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Abstract

Protein protein interaction is the fundamental step of biological signal transduction. Interacting
proteins find each other by diffusion. To gain insight into diffusion under the crowded conditions
found in cells, we used nuclear magnetic resonance spectroscopy (NMR) to measure the effects of
solvent additives on the translational and rotational diffusion of the 7.4 kDa globular protein,
chymotrypsin inhibitor 2. The additives were glycerol and the macromolecular crowding agent,
polyvinylpyrrolidone (PVP). Both translational diffusion and rotational diffusion decrease with
increasing solution viscosity. For glycerol, the decrease obeys the Stokes Einstein and Stokes Einstein
Debye laws. Three types of deviation are observed for PVP: the decrease in diffusion with increased
viscosity is less than predicted, this negative deviation is greater for rotational diffusion, and the
negative deviation increases with increasing PVVP molecular weight. We discuss our results in terms
of other studies on the effects of macromolecules on globular protein diffusion.
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1. Introduction

Understanding the details of protein complex formation is important because protein
assemblies transmit, integrate, and transduce biological signals. To form a complex, the partner
proteins must not only encounter one another, but also find each other's binding site. These
events involve translational and rotational diffusion, respectively.

Theory provides molecular level insight into complex formation in dilute solution, but these
conditions are far from those found in cells. Macromolecules can occupy up to 30% of a cell's
volume and reach concentrations of 100 g/L to 400 g/L.2 Such large volume occupancies will
affect diffusion, but relatively little attention has been paid to the effects of crowding, despite
the fact that crowding can increase protein stability,3 accelerate folding,* and promote
aggregation.®
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Diffusion is quantified as the translational (D) diffusion and rotational (Dy) diffusion
coefficients. D; and Dy are related to viscosity via the Stokes Einstein law, D=«T/6z5r, and
Stokes Einstein Debye law D,=«T/8zxr3, where 7 is viscosity, x is the Boltzmann constant and
r is the protein's radius. 6-8 These relationships, however, apply only to spherical proteins in
homogenous solution. Solution homogeneity means that the test protein is dramatically larger
than the solute(s) controlling the viscosity. These criteria are not likely to apply to the cellular
interior. Although it may sometimes be reasonable to treat a globular protein as a sphere, the
cytosol is not homogeneous, and test proteins will be about the same size as the crowding
molecules.

It seems likely that macromolecular crowding will cause deviation from these simple
relationships. Deviation comes in two forms, negative and positive. Negative deviation means
that increased viscosity decreases diffusion less than is predicted by the Stokes equations.
Positive deviation is the opposite. Studies of globular protein diffusion in synthetic
macromolecular crowding agents reveal negative deviation for both translational and rotational
diffusion.®15 In studies of globular protein diffusion in solutions of globular proteins, negative
deviation is observed for rotation,16 but only slight negative deviation and positive deviation
are observed for translation.10:16:17 |n summary, both globular proteins and synthetic polymers
affect the rotational diffusion of globular proteins less than is expected, synthetic polymers
affect transitional diffusion less than is expected, but globular proteins have either a small
negative or a positive effect on translational diffusion.

Up to now, fluorescence has been the main tool for quantifying protein diffusion under crowded
conditions. Here we report the first use of NMR with an 1°N enriched protein to study globular
protein diffusion under crowded conditions. Specifically, we quantify the translational and
rotational diffusion of chymotrypsin inhibitor 2, a 7.4 kDa globular protein, in solutions of a
small molecule, glycerol, and the synthetic polymer poly(vinylpyrrolidone) (PVP). PVP is a
random coil polymer?® that interacts only weakly with chymotrypsin inhibitor 2.3 We use PVP
solutions in the dilute to semidilute range (i.e., up to concentrations where the PVP molecules
overlap19).

2. Experimental Section

15N enriched chymotrypsin inhibitor 2 was expressed and purified as described.3:20 Viscosities
were measured with a Viscolite 700 viscometer (Hydramotion Ltd., England). Experiments
were performed on a 600 MHz Varian Inova spectrometer equipped with a standard triple
resonance HCN probe with three axis gradients. Translational diffusion was measured by using
a heteronuclear stimulated echo sequence.?! Gradient strengths ranged from 1.2 G/cm to 58.0
G/cm.22 Rotational diffusion was assessed from the 15N T4/T, ratio.23 The pulse sequences
used were from the Biopack software supplied with the instrument. The *H dimension was
acquired with a sweep width of 12000 Hz and consisted of 1024 complex points. The 15N
dimension was acquired with a sweep width of 2500 Hz and consisted of 64 and 128 complex
increments for chymotrypsin inhibitor 2 in PVP and in glycerol, respectively. For T;
measurements in PVP, relaxation delays were set to 0.01, 0.5, 0.9, 1.1, 1.3 and 1.5 s. Delays
of 0.01, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0 s were chosen for the glycerol experiments. For T»
measurements in PVP, the delays were 0.01, 0.03, 0.05, 0.07, 0.09, 0.11 s. Delays of 0.01, 0.07,
0.11, 0.15, 0.17, 0.21, 0.25 s were used for the glycerol experiments. Eight transients were
acquired per spectrum. The data were processed with NMRPipe 24and NMRView.2® T; and
T, values were averaged.

