to-independ-

ent ratio at which signal thresholds first differed significantly

from the independent masker condition. This analysis

revealed that even at 0 dB, the least favorable comodulated-

to-independent ratio tested, the signal thresholds had

declined significantly from the random baseline

[F(1,11)¼ 11.17; p< 0.01]. This demonstrates that, in terms

of signal detection, observers can benefit from a degree of

across-frequency envelope correlation (r¼ 0.23) that is

markedly lower than r¼ 1. This raises the question of

whether the perception of monaural envelope decorrelation

is similarly acute for these stimuli.

III. PHASE 1, EXPERIMENT 2. MECP: HARMONIC
STIMULI

Most studies of MECP have focused on the discrimina-

tion of noise-band stimuli whose envelopes are either wholly

correlated or completely independent across bands.

However, the initial work on MECP by Richards (1987) also

measured the amount of correlation required for discrimina-

bility of noise-band pairs with partially correlated envelopes

from noise-band pairs with either comodulated or independ-

ent envelopes. Those results showed that, for 100-Hz-wide

noise bands, pairs with partially correlated envelopes could

be discriminated from pairs with completely correlated enve-

lopes when the correlation coefficient dropped to about

r¼ 0.85. The present experiment applied a similar MECP

approach for the 20-Hz-wide noise bands that were used as

maskers in Experiment 1. Specifically, the goal was to mea-

sure the amount of decorrelation across noise-band enve-

lopes necessary for an observer to determine that the noise

bands were no longer fully comodulated.

A. Method

The same subjects from Experiment 1 participated.

However, one of the subjects could not perform the task de-

spite extensive training; i.e., this listener could not reliably

discriminate partially decorrelated envelopes from fully cor-

related envelopes within the limits of fully correlated and

fully decorrelated (independent) envelopes. The results

of this experiment are therefore based on the data of

11 subjects.

The same methodology and parameters were used to

generate the noise bands as in Experiment 1. A base set of

five comodulated noise bands and a base set of five inde-

pendent noise bands were created, and the degree of enve-

lope correlation across the five bands was manipulated by

mixing the base comodulated and independent masker sets at

a variable intensity ratio. The stimulus level remained at

65 dB SPL per band. Each observation interval of the 3AFC

task was 368 ms in duration including 34-ms raised-cosine

rise/fall ramps. In two of the observation intervals of a trial,

at random, the five noise bands were fully comodulated. In

the target interval the envelopes of the noise bands were par-

tially decorrelated, having a comodulated-to-independent ra-

tio that was adaptively varied. A 3-down, 1-up stepping rule

was used to converge on the comodulated-to-independent ra-

tio at which partially correlated noise bands could be discri-

minated from fully comodulated bands with 79.4%

accuracy. The power-domain scaling factor that controlled

the proportion with which the independent bands were

mixed with the comodulated bands was initially adjusted in

steps of 0.1 over a range of 0 (fully comodulated) to 1.0

(fully independent). After two reversals in the comodulated-

to-independent ratio, the step size was changed to 0.05 and

remained at this size until the track was terminated after ten

reversals. The levels of the scaling factor over the last eight

reversals were averaged, and used to derive an estimate of

the comodulated-to-independent ratio at discrimination

threshold. At least three estimates of the comodulated-to-in-

dependent ratio were collected, and the average of all

FIG. 1. Group mean signal threshold (filled circles re. left axis) and group

mean masking release (open circles re. right axis) plotted as a function of

the comodulated-to-independent masker intensity ratio (lower axis); the

associated envelope product moment correlation coefficients are also indi-

cated (upper axis). Error bars are 1 SD. Gray squares are mean masking

release data from Mendoza et al. (1996). The vertical dashed line, with hori-

zontal error bar indicating þ1 SD, is the group mean comodulated-to-ran-

dom ratio for the discrimination of partially decorrelated from fully

comodulated envelopes (Experiment 2).
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estimates was taken to reflect the degree of decorrelation

that allowed discrimination from fully comodulated bands.

Although some observers were immediately able to per-

form the task reliably, others required more extensive train-

ing. Those observers who exhibited initial difficulty with the

task were given training on a familiarization (non-adapting)

task in which the target interval was always known, and the

stimulus in the target interval was always a complex of five

independent bands. The observer could therefore repeatedly

compare the comodulated and independent bands until the

necessary cue(s) had been identified to accurately discrimi-

nate these endpoints of the comodulated-to-independent ratio

range. As noted above, one observer failed to exhibit reliable

discrimination even after multiple sessions over several

days; no data were included from this observer.

B. Results and discussion

The group mean average from this experiment is shown

in Fig. 1 as a vertical dashed line, with the horizontal error

bar indicating þ1 SD. This point represents the average

comodulated-to-independent ratio at which the observers

could just detect that the envelopes across the five noise

bands were no longer fully comodulated; i.e., r 6¼ 1.0. The

point corresponds to a pair-wise envelope correlation of

r¼ 0.12.

Three aspects of the CMR and MECP data in Fig. 1 are

noteworthy. First, the comodulated-to-independent ratio at

which observers could just detect that the noise band enve-

lopes were no longer comodulated was well below the range

of ratios where the masked-signal threshold changed most

rapidly in the CMR paradigm. In other words, masker enve-

lope decorrelation markedly affected signal detection at the

comodulated-to-independent ratios that were higher than

those at which the observer could actually perceive the pres-

ence of decorrelation in the MECP paradigm. Second, the

Pearson product moment correlation coefficient associated

with this threshold discrimination (r¼ 0.12) is markedly

smaller than the value of about r¼ 0.85 measured by

Richards (1987). This is likely due to the difference in band-

widths across the two studies (20 Hz vs 100 Hz). MECP

depends strongly on stimulus bandwidth, and sensitivity typ-

ically drops as the bandwidth is reduced [e.g., from 100 to

25 Hz (Moore and Emmerich, 1990; Buss et al., 2013)].

Thus, MECP is inherently more difficult for very narrow

bands of noise. Third, it is evident from the large SD of the

comodulated-to-independent ratio thresholds that observers

differed in their acuity for perceiving decorrelation.

Given these individual differences in MECP, it is in-

formative to determine whether performance in the CMR

task of Experiment 1 was related to sensitivity to decorrela-

tion. Three correlations were performed on the data of the 11

observers who completed both experiments. Specifically,

correlation coefficients were computed between the comodu-

lated-to-independent ratio at discrimination threshold in the

MECP task of Experiment 2 and: (1) The signal threshold in

the completely comodulated masker of experiment 1; (2) the

signal threshold in the completely independent masker of

Experiment 1; and (3) the magnitude of CMR in Experiment

1. None of the relationships were significant, although the

association between the comodulated-to-independent ratio at

the MECP threshold and CMR magnitude showed a positive

trend (r¼ 0.43, p¼ 0.09 [one-tailed]); that is, listeners with

the greatest acuity in detecting decorrelation tended to have

the largest CMRs. In line with this trend are the data from

the 12th observer who was unable to perform the task in

Experiment 2. In addition to not being able to reliably dis-

criminate comodulated from partially correlated noise bands,

this observer also had the lowest magnitude of CMR

(4.1 dB)—due to a notably poor threshold in the comodu-

lated masker.

One limitation of this experiment was that the perform-

ance of most listeners was close to “floor” level; i.e., for

most observers, the noise bands at discrimination threshold

were almost completely decorrelated. Poor MECP perform-

ance was not unexpected because of the known decline in

MECP at very narrow bandwidths (Moore and Emmerich,

1990; Buss et al., 2013). The choice of 20-Hz bandwidths

here was driven largely by the motivation to pattern the

CMR experiment after the earlier work of Mendoza et al.
(1996), which also used this bandwidth. A second limitation

of this experiment was that it did not test the complementary

condition wherein the standard stimulus comprised the inde-

pendent bands (r¼ 0) and the listener’s task was to detect an

increase in correlation.3 A third limitation was that the noise

bands were harmonically spaced. This configuration of linear

spacing means that any within-channel cues that might con-

tribute to the detection of envelope correlation, such as beat-

ing patterns between neighboring bands, would be highly

similar across frequency—a concern that applies also to the

associated CMR experiment (cf. Grose et al., 2009). A final

limitation is that the experiment did not test a condition that

might make the MECP paradigm conceptually more similar

to the CMR task—viz., the detection of decorrelation from

r¼ 1 but with only the center band becoming decorrelated

while the flanking bands remain comodulated. Because of

these limitations, a second pair of experiments was under-

taken to compare more comprehensively CMR and MECP

performance using similar stimuli between tasks.

Coincidentally, a long-term study on MECP in our labora-

tory reached conclusion at this juncture making available a

cohort of subjects who had been listening to MECP condi-

tions for almost two years (Buss et al., 2013).