3. Results and Discussion

1H based pulsed field gradient methods are widely used to measure the D of biological
macromolecules in dilute solution. Making these measurements in viscous, crowded solutions,
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however, is difficult for two reasons. First, the 1H longitudinal magnetization decays too
quickly to quantify test protein diffusion. Second, background signals from the crowding agent
dominate the spectra. Heteronuclear stimulated echoes overcome these problems by using a
longer lived heteronucleus,?! in this instance, 15N, which is absent from the crowding molecule.
Figure 1 shows the amide 1H signals from 15N enriched chymotrypsin inhibitor 2 in PVP
solution. Their intensity decreases with increasing gradient strength. Figure 2 shows plots of
the logarithm of the relative intensity versus gradient strength. The slopes are the translational
diffusion coefficients.

NMR can also provide information about rotational dynamics. These dynamics affect the
longitudinal relaxation time Ty and the transverse relaxation time T,.28 Both relaxation times
are captured in the rotational correlation time, ty,, which is proportional to 1/D,. We obtained
T from the value of T1/T,.23:27

The results for glycerol, 10 kDa PVP, 40 kDa PVP, and a mixture of the two are shown in
Figure 3, where the ratio of the diffusion coefficients in buffer to those in the solvent additive
is plotted against the macroscopic viscosity relative to that of water.

In glycerol, both rotational and translational diffusion follow the Stokes laws. This result is
expected because the experimental system is in accord with the assumption used to define the
laws. Specifically, glycerol (93 Da) and water (18 Da) are much smaller than chymotrypsin
inhibitor 2. Additionally, the close agreement with theory suggests that chymotrypsin inhibitor
2 can be treated as a sphere.

Macromolecular crowding causes dramatic negative deviations from the Stokes Laws (Figure
3), and PVP reduces translational diffusion more than rotational diffusion. The size of the
crowding molecule is also important. The same weight concentration of 40 kDa PVP slows
both types of diffusion more than 10 kDa PVP. The data for the 1:1 mixture of 10 kDa and 40
kDa PVP show that the larger polymer dominates the negative deviation. These observations
agree with results from studies using synthetic polymers with fluorescence detection, %11
showing that NMR is a useful tool. Most importantly, our results support the idea that the nature
of the solvent additive is important for understanding the diffusional effects.

In terms of protein complex formation, our data and those of others, 1114 show that
macromolecular crowding has a small effect on the ability of one protein to find the other's
binding site because crowding has a small effect on rotational diffusion. This observation
makes intuitive sense because connecting monomers into a polymeric crowding agent should
have a small effect of the rotational freedom of the test protein, provided that chemical
interactions between the crowder and the test protein are weak.

The effects of macromolecular crowding on collisional frequency are harder to rationalize
because synthetic polymers and globular proteins have opposite effects on translational
diffusion.9-17 Whereas synthetic polymers slow diffusion less than is expected by the Stokes
Einstein law, globular proteins can have a larger than expected effect. Strong crowder test
protein interactions, which are expected in cells, will only exasperate this trend.

4. Conclusions

In summary, we report the first application of heteronuclear NMR to quantify the translational
and rotational diffusion of a globular protein in crowded solutions. Consistent with the results
using other techniques, our data show that both types of diffusion are less affected than
predicted by the Stokes laws, with rotational diffusion being more negatively affected than
translational diffusion. The size of the crowding molecule compared to the test protein also
influences diffusion, with the larger crowding molecules playing a dominate role.
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Our work also highlights a difference between synthetic polymers and globular proteins as
crowding agents; synthetic polymer crowding agents cause negative deviation for the
translation of globular proteins, whereas globular protein crowding agents cause nearly
negligible or even positive deviation. Additional studies using independent techniques are
needed to address this difference, but understanding its molecular origin is key to understanding
protein movement in cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

15N filtered 1H spectra of 1mM 15N enriched chymotrypsin inhibitor 2 in 100 g/L. 10 kDa PVP
(50 mM acetate buffer; pH 5.4; 25°C; 0.3 s diffusion time; 0.02 ms gradient duration) with
increasing gradient strength (G/cm).
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Figure 2.

Translational diffusion results for chymotrypsin inhibitor 2 in 1:1 (g/g) mixture of 40 kDa :10
kDaPVP [Red, 100 g/L; green, 200 g/L; blue, 300 g/L, b = (yG&)2A]. The conditions are defined
in the caption to Figure 1.
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Translational (A) and rotational (B) diffusion of chymotrypsin inhibitor 2 in a small molecule,
glycerol (—) and family of differently sized polymers [10 kDa PVP (¢), 40 kDa PVP (- -),
1:1 (g/g) mixture of 40 kDa :10 kDa PVP (- *)]. The conditions are defined in the caption to
Figure 1. The colors are defined in the caption to Figure 2. The curves for PVP are of no
theoretical significance. For glycerol, the line extends beyond the points to illustrate the Stokes
Einstein and Stokes Einstein Debye relationships. The data for 40 kDa PVP have been

published.28
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