IV. PHASE 2, EXPERIMENT 1. CMR AS A FUNCTION
OF ACROSS-FREQUENCY ENVELOPE
CORRELATION: INHARMONIC STIMULI

The purpose of this experiment was to measure the de-

pendence of signal threshold on the degree of correlation

across the masker bands in a CMR paradigm that tested two

different bandwidths of the noise-band maskers. In addition,

the bands themselves were spaced on a scale whose metric

was the normal equivalent rectangular bandwidth (ERB)

(Moore and Glasberg, 1983). As a later addendum to the

experiment, supplementary conditions were tested that were

intermediate with respect to CMR for pure-tone signals on

the one hand and MECP for noise-band stimuli on the other
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hand. These conditions incorporated a noise-band signal,

and the rationale for their inclusion is expanded upon below.

A. Method

Six adults (3 female) participated, ranging in age from

36.7 to 62.2 yr (mean¼ 49.1 yr). All had audiometric thresh-

olds <20 dB HL across the octave frequencies 250 to 8000 Hz,

and none reported any history of ear disease. All were experi-

enced listeners in psychoacoustic tasks, and five had previously

completed an extensive study in MECP.

The masker consisted of five narrow bands of noise, but

two different bandwidths were used in separate sets of condi-

tions: 25 and 100 Hz. These bandwidths were selected

because MECP measurements for these bandwidths already

exist (Buss et al., 2013). The center frequencies of the five

bands, rounded to the nearest integer, were 728, 1094, 1600,

2300, and 3268 Hz. These represent the center frequencies of

ERBs separated by two intervening, non-overlapping ERBs.

The method of masker generation was the same as

Experiment 1 and, again, for each masker bandwidth two

base sets of maskers were generated: (1) A base set compris-

ing five comodulated noise bands; (2) a base set comprising

five independent bands. These two base sets were mixed to

yield maskers with comodulated-to-independent ratios of 0,

5, 10, 15, 20, and 25 dB. All maskers were presented at a

level of 65 dB SPL per noise band. In the main CMR condi-

tions, the signal was a 1600-Hz pure tone.

Two supplementary conditions were also included for

each masker bandwidth that did not use a pure-tone signal

but, rather, used a noise band centered at 1600 Hz as the sig-

nal. This signal band had the same bandwidth (25 or 100 Hz)

as the 1600-Hz noise band within the respective masker to

which it was being added, but was independent from that

masker band. In one of the supplementary conditions for

each of the two bandwidths, the 1600-Hz signal band was

simply added to the 1600-Hz masker band (thus allowing for

the level increment to be a viable detection cue). In the other

supplementary condition, the summed masker-plus-signal

band was rescaled prior to presentation to maintain an over-

all noise-band level of 65 dB SPL (thus removing the long-

term level increment as a viable cue). The masker in these

supplementary conditions was always the base set of the

comodulated bands. The rationale for these supplementary

conditions was twofold. First, the addition of the noise-band

signal to its complementary masker band resulted in a com-

posite waveform having envelope fluctuation statistics that

remained representative of the associated noise bandwidth.

As pointed out by Schooneveldt and Moore (1989), this is

not necessarily the case when a pure-tone signal is added to

the masker noise band. The second rationale was that the sig-

nal thresholds measured in the rescaled masker-plus-signal

conditions compared directly to MECP thresholds when

expressed as comodulated-to-independent ratios in dB. Thus,

these supplementary conditions provided a segue between

CMR conditions in which the signal is added to one band

within a complex of comodulated masker bands and MECP

conditions where just one band is decorrelated relative to the

remaining comodulated bands. Only five of the six subjects

were available to participate in the supplementary condi-

tions, as these data were collected after those in the primary

experiment. In all conditions, the duration and onset/offset

ramps applied to the signal were the same as those in the

companion experiment of Phase 1.

The same 3AFC procedure was used to measure signal

threshold as in the previous CMR experiment. There were

16 conditions employing the pure-tone signal: The fully

comodulated and fully independent masker plus the six sets

of masker bands with varying comodulated-to-independent

ratios (i.e., 0, 5, 10, 15, 20, and 25 dB) for each of the two

masker bandwidths (i.e., 25 and 100 Hz). There were an

additional four conditions employing the noise-band signal

presented in the comodulated masker: The scaled and

unscaled summed waveforms for each of the two masker

bandwidths. All other aspects of the procedure were the

same as in the companion experiment of Phase 1. Across all

subjects and conditions, ten threshold estimation tracks were

rejected and replaced because of a track SD >4 dB.

B. Results and discussion

Considering first the main conditions using the pure-

tone signal, the performance of the six subjects was rela-

tively similar and is well represented by the group means.

These data are shown in Fig. 2 where the upper panel plots

FIG. 2. Top panel: Group mean signal threshold plotted as a function of the

comodulated-to-independent masker intensity ratio (lower axis); the associ-

ated envelope product moment correlation coefficients are also indicated

(upper axis). Parameters are noise bandwidth and signal type, as indicated in

the key. Error bars are 1 SD. Lower panel: Group mean masking release as a

function of comodulated-to-independent intensity ratio; the parameter is

noise bandwidth.
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signal threshold as a function of the comodulated-to-inde-

pendent ratio (filled symbols) and the lower panel plots the

derived masking release relative to the signal threshold level

in the independent masker (open symbols). As in Fig. 1, the

correlation coefficients between the envelopes of any pair of

bands for these respective comodulated-to-independent

ratios are shown along the top axis. The parameter in each

panel is the bandwidth of the noise bands comprising the

masker. For both the 25-Hz (circles) and 100-Hz (triangles)

bandwidths, signal threshold declined as a nearly monotonic

function of the comodulated-to-independent ratio.

Thresholds were also generally higher in the 25-Hz band-

width than the 100-Hz bandwidth for the smaller comodu-

lated-to-independent ratios but converged at the higher

ratios. This was confirmed by the results of repeated-

measures ANOVA that tested the factors of bandwidth and

comodulated-to-independent ratio. The analysis showed a

significant effect of bandwidth [F(1,5)¼ 11.84; p¼ 0.018], a

significant effect of the comodulated-to-independent ratio

[F(7,35)¼ 52.15; p< 0.001], and a significant interaction

between these factors [F(7,35)¼ 3.56; p¼ 0.005]. The inter-

action was due to the convergence of the two sets of thresh-

olds as the comodulated-to-independent ratio increased. This

convergence pattern was also captured by the within-

subjects polynomial contrasts associated with the interaction,

wherein only the linear term reached significance

[F(1,5)¼ 15.69; p¼ 0.011].

The lower panel of Fig. 2 shows the derived masking

release magnitudes (relative to the signal threshold in the in-

dependent masker) as a function of the comodulated-to-inde-

pendent ratio of the masker. For the 25-Hz bandwidth, the

magnitude of masking release increased monotonically with

the comodulated-to-independent ratio. For the 100-Hz band-

width, the increase in masking release appears to reach as-

ymptote at the higher ratios, such that the difference in

masking release magnitude between the two bandwidths

increases at the higher ratios. This data pattern was sup-

ported by the results of repeated-measures ANOVA on the

factors of bandwidth and comodulated-to-independent

ratio. Whereas the main effect of bandwidth was not

significant [F(1,5)¼ 0.88; p¼ 0.39], the main effect of the

comodulated-to-independent ratio was [F(6,30)¼ 38.02;

p< 0.001], as was the interaction between the two factors

[F(6,30)¼ 4.16; p¼ 0.004]. The significant interaction

reflects the divergence of the masking release magnitudes at

the higher ratios. The inverse relationship between CMR and

the bandwidth of the noise bands comprising the masker has

been noted previously (Schooneveldt and Moore, 1987;

Hatch et al., 1995). The present data set indicates that, under

the conditions tested here, the increase in masking release

magnitude reflects primarily an elevation in signal threshold

in the 25-Hz bandwidth random masker rather than a

decrease in signal threshold in the 25-Hz bandwidth como-

dulated masker. The higher threshold in the 25-Hz band-

width reference condition relative to the 100-Hz bandwidth

reference condition is likely the result of the perceptually sa-

lient fluctuations inherent to very narrow bands of noise that

impair pure-tone detection (Bos and de Boer, 1966). The av-

erage difference of about 1.6 dB observed here is less than

the 1.5 dB/octave expected for narrow bandwidths based on

the study by van de Par and Kohlrausch (1999).

To assess the dependence of masking release magnitude

on the degree of envelope correlation, pre-planned contrasts

were undertaken to determine the comodulated-to-independ-

ent ratio at which signal thresholds first differed significantly

from the independent masker condition. This analysis was

carried out separately on each of the two bandwidth data

sets. For the 25-Hz bandwidth, the analysis revealed that sig-

nal threshold for the 0-dB comodulated-to-independent ratio

did not differ from the independent masker baseline

[F(1,5)¼ 1.77; p¼ 0.241], but that thresholds for all remain-

ing ratios did (p< 0.01). For the 100-Hz bandwidth, the

analysis indicated that signal threshold even in the 0-dB

comodulated-to-independent ratio condition had declined

from baseline [F(1,5)¼ 7.80; p¼ 0.037]. These findings

demonstrate that signal detection is facilitated even when the

partial correlation of the noise-band envelopes across fre-

quency is quite modest.

Five of the listeners returned at a later time to partici-

pate in the supplemental conditions wherein the signal was

an independent narrow band of noise. Thresholds for this

signal presented in the comodulated masker (without rescal-

ing of the summed signal-plus-masker band) are shown as a

filled square and diamond in the upper panel of Fig. 2 for

the 25- and 100-Hz bandwidths, respectively. A repeated-

measures ANOVA comparing these thresholds to their pure-

tone signal counterparts indicated no effect of signal

type [F(1,4)¼ 2.85; p¼ 0.166], bandwidth [F(1,4)¼ 0.18;

p¼ 0.693], or interaction between these factors

[F(1,4)¼ 1.20; p¼ 0.336]. Lack of an effect of signal type

is compatible with the results of Fantini et al. (1993) who

also compared signal detection for pure tone vs an inde-

pendent narrow band of (non-Gaussian) noise presented in a

comodulated masker, and found no consistent effect across

their three listeners. Their rationale for testing this compari-

son was that, a priori, there was reason to expect that the

two signals might have different effects on the summed

waveform envelope. (Consideration of the remaining sup-

plemental conditions that involved rescaling the summed

signal-plus-masker band to maintain equivalence with the

other masker bands is deferred to the next experiment

because of the conceptual similarity of these conditions to

MECP.)

In summary, the results of the CMR experiment confirm

a strong dependence of masking release on the degree of en-

velope correlation across masker bands. For both masker

bandwidths, signal detection benefited from even modest

levels of envelope correlation. The minimum signal thresh-

old in the comodulated masker was similar across masker

bandwidths, but as the degree of envelope correlation dimin-

ished, thresholds in the narrower bandwidth masker increas-

ingly diverged to higher levels. The difference in envelope

statistics associated with the addition of a pure-tone signal

versus a noise-band signal did not appear to be critical for

CMR under the conditions tested here. Attention turns now

to the companion MECP experiment that addresses the issue

of envelope correlation discrimination for the same noise-

band stimuli tested in the CMR paradigm.
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V. PHASE 2, EXPERIMENT 2. MONAURAL ENVELOPE
CORRELATION PERCEPTION: INHARMONIC STIMULI

A. Method

The subjects and noise-band stimuli were the same as in

the companion Phase 2 CMR experiment. The procedure

was the same as in the previous Phase 1 MECP experiment,

with the addition of the condition testing the discrimination

of the stimulus comprising partially correlated envelopes

(signal, r> 0) from the stimulus comprising fully independ-

ent envelopes (standard, r¼ 0). The comodulated-to-inde-

pendent ratio was adaptively varied to converge on the point

at which the partially (de)correlated signal could be discrimi-

nated from the standard bands with 79.4% accuracy. When

the standard stimulus was comodulated (r¼ 1), sequences of

correct responses in the adaptive track led to a decrease in

the degree of correlation; when the standard stimulus was in-

dependent (r¼ 0), sequences of correct responses led to an

increase in the degree of correlation. The step sizes were the

same as in the previous MECP experiment. A further modifi-

cation incorporated into the present experiment was that a

criterion was implemented to reject and replace tracks with

spuriously large deviations; this criterion was a track

SD> 0.15. Across all subjects and conditions this criterion

was exceeded in 23 instances. At least three valid replica-

tions of discrimination threshold were collected for each

condition, and the mean of all estimates was taken as the

final threshold for that condition.

B. Results and discussion

The mean data are displayed in Fig. 3 for each of the

combinations of noise bandwidth (25 and 100 Hz) and

across-band envelope pattern (comodulated and independ-

ent) comprising the standard stimulus. The data show that

the effect of the standard stimulus on the discrimination

threshold depended on bandwidth. For the 25-Hz bandwidth,

the comodulated-to-independent ratio at which a partially

decorrelated set of noise bands could be discriminated from

a set of comodulated noise bands was lower than the ratio at

which a partially correlated set of noise bands could be dis-

criminated from a set of independent bands. This difference

was not observed for the 100-Hz bandwidth. The data pattern

was supported by a repeated-measures ANOVA having two

within-subject factors: Bandwidth (25 Hz, 100 Hz), and en-

velope condition of the standard (comodulated, independ-

ent). The analysis indicated no main effect of bandwidth

[F(1,5)¼ 1.1; p¼ 0.342] or of standard stimulus

[F(1,5)¼ 2.46; p¼ 0.178], but a significant interaction

between these factors [F(1,4)¼ 14.12; p¼ 0.013]. Simple

effect testing (Kirk, 1968) indicated that the envelope pattern

of the standard had a significant effect for the 25-Hz band-

width (p¼ 0.03) but not for the 100-Hz bandwidth

(p¼ 0.946). Another feature of this data pattern revealed by

the simple effect testing was that, for the comodulated stand-

ard stimulus, the comodulated-to-independent ratio at dis-

crimination threshold increased as the bandwidth increased

from 25 to 100 Hz (p¼ 0.013), whereas for the independent

standard stimulus it decreased as the bandwidth increased

(p¼ 0.036).

This pattern of MECP results indicates that when the

bandwidth of the noise bands comprising the standard stimu-

lus is 100 Hz, the degree of decorrelation needed to discrimi-

nate a partially correlated set of noise bands from either an

independent set of noise bands or a completely comodulated

set of noise bands is approximately the same. This degree of

decorrelation, expressed in terms of the correlation coeffi-

cient between any pair of the bands, is on average about

r¼ 0.6. This coefficient is lower than the r � 0.85 measured

across three subjects by Richards (1987) for a pair of

100-Hz-wide noise bands. The reason for this disparity is not

immediately clear, although for one of the six subjects tested

here the correlation coefficient associated with the discrimi-

nation of partially correlated from fully correlated noise

bands was also r¼ 0.85. It is possible, therefore, that individ-

ual differences across the two studies might underlie the dis-

parity. For the 25-Hz bandwidth, the degree of decorrelation

at the discrimination threshold was not the same for the

comodulated and independent standards. When the standard

was comodulated, a relatively large degree of decorrelation
was necessary to permit discrimination. Conversely, when

the standard was independent, a relatively large degree of

correlation was necessary to permit discrimination. This

suggests that, for very narrow noise bandwidths, there is a

relatively wide range of envelope partial correlations that are

not discriminable by a normal-hearing listener.

The intent of this study was to determine the relation-

ship between MECP performance and CMR performance for

the same subjects and stimuli. Accordingly, for each of the

two bandwidths, correlation coefficients were computed

between the MECP comodulated-to-independent ratios at

discrimination threshold (for both r¼ 1 and r¼ 0 standards)

and: (1) The signal threshold in the completely comodulated

masker of the CMR experiment; (2) the signal threshold in

the completely independent masker of the CMR experiment;

and (3) the magnitude of CMR itself. For the 25-Hz band-

width, the matrix of correlations indicated significant associ-

ations between the MECP discrimination threshold for the

FIG. 3. Mean MECP discrimination thresholds for each of the combinations

of standard stimulus noise bandwidth (25 Hz, 100 Hz) and across-band enve-

lope pattern (comodulated [COM], independent [IND]). Left axis shows

comodulated-to-independent ratio and right axis shows corresponding enve-

lope correlation coefficient. Error bars are 61 SD.
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comodulated noise band standard and both the signal thresh-

old in the comodulated masker (r¼�0.91, p¼ 0.011) and

the magnitude of CMR (r¼ 0.96, p¼ 0.002); the correlation

with signal threshold in the independent masker was not sig-

nificant (r¼�0.28; p¼ 0.585). None of the correlations

with the MECP discrimination threshold for the independent
noise band standard were significant. For the 100-Hz-wide

noise band stimulus, a significant association existed

between the MECP discrimination threshold for the comodu-
lated standard and the signal threshold in both the comodu-

lated masker (r¼�0.91, p¼ 0.013) and the independent

masker (r¼�0.82, p¼ 0.045). However, both of these cor-

relations must be treated with caution as they were strongly

influenced by the data from a single subject who had a high

MECP discrimination threshold (11.2 dB) and a correspond-

ingly low 1600-Hz signal threshold in both the comodulated

(57.3 dB SPL) and independent (63.9 dB SPL) maskers. The

correlation between the MECP discrimination threshold for

the comodulated standard and CMR magnitude was not sig-

nificant (r¼ 0.41, p¼ 0.416). As with the 25-Hz bandwidth,

none of the correlations with the MECP discrimination

threshold for the independent 100-Hz-wide noise band stand-

ard were significant. At least for the 25-Hz bandwidth, there-

fore, these data suggest that a listener’s ability to

discriminate a set of noise bands with partially decorrelated

envelopes from a comodulated standard is associated with a

greater acuity for signal detection in the comodulated masker

and, concomitantly, a larger CMR.

It might be argued that the perceptual task of discriminat-

ing a decrease in across-frequency envelope correlation rela-

tive to r¼ 1 in the MECP task, where the decorrelation

applies to each of the five bands comprising the stimulus, is

not equivalent to the CMR task where four of the five bands

remain comodulated when the signal is added to the fifth

band. An experimental manipulation that addresses this argu-

ment is the one incorporated into the second set of supple-

mentary conditions in the CMR experiment (Phase 2,

Experiment 1) where the summed signal-plus-masker band

was rescaled to maintain a level equivalent to the remaining

four bands. Here, signal detection relies on sensitivity to the

decorrelation of the signal-plus-masker band envelope rela-

tive to the remaining comodulated envelopes. These data,

expressed as comodulated-to-independent ratios in dB for the

five listeners, are shown as open symbols in Fig. 4, with the

closed symbols showing the complementary MECP data from

the main data set. Symbols on the abscissa with a downward-

pointing arrow indicate an inability to obtain a reliable thresh-

old at the limits of the task. It is evident that detecting decor-

relation for a single band of noise relative to comodulated

flanking bands is much more difficult for all listeners relative

to the MECP case where all five bands are decorrelated (open

symbols are all below the corresponding filled symbols). Two

of the listeners could not perform the task at the 100-Hz band-

width, and one of these could not perform the task also at

the 25-Hz bandwidth.4 Nevertheless, for each bandwidth

(25- and 100-Hz), Pearson bivariate correlations were under-

taken between the threshold comodulated-to-independent

ratio in the supplementary condition and: (1) The correspond-

ing ratio in the main MECP condition; (2) the pure-tone

threshold in the comodulated CMR condition (CMR experi-

ment, Phase 2); and (3) the magnitude of CMR in this latter

condition. For these analyses, the task limit of a comodu-

lated-to-independent ratio of �25 dB was used in the three

instances where listener performance encroached on the limit

in the supplementary conditions. For the 25-Hz bandwidth,

all three correlations were significant (one-tailed): (1)

r¼ 0.84, p¼ 0.04; (2) r¼�0.91, p¼ 0.016; and (3) r¼ 0.91,

p¼ 0.017. For the 100-Hz bandwidth, only the correlations

with the main MECP condition (r¼ 0.86, p¼ 0.03) and the

magnitude of CMR (r¼ 0.82, p¼ 0.044) were significant

(one-tailed), although the trend for the correlation with the

pure-tone signal threshold in the CMR condition was in the

expected direction (r¼�0.783, p¼ 0.06). Thus, despite the

overall poorer thresholds in the supplementary conditions

where only one of the bands was decorrelated relative to the

main MECP conditions where all five bands were decorre-

lated, it is nevertheless the case that listeners who are more

sensitive to across-frequency envelope correlation tend to ex-

hibit larger CMRs for similar stimulus configurations.

VI. GENERAL DISCUSSION AND CONCLUSION

This study examined both CMR and MECP as a func-

tion of the degree of envelope correlation for the same stim-

ulus set. Although it is clear that the phenomena of CMR

and MECP both involve the correlation of amplitude enve-

lopes, there are several strands of evidence that suggest a

distinction between them. First, the two phenomena show

disparate bandwidth effects: CMR is maximal for relatively

narrow bands of noise (Moore and Schooneveldt, 1990;

Eddins and Wright, 1994), whereas MECP declines with

reducing bandwidth—at least over the range of bandwidths

tested here (Moore and Emmerich, 1990; Buss et al., 2013).

Indeed, recent work in our laboratory indicates that MECP is

FIG. 4. Individual MECP discrimination thresholds (comodulated-to-inde-

pendent ratios in dB) for each noise bandwidth (25 Hz, 100 Hz). Open sym-

bols indicate conditions where just the center noise band was decorrelated;

filled symbols indicate conditions where all five bands were decorrelated.

Symbols with arrows on the abscissa indicate performance beyond the limits

of the adaptive track.
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viable for masker bandwidths as wide as 1600 Hz (Buss

et al., 2013), a bandwidth for which inherent envelope fluc-

tuations are highly unlikely to support a CMR, although this

remains to be tested. Second, models of CMR that are based

on sensitivity to across-frequency decorrelation brought

about by the addition of a signal appear to fail under some

circumstances. For example, decorrelating only the peak

portions of the masker with the addition of a signal does not

result in a masking release (Moore et al., 1990). Also, CMR

can be observed under conditions where the signal does not

result in any envelope decorrelation (Hall and Grose, 1988;

Buss, 2010).

Some aspects of the present data offer further support

for the distinction between CMR and MECP. Here, the mag-

nitude of CMR continued to vary monotonically within a

range of envelope correlation values that were not discrimi-

nable in the MECP paradigm. This pattern of results suggests

that the envelope statistics providing optimal cues for MECP

are not entirely the same as those that facilitate CMR; i.e.,

factors such as fluctuation rate and duration of envelope min-

ima likely play different roles across the two phenomena. In

light of this, it is probable that the relative balance observed

here between MECP and CMR would be different if other

noise band parameters were tested. For example, just as

CMR was observed here for degrees of envelope correlation

that were not discriminable to the listener, it is likely that

negligible CMR would be observed for wide bandwidths

(e.g., 1600 Hz) where significant envelope discrimination

has been measured (Buss et al., 2013). In addition, the over-

all number of noise bands might also affect the pattern of

results; CMR magnitude approaches asymptote once the

number of proximal flanking bands exceeds two, but the

effect of band number has not been systematically tested for

MECP (cf. Hall et al., 1990; Hall and Grose, 1993).

Some aspects of the present data, however, suggest

commonalities between CMR and MECP. The results of

Phase 2 indicate a strong association between performance

on the MECP task when the standard stimulus was a set of

comodulated 25-Hz-wide bands and both the magnitude of

CMR and the signal threshold level in the comodulated

masker. There was a trend for a similar association in Phase

1 between CMR magnitude and MECP threshold; here, the

bandwidth of the noise bands was 20 Hz. For the 100-Hz

bandwidth in Phase 2, a significant association was also

observed between MECP threshold and CMR, but this corre-

lation was strongly influenced by the results of one subject.

This pattern suggests that listeners who are very sensitive to

degree of envelope correlation also exhibit large CMRs, and

vice versa. The results of the supplemental conditions that

maintained level equivalence across the noise bands also

bolster this suggestion. Of course, it does not logically fol-

low that the same cues are being used in the MECP and

CMR tasks—only that some listeners appear to be better

“envelope processors” than others.

The key observation that CMR magnitude varies within

a range of envelope correlation values that are not discrimi-

nable in the MECP paradigm raises other questions relevant

to CMR. For example, it is known that a temporal fringe

comprising independent noise bands can reduce the benefit

of comodulated flanking bands during a subsequent segment

comprising comodulated noise bands (Grose et al., 2009).

However, based on the present findings it is not clear

whether a similar effect would be observed with a temporal

fringe made up of partially-correlated noise bands that are

perceptually indiscriminable from independent noise bands.

It would also be informative to examine the magnitude of

CMR as a function of the degree of envelope correlation

between the masking noise band centered on the signal and

the remaining comodulated flanking noise bands in a para-

digm similar to that used here; this focus would be distinct

from that of previous studies whose focus has been on com-

parative envelope patterns between the noise band centered

at the signal frequency and the remaining masking bands

(McFadden, 1986; Moore and Schooneveldt, 1990; Eddins

and Wright, 1994; Buss and Richards, 1996; Grose et al.,
2001; Buss et al., 2009). Finally, the observation that the dif-

ference in CMR magnitude for the 25- and 100-Hz noise

bandwidths is driven by signal threshold in the independent

masker baseline and not in the comodulated masker invites

further investigation.

In summary, the present study established that the mag-

nitude of masking release for a signal masked by a complex

of narrow bands of noise varies systematically as a function

of the degree of correlation across the noise-band envelopes.

This variation in signal threshold occurred even for ranges

of envelope correlation that were not perceptually discrimi-

nable in the MECP paradigm. Although this demonstrates

that CMR and MECP exhibit different dependencies on the

degree of envelope correlation, the data also show some

commonality across the two phenomena. Specifically, for

narrow bands of noise, there is a robust relationship between

sensitivity to decorrelation from an otherwise comodulated

set of noise bands and the magnitude of CMR measured for

those same comodulated noise bands.
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wherein pairs of 20-Hz-wide noise bands having prescribed comodulated-

to-independent ratios were digitally generated, the envelopes extracted

using the Hilbert transform, and the Pearson product moment between

pairs of envelopes calculated. For each given comodulated-to-independent

ratio, the process was repeated 1000 times to obtain an average correlation

coefficient. Although there has been a vigorous debate about whether

cross-correlation or cross-covariance is the appropriate metric with which

to quantify degree of envelope similarity (e.g., Bernstein and Trahiotis,

1996), the Pearson product moment correlation was selected here for two

reasons: (1) It is the metric used in the study of Richards (1987), to which

the present data are compared; and (2) the point of interest of this study is

the comparative performance across CMR and MECP for the same stim-

uli, and hence the precise metric of envelope similarity is less important.
2Note that these correlation coefficients represent the long-term average
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five bands—including the pairing of each flanking noise band with the

center band at the signal frequency. However, for any brief interval the

pair-wise coefficients across the four pairings of the center band and each

of the four flanking bands are likely to differ, except in the comodulated

case.
3Initial plans called for inclusion of this complementary condition where

the listener’s task was to detect an increase in correlation from r¼ 0 (i.e.,

independent standard). However, preliminary testing indicated that
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with synchronous gating may have interfered with the ability to discriminate a

decorrelation of the signal-plus-masker band envelope.
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